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ABSTRACT 
In-silico drug repositioning or predicting new indications for 
approved or late-stage clinical trial drugs is a resourceful and 
time-efficient strategy in drug discovery. However, inferring 
novel candidate drugs for a disease is challenging, given the 
heterogeneity and sparseness of the underlying biological entities 
and their relationships (e.g., disease/drug annotations). By 
integrating drug-centric and disease-centric annotations as multi-
views, we propose a multi-view graph attention network for 
indication discovery (MGATRx). Unlike most current similarity-
based methods, we employ graph attention network on the 
heterogeneous drug and disease data to learn the representation 
of nodes and identify associations. MGATRx outperformed four 
other state-of-art methods used for computational drug 
repositioning. Further, several of our predicted novel indications 
are either currently investigated or are supported by literature 
evidence, demonstrating the overall translational utility of 
MGATRx.  
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1 Introduction 
As per an estimate, the total average cost for developing a new 

drug – from discovery to approval - ranges from $2 billion - $3 
billion and takes about 13–15 years [1]. To by-pass this 
conventional slow and cost-intensive procedure, computational 
approaches are increasingly used to identify new therapeutic uses 
(“drug repurposing” or “drug repositioning”) for existing or 
approved, late-stage clinical trial drugs or drugs that have failed 
for reasons other than safety. The premise is that drugs approved 

by the FDA or those in late stages of clinical trials have known 
safety and toxicity profiles and hence candidate repositioning 
drugs can enter clinical phases more rapidly and at a relatively 
reduced cost. Knowledge-based in-silico drug repurposing 
methods typically utilize drug and disease annotations to assess 
the similarity or connections between drugs and diseases as per 
of the novel indication discovery strategy. 

Several network-based approaches have been developed for 
predicting novel drug-disease, disease-gene, and drug-target links 
with drugs, diseases or their annotations (genes, phenotypes, 
pathways, etc.) as nodes and their interaction or associations as 
edges.  Recent developments in graph-based learning methods 
have been shown to improve prediction performance and have the 
potential to unveil hidden relationships between the nodes in 
heterogeneous graphs. For instance, several years ago Gottlieb et 
al. [2] proposed PREDICT which integrates drug-drug similarity 
(based on drug-protein sequence, and gene-ontology interactions) 
and disease-disease similarity (based on disease-phenotype and 
human phenotype ontology) to predict drug-disease associations. 
More recently, Himmelstein et al. [3] created hetionet a 
heterogeneous network integrating data from 29 public resources 
to identify drug repositioning candidates and predict the 
probability of treatment for drug-disease pairs [4]. Similarly, 
leveraging integrated drug annotation data, Liang et al. [5] used 
Laplacian regularized sparse subspace learning method. Zhang et 
al. [6] used similarity constrained matrix factorization method 
while Wang et al. [7] used neural networks for non-linear feature 
extraction to predict drug-disease association. Results from each 
of these studies show that integrating heterogeneous data from 
various sources can predict drug-disease associations while being 
robust to inherent noise in the networks used. Each of these 
similarity-based approaches was evaluated with an underlying 
assumption that nodes sharing similar annotations have similar 
associations. As a result, latent representations generated through 
similarity networks may not necessarily capture the complex 
relations of drugs and diseases. Additionally, similarity-based 
approaches do not consider missing information. Several drugs 
and diseases, for instance, have missing information and therefore 
are not considered. For example, drugs and diseases tend to have 
off-target or indirect effects either through protein interactions, 
signaling networks, or pathways which are not typically detected 
in the preclinical drug discovery stages. 

To address the challenges related to missing information and 
information cascades, we adopt graph neural networks-based 
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approach. While integrating multiple views will compensate for 
any missing information, it is essential for the algorithm to 
aggregate information from the node neighbors and learn latent 
robust representation. The graph convolutional network (GCN) 
proposed by Kipf et al. [8] showed superior results in generating 
node embeddings while simplifying convolutions in the spectral 
approach. The GCN performs localized first-order approximations 
of spectral graph convolutions which is primarily proposed for 
single-view homogeneous networks. More recently, MVGAE [9] 
and MedGCN [10] employed GCNs on multi-view networks for 
computational drug discovery. However, the quality of 
annotations varies across views that can potentially affect the 
aggregation mechanism. Biomedical and genomic data tend to be 
relatively sparse and therefore it is important to assign varying 
importance to different neighbors.  

