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Abstract 

 

Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state fMRI studies have 

found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of 

the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain 

activity across the whole-brain functional network can provide a better characterization of age-related changes. Here 

we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-

dependent (BOLD) signals to analyze resting-state fMRI data from 620 subjects divided into two groups (‘middle-

age group’ (n=310); age range, 50-65 years vs. ‘older group’ (n=310); age range, 66-91 years). Applying the Intrinsic-

Ignition Framework to assess the effect of spontaneous local activation events on local-global integration, we found 

that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower 

metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability 

to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that 

functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is 

key for efficient global communication in the brain. 
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Introduction 

 

Normal aging is associated with changes in the structure and function of the brain that could lead to cognitive decline 

and worse quality of life (Li et al., 2015). Studying the mechanisms of brain aging may identify interventions to 

prevent or slow age-related deterioration and improve our understanding of the mechanisms involved in 

neurodegenerative diseases (Ferreira and Busatto, 2013). In recent years, noninvasive resting-state functional 

magnetic resonance imaging (fMRI) paradigms from spontaneous blood-oxygen-level-dependent (BOLD) signals 

have proven useful in studying age-related changes in brain function (Ystad et al., 2011). Resting-state fMRI shows 

coherent spontaneous low-frequency fluctuations across brain regions and the organization of these regions into 

different functional networks (Zuo et al., 2010). Studies of functional connectivity have suggested age-related 

alterations in different resting-state networks (Raichle et al., 2001; Wang et al., 2010; Ferreira and Busatto, 2013; 

Grady et al., 2016), even in cognitively preserved older adults (Damoiseaux et al., 2008; Onoda et al., 2012). Other 

studies (Li et al., 2015; Grady et al., 2016; Fjell et al., 2017) have suggested that overactivation in functional 

connectivity across resting-state networks may be related to compensatory mechanisms. 

 

Although functional connectivity studies have demonstrated reliable age-related changes, it remains unclear how 

brain networks cooperate to handle aging-associated declines, especially considering the effects of averaging on 

measurements of functional connectivity during rest (Hutchison et al., 2013). In this line, growing evidence indicates 

that functional connectivity among brain networks is not static over time; rather, different brain regions connect and 

disconnect from one another in highly complex temporal dynamics (Deco et al., 2011; Hutchison et al., 2013; Sporns, 

2013; Zalesky et al., 2014; Ponce-Alvarez et al., 2015). In other words, even in the resting state, brain networks 

fluctuate in response to different contexts or external stimuli. Capturing statistical properties of fMRI data beyond 

classical static functional connectivity can facilitate the interpretation of brain functioning during the resting scan 

from new perspectives. This approach assumes that mental operations arise from neural communication involving 

coherent and flexible oscillatory activity between functional groups of neurons (Hutchison et al., 2013; Deco and 

Kringelbach, 2016). The term metastability (Deco and Kringelbach, 2016) refers to the temporal variability of the 

functional connectivity that arises from the underlying structural connectivity (the human connectome) (Sporns et 

al., 2005). Optimal brain function is thought to occur within a range of metastable patterns that reflects a balance 

between the synchronization and adaptive reconfiguration of the functional connections among the different regions 

that make up the structural network (Cabral et al., 2011).  

 

Dynamic (time-varying) functional connectivity has been explored across the lifespan (Nomi et al., 2017), across 

different states of consciousness (Deco et al., 2017b; Escrichs et al., 2019; Lord et al., 2019), in patients with brain 

disorders (Puig et al., 2018), and during healthy aging (Tian et al., 2018; Nobukawa et al., 2019). One study that 

evaluated resting-state fMRI data from 250 subjects to examine patterns of resting-state functional connectivity over 

time found that dynamic connectivity patterns are consistent across groups (Abrol et al., 2016). Another study (Yin 

et al., 2016) found that age-related changes in the functional flexibility of the brain differ in different regions of the 

cerebral cortex. A recent study in 188 cognitively healthy elderly individuals (Lou et al., 2019) found that frequency-

specific brain network diversity decreased with increasing age at both the whole-brain and regional levels. Thus, 

exploring dynamic functional connectivity promises to enrich our knowledge of the functional organization of the 

brain, but little is known about changes in dynamic functional connectivity during aging. 
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In this work, we explored age-related changes in dynamic functional connectivity across the whole-brain network, 

applying two recently developed data-driven methods based on the phase synchronization of resting-state fMRI 

BOLD signals to a large dataset from healthy human adults. We studied two aspects of whole-brain functional 

connectivity in middle-aged subjects versus older subjects: (1) the effects of spontaneously occurring local activation 

events on local-global integration through the intrinsic-ignition framework (Deco and Kringelbach, 2017; Deco et 

al., 2017b) and (2) recurrent dynamic functional connectivity patterns across time (here, referred to as metastable 

substates), their duration, and their probability of occurrence through Leading Eigenvector Dynamics Analysis 

(LEiDA) (Cabral et al., 2017). 

 

 

Materials and Methods 

 

Subjects 

 

The study population was drawn from the 1030 subjects aged ≥50 years who participated in the population-based 

Aging Imageomics Study (Puig et al., 2020) from whom data were collected between November 2018 and June 2019. 

We excluded subjects for whom the full brain imaging dataset was unavailable: those who did not undergo the 

complete brain imaging protocol including fMRI (n=23), those with MRI acquisition errors (n=192), and those with 

uncorrectable motion artifacts (n=92; see the Preprocessing section below). Thus, the inclusion criteria were met by 

723 subjects [310 aged < 65 years (middle-aged group) and 413 aged ≥ 65 years (older group)]. To homogenize the 

size of the samples in the two groups, we randomly selected 310 subjects from those aged ≥65 years.  The middle-

aged group comprised 310 subjects aged < 65 years (mean age, 60.2±3.7 y), and the older group comprised 310 

subjects aged ≥ 65 years (mean age, 71.8±4.5 y). Table 1 reports details about subjects’ social and physical status. 

The ethics committee at the Dr. Josep Trueta University Hospital supervising the study approved the study protocol, 

and all subjects provided written informed consent. 

 

 

Image acquisition 

 

Images were acquired on a mobile 1.5T scanner (Vantage Elan, Toshiba Medical Systems at the beginning of the 

study; now Canon Medical Systems) with an 8-channel phased-array head coil with foam padding to restrict head 

motion and noise-cancelling headphones. Brain MRI studies included the acquisition of a high-resolution axial T1-

weighted sequence (number of slices=112; repetition time (TR)=8 ms; echo time (TE)=4.5 ms; flip angle=15°; field 

of view (FOV)=235×235 mm; and voxel size=1.3×1.3×2.5 mm) for structural imaging and a gradient echo-planar 

imaging (EPI) sequence (TR=2500 ms; TE=40 ms; flip angle=83°; FOV=230×230 mm; and voxel size = 3.5×3.5×5 

mm without gap) with 122 continuous functional volumes acquired axially for 5 minutes for resting-state fMRI. 

