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Abstract Existing continuum multiphase tumor growth models typically do not include microvascula-
ture, or if present, this is modeled as non-deformable. Vasculature behavior and blood flow are usually
non-coupled with the underlying tumor phenomenology from the mechanical viewpoint; hence, phenom-
ena as vessel compression/occlusion modifying microcirculation and oxygen supply cannot be taken into
account.
The tumor tissue is here modeled as a reactive bi-compartment porous medium: the extracellular matrix
constitutes the solid scaffold; blood is in the vascular porosity whereas the extra-vascular porous com-
partment is saturated by two cell phases and interstitial fluid (mixture of water and nutrient species).
The pressure difference between blood and the extra-vascular overall pressure is sustained by vessel walls
and drives shrinkage or dilatation of the vascular porosity. Model closure is achieved thanks to a consis-
tent non-conventional definition of the Biot’s effective stress tensor.
Angiogenesis is modeled by introducing a vascularization state variable, and accounting for tumor an-
giogenic factors and endothelial cells. Closure relationships and mass exchange terms related to vessel
formation are detailed in a numerical example reproducing the principal features of angiogenesis. This
example is preceded by a first pedagogical numerical study on one-dimensional bio-consolidation. Re-
sults are exquisite to realize that the bi-compartment poromechanical model is fully coupled (the external
loads impact fluid flow in both porous compartments) and to envision further applications as for instance
modeling of drugs delivery and tissue ulceration.
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1 Introduction

Tumor growth is governed by a number of coupled phenomena, occurring at different spatial scales and
often having very different characteristic times. It is a multiscale problem that involves various phases
(cells, interstitial fluid, blood, extra-cellular matrix, etc.) and chemical species which interact biologically,
chemically and also physically. Almost fifteen years ago, biologists began to address the limits of a purely
molecular approach which produced a large amount of data that were not always clearly interpreted.
Since then, researchers have gradually understood that physical forces in cancer microenvironment also
have a first order effect on its proliferative-invasive behavior. Articles presenting this fresh perspective
have been published in high impact journals, with very explicit titles such as: “What does physics have
to do with cancer?” (1), “Oncology: Getting physical” (2), “Mechanics: the forces of cancer” (3), among
others. Understanding that physics has a huge intrinsic and extrinsic impact on the evolution of cancer
and its microenvironment, one strategy is to use physical sciences in the design and/or improvement
of cancer therapies. With this aim, engineers, physicists and mathematicians are today paying growing
attention to oncology, and mathematical models could play a pivotal role in deciphering the physics
involved and its close relationship with cancer biology.
Proliferation and invasive behavior of tumor cells are influenced by anatomical substructures of af-
flicted organs (e.g. existing microvasculature, tissue-specific extracellular matrix, etc.) and their physical
properties. The growing tumor compresses its surroundings, inducing a densification of the extracellu-
lar matrix (ECM) and stroma in the pathological zone. This reduces tissue permeability for drugs and
nutrients ((1), (4)), while mechanical confinement pressure (exerted by the surrounding microenviron-
ment) impacts proliferation rates and cell metabolism, and contributes to phenotype switch ((5), (3)).
The tumor and induced strain significantly modify the physiological functions of the surrounding region
because capillary vessels (ensuring blood microcirculation and oxygenation) are compressed as well as
the lymphatic system. From a physical perspective, the disease can be viewed as a deregulation of the
transport properties of the healthy tissue induced by coupled occurrence of several phenomena whose
precise cause effect relationships are difficult to unravel. In fact, modification of the microenvironment
induced by the tumor impacts the tumor itself since cells and their metabolism have to adapt to this
evolving microenvironment (vessels compression, lack of oxygenation, stress, interstitial fluid accumula-
tion, etc.). If we want to reproduce in silico such mechanisms to create a digital twin of cancer (useful
to interpret associated phenomenology) biophysical modeling of micro-vascularization and surrounding
co-opted vessels is required. This explains the very active research efforts aiming at modeling vascular
tumor growth and angiogenesis (6; 7; 8). Different classes of modeling approaches exist in literature (con-
tinuous, mechanics-based models, cell-based models, and hybrid models, (9)) providing complementary
descriptions of vascular network formation. Between these, macroscale multiphase models (sub-class of
continuous models) emerge today as very promising approaches (10). Macroscale multiphase approaches
enhance the consistency between the model and the real structure of the tumour microenvironment,
enabling development of experimentally validated adjustments in contrast to modelling frameworks that
treat the tumour as one continuous and homogeneous material.
Before going forward we shall start by clarifying the difference between a macroscale and a microscale
description. Let us consider a virtual point, P(x,y,z), within an tumor at the tissue level (hereafter also
indicated as macroscale, see figure 1.a); then, upon magnification it with a microscope until small cell
aggregates and single cells become visible, one discovers that the tissue architecture has several con-
stituents, namely ECM, cells, blood vessels, etc. When we consider a point in the microscopy image
a sole constituent is associated to this point, but on the other hand we have understood that behind
the macroscopic point, P(x,y,z), there is a Representative Elementary Volume (REV) of tissue where
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Mechanistic modeling of vascular tumor growth 3