To address this issue, we further narrow down the aggregation 
mechanism in graph neural networks by using attention on multi-
view graphs. The graph attention proposed by [11], [12] has 
shown to be effective by selectively gathering relevant 
information from neighboring nodes.  We extend this paradigm to 
multi-view graphs to learn meaningful and relevant information 
from their neighbors of different node types. Using the derived 
representation, we predict links between two nodes (i.e., drug and 
disease in this case) through multi-label classification. In this 
paradigm, without explicitly providing any additional features to 
each node-type, we leverage the importance of neighbor 
relevance in graph attention mechanism and label correlation 
information captured in a multi-label learning setting. The 
proposed framework and algorithm is built on curated sets of 
drugs (approved, investigational, and withdrawn), diseases, and 
their annotations compiled from various sources. For instance, 
excluding hetionet, most of the previous approaches for 
identifying novel drug-disease associations evaluated their 
performance using a dataset from Wang et. al [13], proposed in 
2014. However, since 2014, several new drugs have been 
approved. In 2018, the FDA approved as many as 59 new drugs 
[14].  

A systematic validation shows that the proposed algorithm, 
Multiview Graph Attention for drug repositioning (MGATRx), 
performs better than current state-of-the-art models. 
Furthermore, using a case study, we illustrate an insightful 
understanding of the drug mechanism of action by visualizing the 
attention weights of MGATRx. 

2 Materials and Methods 

2.1 Drug and Disease Annotation Datasets 
Drugs: We initially collected small-molecules that are 

approved, investigational, and withdrawn from MedChemExpress 
(MCE) panel [15].  To improve the coverage, we also included 
drug annotations from the KEGG database. We normalized the 
drug names by mapping them to common identifiers to extract 
their annotations from other sources. We used DrugBank 
identifiers for this purpose as it also enabled us to capture 
additional drug annotations such as chemical structures, targets, 
and side-effects. We manually curated the compiled list and 
removed some classes of drugs (e.g., all topical applications) 
which we believe have relatively low repositioning potential. Our 
final compiled list of drugs included 4008 approved and 
investigational compounds and we used this list to extract their 
annotations from other sources (Table 1). 

Diseases: We limited our disease set to those diseases that 
have a known drug or a gene association (KEGG, RepoDB, 
DisGeNET, FDA, and DrugCentral). The diseases were mapped to 
the Unified Medical Language System (UMLS) concept unique 
identifiers (CUI). 

In this study, we collected 5 different drug-related and one 
disease-related annotation profiles. We represent each annotation 
profile as a binary adjacency matrix. For 4008 drugs extracted 
from DrugBank [16], we extracted 2908 targets from DrugBank 
[16] and KEGG [17]; 881 chemical substructure profiles from 
PubChem [18]; 11744 side-effect annotations from SIDER [19] and 
OFFSides [20]; and 2124 MeSH (Medical Subject Heading) 
category profiles from DrugBank [16]. For the selected 2958 

 
Figure 1: MGATRx architecture for predicting drug-disease associations. Panel a shows the drug-disease heterogeneous 
network construction step leveraging various data sources. Panel b represents our encoding algorithm which generates embeddings 
for multiple node types based on multi-view neighborhood information through attention. Panel c shows an overview of the 
decoding step wherein a linear layer is used as a decoder to decode the drug-disease relationships. 
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diseases, we downloaded their 7913 associated genes from KEGG 
[17] and DisGeNET (curated) [21]. Our drug-disease associations 
consists of 8984 indication pairs (4008 drugs and 2958 diseases) 
compiled from KEGG [17], FDA [22], DrugCentral [23], and 
RepoDB [24]. Each drug-related and disease-related annotation 
profile is considered as a view and we performed multi-label 
classification by classifying drug nodes to disease labels as 
associations using a multi-view learning approach. 

Table 1: Graph information for each view type. Each 
adjacency matrix is considered as view and the size is represented 
as number of rows by number of columns. 

Adjacency Matrix Size Edges 
Drug-Diseases 4008 x 2958 8,957 
Drug-Targets 4008 x 8722 11,146 
Drug-Substructures 4008 x 881 422,742 
Drug-SideEffects 4008 x 11744 297,999 
Drug-MeSH 4008 x 2124 35,277 
Disease-Targets 2958 x 8722 27,245 

 