Subjects were asked to keep their eyes closed, relax, remain as motionless as possible, and not fall asleep. 
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Image Preprocessing 

 

T1-weighted and EPI images were automatically oriented using Conn (Whitfield-Gabrieli and Nieto-Castanon, 2012). 

For preprocessing, we used the Data Processing Assistant for Resting-State fMRI (DPARSF) toolbox [ (Chao-Gan 

and Yu-Feng, 2010), www.rfmri.org/DPARSF], based on Statistical Parametric Mapping (SPM12) 

(http://www.fil.ion.ucl.ac.uk/spm). Preprocessing included: (1) discarding the first 5 volumes from each scan to allow 

for signal stabilization; (2) slice-timing correction; (3) realignment for head motion correction across different 

volumes; (4) co-registration of the functional image to the T1-weighted image; (5) normalization by using T1 image 

unified segmentation; (6) nuisance covariates regression: six parameters from the head motion correction, the white 

matter signal, and the cerebrospinal fluid signal using CompCor (Behzadi et al., 2007); (7) removal of the linear trend 

in the time series; (8) spatial normalization to the Montreal Neurological Institute standard space; (9) spatial 

smoothing with 6 mm full width at half-maximum Gaussian kernel; and (10) band-pass temporal filtering (0.01-

0.025 Hz). We used a cutoff of 0.25 Hz for the maximum detectable frequency in typical resting-state fMRI 

acquisitions (Yuen et al., 2019). Then, the time series were extracted using a resting-state atlas of 214 brain areas 

(without the cerebellum) which ensures the functional homogeneity within each brain subunit (Shen et al., 2013; 

Finn et al., 2015).   

We excluded a total of 92 subjects for head rotation or movement (67 for head rotation > 2 mm or 2° and 25 for 

frame-wise displacement (Jenkinson et al., 2002; Yan et al., 2013), defined as head motion > 2 standard deviations 

above the group average in > 25% timepoints).  

 

 

Phase Synchronization 

 

We computed the instantaneous phase of the BOLD signals between each pair of brain areas at each timepoint. First, 

to avoid artifacts, we band-pass filtered the BOLD time series within the narrowband (0.04-0.07 Hz) (Glerean et al., 

2012) (Figure 1.1A). Then, we obtained the analytic signal, 𝑎(𝑡), of the filtered time series of each brain area by 

computing the Hilbert transform (HT). The analytic signal represents a narrowband signal in the time domain as a 

rotating vector, calculated as { 𝑎(𝑡) = 𝐴(𝑡). 𝑐𝑜𝑠(𝜑(𝑡))}, where 𝐴(𝑡) is the time-varying amplitude with carrier 

frequency expressed by the time-varying phase 𝜑(𝑡). The amplitude is determined by the modulus and the phase is 

determined by the argument of the complex signal, 𝑧(𝑡),  {𝑧(𝑡)  =  𝑎(𝑡) + 𝑖. 𝐻𝑇 [𝑎(𝑡)]}, where 𝐻𝑇 [𝑎(𝑡)] is the 

Hilbert transform of the analytical signal, 𝑎(𝑡), and 𝑖 is the imaginary unit (Glerean et al., 2012; Ponce-Alvarez et 

al., 2015; Deco et al., 2019a). Figure 1.1B shows the representation of the Hilbert BOLD phase for a brain area over 

time in the complex plane. 

 

 

Intrinsic-Ignition Framework 

 

To measure the effect of spontaneous local activation events on whole-brain integration, we applied the Intrinsic-

Ignition Framework (Deco and Kringelbach, 2017) using the phase space of the signals. This framework has been 

successfully applied in different resting-state fMRI studies (Deco et al., 2017b; Escrichs et al., 2019; Padilla et al., 
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2019; Alonso-Martínez et al., 2020). This approach characterizes the spatiotemporal propagation of information by 

measuring the degree of integration among spontaneous occurring events across the brain over time. Figure 1.2 

represents the algorithm used to obtain the ignition value of each brain area evoked by an event within a set time 

window. Specifically, we averaged across the events the integration evoked at each time t with the time window set 

at 4TR. A binary event is defined by transforming the time series into z-scores, 𝑧𝑖(𝑡), and fixing a threshold, θ, given 

by the sum of the mean and the standard deviation of the signal in each brain area, such that the binary sequence 

σ(𝑡) = 1 𝑖𝑓 𝑧𝑖(𝑡) > θ and crosses the threshold from below, and σ(𝑡) = 0 otherwise (Figure 1.2A)  (Tagliazucchi 

et al., 2012; Deco et al., 2017b). First, we obtained the instantaneous phase in all brain areas as explained in the Phase 

Synchronization section above and Figure 1.1. Then, we calculated the phase lock matrix 𝑃𝑗𝑘(𝑡), which describes the 

state of pair-wise phase synchronization at time t between regions j and k as: 

 

𝑃𝑗𝑘(𝑡) = e-3|φj(t)-φk(t)| 

 

, where φj(t) and φk(t) correspond to the obtained phase of the brain areas 𝑗 and 𝑘 at time 𝑡. Then, the integration 

is defined by measuring the length of largest connected component in the binarized symmetric phase lock matrix 

𝑃𝑗𝑘(𝑡)  (Figure 1.2B). That is, given the fixed threshold θ, the matrix is binarized such that (0 if |𝑃𝑗𝑘| < θ, 1 

otherwise), and the integration value is computed as the length of the connected component considered as an adjacent 

graph (i.e., the largest subcomponent) (Figure 1.2C). The largest subcomponent represents the broadness of 

communication across the network for each driving event (Deco et al., 2015). Finally, repeating the process for each 

event in each brain area, the framework returns the mean integration and the standard deviation across the network. 

The mean integration is called ignition and it represents the spatial diversity; the standard deviation is called 

metastability, and it represents the variability over time for each brain area. Greater metastability in a brain area 

means that its activity changes more frequently across time within the network. The framework was computed across 

the whole-brain functional network (214 brain areas), as well as independently for eight resting-state networks: the 

frontoparietal, medial frontal, default-mode, subcortical, motor, visual I, visual II, and visual-association networks 

(Finn et al., 2015). 