several constituents are present in a certain proportion, hereafter denoted as volume fraction (see figure
1). This overlapping of constituents is the basic concept of all existing macroscale multiphase models
so also of the mathematical model presented in this paper. The great majority of existing multiphase
model for tumor growth are founded on Mixture Theory (MT). Despite its large use, MT is exhaustive
for modelling of particular in vitro configurations but not enough general to represent complexity and
hierarchical structure of in vivo tumor tissue. The more recent Thermodynamically Constrained Averag-
ing Theory (TCAT, (11)) is conversely able to physically and mathematically incarnate heterogeneity of
tumor microenvironment. TCAT have two main advantages with respect to MT: i) by formally averaging
the microscale equations up to the macroscale scale (instead of postulating them directly at the larger
scale, as done in MT), larger scale variables are expressed precisely in terms of microscale precursors; ii)
each phase may be constituted by several species. This second advantage allows us to make a rigorous
distinction between: intra-phase transfer of mass/momentum (between species within the same phase)
and inter-phase transfer of mass/momentum (from one phase to another one); advective and diffusive
transport of species.
TCAT provided us the theoretical background for the development of an original multiphase model for
tumor growth during the avascular stage (12). This original version has been improved firstly considering
a difference of pressure between tumor and healthy cells ((13), (14)), then removing the simplification
assumption of a rigid ECM scaffold in (15). Starting from the existing multiphase model consisting of
four phases (tumor cells, healthy cells, interstitial fluid and ECM), in this paper a major enhancement is
presented to account for angiogenesis and the subsequent vascular stage of tumor growth; blood within
micro-vasculature is modeled as an additional fluid phase. The vascular stage is preceded by a cascade of
mechanisms. Tumor cells highly consume oxygen (due to their abnormal division rate and metabolism) so
oxygen concentration within the cell aggregate decreases (especially in the internal areas which become
quiescent or necrotic). Consequently, hypoxic cells start to produce tumor angiogenic factors (TAF) to
stimulate formation of new blood capillaries and sprouting from existing vessels (angiogenesis) improving
microcirculation and oxygen supply.
As it will emerge in the following paragraphs there are two big issues to develop a relevant biophysical
model for angiogenesis and vascular growth.
The first one is the nonexistence in literature of some physiologically relevant (validated) constitutive re-
lationships regulating dynamics of angiogenesis. Such constitutive equations are reasonably defined here
(almost ex novo) for model closure. The proposed closure relationships have a general and qualitative
significance; to gain a certain predictive potential these equations must be further specialized depending
on the specific tumor of interest (cancer-specific model customization).
The second issue is coupling between ECM behavior and flow of four immiscible fluid phases (i.e. blood,
interstitial fluid, tumor and host cell populations). The attention in the paper is mostly focused on this
second issue because this is the most challenging from the modeling and computational viewpoint. A
reliable mechanical coupling between the solid scaffold deformation, cell movement, interstitial fluid and
blood flow is achieved thanks to an appropriate non-conventional definition of the Biot’s effective stress
tensor and the ensuing derivation of a mechanical constitutive model accounting for vessel deformability
and angiogenesis.