2.2 Graph Neural Networks For Multi-views 
In recent years, significant advances have been made in 

developing several variants of graph neural networks (GNN). The 
1-dimensional Weisfeiler-Lehman test of isomorphism [25], also 
known as "naive vertex refinement", is a powerful algorithm to 
test whether two graphs are isomorphic. It works by iteratively 
aggregating the labels of nodes and their neighborhood, and then 
performs hashing to the aggregated labels into unique labels. If at 
any iteration, the unique labels tend to be different for the two 
graphs, then the algorithm declares them as non-isomorphic 
graphs. The GNNs can also be viewed as a special case of 1-WL 
algorithm where neural networks are used to aggregate node 
neighborhoods [25], [26]. Compared to traditional machine 
learning models, GNNs have a greater capacity to identify 
interesting patterns from data. Given an adjacency matrix 𝐴, the 
graph convolutional network (GCN) in [8], a variant of GNN, 
performs semi-supervised graph learning by computing the 
transformation at each layer as 

𝐻("#$) = 𝑓%𝐴&𝐻(")𝑊(")(   (1) 

Where 𝐴& is obtained by "renormalization trick" given as 𝐴& =

𝐷&
!
"𝐴𝐷&

!
". In simple terms, this is the preprocessing step before 

feeding the input 𝐴 to the neural network.  𝐻(")  is the hidden 
layer i.e., 𝐻(") ∈ 𝑅'×)# . 𝑑" is embedding size at each layer for 𝑁 
number of nodes, 𝑊(") ∈ 𝑅)#×)#$! , and 𝑓(	. )  is an activation 
function (Sigmoid or ReLU). This propagation mechanism 
emphasizes that each node will exchange first-order information 
in every layer followed by some non-linear transformation.  

Several studies such as [9], [27], [28] extended the GCN 
framework to multi-view network. MedGCN [10], for instance, 
applied GCN on a multi-view network by learning node 

embedding for each heterogeneous node type by generalizing 
previous works neighborhood aggregation mechanism [29]–[31]. 
The GCN layer for multi-view network is defined as: 

𝐻*
("#$) = ∑ 𝐴+,3-

./0 𝐻.
(")𝑊.

(")   (2) 

where 𝐻.
(") is hidden layer at layer 𝑙 for node type 𝑗, 𝑀 is the 

number of views, 𝐴+,3  is the adjacency matrix for node type 𝑖 and 
𝑗, 𝑊.

(") is a train-able weight matrix in layer 𝑙, and since the views 
are in bi-adjacency structure, random walk normalized Laplacian 
is applied i.e., 𝐴& = 𝐷&$𝐴, is chosen as "re-normalization trick" for 
equation 2. Based on this generalized neural network approach for 
multi-view networks, we propose MGATRx consisting of two 
phases, the encoding and decoding phases. 

2.3 MGATRx: A Multi-View Graph Attention 
Network 

2.3.1 Encoding 
In GCN or multi-view GCNs, each node’s embedding is based 

on weighted sum of its neighbor embeddings. Previous studies 
from Velickovic et al. [11] and Thekumparampil et al. [12] used 
the attention mechanism for their aggregation process. Attention 
prioritizes neighbors with more relevant information to calculate 
embedding for each node. Thekumparampil et. al. proposed 
similarity-based attention where relevant neighbors that share 
similar representations are given more attention according to 
their contribution. Given two nodes 𝑖 and 𝑗, the attention from 
node 𝑗 to node 𝑖 is calculated as 

α12
(3) =

456(7(&)⋅9:;(<(
(&),<)

(&)))

∑ 456(7(&)⋅9:;(<(
(&),<)

(&))))∈+(()∪{(}
  (3) 

Where ℎ* , ℎ.  are the node embeddings of node 𝑖 and 𝑗. In other 
words, attention (α*.) is obtained by multiplying a trainable scalar 
parameter 𝛽 to the cosine-similarity of the embeddings followed 
by applying a SoftMax function on top of it for every layer 𝑡.  

However, this model [12] was proposed for homogeneous 
graphs with a single-view. In the drug-disease association 
paradigm, the nodes are heterogeneous and have multiple views. 
Hence, the nodes should be able to attain relevant information 
from their heterogeneous neighborhood, filtering out any 
‘useless’ information. In Figure 2, we illustrate a sample sub-graph 
of Simvastatin drug, prescribed to treat increased blood 
cholesterol levels (hypercholesterolemia). Given, valproic acid (an 
anti-epileptic) and liver carcinoma which also share the target 
HMGCR, one hypothesis is that simvastatin would exhibit 
promiscuity in treating new diseases while filtering irrelevant 
information. This hypothesis can be extended for each of the 4008 
drugs. In other words, the attention mechanism is extended to 
multi-view networks as follows. Given 𝐾  node-types (drugs, 
diseases, targets, mesh-categories, substructures and side-effects) 
in 𝑀  bi-adjacency views, each node type feature matrix 𝑋*  is 
multiplied with trainable weight matrix W1 ∈ 𝑅'×)  to get an 
embedding (𝐻*) of size 𝑑, 
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𝐻*" = 𝑋*"𝑊*
"  (4) 