 

 

Leading Eigenvector Dynamics Analysis (LEiDA) 

 

To identify differences between groups in recurrent patterns of time-varying connectivity (dynamic functional 

connectivity) or ‘metastable-substates’ across all subjects, we used Leading Eigenvector Dynamics Analysis (LEiDA) 

(Cabral et al., 2017), a k-means clustering analysis based on the phase synchronization of BOLD signals. First, we 

computed a dynamic phase coherence connectivity matrix (Deco and Kringelbach, 2016) with size NxNxT, where 

N=214 (total number of brain areas), and T=117 (total number of timepoints), using the Hilbert transform as 

explained above in the Phase Synchronization section. Then, we calculated the BOLD phase coherence matrix 

(Figure 1.3A) at time t between each pair of brain areas n and p by computing the cosine of the phase difference as: 

 

𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) = cos(θ(𝑛, 𝑡) − θ(𝑝, 𝑡)) 
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Given that the Hilbert transform expresses any signal in the polar coordinate system (i.e., 𝑎(𝑡) = 𝐴(𝑡) ⋅ cos(φ(𝑡))), 

when the cosine function is applied, two brain areas 𝑛 and 𝑝 with similar angles at a given time 𝑡 will show a phase 

coherence near 1 (i.e., 𝑐𝑜𝑠(0°) = 1), whereas two brain areas that are orthogonal at a given time 𝑡 will show a phase 

coherence near zero (i.e., 𝑐𝑜𝑠(90°) = 0) (Cabral et al., 2017; Deco et al., 2019b). Second, to characterize the dynamic 

functional connectivity patterns across all subjects and timepoints, we obtained a leading eigenvector 𝑉1(𝑡) for each 

𝑑𝐹𝐶(𝑡) at time 𝑡 by capturing the dominant functional connectivity pattern rather than the whole set of matrices. 

This approach allows reducing the dimensionality of the data considerably because it only considers a single 𝑉1(𝑡) 

for each dynamic functional connectivity matrix. The  𝑉1(𝑡) is an Nx1 vector capturing the principal orientation of 

the BOLD phase (showing positive or negative values) for each of the 214 brain areas (Figure 1.3B). Finally, we 

applied a k-means clustering algorithm using a range from k=2 to k=7 clusters to detect metastable substates or 

dynamic functional connectivity states from all the leading eigenvectors 𝑉1(𝑡) across timepoints, subjects, and groups: 

117 timepoints x 310 subjects x 2 groups = 72,540 𝑉1(𝑡). We obtained k cluster centroids, each one as an Nx1 vector, 

which represent recurrent metastable substates across all subjects. The clustering configuration that best represented 

the resting-state data of all 620 subjects and distinguished between the two groups was detected at 𝑘 = 3 (Figure 

1.3C). We rendered the resulting cluster centroids onto a surface cortex using Surf Ice 

(https://www.nitrc.org/projects/surfice/). A complete description of the method can be found in Cabral et al. (2017). 

 

 

Statistical analysis 

 

Statistical analyses were done with software MATLAB version R2017a (MathWorks, Natick, MA, USA). We 

applied a Monte Carlo permutation method to test the results of the Intrinsic-Ignition Framework (ignition and 

metastability) and to test the results of the LEiDA method (probability of occurrence and duration of each metastable 

substate). More specifically, we randomly shuffled the labels for each pair of conditions to be tested and created two 

new simulated conditions (10,000 iterations). Then, we measured how many times the difference between the new 

simulated conditions was greater than the difference between the real conditions; in other words, we calculated the 

p-value of the null hypothesis that the two random distributions show a greater difference than the real conditions. 

Furthermore, we applied the False Discovery Rate (FDR) method (Hochberg and Benjamini, 1990) to correct for 

multiple comparisons when necessary. 

 

 

Results 

 

Intrinsic Ignition 

 

We computed the Intrinsic-Ignition Framework across the whole-brain functional network and found that the mean 

ignition was higher in the older group than in the middle-age group (p<0.001) (Figure 2a). In the middle-age group, 

the regions with the highest intrinsic ignition belong to the visual networks, subcortical network, frontoparietal 

network, motor network, and medial-frontal network: the right middle occipital gyrus, right middle temporal gyrus, 

right lingual gyrus, fusiform gyri, left hippocampus and parahippocampal gyrus, right inferior temporal gyrus, right 
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superior temporal gyrus,  left calcarine fissure and surrounding cortex, left precentral gyrus, and right insula. By 

contrast, in the older group, the regions showing the highest intrinsic ignition areas belong to the visual networks, 

medial frontal network, and frontoparietal network: the right middle occipital, middle temporal gyrus, left fusiform 

gyrus, lingual gyrus, right inferior temporal gyrus, right middle frontal gyrus, calcarine fissure and surrounding cortex 

in both hemispheres, left superior frontal gyrus, left inferior frontal gyrus, left insula, left thalamus, and right cuneus. 

Table 2 shows the 20 brain areas with the highest intrinsic-ignition capability for each group. 

 

Metastability was lower in the older group than in the middle-age group (p<0.001) (Figure 2b). In the middle-age 

group, the brain areas with the highest metastability belong mainly to the default-mode network, visual networks, 

motor network, and frontoparietal network: the parahippocampal gyri, fusiform gyri, left inferior temporal gyrus, left 

lingual gyrus, left hippocampus, middle temporal gyri, right inferior occipital gyrus, right precentral gyrus, and right 

postcentral gyrus. By contrast, in the older group, the brain areas with the highest metastability belong mainly to the 

motor network, subcortical network, default-mode network, medial frontal network, and visual association network: 

the inferior temporal gyri, left fusiform gyrus, left superior frontal gyrus, inferior frontal gyrus, right anterior 

cingulate and paracingulate gyri, right median cingulate gyrus, bilateral insula, right superior temporal gyrus, left 

rectus gyrus, bilateral Rolandic opercula, left parahippocampal gyrus, and right precentral gyrus. Table 3 shows the 

20 brain areas with the highest metastability for each group. 