2 The Mathematical Model

Tumor tissue is modeled as a multiphase continuum so at the macroscopic level (tissue scale) at each
point several phases coexist (each one characterized by its own volume fraction). Microscale conserva-
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4 Giuseppe Sciumè

Fig. 1 The multiphase system. (a) Infiltrative pattern from histopathology of human glioma (readapted from (16)); (b)
representative elementary volume for the 5-phase system; (c) microscale configuration of phases.

tion equations of mass and momentum are up-scaled via averaging theorems to obtain a larger scale
(macroscale) set of equations. Within the averaging procedure all hypotheses/simplifications are explic-
itly introduced and macroscale variables are precisely defined. This ensures a clear connection between
scales (11). The mathematical model allows for simulation of tumor growth in a vascularized tissue:
the formulation presented in (15) for non-vascularized tumors is improved adding blood as a new fluid
phase flowing within another porous compartment (representing micro-vasculature). This evolution is
not trivial. A new definition of the effective stress tensor is needed to close the mathematical model and
to couple the behavior of the five considered phases.

2.1 Tumor as a reactive multiphase continuum

The multiphase model comprises five phases: i) the tumor cells, t ; ii) the healthy cells, h; iii) a solid
scaffold, s; iv) the interstitial fluid, l ; and v) blood, b. All other tissue constituents, as for instance
chemical species (e.g. oxygen) and specific cell species (e.g. endothelial cells), are assumed to belong to
one (or more) of the aforementioned phases.
The ECM, interstitial fluid (IF) and blood are present throughout the entire continuum domain, whereas
tumor cells (TC) and healthy cells (HC) may exist or not, or exist only in certain subdomains. The solid
scaffold consists essentially of extracellular matrix (ECM). All other phases are modeled as fluids. The TC
phase consists of two dominant species: living tumor cells (LTC) and necrotic tumor cells (NTC). Necrosis
is induced by low nutrient concentrations or excessive mechanical stress. The HC phase includes all non-
pathologic cells of the multiphase system as for instance endothelial cells (EC) whose mass fraction is
explicitly considerered in the model. The IF is a mixture of water and biomolecules, as nutrients, oxygen
and waste products. Two species dissolved within the IF are explicitly considered: oxygen, O, which
regulates tumor metabolism, proliferation and occurrence of necrosis; and a tumor angiogenic factor
(TAF), A, produced by tumor cells and acting as a potent chemokine for endothelial cells. If we use
the symbol, εα, to indicate the volume fraction of the generic phase α, obviously the sum of the volume
fractions for all phases gives the unit

εs + εt + εh + εl + εb = 1, (1)
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The system is modeled as a porous medium with two porous compartments. One part of pores, whose
volume fraction is equal to εt + εh + εl, is dominant and is saturated by cell populations and IF (phases
t, h and l). The remains porous space is the capillary vessel porosity, εb, filled by blood. In the following
the porosity accessible to cells and IF is named “extra-vascular porosity” and indicated with ε

extravascular porosity: ε = εt + εh + εl (2)

The porosity of the vascular compartment is named “vascular porosity”. This is saturated by blood so
it corresponds to volume fraction of blood

vascular porosity: εb (3)

Blood walls have a solid nature but minor mass fraction and negligible “structural” functions at tissue
level with respect to ECM scaffold.
Immiscibility between phases t, h, and l, is guaranteed by fluid-fluid interfacial tensions which can sustain
differences in pressures between these three phases. Pressure differences between phases of the dominant
extra-vascular porosity (t, h and l) and the blood in the vascular porosity is sustained by capillary vessels
walls whose deformability is mechanistically considered and modeled.

2.2 Phases’ motion and material time derivatives

The description of phases’ motion is material for the solid phase and spatial for the fluid phases whose
motion is refereed to that of the solid phase. In other words, the deforming solid scaffold is the refer-
ence space where fluid phases’ motion is described in an Eulerian way. This approach is customary in
geomechanics (17). Independently on the employed description, conservation equations must refer to the
current position of the multiphase continuum and hence must primarily be formulated using a spatial
description as presented in the next paragraph. The equations are then expressed in a material form
introducing material time derivatives with respect of the deforming solid scaffold. The material time
derivative of any differentiable function, fπ, given in its spatial description and referring to a moving
particle of the π phase, is

Dπfπ

Dt
=
∂fπ

∂t
+∇fπ · vπ (4)

More in general, we can also express a material derivative with respect of the movement of another
phase α (the time derivative is taken moving with the phase α)

Dαfπ

Dt
=
∂fπ

∂t
+∇fπ · vα (5)