Since there are no external features for the 𝐾 node types, we 
chose identity matrix as a node feature matrix. We apply attention 
(equation 3) and extend the multi-view sum pooling (equation 2) 
as multi-view graph attention. This way the attention mechanism 
over views learns which neighbors are more relevant and weighs 
their contributions accordingly. For node-type 𝑖, 𝑗	 ∈ 𝐾, each node 
learns its representation through inter (𝑖	 ≠ 𝑗) and intra-attention 
(𝑖 = 𝑗) across the views as follows: 

𝐻+
("#$)A =∑ 𝛼*.

(")𝐻.
(")-

./0   (5) 

Here, we use softmax normalized attention 𝛼*. , as in equation 
3 [12], which indicates the importance of nodes in view 𝑗 to 𝑖 i.e., 
α*. = softmax Jβ(?) cos J𝐻*

(?), 𝐻.
(?)MM . Similar to equation 3, 

𝑐𝑜𝑠(𝑎, 𝑏) = @/A
B|@|BB|A|B

 is the cosine similarity of the hidden states 

and 𝛽(?) ∈ 𝑅  is a trainable scalar parameter applied for 𝑡  ∈
{1,… , 𝑇}  propagation layers. The propagation layer ( 𝑡 ), is 
different from embedding layer (𝑙), learns to weight more relevant 
neighbors every time α*.  is computed. In single-view graph 
attention network [12], attention is computed for more than 1 
propagation layer (𝑡 > 1). However, in our experiments we set the 
number of layers (𝑙	 ∈ 𝐿) and attention propagation layers (𝑡	 ∈ 𝑇) 
for each node type to 𝑇 = 1  and 𝐿 = 1. Finally, we applied scaled 
exponential linear unit (SELU) activation function for the attained 
embedding. Our choice of SELU is based on experimenting with 
various other activation functions provided in PyTorch. 

2.3.2 Decoding 
In the decoding phase of MGATRx, we perform multi-label 

classification using a single linear layer i.e., 𝑓(𝑊𝐻*), where 𝑊 is 
the weight matrix for reconstructing the adjacency matrix. 
Here, 𝑓(	. )  is sigmoid activation function which computes 
association score between the two node types i.e., $

$#DEF{(&(HI0)})
. 

We tried DistMult, Inner Product and Bi-linear decoders for link-
prediction between drug and disease but based on AUPR (Area 
Under Precision Curve) and AUROC (Area Under Receiver 
Operating Curve), the linear layer performed better than other 
decoders. 

2.3.3 Loss Function 
For predicting drug-disease association, we calculate binary 

cross-entropy error (ℒℬ𝒞ℰ) of drug-disease association prediction 
and re-construction error of the remaining views using mean 
squared error (ℒℳ𝒮ℰ). The collective loss for MGATRx is given as 

 
ℒ𝒯ℴ𝓉𝒶ℓ = ℒℬ𝒞ℰ(Drug,Disease) + ℒℳ𝒮ℰ(Drug,Substructure)

+ ℒℳ𝒮ℰ(Drug,Target)
+ ℒℳ𝒮ℰ(Drug,Side-effect)
+ ℒℳ𝒮ℰ(Drug,MeSH)
+ ℒℳ𝒮ℰ(Disease,Target) 

 
The binary cross entropy error ℒℬ𝒞ℰ and mean-squared error 

ℒℳ𝒮ℰ are defined as 

ℒℬ𝒞ℰ =\[−𝑝U𝑦* 𝑙𝑜𝑔(𝑦+b) − (1 − 𝑦*) 𝑙𝑜𝑔(1 − 𝑦+b)]
'

*/$

	

ℒℳ𝒮ℰ =
1
𝑁\

(𝑦* − 𝑦+b)
'

*/$

	

where 𝑦* ∈ {0,1} is the ground truth, 𝑦+b  is the prediction for 
the 𝑖?V label, and 𝑝U in the ℒℬ𝒞ℰ are the weights for the positive 
labels to handle sparseness i.e., 𝑝U =

Number of negatives
Number of positives

 