 

Moreover, we computed the intrinsic ignition and metastability independently for each resting-state network. Figure 

3 shows the absolute difference between the middle-age and older groups in the intrinsic-ignition values for each 

brain area in each network. Compared to the middle-age group, the older group had significantly increased intrinsic 

ignition in the frontoparietal network (FDR-corrected, p<0.001) and medial frontal network (FDR-corrected, 

p<0.001). By contrast, the middle-age group had greater intrinsic ignition in the motor network (FDR-corrected, 

p<0.001). There were no significant differences between groups in intrinsic ignition in the default-mode, subcortical, 

visual I, visual II, or visual-association networks. Figure 4 shows the absolute difference between the middle-age and 

older groups in metastability values for each brain area in each network. Compared to the middle-age group, the older 

group had significantly increased metastability in the frontoparietal network (FDR-corrected, p<0.01) and medial 

frontal network (FDR-corrected, p<0.01). By contrast, the middle-age group had greater metastability in the default-

mode (FDR-corrected, p<0.05), subcortical (FDR-corrected, p<0.001), motor (FDR-corrected, p<0.001), visual 

association (FDR-corrected, p<0.05), and visual I networks (FDR-corrected, p<0.001). Only the visual II network 

did not differ significantly between groups. 

 

LEiDA 

 

Clustering across all subjects and timepoints identified three metastable substates. Figure 5A compares the 

probability of occurrence of each metastable substate between groups, and Figure 5B compares the duration of these 

substates between groups. Figure 5C shows the three metastable substates rendered onto a surface cortex. The 

metastable substate that had the highest probability of occurrence (the first metastable substate) closely overlaps with 

the state of global BOLD coherence (Cabral et al., 2017). The probability of this substate occurring was higher in the 

older group [0.476 ±  0.008 (mean ± standard error) vs. 0.453 ±  0.008 in the middle-age group, FDR-corrected 
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𝑝 = 0.03], and this substate also lasted longer in the older age group [32.465 ±  0.957 seconds vs. 30.265 ±  0.791 

seconds in the middle-age group, 𝑝 = 0.04], although the difference in duration was no longer significant after FDR 

correction. The second metastable substate is especially interesting because it closely overlaps with the so-called rich 

club (Hagmann et al., 2008; van den Heuvel and Sporns, 2011; van den Heuvel et al., 2012; Sporns, 2013). In 

particular, this substate involved the following areas in both hemispheres: the superior frontal cortex, precuneus, 

insula, and subcortical areas, such as the caudate, putamen, hippocampus, and thalamus (see Figure 5D). The 

networks most frequently involved in this metastable substate were the subcortical network, visual network, motor 

network, default-mode network, and medial frontal network. The probability of this substate occurring was greater 

in the middle-age group [0.288 ± 0.007 vs. 0.269 ± 0.006 in the older group, FDR-corrected 𝑝 = 0.026], and this 

substate also lasted longer in the middle-age group [16.399 ± 0.605 seconds vs. 14.853 ±  0.414 seconds in the 

older group, FDR-corrected 𝑝 = 0.01). The third metastable substate was not significantly different between groups 

in its probability of occurrence (𝑝 = 0.35) or duration (𝑝 = 0.39). 

 

 

Discussion 

 

Interest in characterizing resting-state functional patterns during aging is growing. Understanding the underlying 

dynamics across the whole-brain functional network may help us better understand age-related changes. In this line, 

various methods have been developed to capture statistical properties of resting-state fMRI data beyond classical 

static functional connectivity, providing a new perspective to interpret brain functioning during the resting scan. To 

investigate the underlying whole-brain dynamics, we applied two data-driven whole-brain methods based on phase 

coherence synchronization (Deco and Kringelbach, 2017; Cabral et al., 2017) to compare intrinsic ignition, 

metastability, and metastable substates between middle-aged and older subjects from a large sample of healthy human 

adults.  To characterize the spatiotemporal propagation of information, we used the Intrinsic-Ignition Framework to 

measure the degree of integration of spontaneously occurring events across the whole-brain during rest. Ignition 

values across the whole-brain functional network were higher in older subjects than in middle-aged subjects, but 

older subjects also had less metastability. Applying Leading Eigenvector Dynamics Analysis (LEiDA), we found 

differences between groups in the probability of occurrence and duration of a metastable substate involving rich-club 

brain areas. 

 

Interestingly, the older group had higher intrinsic ignition across the whole-brain functional network (Figure 2a); the 

brain areas with the highest intrinsic-ignition values were mainly distributed across the visual networks, frontoparietal 

network, and medial frontal network (Figure 2a and Table 2). The mean intrinsic-ignition value reflects spatial 

diversity and the broadness of communication across the whole network. These results are in line with previous 

studies investigating the effects of aging in resting-state networks. Geerligs et al. (2015) reported increased 

connectivity in older adults between the visual network and somatomotor network as well as between the visual 

network and cingulo-opercular network. Betzel et al. (2014) found increased functional connectivity between the 

dorsal attention network and the salience/ventral attention networks in older adults. Similarly, Spreng et al. (2016) 

found increased between-network functional connectivity across the default-mode network and dorsal attention 

networks during both task and rest conditions. We conclude that increased functional connectivity between resting-
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state networks has a significant impact across the whole-brain functional network as evidenced by the level of 

intrinsic ignition, and that the higher intrinsic ignition in the older group may be related to compensatory mechanisms.  

 

Metastability was higher in the middle-age group (Figure 2b and Table 3). This finding is particularly interesting 

because middle-age adults showed lower intrinsic ignition across the whole-brain functional network compared to 

older adults, but the underlying dynamics of the middle-age adults seem to be more complex across time.  

Metastability characterizes the hierarchy of information processing in the brain. Thus, brain areas showing higher 

metastability are more relevant for the broadcasting of information than those showing lower. Greater metastability 

also reflects more complex brain dynamics (i.e., a more flexible switching across time), whereas lower metastability 

suggests a more stable system (Deco and Kringelbach, 2017; Deco et al., 2017a; Jobst et al., 2017). Our findings are 

in line with previous studies on the effects of aging on brain functional dynamics. For example, the decreased 

metastability in the older group in our study echoes recent studies that suggest deficient network modulation in the 

elderly (Turner and Spreng, 2015; Damoiseaux, 2017). Xia et al. (2019) found that the number of transitions between 

different metastable substates decreased with age, leading them to conclude that resting mind states may shift faster 

in young people than in older people. Similarly, variability across large-scale networks decreases linearly with aging 

over the lifespan (Nomi et al., 2017) and in healthy elderly subjects (Lou et al., 2019). Moreover, our findings that 

areas in the temporal and occipital regions were the most important for the broadcasting of information in the middle-

age group (Figure 2b and Table 3) is consistent with the results of recent time-varying resting-state fMRI studies 

(Nomi et al., 2017; Kumral et al., 2019). Similarly, our findings that the frontal and temporal areas were more relevant 

in the older group (Figure 2b and Table 3) are consistent with the results of a recent EEG study that found an enhanced 

brain dynamics of phase synchronization in the alpha-band frequency, predominantly in frontal areas (Nobukawa et 

al., 2019), which the authors suggest could reflect a general change in functional connectivity dynamics during aging. 

