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Abstract1

Though the sequence of the genome within each eukaryotic cell is essentially fixed, it2

exists within a complex and changing chromatin state. This state is determined, in part,3

by the dynamic binding of proteins to the DNA. These proteins—including histones,4

transcription factors (TFs), and polymerases—interact with one another, the genome,5

and other molecules to allow the chromatin to adopt one of exceedingly many possi-6

ble configurations. Understanding how changing chromatin configurations associate7

with transcription remains a fundamental research problem. We sought to character-8

ize at high spatiotemporal resolution the dynamic interplay between transcription and9

chromatin in response to cadmium stress. While gene regulatory responses to environ-10

mental stress in yeast have been studied, how the chromatin state changes and how11

those changes connect to gene regulation remain unexplored. By combining MNase-12

seq and RNA-seq data, we found chromatin signatures of transcriptional activation and13

repression involving both nucleosomal and TF-sized DNA-binding factors. Using these14

signatures, we identified associations between chromatin dynamics and transcriptional15

regulation, not only for known cadmium response genes, but across the entire genome,16

including antisense transcripts. Those associations allowed us to develop generalizable17

models that can predict dynamic transcriptional responses on the basis of dynamic18

chromatin signatures.19
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Introduction20

Organisms require genic transcription to produce the proteins necessary for biologi-21

cal functions like growth, replication, repair, and response to environmental changes.22

Transcription is tightly regulated through the complex interplay of a myriad of DNA-23

binding factors (DBFs), including the histone octamers at the core of a nucleosome,24

transcription factors (TFs), and polymerases. These proteins and complexes involved25

in transcription, and the many others interacting with DNA, determine the chromatin26

landscape. How these constituents of the chromatin bind, unbind, move, and interact27

to regulate transcription remains an open area of research.28

Numerous studies have made major strides in characterizing the roles of protein29

complexes involved in transcription. Chromatin immunoprecipitation (ChIP) has been30

used to assay binding sites of hundreds of proteins on a genomic scale, including factors31

involved in SAGA-dominated stress-related pathways and TFIID-dominated housekeep-32

ing pathways (Venters et al. 2011). Likewise, studies have probed proteins involved in33

the formation of the pre-initiation complex required for transcription initiation (Rhee34

and Pugh 2012). The role of numerous chromatin remodelers and their interactions35

have been characterized in detail through ChIP, proteomics, and gene expression anal-36

ysis of deletion mutants (Krogan et al. 2006; Lenstra et al. 2011; Mavrich et al. 2008;37

Shivaswamy and Iyer 2008; Weiner et al. 2012, 2015). However, limitations in these38

methods, including lack of antibodies for ChIP or viability of deletion strains, are of-39

ten constraining. Analysis can be complicated by the difficulty in disentangling direct40

chromatin effects from the pleiotropic action of the many factors and remodelers that41

impinge upon transcription, often indirectly. These and other issues contribute to our42

still limited understanding of the dynamic interplay of the chromatin landscape and43

transcription.44
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An alternative approach has been to profile chromatin occupancy in a protein-45

agnostic manner using nuclease digestion. Digestion by a nuclease, such as micrococ-46

cal nuclease (MNase), provides a complementary perspective to understand chromatin47

occupancy as it can probe accessibility at base-pair precision. Recent genome-wide48

mapping studies have used nucleosome-sized MNase-seq fragments to characterize the49

dynamics of nucleosomes under various conditions, including the cell cycle (Nocetti50

and Whitehouse 2016), DNA damage (Tripuraneni et al. 2019), and heat shock (Teves51

and Henikoff 2011). Additionally, studies have attempted to understand the roles of52

the smaller DNA-bound factors that correspond to subnucleosomal MNase-seq frag-53

ments (Belsky et al. 2015; Brahma and Henikoff 2019; Chereji et al. 2017; Henikoff54

et al. 2011; Kubik et al. 2017; Ramachandran et al. 2017; Teves and Henikoff 2011).55

These studies highlight the challenge of characterizing the vast heterogeneity of—and56

interactions among—proteins and complexes involved in DNA-mediated processes, in-57

cluding transcription.58

Factor-agnostic chromatin occupancy profiles from MNase provide an opportunity59

to link changes in chromatin at nucleotide resolution with transcriptional regulation,60

especially regulation induced by environmental perturbations. Here, we utilize a high-61

resolution spatiotemporal stress response data set to elucidate the relationship between62

chromatin organization and gene expression by developing general strategies and mod-63

els to analyze, genome-wide, chromatin dynamics relative to changes in transcription.64

Results65

Paired-end MNase-seq captures high-resolution chromatin occupancy dynamics associated66

with transcription during cadmium stress67

We sought to characterize the dynamics of chromatin in terms of changes in occupancy68

and organizational structure of nucleosomes as well as smaller transcription-related69
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proteins. A nucleotide resolution view of chromatin occupancy dynamics in response70

to cadmium stress would allow us to associate and infer relationships between these71

chromatin changes and those in transcription. Yeast cells were exposed to cadmium72

and samples were collected over a two-hour time course (Fig. 1A). Chromatin occu-73

pancy and positioning dynamics were profiled using paired-end MNase-seq to map74

DNA-binding factors at base pair resolution (Fig. 1B). Concurrently, transcripts were75

interrogated using strand-specific total RNA-seq (Fig. 1C).76

To evaluate our data and methods, we considered the well-studied stress response77

gene HSP26, whose role is to facilitate the disaggregation of misfolded proteins (Cashikar78

et al. 2005). Hsp26 has been implicated in responses to many stress conditions, includ-79

ing heat shock (Benesch et al. 2010; Franzmann et al. 2008), acidity (Kawahata et al.80

2006), sulfur starvation (Pereira et al. 2008), and metal toxicity (Hosiner et al. 2014;81

Momose and Iwahashi 2001). Furthermore, several transcription factors, including82

Hsf1, Met4, and Met32, have been found to bind in the well-characterized promoter of83