3 Experimental Setup  

3.1 Hyperparameter settings for MGATRx 
We implemented our MGATRx model in PyTorch. In our 

experiments, we adopted ten-fold cross-validation (10-CV) to test 
and compare performances of prediction models. We used 
stratified cross-validation from scikit [32] to distribute known and 
unknown associations in each fold. In each fold, we have  training 
and testing sets. Further, from the training set, we used 15% of the 
data as validation set for hyper-parameter tuning. We constructed 
the prediction model based on known associations in the training 
set and predicted associations in the test set. We chose our best 
performing embedding size for each view as 512 after evaluating 
a set of dimension sizes [32, 64, 128, 256, 512]. In our experiments, 
we used Adam optimizer and performed hyper-parameter tuning 
with learning rate (η) set to 0.01 which was selected from a range 
of {0,1, 0.01, 0.001, 1e-4, 1e-5, 1e-6}, dropout set to 0.0 (no-dropout) 

 
Figure 2: An example of MGATRx neighbor 
aggregation mechanism for the drug simvastatin. The 
circular nodes are drugs, squares are diseases, triangles are 
targets/genes, rhombuses are side-effects and hexagons are 
drug classes. The 1-hop and 2-hop heterogeneous neighbors 
of simvastatin drug are represented as dashed lines within 
the respective nodes. The incoming colored lines (with colors 
similar to the node they are directed to) represent the node 
learning its representations from the neighboring nodes. For 
instance, red colored edges towards simvastatin node 
represent that drug-associated representations are learnt 
from its neighbors (HMGCR, ITGAL, rhabdomyolysis, etc.). 
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which was selected from range of {0.0,0.1, 0.3, 0.5, 0.7, 0.9, 1.0} and 
weight-decay set to 0.0 which was selected from a range of {0.0,1e-
3, 1e-3, 3e-3, 3e-5, 5e-3, 5e-5} parameters. During training, we used 
2000 epochs in each fold where early stopping strategy is 
performed if AUPR does not increase for 50 successive epochs. For 
training, we used a workstation with Intel(R) Xeon(R) W-2133 
CPU 3.60GHz CPU, 64 GB RAM and Nvidia Quadro RTX 8000 
GPU. 

3.2 Baseline Methods 
For evaluation and comparison of our method, we used some 

of the state-of-the-art methods such as LRRSL,  NeoDTI, and 
HNRD which are proposed for drug-repositioning problem. These 
baseline models are openly available in GitHub repositories. We 
did not use PREDICT [2] as a baseline because of the 
reproducibility issues (reported recently in OpenPREDICT case 
study [33]). To ensure fairness, we split the same size of training, 
validation, and test sets during 10-fold cross-validation. 

LRRSL [5], proposed by Liang et. al, uses drug-related 
annotation profiles to identify drug-disease associations. In this 
study, as part of pre-processing step, they retrieve graph k-nearest 
neighbors (KNN) by calculating cosine similarity of the drug-
annotation profiles. With the attained graph-knns, Laplacian is 
computed for each profile. The objective function is then defined 
as follows, 

min
W,U1

||𝐹 − 𝑌||WX + Tr(𝐹Y𝐿𝐹) + 𝜇\||𝑋FY𝐺F

Z

F/$

− 𝐹||WX

+ 𝜆\\||𝐺F(: , 𝑗)||$X
U

./$

Z

F/$

 

Where 𝑋F represents the 𝑝?V view of drug annotation, 𝑌 is the 
drug-disease association matrix and 𝐿 is the Laplacian matrix. 𝐺F 
is the projected space where dimension is equal to the number of 
diseases to solve the drug-disease association scores in 𝐹. We used 
the default parameters mentioned by the work i.e., µ =  0.01, λ =
 0.01, γ =  2 and 𝑘	 = 10. 

NeoDTI [34] by Wan et.al predicts drug-target association. 
NeoDTI learns node-level embedding by aggregation technique 
with respect to node-type and predicts the confidence score 
between a drug and a protein as 

 
𝑓1(𝑢)⊤𝐺𝑟𝐻𝑟⊤𝑓

1(𝑣) 

𝑠. 𝑡.𝜙(𝑢) = 𝑑𝑟𝑢𝑔,  𝜙(𝑣) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 
𝑟 =  𝑑𝑟𝑢𝑔 −  𝑝𝑟𝑜𝑡𝑒𝑖𝑛 −  𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

where 𝐺[ , 𝐻[  are learned edge-type specific projection 
matrices, ϕ(𝑢) is drug node type, ϕ(𝑣) is protein node type and 
𝑟 is the relation. Although, NeoDTI is proposed for drug-target 
prediction, the model can be extendable to predict drug-disease 
associations. Note that DTINet [35], a study preceding NeoDTI, 
uses similar reconstruction strategy by unifying multiple 
networks to predict drug-target associations. However, in the 
performance comparison with NeoDTI, DTINet was reported to 
be inferior to NeoDTI. Hence, we did not consider DTINet as a 
baseline in the current study. 