Moreover, overactivation in prefrontal brain areas has been previously observed in older adults during fMRI tasks, 

giving rise to different theories (Cabeza, 2002; Davis et al., 2008; Reuter-Lorenz and Cappell, 2008).  

 

We also explored intrinsic ignition and metastability across large-scale networks, computing the intrinsic-ignition 

framework within eight resting-state networks. In the older group, the frontoparietal and medial frontal networks 

showed higher ignition and metastability (Figures 3 and 4). These findings are in line with those reported by Lou et 

al. (2019), who found that the frontal and temporal lobes show a more dynamic pattern with increasing age. A recent 

meta-analysis pointed out that age-related changes in activation commonly affect the frontoparietal and default-mode 

networks (Li et al., 2015). The frontoparietal network serves as a flexible hub and plays a vital role in adaptive control 

and implementation of different responses to demands during tasks (Cole et al., 2013). The frontoparietal network is 

also involved in selecting relevant information from the environment (Ptak, 2012). The default-mode and 

frontoparietal networks are also thought to be critical in controlling global brain dynamics (Hellyer et al., 2014).   

 

In the present study, metastability within the default-mode, subcortical, and visual-association networks was higher 

in the middle-age group (Figure 4). In a recent study in a large cohort of young subjects, Lee et al. (2019) reported 

higher metastability in lower-order resting-state networks, such as the visual network and auditory network, which 

are involved in specialized, mostly externally driven functions. These networks’ greater metastability might reflect a 

greater capacity to change their functional configuration in response to diverse, rapidly changing external inputs 
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(Power et al., 2011). By contrast, higher-order networks such as the default-mode and central executive networks are 

mostly involved in internal and goal-directed processing (Raichle et al., 2001; Raichle and Snyder, 2007), so it would 

make sense for their functional configurations to last longer. Moreover, the previously mentioned study also found 

that metastability was strongly associated with various indicators of higher-order cognitive ability and physical well-

being (Lee et al., 2019). 

 

One of the most noteworthy results in our study was the identification of a metastable substate overlapping the so-

called the ‘rich club’ of densely interconnected nodes (Hagmann et al., 2008; van den Heuvel and Sporns, 2011; van 

den Heuvel et al., 2012; Sporns, 2013; Deco et al., 2017a). This substate involved the superior frontal cortex, 

precuneus, insula, and subcortical areas (caudate, putamen, hippocampus, and thalamus) in both hemispheres. It is 

thought that the rich club might also act as a gatekeeper that coordinates interactions with lower-degree regions and 

the emergence of different functional network configurations (van den Heuvel and Sporns, 2011). We found that the 

metastable substate corresponding to the rich club was less likely to occur in the older group and that when it did 

occur, it did so for shorter periods of time. Damoiseaux (2017) suggested that less-efficient rich-club network might 

be responsible for the differences in brain dynamics observed in older subjects. Our findings are in line with the 

hypothesis that the rich club connects different functional modules in the brain that partially overlap with different 

resting-state networks (Biswal et al., 1995; van den Heuvel and Sporns, 2011). Our findings regarding the lower 

probability of occurrence and shorter duration of this substate in the older group might be due to alterations in the 

intrinsic dynamics of this particular metastable substate or in any of the brain areas involved. Rich-club regions play 

a key role in integrating information across the brain network; consequently, damage to a brain area belonging to the 

rich club can affect global communication and have repercussions in multiple cognitive domains (van den Heuvel 

and Hulshoff Pol, 2010; Baggio et al., 2015; Deco and Kringelbach, 2017). Our results are consistent with the 

observation that the efficiency of the rich-club network increases during brain development in early life and decreases 

late in life in a manner that yields an inverted-U when plotted along the lifespan (Cao et al., 2014; Zhao et al., 2015; 

Damoiseaux, 2017). 

 

Our LEiDA analysis also found that the first metastable substate, which has been related to the global signal in fMRI 

studies, had a higher probability of occurrence, and longer duration in the older group (although this last comparison 

was no longer significant after correction for multiple comparisons) (Figure 3). Like in previous resting-state fMRI 

studies applying LEiDA (Cabral et al., 2017; Figueroa et al., 2019; Lord et al., 2019), this anti-correlated state of 

global BOLD phase coherence (i.e., all BOLD phases showing negative values in the leading eigenvector) was the 

most prevalent.  Although the significance of the global signal remains controversial, growing evidence suggests that 

it could contain valuable neurophysiological information and should not therefore be treated as a nuisance term (Saad 

et al., 2012; Liu et al., 2017). In a study with simultaneous fMRI and EEG acquisition during rest, Wong et al. (2013) 

found that increased EEG vigilance induced with caffeine was associated with decreased global signal amplitude and 

increased anti-correlation between the default-mode network and the task-positive network. Moreover, the global 

signal amplitude seems to increase during early sleep stages (Fukunaga et al., 2006). However, the role of the global 

BOLD phase coherence state remains unclear and needs further investigation (Cabral et al., 2017). 
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This study has several limitations. Although this cross-sectional study analyzed data from a large sample of healthy 

human adults, it would be very instructive to explore the age-related changes in neuroimaging in the same subjects 

in a longitudinal study. Data-driven methods alone are insufficient to understand the mechanisms underlying the 

process of aging or explain the causes of the dynamic changes observed. On the other hand, brain models simulating 

time series have advanced our understanding of the relationship between structure and function in the brain and the 

potential repercussions of disrupted connectivity from injury or disease; moreover, in silico simulations open the 

possibility of discovering potential stimulation targets to shift patients’ global brain dynamics toward a healthier state 

(Deco and Kringelbach, 2014; Deco et al., 2019a). One line for future studies could focus on assessing the behavioral 

relevance of intrinsic ignition and metastability through the aging process. Finally, although age is strongly associated 

with changes in functional connectivity, more studies are needed to further characterize brain functional connectivity 

in older adults and resolve inconsistent results due to methodological differences among studies. 