HSP26 (Boy-Marcotte et al. 1999; Carrillo et al. 2012; Chen and Pederson 1993; Susek84

and Lindquist 1990; Treger et al. 1998). Given this context, HSP26 serves as a useful85

test case because we understand many aspects of its local chromatin dynamics when it86

is activated under stress conditions.87

We observed significant changes in the chromatin around the transcription start site88

(TSS) of HSP26 (Fig. 2A), coinciding with a dramatic increase in its transcript level.89

Upstream, in the promoter of HSP26, nucleosome-sized fragments of length 144–17490

bp are replaced by small fragments less than 100 bp. In the gene body of HSP26,91

nucleosome-sized fragments become “fuzzy”, increasing in positional and fragment-92

length variability (Fig. 2A). Nucleosomes upstream of HSP26 are known to be evicted93

(Lee et al. 2004) and replaced by smaller factors associated with transcription initia-94

tion, pushing gene body nucleosomes downstream (Fig. 2B,C). Then, active transcrip-95
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tion by RNA polymerases displaces and evicts nucleosomes in its path (Kulaeva et al.96

2010; Lee et al. 2004; Schwabish and Struhl 2004), which is apparent in our data in97

the significant loss of nucleosomal fragments within the gene body of HSP26.98

To quantify these complex transcription-associated chromatin dynamics genome-99

wide, we defined two scores for each gene, a “small fragment occupancy” score of100

small fragments appearing in a gene’s promoter, and a measure of “nucleosome disor-101

ganization” within its gene body using information entropy. Additionally, to account102

for variations in RNA stability, we estimated transcription rates from our measured103

transcript levels using published mRNA decay rates (Geisberg et al. 2014; Miller et al.104

2011; Presnyak et al. 2015).105

Using these measures, we are able to succinctly describe relationships between chro-106

matin dynamics and transcription in a range of genes, from activated HSP26 (Fig. 2D),107

to repressed RPS7A (Supplemental Fig. 1), to unchanging CKB1 (Supplemental Fig. 2).108

Averaging these two measures of the chromatin across the time course, and then rank-109

ing all genes by the resulting “combined chromatin” score, we observed large-scale110

coordination between chromatin and transcription across a significant proportion of111

the genome (Fig. 3A,B).112

Globally, log fold-changes in transcription show a significant positive Pearson corre-113

lation with changes in each of our chromatin measures: 0.49 for small fragment occu-114

pancy (Fig. 3C), 0.61 for nucleosome disorganization (Fig. 3D), and 0.68 for combined115

chromatin (Supplemental Fig. 3A). The high correlation between combined chromatin116

and transcription, along with a lower 0.33 correlation between small fragment occu-117

pancy and nucleosome disorganization (Supplemental Fig. 3B), suggests that small118

fragment occupancy and nucleosome disorganization each provide orthogonal statisti-119

cal power in describing changes in the chromatin relative to changes in transcription.120
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Changes in nucleosome and small factor occupancy at TSSs recapitulate genome-wide tran-121

scriptional response to cadmium122

To determine whether chromatin dynamics alone could recapitulate known response123

to cadmium exposure, we performed Gene Ontology (GO) enrichment analysis of the124

300 genes with the highest and lowest values for each chromatin measure. We identi-125

fied, with varying levels of false discovery rate (FDR) significance, regulation pathways126

implicated under cadmium exposure. We further validated these chromatin-identified127

pathways using literature and a separate GO enrichment analysis based on changes in128

transcription (Supplemental Tables S1 and S2).129

One of the established responses for cells undergoing stress involves shutting down130

ribosomal and other translation-related pathways (Hosiner et al. 2014; Reja et al. 2015;131

Vinayachandran et al. 2018). Using our simple chromatin measures, ribosomal and132

translation-related GO terms emerged as the most significantly down-regulated, with133

FDR values often much lower than 10−10 (Fig. 4A).134

Translation-related genes are repressed as a tightly regulated cluster, but pathways135

activated under cadmium exposure are also recovered as the most significantly up-136

regulated by our chromatin scores, albeit with FDR values above 10−4 (Fig. 4B). Con-137

sistent with previous cadmium and heavy metal stress response studies (Faller et al.138

2005; Fauchon et al. 2002; Hartwig 2001) and our own transcriptional GO enrichment139

analysis (Supplemental Table S2), two major cadmium-response pathways were im-140

plicated by changes in the chromatin: sulfur assimilation and protein folding. While141

small fragment occupancy identified sulfate assimilation and stress response terms with142

the greatest significance (FDR of 10−3.9), nucleosome disorganization was required to143

identify protein refolding and sulfur amino acid metabolic process terms. Our differ-144

ent measures computed from chromatin are sufficient to accurately recover high-level145

stress response pathways induced and repressed by cadmium exposure.146

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.06.28.176545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.28.176545


High-resolution time course recovers cascading induction of sulfur pathways147

Because of the significant involvement of sulfur assimilation in the cell’s response to148

cadmium, we next sought to detail changes in the chromatin related to the activation149

of sulfur pathways. The heavy demand for sulfur arises because it is required for the150

biosynthesis of the cadmium-chelating glutathione (Fauchon et al. 2002). Sulfur path-151

ways are activated through Met4 and its binding complex, comprised of cis-binding fac-152

tors Cbf1 and Met31/Met32, and accessory factor Met28 (Blaiseau and Thomas 1998;153

Kuras et al. 1996). Met4 is negatively regulated through ubiquitination by SCFMet30
154

(Barbey et al. 2005; Kaiser et al. 2000; Kuras et al. 2002)(Fig. 5A). In our study, we155

identified novel features of the chromatin in the cascading events that regulate the sul-156

fur metabolic pathways (Fig. 5B): (i) the activation of the Met4 complex through its157

cofactors, (ii) the activation of the sulfur pathways by Met4, and (iii) the subsequent158

down-regulation of Met4 activity by SCFMet30, evident in diminished transcription of159