HNRD [7] proposed by Wang et. al utilizes NeoDTI affinity-
based approach of neighborhood aggregation to predict drug-
disease associations based on drug-drug and disease-disease 
similarity networks.  

MedGCN [10] from Mao et. al uses multi-view graph 
convolutional network for medication recommendation problem 
as discussed in section 2.2. The multi-view GCN aggregates 
neighbors for each node-type as 𝐻*

("#$) = ∑ 𝐴+,3-
./0 𝐻.

(")𝑊.
("). 

3.3 Evaluation Metrics 
We used the traditional evaluation metrics such as area under 

the precision-recall curve (AUPR) and area under receiver 
operating characteristic curve (AUROC) to quantitatively evaluate 
and compare our method with the existing baseline methods. We 
identified optimal threshold based on elbow method of AUPR 
curve and computed F1-score. To evaluate the top-k predictions, 
we report average precision at K. Higher values in Table 2 indicate 
better performance. 

4 Results  

4.1 Performance Evaluation and Comparison 
with Other State-of-art Approaches 

Evaluation and comparison of MGATRx with current state-of-
art methods using the hyper-parameters as provided in the 
literature showed  superior performance of MGATRx (Table 2). 
LRSSL showed a notable AUC performance compared to other 
baseline methods, but in terms of AUPR and F1, the scores were 
inferior. Notably graph neural network-based methods (NeoDTI, 
HNRD, MedGCN, and MGATRx) showed better AUPR and AUC 

Table 2: Performance comparison using 10-fold cross-validation setting 
Methods AUPR AUC F1 AP@1 AP@5 AP@50 
LRSSL 0.212 0.928 0.283 0.779 0.660 0.637 

NeoDTI 0.385 0.902 0.448 0.609 0.505 0.482 

HNRD 0.421 0.933 0.467 0.552 0.444 0.428 

MedGCN 0.471 0.925 0.511 0.837 0.750 0.730 

MGATRx (Ours) 0.568 0.944 0.586 0.858 0.791 0.779 
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performance.  It is, however, surprising to notice that similarity-
based method of NeoDTI i.e., HNRD performed better than the 
original. The performance of MedGCN is inferior when compared 
to MGATRx suggesting that attention helps in exploiting higher-
order neighbors in multi-view networks.  

To test the argument that our proposed attention model is 
robust than convolution-based method, we removed a fraction of 
edges and compared the performance. In Figure 3, we show the 
robustness of MGATRx and MedGCN, by removing 15%, 30%, 45%, 
60% and 75% of the edges. Note that the removed edges were used 
as validation set during training and performed early stopping if 
the model performance over validation set did not improve for 50 
epochs as discussed in section 3.1.  Our proposed algorithm 
performed substantially better than MedGCN in robustness test, 
despite removing edges from the training set and evaluated with 
test set (Figure 3). Besides, MGATRx also has an additional 
advantage of attention interpretation over MedGCN (discussed in 
section 4.3). Overall, MGATRx shows a superior performance of 
at least 8-35% in  terms of AUPR scores when compared with the 
baseline models. 

 

Figure 3: Results from robustness analysis performed by 
removing percentage of edges.  

4.2 Hyper-parameter Influence and Analysis 
In this section, we will analyze the hyper-parameters 

influencing the prediction of MGATRx namely, learning rate (lr), 
dropout, weight decay and embedding size. For learning rate, 
dropout and weight decay parameters, the plots in Figure 4 (a), (b) 
and (c) are first-fold validation AUPR scores. This demonstrates 
the convergence of the solution at every epoch step. In case of 
embedding size, we evaluated the 10-fold AUPR scores for each 
embedding size and represented as box plot. 

Learning Rate: As shown in Figure 4 (a), MGATRx can 
converge solution with an optimal learning rate at	η = 0.01 . The 
algorithm can achieve performance with larger learning rate. 
However, as the learning rate is decreasing, the performance 
decreased gradually. This variance in the performance could be 
attributed to Adam optimizer’s momentum and adaptive learning 
rate tricks. 

Weight Decay: Like dropout, weight decay is tuned based on 
a search space of seven parameters. We observed that with no 
weight-decay the network can perform well. 