 

 

In conclusion, applying two novel data-driven approaches to examine whole-brain dynamic changes, this work 

provides new insights into age-related brain changes. Our findings suggest that, compared to middle-aged subjects, 

older subjects show higher ignition but lower metastability across the whole-brain network, as well as reduced access 

to a dynamic functional connectivity pattern that is key for communication in the brain. These findings support the 

hypothesis that cognitive processing methods differ between middle-aged and older adults. Taken together, these 

findings suggest that functional whole-brain dynamics are altered in aging, probably due to an imbalance in a 

metastable substate that involves brain areas of the so-called rich club. Further investigations will surely improve our 

understanding of brain changes during aging. 
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Table 1. Demographic and clinical characteristics 

  

Overall  

sample  

(n=620) 

 

 

Middle-age group  

(50-64 years) 

(n=310) 

 

 

Older 

 group 

(≥ 65years) 

(n=310) 

Sex (female), n (%)  307 (49.5) 169 (54.5) 138 (44.5) 

Age, mean (SD) 65.9 (7.2) 60.2 (3.7) 71.8 (4.5) 

Age groups, n (%)    

 50-64 310   

 65-91 310   

Education level *, n (%)    

 No schooling 18 (2.9) 2 (0.7) 16 (5.2) 

 Primary (ISCED 1) 324 (52.8) 133 (43.3) 191 (62.2) 

 Secondary (ISCED 2) 90 (14.7) 55 (17.9) 35 (11.4) 

 Professional (ISCED 3-4) 107 (17.4) 67 (21.8) 40 (13.0) 

 University (ISCED 5-8) 75 (12.2) 50 (16.3) 25 (8.1) 

Body mass index **, n (%)    

 <18.5 kg/m2 5 (0.8) 5 (1.6)  0 (0.0) 

 18.5 kg/m2-24.9 kg/m2 156 (25.2) 96 (31.2) 60 (19.4) 

 25.0 kg/m2-29.9 kg/m2 279 (45.1) 118 (38.3) 161 (51.9) 

 ≥ 30 kg/m2 178 (28.8) 89 (28.9) 89 (28.7) 

Physical activity groups (IPAQ), n (%) †    

 High 303 (51.5) 136 (47.2) 167 (55.7) 

 Moderate 248 (42.2) 130 (45.1) 118 (39.3) 

 Low 37 (6.3) 22 (7.6) 15 (5.0) 

Weight (kg), mean (SD) 75.6 (14.1) 75.1 (15.5) 76.1 (12.5) 

Height (cm), mean (SD) 164 (9.0) 164 (9.1) 163 (9.1) 

Systolic arterial pressure (mmHg), mean 

(SD) 

138.8 (19.4) 135.1 (19.2) 142.6 (18.8) 

Diastolic arterial pressure (mmHg), mean 

(SD) 

84.1 (10.6) 85.0 (10.1) 83.1 (11.0) 

Hypertension, n (%) # 289 (46.9) 120 (38.8) 169 (55.0) 

Diabetes mellitus, n (%) # 139 (22.5) 47 (15.2) 92 (29.9) 

Dyslipidemia, n (%) # 181 (29.4) 79 (25.5) 102 (33.3) 

 

* 6 missing values; ** 2 missing values; † 32 missing values; # 4 missing values 

IPAQ: International Physical Activity Questionnaire 
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Table 2. Intrinsic ignition capability  

 

 

AAL: Anatomical Automatic Labeling Atlas 

 

 

Middle-age group   Older Group   

rs-

fMRI 

atlas 

Corresponding AAL-regions Network 

rs-

fMRI 

atlas 

Corresponding AAL-regions Network 

74 
34% Middle occipital gyrus, right [52] Visual 

association 
74 

34% Middle occipital gyrus, right [52] Visual 

association 32% Middle temporal gyrus, right [86]  32% Middle temporal gyrus, right [86] 

185 88% Lingual gyrus, left [47] Visual 181 
40% Fusiform gyrus, left [55] 

Visual_I 
31% Lingual gyrus, left [47] 

79 78% Lingual gyrus, right [48] Visual 173 63% Inferior temporal gyrus, left [89] Frontoparietal 

72 
51% Lingual gyrus, right [48]  

Visual 185 88% Lingual gyrus, left [47] Visual_I 
33% Fusiform gyrus, right [56] 

181 
40% Fusiform gyrus, left [55]  

Visual 70 70% Inferior temporal gyrus, right [90] Frontoparietal 
31% Lingual gyrus, left [47] 

205 
43% Parahippocampal gyrus, left [39] 

Subcortical 14 85% Middle frontal gyrus, right [8] Frontoparietal 
24% Hippocampus, left [37] 

69 
51% Inferior temporal gyrus, right [90] Visual 

association 
53 

45% Temporal pole: superior, right [84] 
Medialfrontal 

47% Middle temporal gyrus, right [86] 34% Temporal pole: middle temporal, right [88] 

70 70% Inferior temporal gyrus, right [90] Frontoparietal 69 
51% Inferior temporal gyrus, right [90] Visual 

association 47% Middle temporal gyrus, right [86] 

61 
50% Superior temporal gyrus, right [82] 

Motor 187 
38% Lingual gyrus, left [47] 

Visual_II 
28% Rolandic operculum, right [18] 20% Calcarine fissure and surrounding cortex, left [43] 

189 
67% Calcarine fissure and surrounding cortex, 

left [43] 
Visual_I 127 

46% Inferior frontal gyrus, orbital part, left [15] 
Medialfrontal 

36% Insula, left [29] 

173 63% Inferior temporal gyrus, left [89] Frontoparietal 166 82% Middle temporal gyrus, left [85] Medialfrontal 

183 
41% Middle temporal gyrus, left [85] Visual 

association 
180 

49% Inferior occipital gyrus, left [53] Visual 

association 35% Middle occipital gyrus, left [51] 33% Fusiform gyrus, left [55] 

36 
52% Insula, right [30] 

Subcortical 189 67% Calcarine fissure and surrounding cortex, left [43] Visual_I 
36% Inferior frontal gyrus, orbital, right [16] 

149 66% Superior parietal gyrus, left [59] 
Visual 

association 
80 

39% Calcarine fissure and surrounding cortex, right 

[44] Visual_I 

27% Cuneus, right [46] 

123 84% Middle frontal gyrus, left [7] Medial frontal 76 
48% Lingual gyrus, right [48]  

Visual_II 
17% Fusiform gyrus, right [56] 

139 81% Precentral gyrus, left [1] Medial frontal 12 
52% Superior frontal gyrus, dorsolateral, right [4]  

Medialfrontal 
41% Superior frontal gyrus, medial, right [24] 

179 

57% Lingual gyrus, left [47]  

Visual_I 179 

57% Lingual gyrus, left [47] 

Visual_I 21% Calcarine fissure and surrounding cortex, 

left [43] 
21% Calcarine fissure and surrounding cortex, left [43] 