Met4-regulated genes.160

Upon deubiquitination by cadmium (Barbey et al. 2005), Met4 becomes function-161

ally active and induces its own cofactors (Barbey et al. 2005; McIsaac et al. 2012) and,162

through feedforward regulation between Met4 and Met32, activates sulfur pathway163

genes (Carrillo et al. 2012; McIsaac et al. 2012). We observed this activation not only164

in increased transcription within 7.5 minutes for MET32 and MET28, but also in dra-165

matic nucleosome disorganization of MET32 (Supplemental Fig. 4) and increased small166

fragment occupancy for MET28.167

While Met31 shares a binding motif and largely overlaps in function with Met32168

(Blaiseau et al. 1997), it is not as prominent as Met32 in the activation of sulfur path-169

ways (Carrillo et al. 2012; McIsaac et al. 2012; Petti et al. 2012). In response to cad-170

mium, the transcription of MET31 is repressed, but the chromatin around the gene ex-171

hibits an unexpected behavior in light of this: although MET31 expression is repressed,172
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its nucleosomes become highly disorganized. Leveraging our stranded RNA-seq data,173

we noticed significantly increasing antisense transcription over the time course (Sup-174

plemental Fig. 5). Additionally, downstream of the transcription end site (TES) of175

MET31, small fragments become enriched at a Met31/Met32 binding motif. Taken to-176

gether, our data suggests that MET31 is being regulated by non-coding RNA (ncRNA)177

antisense transcription.178

Following activation of the Met4 complex (Carrillo et al. 2012; McIsaac et al. 2012),179

small fragment occupancy, nucleosome disorganization, and transcription increase for180

the seven sulfur assimilation genes (Fig. 5C) and many downstream genes within181

15 minutes. Additionally, the Met4 complex induces a sulfur-sparing transcriptional-182

switch between functionally similar isoenzymes to indirectly contribute sulfur required183

for chelation. This switch includes replacing sulfur-rich Pdc1 with sulfur-lacking Pdc6,184

Ald6 with Ald4, and Eno2 with Eno1 (Fauchon et al. 2002). We see evidence of these185

substitutions between isoenzyme pairs in our data, with the most dramatic changes186

evident in the small fragment occupancy of PDC6 (details in Supplemental Fig. 6) and187

PDC1.188

Following induction of the sulfur pathways, the activating roles of Met32 and Met4189

diminish upon regulation by SCFMet30 (Ouni et al. 2010; Patton et al. 2000). This190

regulation is observed in our data in the gradually increasing transcription and nu-191

cleosome disorganization of MET30 throughout the time course, as well as in how the192

nucleosome disorganization scores of MET32 and many of the sulfur assimilation genes193

gradually diminish after an early peak (Fig. 5B,D).194

Together, these results and analyses complement established transcriptional and195

ChIP-based studies by detailing chromatin dynamics of the sulfur metabolic pathways196

and identifying a potentially novel regulatory mechanism for MET31 through antisense197

transcription.198
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Cadmium treatment induces chromatin dynamics as distinct temporal clusters, including199

those linked to antisense transcription200

We selected the 500 genes exhibiting the greatest average increase in either small frag-201

ment occupancy or nucleosome disorganization, and performed hierarchical clustering202

on the resulting 832 genes (fewer than 1000 because many were in both sets). Cluster-203

ing revealed distinct temporal patterns in small fragment occupancy and nucleosome204

disorganization among the genes (Fig. 6A). GO enrichment analysis identified differ-205

ent stress response pathways in two of the clusters (Fig. 6B), suggesting that chromatin206

changes in these pathways differ in their temporal pattern. Clusters 6–8 reveal unex-207

pected anti-correlated relationships between chromatin and transcription for genes in208

these clusters. For genes in cluster 6, some of the anti-correlation can be attributed209

to antisense transcription (Fig. 6C), as previously highlighted in MET31. But in clus-210

ter 7, MCD4, which codes for an endoplasmic reticulum membrane protein, counter-211

intuitively exhibits chromatin with nucleosomes that become more organized despite212

increased sense and no evident antisense transcription (Supplemental Fig. 7).213

Genome-wide, we observed that antisense transcription manifests itself with min-214

imal apparent connection to sense transcription (Fig. 7A). Nevertheless, we did de-215

tect two general phenomena, each consistent with prior studies. First, as also seen in216

other environmental conditions (Kim et al. 2010; Till et al. 2018; Wilhelm et al. 2008),217

yeast undergoing cadmium stress induce pervasive antisense transcription. As the time218

course progresses, more and more genes exhibit increased levels of antisense transcrip-219

tion (Fig. 7B). Even among the 3,199 genes whose sense transcription changes only220

minimally, 542 exhibit at least a four-fold increase in antisense transcription (Fig. 7C).221

Second, previous studies have found antisense transcription can be associated with ei-222

ther repression or activation of target genes (Kornienko et al. 2013; Swamy et al. 2014;223

Till et al. 2018; Vance and Ponting 2014), and we observed the same phenomenon. Un-224
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der cadmium stress, we identified 200 genes whose antisense transcripts increased at225

least four-fold and whose sense transcripts changed by at least four-fold. Among those,226

104 had repressed sense transcription—e.g., MET31 and UTR2, whose overexpression227

has been linked with endoplasmic reticulum stress (Miller et al. 2010) (Supplemental228

Fig. 8)—but 96 had activated sense transcription, including the gene YBR241C (Sup-229

plemental Fig. 9), coding for a vacuole localization protein (Wiederhold et al. 2009).230

Motif analysis identifies per-bp binding dynamics of transcription factors231

To explore small fragment occupancy more closely, we identified peaks in the signal232

and quantified the change in binding at each peak over 60 minutes (Fig. 8A). We ran233

the motif finder FIMO (Grant et al. 2011) near peak locations to associate peaks with234

TFs, and then for each TF, computed its average change in binding occupancy (Fig. 8B).235

TFs exhibiting the greatest average increase in occupancy include not only the sulfur236

pathway activators Met4 and Met32, general stress regulators Msn2 and Msn4, and237

glycolytic activators Gcr1 and Gcr2, but also the iron homeostasis regulators Aft1 and238

Aft2. Genes with the greatest increase in both Aft1 and Aft2 binding include SER33,239