Subtracting the previous two eqs yields the following relation

Dαfπ

Dt
=
Dπfπ

Dt
+∇fπ · vαπ (6)

where

vαπ = vα − vπ (7)

is commonly called relative velocity, and is the velocity of the phase α with respect to the phase π.
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6 Giuseppe Sciumè

2.3 General form of governing equations from TCAT

In this section conservation equations for mass and momentum (in their general spatial form) are reported
and explained (11). These equations are subsequently specialized for the analyzed multiphase system in
the next subsection.
The spatial form of the mass balance equation for an arbitrary phase α reads

∂ (εαρα)

∂t︸ ︷︷ ︸
Accumulation rate

+ ∇ ·
(
εαραvα

)︸ ︷︷ ︸
Outward of phase flow

−
∑
κ∈=cα

κ→α
M︸ ︷︷ ︸

Interphase mass transport

= 0
(8)

where ρα is the density, vα is the local velocity vector,
κ→α
M are the mass exchange terms accounting for

transport of mass at the κα interface from phase κ to phase α, and
∑

κ∈=cα
is the summation over all the

phases sharing interfaces with the phase α.
An arbitrary species i dispersed within the phase α has to satisfy mass conservation too. The following
spatial equation is derived following TCAT

∂
(
εαραωiα

)
∂t︸ ︷︷ ︸

Accumulation rate

+∇ ·
(
εαραωiαvα

)
︸ ︷︷ ︸
Outward of species
advective transport

+∇ ·
(
εαραωiαuiα

)
︸ ︷︷ ︸

Outward of species
diffusive transport

+

− εαriα︸ ︷︷ ︸
Intraphase reactive
exchange of mass

+
∑
κ∈=cα

iα→iκ
M︸ ︷︷ ︸

Interphase mass transport
of the species

= 0

(9)

where ωiα identifies the mass fraction of the species i dispersed with the phase α, εαriα is a reaction
term that allows to take into account the reactions between the species i and the other chemical species

dispersed in the phase α, and uiα is the diffusive velocity of the species i.
iα→iκ
M are mass exchange terms

accounting for mass transport of species i at the κα interface from phase α to phase κ. Applying the
product rule and introducing eqn (8), the previous equation can be also written in this alternative form
(commonly called distribution form)

εαρα
∂ωiα

∂t
+∇ ·

(
εαραωiαuiα

)
+ εαραvα · ∇ωiα+

− εαriα +
∑
κ∈=cα

iα→iκ
M + ωiα

∑
κ∈=cα

κ→α
M = 0

(10)

Concerning momentum conservation, given the characteristic time scale of the modeled problem and the
assumption of quasi-static processes, inertial forces can be neglected as well as forces due to mass exchange
due to the small difference in density between cells and aqueous solutions. This allows simplifying the
form of the linear momentum balance equation provided by TCAT for a general phase α which, neglecting
also gravitational body forces, becomes (12)

∇ ·
(
εαtα

)
+
∑
κ∈=cα

κ→α
T = 0 (11)
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where tα is the stress tensor of the phase α and
κ→α
T is the interaction force between phase α and the

adjacent phases. Eqn (11) which applies for a generic phase α (solid or fluid) can be expressed in an
alternative form for fluid phases. Indeed, for relatively slow flow, the stress tensor for a fluid phase, f ,
can be properly approximated as

tf = −pf1 (12)

where pf is the averaged fluid pressure and 1 the unit tensor. Then, from TCAT – see appendix A, of
(12) – it can be shown that the momentum balance equation for fluid phases can also be expressed as

εf∇pf + Rf · (vf − vs) = 0 (13)

where Rf , is a symmetric second order resistance tensor accounting for interaction between the fluid
phase, f , and the solid phase, s.

2.4 Governing equations of the multiphase tumor tissue model

The model is governed by conservation equations of mass and momentum of considered phases and
species. Such equations are detailed in the following dedicated paragraphs.