53 
45% Temporal pole: superior, right [84]  

Medial frontal 212 
 46% Thalamus, left [77] 

Subcortical 
34% Temporal pole: middle temporal, right [88] 1% Lingual gyrus, left [47] 

162 

54% Temporal pole: superior temporal gyrus, 

left [83]  Motor 183 
 41% Middle temporal gyrus, left [85] Visual 

association 
27% Superior temporal gyrus, left [81] 35% Middle occipital gyrus, left [51] 

63 
52% Superior temporal gyrus, right [82]  

Motor 79  78% Lingual gyrus, right [48] Visual_I 
48% Middle temporal gyrus, right [86] 
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Table 3. Metastability  

 

Middle-age group   Older Group   

rs-

fMRI 

atlas 

Corresponding AAL-regions Network 

rs-

fMRI 

atlas 

Corresponding AAL-regions Network 

96 
60% Parahippocampal gyrus, right [40] 

Default mode 169 
46% Inferior temporal gyrus, left [89] 

 Motor 
28% Fusiform gyrus, right [56] 41% Fusiform gyrus, left [55] 

59 
55% Fusiform gyrus, right [56] Visual 

association 
15 

56% Median cingulate and paracingulate gyri, right [34] 
 Subcortical 

41% Inferior temporal gyrus, right [90] 26% Anterior cingulate and paracingulate gyri, right [32] 

187 
38% Lingual gyrus, left [47] 

Visual_II 206 
55% Fusiform gyrus, left [55] 

 Subcortical 
20% Calcarine fissure and surrounding cortex [43] 32% Parahippocampal gyrus, left [39] 

161 

57% Temporal pole: middle temporal gyrus, left 

[87]  Medial 
frontal 

108 
33% Anterior cingulate and paracingulate gyri, left [31]  Default 

mode 
25% Middle temporal gyrus, left [85]  23% Rectus gyrus, left [27] 

70 70% Inferior temporal gyrus, right [90] Frontoparietal 109 
51% Inferior frontal gyrus, orbital part, left [15]  

 Subcortical 
31% Superior frontal gyrus, orbital part, left [5] 

71 
48% Fusiform gyrus, right [56] Visual 

association 
16 

45% Inferior frontal gyrus, triangular part, right [14]   
Medialfrontal 29% Inferior temporal gyrus, right [90] 28% Inferior frontal gyrus, orbital, right [16] 

180 
49% Inferior occipital gyrus, left [53] Visual 

association 
88 42% Median cingulate and paracingulate gyri, right [34]  Subcortical 

33% Fusiform gyrus, left [55] 

188 
25% Inferior occipital gyrus, left [53] 

Visual_II 57 67% Inferior temporal gyrus, right [90] 
 

Medialfrontal 23% Lingual gyrus, left [47] 

172 71% Fusiform gyrus, left [55] Visual_I 18 
59% Inferior frontal gyrus, orbital, right [16] 

 Subcortical 
20% Insula, right [30] 

27  81% Precentral gyrus, right [2] Motor 112 
54% Superior frontal gyrus, medial orbital, left [25] 

Default mode 
31% Anterior cingulate and paracingulate gyri, left [31] 

45 
47% Supramarginal gyrus, right [64] 

Motor 174 
58% Fusiform gyrus, left [55]  Visual 

association 35% Postcentral gyrus, right [58] 36% Inferior temporal gyrus, left [89] 

206 
55% Fusiform gyrus, left [55] 

Subcortical 142 
59% Insula, left [29] 

 Motor 
32% Parahippocampal gyrus, left [39] 23% Rolandic operculum, left [17] 

177 73% Middle occipital gyrus, left [51] Default mode 175 65% Inferior temporal gyrus, left [89] 
 Visual 

association 

53 
45% Temporal pole: superior, right [84] Medial 

frontal 
111 62% Rectus gyrus, left [27] 

 Medial 

frontal 34% Temporal pole: middle temporal, right [88] 

81 
59% Inferior occipital gyrus, right [54] 

Visual_II 122 
44% Superior frontal gyrus, medial, left [23]  Medial 

frontal 23% Lingual gyrus, right [48] 43% Superior frontal gyrus, dorsolateral, left [3] 

204 
 46% Hippocampus, left [37] 

Subcortical 46 
53% Superior temporal gyrus, right [82] 

 Motor 
19% Inferior temporal gyrus, left [89] 37% Supramarginal gyrus, right [64] 

175 65% Inferior temporal gyrus, left [89] 
Visual 

association 
71 

48% Fusiform gyrus, right [56] Visual 

association 29% Inferior temporal gyrus, right [90] 

173 63% Inferior temporal gyrus, left [89] Frontoparietal 61 
50% Superior temporal gyrus, right [82] 

 Motor 
28% Rolandic operculum, right [18] 

97 67% Parahippocampal gyrus, right [40] Motor 31 
52% Precentral gyrus, right [2]  

Frontoparietal 22% Inferior frontal gyrus, opercular part, right [12] 

203 
55% Hippocampus, left [37] 

Subcortical 55 67% Inferior temporal gyrus, right [90] 
 

Frontoparietal 13% Parahippocampal gyrus, left [39] 
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Table 4. Cluster centroids of the significant metastable substate 

 

BOLD phase 
rs-fMRI 

atlas 
Corresponding AAL-regions Network 

0.03165 37  34% Insula, right [30] / 22% Lenticular nucleus, putamen, right [74] Motor 

0.03151 201  42% Hippocampus, left [37] / 5% Thalamus, left [77] Subcortical 

0.02814 144  34% Insula, left [29] / 18% Superior temporal gyrus, left [81] Motor 

0.02683 211  84% Lenticular nucleus, putamen, left [73] Subcortical 

0.02653 103  84% Lenticular nucleus, putamen, right [74] Subcortical 

0.02534 87 
 44% Calcarine fissure and surrounding cortex, right [44] / 6% Lingual gyrus, right 
[48] 

Visual_I 

0.02502 65  64% Middle temporal gyrus, right Medial frontal 

0.02415 108  33% Anterior cingulate and paracingulate gyri, left [31] / 23% Rectus gyrus, left [27] Default mode 

0.02271 102  57% Caudate nucleus, right [72] / 11% Olfactory cortex, right [22] Subcortical 

0.02262 143  81% Insula, left [29] Subcortical 

0.02246 212  46% Thalamus, left [77] / 1% Lingual gyrus, left [47] Subcortical 

0.02191 165  62% Middle temporal gyrus, left [85] Motor 

0.02145 93  50% Hippocampus right [38] / 9% Parahippocampal right [40] Subcortical 