LEE1, and ENB1.240

For SER33, a gene involved in Ser and Gly biosynthesis (Albers et al. 2003), we see241

evidence of Aft1/Aft2 binding near Gcr2 in the promoter (Fig. 8C). Whereas Gcr2 is242

known to interact with Gcr1, a known regulator of SER33 (Hu et al. 2007), Aft1 and243

Aft2 have yet to be identified as regulators for SER33 (Fig. 8D). Additionally, we see244

enrichment of small fragments near the motifs for known regulators Met32 and Met4,245

previously identified through ChIP (Carrillo et al. 2012). Similarly strong evidence of246

Aft1/Aft2 binding is found in the promoters of LEE1 (Supplemental Fig. 10A), a zinc-247

finger of unknown function, and ENB1 (Supplemental Fig. 10B), a ferric enterobactin248

transmembrane transporter (Heymann et al. 2000). ENB1 has only been identified to249
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be regulated by Aft1 through microarrays (Hu et al. 2007). While the iron homeostasis250

pathways have been previously implicated in heavy metal stress conditions (Halimaa251

et al. 2019; Hosiner et al. 2014), our analysis further elucidates the binding dynamics252

of regulators Aft1 and Aft2 under cadmium stress and, more generally, demonstrates253

the richness of small fragment signals in MNase-seq data.254

Chromatin occupancy changes are predictive of changes in gene expression255

Finally, we sought to develop a model to quantify the relationship between our mea-256

sures of chromatin dynamics and changes in transcription. We used Gaussian process257

regression models to predict the transcription at each time point based solely on chro-258

matin dynamics and initial transcript levels (at 0 min, before cadmium treatment).259

We constructed four models to evaluate the inclusion of various measures of the chro-260

matin, culminating in a “full” model that incorporates additional occupancy measures,261

nucleosome positional shifts (Supplemental Fig. 11), and chromatin measures relative262

to called antisense transcripts (Supplemental Fig. 12).263

Under 10-fold cross-validation, we evaluated each model using the coefficient of de-264

termination (R2), as the proportion of variance each model is able to explain (Fig. 9).265

For each feature-containing model, prediction performance gradually worsens through266

the time course as genes’ transcript levels increasingly diverge from their initial values.267

However, models that include chromatin features consistently outperform a model that268

just uses initial transcript levels (RNA only), with the gap growing over time. Nucle-269

osome disorganization is more informative than small fragment occupancy, especially270

at intermediate times; consistent with our other results, combining both measures pro-271

vides more predictive power than either alone. The full model does not add much to272

this combination at 7.5 and 15 minutes because early predictions are mainly driven273

by initial transcript levels. However, by 30 minutes, it begins to outperform all other274
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models, maintaining an R2 of 0.44 even two hours after the cell’s exposure to cadmium.275

While our models cannot ascertain causal links between changes in chromatin and276

transcription and use measures that do not fully characterize the chromatin state, they277

nevertheless provide strong evidence that a large proportion of a cell’s transcription278

state can be predicted from simple measures of its chromatin state, even after signifi-279

cant environmental perturbation.280

Discussion281

In contrast to ChIP-based studies that profile one DNA-binding factor at a time, our282

study surveys the occupancy of all factors across the entire genome, albeit without283

explicit information on their identities. While nucleosomes are well-characterized by284

MNase digestion, profiling the TFs and complexes that regulate gene expression is a285

more challenging, open problem. Prior work has explored the dynamics of various286

individual promoter-binding factors including TFs, general TFs, polymerases, media-287

tor, SAGA, TFIID, chromatin remodelers and histone modifications, and others (Chereji288

et al. 2017; Huisinga and Pugh 2004; Reja et al. 2015; Rhee and Pugh 2012; Shiv-289

aswamy and Iyer 2008; Venters et al. 2011; Vinayachandran et al. 2018; Weiner et al.290

2012, 2015). These studies—along with motif analysis—provide us with useful con-291

text to understand the dynamics of small fragments in our MNase-seq data, such as292

in our characterizations of HSP26 (Fig. 2), the sulfur pathways (Fig. 5), and the iron293

homeostasis regulators Aft1/Aft2 (Fig. 8).294

Analysis of MET31, encoding a Met4 cofactor, revealed chromatin changes linked295

with increased antisense transcription that may explain how the cell regulates its sense296

transcription. Moreover, we observed pervasive antisense transcription under cadmium297

stress, and while this has previously been shown to occur under a variety of environ-298
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mental perturbations (Camblong et al. 2007; Nadal-Ribelles et al. 2014; Swamy et al.299

2014; Toesca et al. 2011), we were able to characterize relationships between sense and300

antisense transcription with regulatory insight from the perspective of the local chro-301

matin landscape. For the 667 genes we identified with antisense transcripts, including302

chromatin measures relative to those transcripts improved our model (marginally) for303

predicting sense transcription (Fig. 9A). This benefit can be further explored by narrow-304

ing in on the effect size of these antisense-related chromatin measures and by examin-305

ing the individual sets of genes whose gene expression appears to have a relationship306

with antisense transcription.307

Using just the initial transcript level and simple measures of chromatin dynamics,308

our regression model is able to predict the level of sense transcript with an R2 at least309

0.44, even two hours after cadmium exposure (Fig. 9A). This model can be extended310

in multiple directions. We can further quantify the chromatin by including additional311

classes of fragments, by computing new measures of chromatin dynamics, and by con-312

sidering chromatin beyond 200 bp of a promoter and the first 500 bp of a gene body.313

Additionally, our data could be modeled with other statistical methods including gen-314

eralized linear models, deep neural networks, or random forests. This model and its315

predictions serve as a baseline showing the potential modeling opportunities and rich-316

ness of statistical power of MNase-derived time-series chromatin data.317

Materials and Methods318

Yeast strain319

The yeast strain used in this study has the W303 background with the genotype: MATa,320

leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15.321

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.06.28.176545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.28.176545