2.4.1 Mass conservation equations (11 scalar independent eqs)

From the definition of extra-vascular porosity, ε, (eqn (2)), and considering the constraint eqn (1) it
follows that

ε = 1− εs − εb (14)

Considering now the extra-vascular fluid phases (t, h and l) and defining their own saturation degree
as Sβ = εβ

/
ε (with β = t, h, l index associated to extra-vascular fluids), another constraint equation

(alternative to eqn (1)) can be rewritten in term of saturation degrees

Sl + St + Sh = 1 (15)

It is emphasized that such saturation degrees refer to the extra-vascular porosity, ε, only. Using eqn
(5) to express derivatives with respect of the moving solid phase and introducing extra-vascular porosity
and saturation degrees of t, h, and l, mass balance equations of s, t, h, l and b phases read respectively

Ds

Dt
(ρsεs) + ρsεs∇ · vs = 0 (16)

Ds

Dt

(
ρtεSt

)
+∇ ·

(
ρtεStvts

)
+ ρtεSt∇ · vs =

l→t
M (17)

Ds

Dt

(
ρhεSh

)
+∇ ·

(
ρhεShvhs

)
+ ρhεSh∇ · vs =

l→h
M (18)

Ds

Dt

(
ρlεSl

)
+∇ ·

(
ρlεSlvls

)
+ ρlεSl∇ · vs = −

l→t
M −

l→h
M +

b→l
M (19)

Ds

Dt

(
ρbεb

)
+∇ ·

(
ρbεbvbs

)
+ ρbεb∇ · vs = −

b→l
M (20)
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where
l→t
M is the mass exchange from IF to the tumor due to cells growth and metabolism,

l→h
M is the

mass exchange from IF to the HC population, and
b→l
M allows to account for exchange of mass between

blood and IF.
The tumor cell phase is modeled as a mixture of living and necrotic cells containing also water, W ,
oxygen, O, TAF, A, and other chemical species in minor proportion (18). Evolution of mass fraction of

necrotic tumor cell species, ωNt, is here modeled by considering its mass conservation equation. From
eqn (9), assuming that there is no diffusion of necrotic cells and introducing the material derivative with
respect of the solid phase, mass conservation equation of necrotic cell species becomes

εtρt
DsωNt

Dt
+ εtρtvts · ∇ωNt = εtrNt − ωNt

l→t
M (21)

where εtrNt is the rate of necrosis of tumor cells.
HC phase consists of all non-pathological cells of tumor microenvironment and, similarly to the tumor cell
phase, also includes water, W , oxygen, O, TAF, A, and other chemical species in minor proportion. Hence,
EC species (endothelial cells are elementary constituents to form the microvascular system) belongs to
HC, phase h, and move within it due to advection-diffusion. The EC conservation equation reads

ρhεh
DsωEh

Dt
+∇ ·

(
ρhεhωEhuEh

)
+ εhρhvhs · ∇ωEh = εhrEh+

− ωEh
l→h
M

(22)

where εhrEh is an intra-phase exchange of mass accounting for EC production due to reaction of water
with other chemical species (contained in the phase h). Here it is assumed that mass provided by this

reaction corresponds to the overall mass exchanged with IF,
l→h
M , which is instantaneously used to produce

EC: εhrEh =
l→h
M . This assumption allows us to rewrite the previous equation as

ρhεh
DsωEh

Dt
+∇ ·

(
ρhεhωEhuEh

)
+ εhρhvhs · ∇ωEh =

(
1− ωEh

) l→h
M (23)

IF is a mixture of water (solvent) and several diluted chemical species. Oxygen, O, and TAF, A, are
between these dilute IF species: evolution of their relative mass fraction is governed by two additional
mass conservation equations

ρlεl
DsωOl

Dt
+∇ ·

(
ρlεlωOluOl

)
+ εlρlvls · ∇ωOl =

Ob→Ol
M −

Ol→Ot
M +

ωOl
(
l→t
M +

l→h
M −

b→l
M

) (24)

ρlεl
DsωAl

Dt
+∇ ·

(
ρlεlωAluAl

)
+ εlρlvls · ∇ωAl =

At→Al
M +

ωAl
(
l→t
M +

l→h
M −

b→l
M

) (25)

where
Ob→Ol
M is oxygen provided by blood to IF,

Ol→Ot
M is oxygen consumed by tumor cells do to their

metabolism and proliferation rate,
At→Al
M are TAF released by tumor cells.
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2.4.2 Linear momentum conservation equations (15 scalar independent eqs)

Summing eqn (11) over all phases gives the momentum equation of the whole multiphase system as

∇ · tT = 0 (26)

where tT is the total Cauchy stress tensor acting on the multiphase system. For convenience eqn (26) is

used instead of the linear momentum balance equation of the solid phase, so the variable tT is introduced
at the place of ts (if needed this last can be computed from other primary variables of the model).
The alternative equivalent form (i.e. eqn (13)) is considered for fluid phases. In porous media mechanics
typically eqn (13) is expressed as