Dropout: For dropout we used a range of dropout values and 
found that the dropout at its lowest value set to 0.1 performed 
better than others. Due to the sparsity in the graphs, increase in 
the dropout affects the performance of the model as shown in 
Figure 4 (c). 

Embedding Size: In our experiments, we observed that 
keeping the rest of parameters constant, the embedding size 
influenced the AUPR performance. With embedding size set to 512 
the performance is relatively superior when compared with rest 
of the models.  

4.3 Interpreting Attention  
To visualize the impact of attention on the model, we selected 

immunological disorders such as asthma, psoriasis, Crohn’s 
disease, and chronic ulcerative colitis. We selected top 5 predicted 
drugs for each of these diseases based on drug-disease attention 
weights. Next, we filtered 15 targets which are shown to have 
maximum attention from these drugs and diseases. In Figure 5, we 
show the drug-target and disease-target attention heatmap. The 
highlighted values in the heatmap show how much attention a 
target gene is contributing for constructing drug and disease 
representations, which further aids in predicting association 
between a drug and a disease. For example, we selected the 
highlighted attention targets showed in the heatmap for “Chronic 
Ulcerative Colitis” and then used ToppGene Suite [36] to identify 
functional enrichments for biological processes. We found that 
these genes are enriched (p value < 0.05 FDR) for inflammatory 
response (GO:0002437) and regulation of immune process 
(GO:0050776). This probably explains the presence of immune 
suppressive agents (such as Natalizumab, Adalimumab, 

 

(a) Learning Rate 
 

(b) Weight Decay 

 
(c) Dropout 

 
(d) Embedding Size 

Figure 4: Hyper-parameter tuning and analysis for 
MGATRx. 
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Infliximab, Risankizumab, Sarilumab, and Certolizumab Pegol) 
among the top hits for these immunological disorders. Similar 
enrichments were observed for Crohn’s disease. Certolizumab 
pegol, an approved drug for Crohn’s disease, has been reported to 
be also efficacious for treating ulcerative colitis [37], [38]. The 
gene TNF appears to be an active contributor of attention to both 
diseases. Likewise, in case of asthma, IL5 is observed to be one of 
the genes contributing attention factor. Mepolizumab and 
Reslizumab are approved drugs for asthma and therefore it is not 
surprising to see IL5 contributing maximum attention to the 
drugs. It is to be noted that the current analysis is primarily based 
on targets and their contribution to drugs and diseases. However, 
there are other node-types such as side-effects, chemical structure, 
and MeSH categories. Since, targets are the common space for 
both the drugs and disease, we used them for this qualitative 
elucidation.  

4.4 T-SNE Visualization 

 

Figure 6: 2-Dimensional T-SNE visualization of drug 
representations. There are 14 ATC codes and each drug is 
mapped according to its ATC code. 

We extracted the drug representation in the decoding layer 
and applied t-SNE (t-Distributed Stochastic Neighbor Embedding) 
to further identify hidden patterns. In Figure 6, we show the 
clusters of drugs in 2-dimensional Euclidean space. To color code 
the drugs, we used Anatomical Therapeutic Chemical (ATC) 
codes, which is a drug classification system adopted by World 
Health Organization (WHO). There are 14 ATC codes and each 
code has 4 sub-levels. We extracted ATC codes from DrugBank 
and used the first level of the code. We assign color codes to each 
drug based on ATC Code and observe few clusters of drugs such 
as nervous system drugs in blue, cardiovascular drugs in red, anti-
neoplastic drugs in teal and anti-infectives in grey. The 
visualization also reveals potential promiscuity patterns of drugs 
such as alimentary tract, anti-infectives and anti-parasitic related 
drugs. These overlaps also suggest drug repositioning potential 
(drugs are like other ATC class). 

4.5 Novel indications and drug repositioning 
candidates 

In this section, we briefly discuss some of the novel indication 
predictions of MGATRx. We selected 12 drugs with their original 
indication and MGATRx-predicted indication along with 
literature evidence for on-going investigations (Table 3).  