Growing and sampling cells over the time course322

Cells were grown asynchronously in YEPD at 30°C to an OD600 of 0.8. Immediately323

before the addition of CdCl2, one sample was removed and cross-linked with formalde-324

hyde to a final concentration of 1% for MNase-seq, and another was pelleted and flash325

frozen for RNA-seq; these represent time 0. After the addition of CdCl2 to a final326

concentration of 1 mM, samples were taken at 7.5 min, 15 min, 30 min, 60 min, and327

120 min, and processed in the above manner, respectively, in preparation for MNase-seq328

and RNA-seq. All experiments were repeated independently as biological replicates.329

Preparing chromatin330

Cells were resuspended with 20 ml of buffer Z (0.56 M sorbitol, 50 mM Tris at pH 7.4)331

and 14 µL of β-ME and 0.5 ml of a 10 mg/mL solution of zymolyase (Sunrise Science332

Products) prepared in buffer Z were added. Samples were incubated for 30 min at333

24°C with shaking. Cells were centrifuged at 1500 rpm for 6 min at 4°C and then334

resuspended in 2.5 ml of NP buffer (1 M sorbitol, 50 mM NaCl, 10 mM Tris at pH 7.4,335

5 mM MgCl2, 1 mM CaCl2), supplemented with 0.5 mM spermidine, 0.007% β-ME,336

and 0.075% NP-40. To determine the best digestion conditions, a four-step titration337

of 15 U/µL MNase (Worthington) was added to 400 µL of zymolyase treated cells.338

Samples were inverted to mix and digested on the benchtop for 20 min. The reaction339

was halted by adding 100 µL of stop buffer (5% SDS, 50 mM EDTA). Next, proteinase340

K was added to a 0.2 mg/mL final concentration, and the samples were inverted and341

then incubated overnight at 65°C. DNA was recovered by phenol/chloroform extraction342

and isopropanol precipitation.343
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Preparing MNase sequencing libraries344

Illumina sequencing libraries of MNase-treated DNA were prepared using 500 ng of345

DNA as previously described (Henikoff et al. 2011).346

Preparing RNA sequencing libraries347

Illumina sequencing libraries of total RNA were prepared using the Illumina TruSeq348

Stranded Total RNA Human/Mouse/Rat kit (Cat number RS-122-2201) following the349

protocol provided by Illumina with Ribo-Zero.350

Aligning sequencing reads to the genome351

All reads were aligned to the sacCer3/R64 version of the S. cerevisiae genome using352

Bowtie 0.12.7 (Langmead et al. 2009).353

The recovered sequences from all paired-end MNase reads were truncated to 20 bp354

and aligned in paired-end mode using the following Bowtie parameters: --wrapper355

basic-0 --time -p 32 -n 2 -l 20 --phred33-quals -m 1 --best --strata -S.356

The recovered sequences from all single-end RNA reads were truncated to 51 bp357

and aligned in single-end mode using the same Bowtie parameters.358

Processing reads from MNase-seq and RNA-seq replicates359

After confirming high concordance between them, MNase-seq and RNA-seq replicates360

were subsampled and merged to increase read depth and reduce bias from library361

preparation, sequencing, and digestion. Details of the procedure used to subsample362

and merge each pair of replicates are provided in Supplemental Method S1. After merg-363

ing, we had 24,152,389 mapped MNase fragments (pairs of reads) and 42,107,377364
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mapped RNA reads for each time point.365

Selecting a set of genes for analysis366

We compiled a set of 4,427 genes for analysis. A gene was chosen if it satisfied five367

criteria: it (i) is classified as either verified or uncharacterized by sacCer3/R64, (ii)368

contains an open reading frame (ORF) at least 500 bp long, (iii) contains an annotated369

TSS, (iv) has a reported mRNA half-life, and (v) has adequate MNase-seq coverage.370

Genes whose ORFs are less than 500 bp (Supplemental Fig. 13A) long were omitted371

in order to ensure valid “gene body” calculations between [TSS, +500]. TSS annota-372

tions were determined by Park et al. (2014). For five genes, SUL1, SUL2, MET32,373

HSP26, and BDS1, we manually annotated the TSS to be consistent with the RNA-seq374

data in this study. We required a half-life for each gene in order to estimate transcrip-375

tion rates. MNase-seq coverage was computed in a 2,000 bp window centered on each376

gene’s TSS. A position in this window is considered “covered” when there exists at377

least one fragment whose center is at this position. MNase coverage was then defined378

as the number of covered positions in this window divided by the length of the win-379

dow, 2,000 bp. Genes with MNase coverage below 0.85 (n=109) were excluded from380

further analysis (Supplemental Fig. 13B).381

Defining classes of MNase-seq fragments and measures of their occupancy382

MNase-seq fragments can be associated with different DNA-binding factors of the basis383

of their length (Supplemental Fig. 14). To summarize the chromatin occupancy of dif-384

ferent factors around genes, fragments were first filtered into two classes: fragments385

associated with nucleosomes, those between 144–174 bp long, and fragments associ-386

ated with smaller factors, those less than 100 bp long. In determining these lengths,387

we made use of two reference data sets, as described next.388
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Nucleosomal fragment lengths were determined by examining the distribution of389

MNase-seq fragments prior to cadmium treatment around the top 2,500 unique nucle-390

osome positions reported by a highly sensitive chemical assay (Brogaard et al. 2012).391

In our MNase-seq data, the distribution of fragment lengths at these sites had a clear392

mode at 159 bp; we chose a ±15 bp interval around this mode to capture most of the393

nucleosomal fragments, resulting in the final 144–174 bp range.394

As for fragments associated with smaller factors, because prior studies have found395

clear enrichment of small fragments at Abf1 sites (Henikoff et al. 2011), we examined396

the distribution of our fragments prior to cadmium treatment around 279 Abf1 binding397

sites, as determined by phylogenetic conservation and motif discovery, obtained from398

http://fraenkel-nsf.csbi.mit.edu/improved_map/p001_c2.gff (MacIsaac et al. 2006).399

In our MNase-seq data, most of the fragments at these sites were shorter than 100 bp400