−Kf · ∇pf = εf
(
vf − vs

)
(f = t, h, l, b) (27)

where Kf is called hydraulic conductivity. The hydraulic conductivity depends on the properties of
both the flowing fluid and the solid porous material via the fluid dynamic viscosity and the intrinsic
permeability of the solid matrix respectively. For blood, momentum eqn (27) is valid under the hypotheses
of slow laminar flow with negligible inertial effects. A more general relationship including inertial effect

and impact of the deformation rate, db, may be preferable under certain situations.

2.4.3 Model closure strategy: summary of model variables versus conservation equations

In the previous two paragraphs 26 scalar independent equations have been presented for a total number
of 49 scalar independent variables; this means that 23 scalar constitutive relationships are needed to
close the mathematical model. To reduce the complexity of the mathematical model the following sim-
plification hypothesis is introduced:

Hypothesis 1 - Compressibility of phases is assumed having a minor impact on system evolution.
Hence, phases’ densities are assumed constant and phases Bulk’s moduli very large with respect to the
average Bulk’ modulus, K, of the porous scaffold: K

Kα
∼= 0 with α = s, t, h, l, b.

Assuming constant phases’ density allows reducing the number of independent variables to 44 (see
table 1), so 18 constitutive relationships are needed namely: a state equation for volume fraction of the
blood phase, (1 scalar eqn); the solid scaffold mechanical constitutive model (6 scalar eqs); pressures-
saturations relationships for pressure difference between fluids t, h, and l in the extra-vascular porosity
(2 scalar eqs, (13)); Fick type laws for diffusive velocity of oxygen, TAF and EC species (9 scalar eqs).

2.5 Angiogenesis, effective stress tensor and constitutive relationships

In this paragraph the angiogenesis model is introduced together with definition of effective stress tensor
and other constitutive relationships needed for model closure.
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Table 1 Summary of the model independent variables.

Phases Ind. Species Modeled species Associates variables Scalar variables

ECM s - - εs, ε, tT,vs 11

Tumor cells t L, N , W , O, A Nt St, pt,vt, ωNt 6

Host cells h E, W , O, A Eh Sh, ph,vh, ωEh,uEh 9

Int. fluid l W , O, A Oh,Ah Sl, pl,vl, ωOl, ωTAFl,uOl,uTAFl 13

Blood b W , O - εb, pb,vb 5
Tot. number of scalar unknowns 44

2.5.1 Angiogenesis rate function

Angiogenesis is modeled thanks to the introduction of an internal variable, Γ , describing advancement
of vessel formation. Γ = 0 corresponds to a normal microvasculature while Γ = 1 corresponds to a fully
developed abnormal vasculature (when angiogenesis is ended). Multiple could be the assumptions about
the functional dependencies of the internal variable, Γ . Very frequently in literature it is assumed that
the density of capillary vessels is proportional to the density of endothelial cells (see for instance (19; 7)).
Here a similar assumption is adopted: angiogenesis is initially proportional to the increase of EC mass
fraction; however, with advancement of vessel formation, this proportionality progressively decreases
thanks to a factor (1− Γ ). The following rate relationship is proposed

DsΓ

Dt
= bΓ (1− Γ ) εh

DsωEh

Dt
(28)

where bΓ is constant parameter governing the rate of vessel generation.

2.5.2 Effective stress tensor: a non-conventional form

The solid phase stress tensor, ts, can be decomposed into component parts (11)

ts = τs − ps1 (29)

where τs is an effective solid phase stress tensor and ps is the solid phase pressure. From TCAT the total

stress tensor, tT, is the summation of all phase tensors each one weighed via its own volume fraction

tT =
∑

α=s,t,h,l,b

εαtα (30)

Introducing eqs (29) and (12) in eqn (30) gives

tT = εs
(
τs − ps1

)
−

∑
f=t,h,l,b

εfpf1 (31)

The following two hypotheses are introduced:

Hypothesis 2 - Blood vessels are mostly surrounded by extra-vascular fluids, TC, HC and IF, so
they have weak direct mechanical interaction with the solid ECM scaffold.
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Mechanistic modeling of vascular tumor growth 11