0.02133 190  59% Calcarine fissure and surrounding cortex [43] / 7% Lingual gyrus, left [47] Visual_I 

0.02053 50  87% Middle temporal gyrus, right [86] Default mode 

0.02036 105  36% Thalamus, right [78] / 9% Lingual gyrus, right [48] Subcortical 

0.01982 98  49% Lingual gyrus, right [48] / 23% Precuneus, right [68] Visual_I 

0.01935 209  28% Caudate nucleus, left [71] / 15% Olfactory cortex, left [21] Subcortical 

0.01870 82  76% Calcarine fissure and surrounding cortex, right [44] Visual_I 

0.01771 54 58% Middle temporal gyrus, right [86] / 32% Superior temporal gyrus, right [82] Medial frontal 
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Figure 1: Methods. We applied two data-driven whole-brain methods based on phase synchronization of the BOLD signals. (1) 

For each of the 214 brain areas, we extracted the BOLD time series and computed the phase space of the BOLD signal. (1A) 

Specifically, we obtained the time series for each brain area using a resting-state atlas (Shen et al., 2013). (1B) Then, we measured 

the phase space of the BOLD signal by using the Hilbert transform for each brain area. The BOLD signal (red) was band-pass 

filtered between 0.04 and 0.07 Hz (blue) and converted with the Hilbert transform into an analytical signal represented by its 

instantaneous amplitude A(t) and its phase φ (with real and imaginary components). The phase dynamics can be represented in the 

complex plane as eiφ (black bold line), the real part as cosφ (black dotted line), and the imaginary part as sinφ (black dotted line). 

The purple arrows represent the Hilbert phases at each TR. (2) Measuring intrinsic ignition. (2A) Events were captured by applying 

a threshold method (Tagliazucchi et al., 2012) (see green area). For each event evoked, the activity in the rest of the network (see 

red stippled area) was measured in the 4TR time window (gray area). (2B) A binarized phase lock matrix was obtained from the 

time window. (2C) From this phase lock matrix, we obtained the integration by calculating the largest subcomponent (i.e., by 

applying the global integration measure (Deco et al., 2015, 2017b)). Repeating the process for each driving event, we obtained the 

ignition and metastability of the intrinsic-driven integration for each brain area across the whole-brain network. (3) Finally, we 

applied the Leading Eigenvector Dynamics Analysis (LEiDA) to characterize differences between groups in dynamic functional 

connectivity patterns or metastable substates. (3A) The left panel shows the BOLD phases in all 214 brain areas represented in the 

complex plane. The right panel shows the phase coherence matrix between each pair of brain areas. (3B) The leading eigenvector 

V1(t) from this matrix was extracted. (3C) We applied a k-means clustering algorithm to detect the metastable substates from all 

the leading eigenvectors, across timepoints, number of subjects, and groups. Figure adapted from (Deco and Kringelbach, 2017, 

Deco et al., 2019a). 
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Figure 2: Intrinsic Ignition Framework. (a) Ignition measure. The boxplot shows the mean integration (ignition) for each group 

(middle-age group and older group). The ignition was higher in the older group (in blue) than in the middle-age group (in red) (p < 

0.001). The second graph shows ignition plotted across brain areas. Rendered brains represent the 20 regions with the highest 

ignition for each group (middle-age in red and older group in blue). (b) Metastability measure. By contrast, the middle-age group 

showed higher metastability across the whole-brain compared to the older group (p < 0.001). P-values are based on Monte-Carlo 

permutation tests, *** represents p<0.001. 
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Figure 3: Differences in ignition across resting-state networks.  The plots show the differences between groups in each significant 

resting-state network; rendered brains represent the absolute difference in  ignition values for each brain area in each network 

between the middle-age and older groups (the greatest difference is marked in yellow). Compared to the middle-age group, intrinsic 

ignition was significantly higher in the older group in the frontoparietal network (FDR-corrected, p<0.001) and medial frontal 

network (FDR-corrected, p<0.001). By contrast, intrinsic ignition was significantly higher in the middle-age group in the motor 

network (FDR-corrected, p<0.001).  The default-mode, subcortical, visual I, visual II, and visual association networks were not 

significantly different between groups. 
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Figure 4: Differences in metastability across resting-state networks. The plots show the differences between groups in each 

significant resting-state network, whereas rendered brains represent the absolute difference (middle-age and older) between 

metastability values for each brain area in each network (in yellow the highest difference). The older group showed significantly 

increased metastability compared to the middle-age group in the frontoparietal network (FDR-corrected, p<0.01) and medial frontal 

network (FDR-corrected, p<0.01), whereas the middle-age group showed increased metastability in the default-mode network 

(FDR-corrected, p<0.05), subcortical network (FDR-corrected, p<0.001), motor network (FDR-corrected, p<0.001), visual 

association network (FDR-corrected, p<0.05), and visual I  network (FDR-corrected, p<0.001).  
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Figure 5: Metastable substates obtained by clustering. We identified three metastable substates that occurred frequently across all 

subjects during rest. The states are shown from higher to lower probability of occurrence. A) Differences in probability and B) 

differences in duration of each metastable substate between the middle-age group (in red) and the older group (in blue) during the 

resting-state scan. C) Metastable substates rendered on the cortex with Surfice. The first metastable substate had the highest 

probability of occurrence. This state was more likely to occur in subjects in the older group (mean, 0:476 ± 0:008 (s.e.) vs.0:453 ± 

0:008 in the middle-age group, FDR-corrected p = 0.03); the duration of this state was also higher in the older group, although this 

comparison was no significant after FDR correction (32:465 ± 0:957 s vs. 30:265 ± 0:791 in the middle-age group, p = 0.04, 

uncorrected). The second metastable substate is especially interesting because it overlaps with the rich club. The probability of this 

state occurring was higher in the middle-age group (mean 0:288 ± 0:007 (s.e.) vs. 0:269 ± 0:006 in the older group, FDR-corrected 

p = 0.026); the duration of this state was also higher in the middle-age group ( mean 16:399 ±  0:605 s vs. 14:853 ± 0:414 s in the 

older group, FDR-corrected p = 0.01). The third metastable substate was not significantly difference between groups in its 

probability of occurrence (p = 0.35) or duration (p = 0.39). D) Relevant metastable substate overlapping with rich-club regions in 

both hemispheres (the superior frontal cortex, precuneus, insula and subcortical areas such as the caudate, putamen, hippocampus, 

and thalamus). 
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