(mode: 75 bp), so those were classified as small fragments.401

For each gene, two regions were defined relative to its TSS. The promoter region402

was defined as a 200 bp region upstream of the TSS, [–200, TSS]. The length of this403

region was chosen as previously described (Lubliner et al. 2013; Smale and Kadonaga404

2003). The gene body region was defined as a 500 bp region downstream of the TSS,405

[TSS, +500], to include the +1, +2, and +3 nucleosomes.406

The occupancy of a class of fragments within a particular region is computed simply407

as the number of fragments of that class whose centers lie within that region.408

Computing chromatin scores with cross-correlation kernels409

Some chromatin statistics require more spatial precision than occupancy provides, for410

example when determining a factor’s position or organization. In these cases, we used411

cross-correlation scores in a similar manner to that described in Tripuraneni et al.412
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(2019). Around each gene’s TSS, a per-bp cross-correlation score was computed to413

smooth positional variation and filter out non-relevant fragments. We constructed414

three two-dimensional cross-correlation kernels: an idealized, well-positioned nucle-415

osome kernel (Supplemental Fig. 15A), a clearly bound small factor kernel (Supple-416

mental Fig. 15B), and a triple-nucleosome gene body summary kernel (Supplemental417

Fig. 15C). Each kernel was applied to the region local to each gene’s TSS for each time418

point to compute a per-bp cross-correlation score (Supplemental Fig. 15D).419

The nucleosome and small factor kernels were constructed using a bivariate Gaus-420

sian distribution parameterized by the mean and variance for the position and length421

for MNase-seq fragments. The parameters for each kernel were determined using the422

fragment length and position distributions at positions in Brogaard et al. (2012) and423

MacIsaac et al. (2006), as described in the previous subsection.424

To summarize the gene body chromatin as a whole, a triple nucleosome kernel was425

constructed to dampen the effect of the +1 nucleosome becoming more poised to be426

well-positioned (Mavrich et al. 2008; Nocetti and Whitehouse 2016). The triple nucle-427

osome kernel was constructed by repeating the nucleosome kernel and increasing the428

variance to take into account variable linker spacing. The nucleosome kernel spacing429

was determined using the average peak spacing between the [+1,+2] and the [+2,+3]430

nucleosome cross-correlation scores (Supplemental Fig. 15E).431

Quantifying nucleosome disorganization432

For each gene, a random variable X was defined with n possible outcomes representing

each position to evaluate relative to the gene TSS.

X ={1, . . . , n}
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The probability of each outcome is estimated using the triple nucleosome cross-correlation433

scores previously defined and normalized to sum to 1.434

Because the triple kernel computes a score for three approximately adjacent nucle-

osome positions, we set n = 150 to summarize the disorganization of the first three

nucleosomes in the gene body starting with +1 within the [0, 150] window.

crossnuc(i) = nucleosome cross-correlation at i

p̂(X = xi) =
crossnuc(i)

λ
, where λ =

n∑
i

crossnuc(i)

Using this random variable, a score was computed for each gene to define its “nucleo-

some disorganization” using information entropy (Supplemental Fig. 15F):

H(X) =−
∑
i∈1...n

PX(xi) · log2 PX(xi)

Calling +1, +2, +3 nucleosomes and linking them over time435

Nucleosomes were called using peaks of the nucleosome cross-correlation scores local436

to each gene’s TSS. Peaks within a 1000 bp window around the TSS were sorted by437

score. The position with the greatest peak score was labeled as a nucleosome center438

and removed. Positions within 80 bp were also removed. This procedure was repeated439

until all peak positions were removed and nucleosomes called for this 1000 bp window.440

“Linked” nucleosomes are defined as nucleosomes across the time course that nom-441

inally represent the same underlying nucleosome even though its position may have442

shifted or become more or less fuzzy. Nucleosomes were linked across time points443

using a nearest-neighbor approach. In a greedy manner, the most well-positioned444

nucleosome (lowest disorganization score) was considered first. The position of this445

nucleosome was used to identify the linked nucleosomes in previous and subsequent446

time points by considering the nearest nucleosome in each of the respective time points447

within 100 bp of the original nucleosome’s position.448
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Each gene’s +1 nucleosome was called by identifying the linked nucleosome closest449

to the TSS. The +2 and +3 nucleosomes were computed as the next nucleosomes at450

least 80 bp downstream from the preceding one.451

Analyzing Gene Ontology enrichment452

GO enrichment analysis was performed using GOATOOLS (Klopfenstein et al. 2018)453

with the go-basic.obo annotations from the Gene Ontology Consortium (Ashburner454

et al. 2000; The Gene Ontology Consortium 2019). False discovery rate was corrected455

using the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).456

Identifying transcription factor binding sites457

TF binding sites were called using the small fragment cross-correlation scores in each458

gene promoter. The cross-correlation scores at each position and time point were sorted459

by score. The position with the greatest score was removed and labeled as a small460

fragment peak. Positions within 50 bp of the peak at any time point were also removed.461

This procedure was repeated until all positions were removed for each gene promoter.462

A small fragment occupancy value 100 bp around each peak was computed at each463

time point to identify positions with the greatest change in binding.464

The motif finder FIMO (Grant et al. 2011) was run against each called peak posi-465

tion against the motif database from MacIsaac et al. (2006) using the default p-value466

threshold. Selected binding sites with supporting literature were annotated on typhoon467

plots.468

Estimating transcription rates469

As previously described in Cashikar et al. (2005); Rabani et al. (2011); Yang et al.470

(2003), transcription rates were computed by incorporating mRNA decay rates into471
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difference equations describing zero-order growth with first-order decay. Details of472

the procedure used to compute these transcription rates are provided in Supplemental473

Method S2.474

Clustering genes based on chromatin measures475

Genes with the greatest increase in average small fragment occupancy or average nucle-476

osome disorganization were chosen for clustering. The top 500 genes for each measure477

were combined into a final set of 832 (fewer than 1000 because many genes were in478

both sets).479

Clustering was performed in SciPy (Virtanen et al. 2020) using hierarchical clus-480

tering on the basis of pair-wise Euclidean distance between z-normalized measures of481

change in small fragment occupancy and nucleosome disorganization. Ward linkage482

was chosen for its efficient approximation to the minimal sum of squares objective483