Among the MGATRx predicted novel indications is type 2 
diabetes (T2D) for the drug Sotagliflozin. Interestingly, this drug 
is currently approved in Europe [39] but not yet by the FDA. 
Similarly, calcium channel blockers (CCB) such as Nilvadipine and 
Lacidipine are predicted for high blood pressure. Most CCBs are 
known to have therapeutic efficacy for hypertension [40]. Among 
other examples, Dextroamphetamine (DAH) is a well-known drug 
for treating narcolepsy and attention deficit hyperactivity 
disorders. In our predictions, we found that DAH is predicted to 
treat obesity. Recent studies report beneficial effects of DAH in 

 

Figure 5: Drug and Disease attention weight visualization based on targets. The attention scores are in the range of {0,1} 
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treating hypothalamic obesity in children and adolescents [41], 
[42]. Similarly, Certolizumab pegol (CMZ) is predicted as a 
potential repositioning candidate for ulcerative colitis. CMZ is a 
known anti-TNF agent and in our model, attention towards TNF 
target was observed (described in earlier sections). CMZ is 
currently under active investigation in phase II clinical trial [43].  

The attention contributed by a known target or an off-target 
may not necessarily be always a potential candidate for 
repositioning. For example, some of the anti-TNF drugs such as 
Infliximab and Adalimumab are reported to be associated with 
aggravating multiple sclerosis in patients [44]. However, 
MGATRx ranks them among the top predictions. This limitation, 
we believe, can be potentially addressed in future work by 
incorporating the directionality (e.g., drugs treating a phenotype 
vs. drugs causing a side-effect or disease-causing a phenotype, 
etc.) to the edges while representation in the model. The goal of 
MGATRx is to generate testable hypotheses for drug 
repositioning for potential experimental validation, 

5 Conclusion 
In-silico drug repositioning is a critical component of all drug 

discovery pipelines.  Most of the previously reported similarity-
based approaches for predicting drug-disease associations assume 
that nodes sharing similar annotations could have similar 
associations. Most of these approaches further use relatively older 
versions of drug-disease data which had limited coverage apart 
from being not up-to-date. To address this, we systematically 
curated annotations from various sources and constructed a 
multi-view heterogeneous network. Leveraging this relatively 
current drug and disease annotations, we built MGATRx, a novel 
approach to predict and identify drug repositioning candidates.  
MGATRx is a multi-view graph attention drug repositioning 

 
1 https://github.com/yellajaswanth/MGATRx 

framework which selectively aggregates relevant information 
from its neighbors to learn node representations. Our comparative 
analysis with four current state-of-art methods shows a 
substantial improvement in prediction performance. Besides, we 
also visualized the learned attention for select drugs and disease 
groups to enable understanding of the molecular basis for the 
drug-disease predictions. Several of our predicted drug-disease 
indication pairs overlap with drug indications that are either 
currently in clinical trials or are supported by literature 
references, demonstrating the overall translational utility of 
MGATRx. Apart from striving to update the disease-drug 
annotations regularly, as part of future plans, we seek to expand 
the MGATRx framework to identify drug combinations (e.g., 
synergistic or non-synergistic drug combinations) or drug-
induced adverse events, or polypharmacy-induced adverse events. 
Although the multi-view graph attention achieved superior 
results for drug repositioning, it would be interesting to consider 
other drugs, diseases, and gene annotations such as drug and/or 
disease-related transcriptomics data, target variant, protein 
interactions, pathways, and drug dosage-relevant information as 
additional views. Including these additional views, we 
hypothesize, may not only enhance the MGATRx repositioning 
performance but also enable our understanding or formulating 
hypotheses of drug-disease mechanistic relationships. Lastly, but 
most importantly, in support of reproducible research endeavor, 
we make all the MGATRx data and source code publicly 
available1. 

ACKNOWLEDGEMENTS 

This work was supported, in part, by NIH NCATS grant 
1UG3TR002612 to AJ. 

Table 3: Example predictions for drug-disease associations. Drugs with no original indication are investigational compounds 
Drug Original Indication Predicted Indication MGATRx Rank Evidence 

Reteplase Myocardial Infarction Ischemic Stroke 4 [45] 
Dexamethasone Dermatitis Idiopathic Pulmonary Fibrosis 7 [46]  

Pramiracetam Senile Dementia Alzheimer Disease 9 [47] 

Vardenafil Impotence Pulmonary Arterial Hypertension 15 [48] 

  
 

 
 

Certolizumab pegol Rheumatoid Arthritis Ulcerative Colitis 17 [37], [38] 
Dextroamphetamine Narcolepsy Obesity 21 [41] 

Golimumab Rheumatoid Arthritis Psoriasis 24 [49] 
   
Ipratropium Allergic Rhinitis Asthma 30 [50] 
Gestodene None Contraception 38 [51] 
Sotagliflozin None Type 2 Diabetes Mellitus 60 [39] 
Nilvadipine None High Blood Pressure 107 [52] 

Lacidipine None High Blood Pressure 133 [53] 
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