(Ward 1963). Eight clusters were ultimately chosen to balance the interpretability of484

fewer clusters with the significance of identified GO terms in smaller and more homo-485

geneous but more numerous clusters.486

Identifying and quantifying antisense transcripts487

TSSs and transcription end sites (TESs) for antisense transcripts were determined using488

RNA-seq pileup, the number of reads covering a genomic position. To increase signal489

and decrease noise, at each genomic position we added the antisense pileup values490

across time points to produce a cumulative pileup, and then smoothed that with a491

Gaussian kernel.492

Starting with the highest cumulative pileup value within a gene’s transcript bound-493

ary on the antisense strand, the antisense TSS and TES were identified by progres-494
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sively searching upstream and downstream, respectively, to identify the positions at495

which the cumulative pileup values were minimized (Supplemental Fig. 12A). Anti-496

sense transcripts were not called if they did not meet a minimum threshold of pileup497

at any position within the transcript boundary.498

For the 667 genes where an antisense transcript could be called (Supplemental499

Fig. 12B), antisense transcription levels were quantified using a TPM calculation (Wag-500

ner et al. 2012) for strand-specific RNA-seq reads on the antisense strand within the501

respective antisense transcript boundaries. We also computed nucleosome disorgani-502

zation and promoter occupancy chromatin measures relative to these called antisense503

transcripts, as previously described for the sense strand.504

Predicting transcript levels using Gaussian process regression models505

Gaussian process regression models were constructed to predict the log2 transcript level506

for each time point using the log2 transcript level and features of the chromatin at 0507

minutes, along with features of the chromatin for the time being predicted.508

Four models were constructed to compare various combinations of measures of the509

chromatin: a small fragments promoter occupancy model, a gene body nucleosome dis-510

organization model, a combined chromatin model, and a full model incorporating all511

previous models’ features with the addition of nucleosome occupancy within the pro-512

moter and within the gene body, small fragment occupancy within the gene body, +1,513

+2, and +3 nucleosome position shift relative to 0 min (Supplemental Fig. 11), and514

measures of chromatin relative to called antisense transcripts (Supplemental Fig. 12).515

Each Gaussian process regression model developed using scikit-learn (Pedregosa516

et al. 2011) with a radial-basis function (RBF) kernel with length scale bounded be-517

tween 0.1 and 100 and a white kernel with noise level 10−4 as priors for covariance.518
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The length scale bounds and noise parameters were determined empirically through a519

sensitivity analysis on a subset of the data.520

Promoter occupancy and nucleosome disorganization measures were each log trans-521

formed to yield an approximately normal distribution. Then, each chromatin measure522

(including nucleosome shift) was z-normalized to allow the RBF length parameter to523

be successfully approximated.524

Performance for each model was evaluated using the coefficient of determination,525

R2, under 10-fold cross-validation.526

Data Accession527

All raw and processed sequencing data generated in this study have been submitted528

to the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)529

under accession number GSE153609.530

Code to reproduce the results in this study is included in Supplemental Code and531

available on GitHub (https://github.com/HarteminkLab/cadmium-paper).532
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Figure 1. Paired-end MNase-seq and stranded RNA-seq capture high-resolution chro-
matin occupancy and transcriptome state throughout a perturbation time course. (A)
Overview of cadmium perturbation experiment in which paired-end MNase-seq and
strand-specific RNA-seq samples were collected immediately prior to cadmium expo-
sure and for five additional time points over two hours. (B) Depiction of nucleosomes
flanking a small (subnucleosomal) binding factor, and fragments that result upon di-
gestion by MNase. Paired-end MNase-seq fragments are plotted based on their center
position and length. (C) Strand-specific RNA-seq is plotted as the log2 pileup, the num-
ber of total RNA-seq reads at each genomic position, separately mapped to Watson
(blue) and Crick (red) strands. Changing RNA-seq read levels over the time course are
plotted using progressive coloring for each strand.
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Figure 2. Cadmium induces local chromatin dynamics that correlate with transcrip-
tion of HSP26. (A) Typhoon plot shows dynamics of MNase-seq and RNA-seq data
near HSP26. Nucleosomes in the promoter region are replaced by small fragments,
while gene body nucleosomes disorganize (grey shading highlights the [–200,500] re-
gion around the TSS that we analyze for all genes). Small fragments appear around
motifs for known regulators Hsf1 (red triangle), Met4 (green triangle), and Met32
(obscured by green triangle). (B) Depiction of the chromatin dynamics for HSP26.
(1) Before treatment, nucleosomes are well-positioned. (2) Between 15–30 min, nu-
cleosomes are evicted from the promoter region and replaced by transcription-related
proteins and complexes. (3) By 60–120 min, nucleosomes are fuzzy and polymerases
are actively transcribing HSP26. (C) Heatmap of differential cross-correlation values of
HSP26 through the time course, summarizing how gene body nucleosomes initially
shift downstream and then disappear, and how promoter nucleosomes are rapidly
displaced as small fragments accumulate. Higher values (more red) indicate higher
cross-correlation with subnucleosome fragments; lower values (more blue) indicate a
stronger signal for nucleosome fragments. (D) Line plot of HSP26 time course summa-
rizing the change relative to 0 min in occupancy of promoter small fragments (orange),
disorganization of gene body nucleosomes (turquoise), and transcription rate (purple).538
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Figure 3. Cadmium induces genome-wide chromatin dynamics that correlate well with
genome-wide transcriptional dynamics. (A) Heatmaps of changes in chromatin occu-
pancy measures and transcription rate for all genes and all times, relative to 0 min (left:
promoter small fragment occupancy; middle: gene body nucleosome disorganization;
right: transcription rate). Genes (rows) are sorted by combined chromatin score. (B)
Detailed heatmaps of the 20 genes whose combined chromatin scores increase (top) or
decrease (bottom) most. (C) Scatter plot of relationship between change in small frag-
ment occupancy and log2 fold-change in transcription rate, each averaged over the time
course. (D) Scatter plot of relationship between change in nucleosome disorganization
and log2 fold-change in transcription rate, each averaged over the time course.
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Figure 4. GO enrichment analysis of genes with highly dynamic chromatin recovers
established cadmium response pathways. (A) Top 8 categories resulting from GO en-
richment analysis of 300 genes with greatest decrease in small fragment occupancy,
nucleosome disorganization, and combined chromatin score. Translation-related genes
are recovered with significant FDR. (B) Top 8 categories resulting from GO enrichment
analysis of 300 genes with greatest increase in small fragment occupancy, nucleosome
disorganization, and combined chromatin score. Genes involved with stress response,
sulfur assimilation, and protein folding pathways are recovered with significant FDR.
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Figure 5. Chromatin and transcription dynamics detail Met4 and Met32 functional ac-
tivation, induction of sulfur genes, and subsequent regulation. (A) The Met4 complex
activates cascading sulfur pathways required for cadmium chelation and also activates
its negative regulator SCFMet30. (B) Heatmap of changes in chromatin occupancy and
transcription rate for the sulfur pathway genes. Cofactors of the Met4 complex exhibit
dramatic chromatin changes in small fragment occupancy (for MET28) and nucleosome
disorganization (for MET32). Sulfur sparing isoforms occur as isoenzyme pairs; mem-
bers of each pair exhibit inverse chromatin dynamics (most pronounced between PDC6
and PDC1). Nearly all of the sulfur assimilation pathway members show a dramatic in-
crease in small fragment occupancy and nucleosome disorganization. (C) Scatter plot
of average change in small fragment occupancy and average change in nucleosome
disorganization. Chromatin dynamics in sulfur-related genes may manifest primarily
in a single measure of the chromatin, as with MET32 (blue triangle), MET30 (gray cir-
cle), and PDC6/PDC1 (violet), or in both small fragment occupancy and nucleosome
disorganization, such as with the sulfur assimilation genes (orange diamonds). (D)
Line plot of the change in nucleosome disorganization for the regulator gene MET30,
activator gene MET32, and sulfur assimilation genes (orange line represents mean and
light orange region represents full range of values across all seven genes). The dis-
organization for Met4 complex cofactor MET32 is highest at 7.5 min while the sulfur
assimilation genes and MET30, both of which are activated by the Met4 complex, reach
their greatest nucleosome disorganization between 15–30 min.539
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Figure 6. Small fragment occupancy in the promoter and gene body nucleosome dis-
organization reveal stress response pathway timing and patterns with antisense tran-
scription. (A) Hierarchical clustering of 832 genes in the union of the 500 with great-
est increase in average small fragment occupancy and the 500 with greatest increase
in average nucleosome disorganization. Clusters 6–8 contain genes exhibiting anti-
correlated chromatin dynamics. (B) GO enrichment analysis shows clusters 1 and 2
are enriched for genes in sulfur metabolism and protein refolding pathways, respec-
tively. (C) Median (black dot) and interquartile range (red bar) of antisense transcript
levels for genes within each cluster across the time course. Cluster 6 genes display a
marked increase in antisense transcripts, perhaps explaining why the cluster exhibits
increased nucleosome disorganization despite decreased small fragment occupancy in
panel A.
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Figure 7. Cadmium induces changes in both sense and antisense transcription. (A) Dis-
tribution of the log2 fold-change in sense transcription against the log2 fold-change in
antisense transcripts from 0–120 min. Antisense transcripts are enriched genome-wide
by 120 min. (B) Distribution of the log2 fold-change in antisense transcripts for each
time point following 0 min. Antisense transcripts monotonically increase throughout
the time course. (C) Counts of genes that exhibit decreased, unchanged, and increased
sense and antisense transcripts from 0–120 min. Genes in each category of sense tran-
scription exhibit positively skewed enrichment of antisense transcripts.
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Figure 8. Small fragment occupancy in the promoter reveals transcription factor bind-
ing dynamics implicated in cadmium stress response. (A) Scatter plot of the 0–60 min
occupancy change for 2,119 small fragment peaks identified in gene promoters. 50
peaks increased in occupancy by at least double (red), while 34 peaks decreased by
at least half (blue). (B) Average change in occupancy for promoter peaks per FIMO-
assigned TF. TFs are labeled as increased/decreased (red/blue) if the absolute value
of their average log-fold change exceeds 0.1. TFs with the greatest increase in bind-
ing occupancy include the iron homeostasis regulators Aft1/Aft2, sulfur pathway reg-
ulators Met4/Met32, glycolytic activators Gcr1/Gcr2, and general stress responders
Msn2/Msn4. (C) Scatter plot of occupancy of Aft1 (turquoise circle) and Aft2 (blue
X) at 0 min and 60 min. Aft1 and Aft2 exhibit genome-wide enrichment in binding at
60 min compared to 0 min, particularly in the promoters of a few genes like SER33. (D)
Typhoon plot of SER33 shows small fragment enrichment at Aft1/Aft2 (red triangle)
and Gcr2 (blue triangle, mostly obscured by red triangle) motifs as well as near Met32
(yellow triangle) and Met4 (green triangle) motifs.540
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A B

C D

Figure 9. Chromatin occupancy dynamics are predictive of gene expression. (A) Com-
parison of each GP model’s performance using its coefficient of determination, R2. The
Full model incorporating all chromatin features and 0 min transcript level outperforms
all other models for 30–120 min. Later time points rely less on 0 min transcript level for
prediction, so the marginal gain in statistical power between features becomes more
evident. (B) Comparison between true and predicted log2 transcript level for the Full
model after 7.5 min. Most genes are well predicted using 0 min transcript level. (C)
Full model predictions at 30 min. Predictions remain well correlated, but less than
at 7.5 min. (D) Full model predictions at 120 min. After two full hours have elapsed,
transcript level predictions have become a bit less correlated, but still, R2 remains 0.44.
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