Hypothesis 3 - Consistently with hypothesis 2 the solid pressure, ps, is assumed being related to
pressures of extra-vascular fluids only (phases t, h and l):

ps =
∑

β=t,h,l

Sβpβ = Stpt + Shph + Slpl (32)

Introducing eqn (32) in eqn (31), and using eqn (14) give the total stress tensor as

tT = εsτs −
(
1− εb

)
ps1− εbpb1 (33)

so, rearranging the terms, the effective stress tensor, tE = εsτs, under introduced hypotheses, reads

tE = tT + ps1− εb
(
ps − pb

)
1 (34)

2.5.3 State equation for volume fraction of blood

Consistently with hypothesis 2, it can be reasonably assumed that volume fraction of blood vessels,
εb, depends on the difference between the blood pressure inside the vessels pb and an average external
pressure exerted by extra-vascular fluid phases. Such extra-vascular pressure is assumed equal to the
solid pressure, ps (eqn (32)). The following relationship is proposed for εb

εb =
(
εb0 + αΓ

)(
1− ps − pb

Kv

)
(35)

where εb0 is the volume fraction when ps = pb and without angiogenesis (i.e. when Γ = 0), Kv is the
vessel compressibility and α is a constant parameters representing the additional vasculature for a fully
developed angiogenesis (i.e. when Γ = 1).

2.5.4 Mechanical constitutive model

The overall Bulk’s modulus of the solid scaffold is negligible with respect of that of the solid phase

(hypothesis 1) so the Biot’s coefficient equals 1 and the effective stress tensor, tE of eqn (34), is the
stress responsible for all deformation of the solid ECM scaffold. Assuming a linear elastic behavior we
can write a first form of the mechanical constitutive model as

J ṫE = C : d (36)

where J ṫE is the Jaumann objective time derivative of the effective stress tensor, C is the elasticity
tensor and d is the strain rate. From eqn (34) Jaumann stress rate of effective stress must be also given
by

J ṫE = J ṫT +
(
1− εb

)
ṗs1 + εbṗb1−

(
ps − pb

)
ε̇b1 (37)
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12 Giuseppe Sciumè

Fig. 2 Model hierarchy: vascular growth model with angiogenesis (VGA); vascular growth model (VG); avascular growth
model (AG).

The mechanical constitutive relationship can therefore be expressed also in term of the Jaumann rate
of the total stress tensor. Simple operations give

J ṫT = C : (d− dsw) (38)

with dsw isotropic swelling strain rate given by

dsw =

(
1− εb

)
3K

ṗs1 +
εb

3K
ṗb1−

(
ps − pb

)
3K

ε̇b1 (39)

K is the Bulk’s modulus of the solid porous scaffold (K = E
3(1−2ν) , E and ν being Young’s modulus and

Poisson’s ratio respectively). If ε̇b is expressed from variation with time of variables ps, pb and Γ , some
calculations allow rewriting the isotropic swelling strain rate dsw as

dsw =
1− β
3K

ṗs1 +
1

3K

(
βṗb + ṗang

)
1 (40)

with β compressibility function and ṗang angiogenesis pressure rate equal respectively to

β =
(
εb0 + αΓ

)(
1− 2

ps − pb

Kv

)
(41)

ṗang = −α
(

1− ps − pb

Kv

)(
ps − pb

)
Γ̇ (42)

A hierarchy of models can be defined from eqs (38) and (40) (see Figure 2). The most general constitutive
equation is for vascular growth with angiogenesis (VGA)

J ṫT = C :

[
d− 1− β

3K
ṗs1− 1

3K

(
βṗb + ṗang

)
1

]
(43)

If angiogenesis is not considered, ṗang = 0, so the previous equation simplifies for vascular growth (VG)
as

J ṫT = C :

(
d− 1− β

3K
ṗs1− β

3K
ṗb1

)
(44)
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Mechanistic modeling of vascular tumor growth 13

with

β = εb0

(
1− 2

ps − pb

Kv

)
(45)

Finally if neither angiogenesis and vasculature are considered, ṗang = 0 and β = 0, so the equation
reduces to that used in (15) for the avascular growth model (AG)

J ṫT = C :

(
d− ṗs

3K
1

)
(46)

2.5.5 The two pressures-saturations relationships

Being the extravascular porosity saturated by three immiscible fluid phases, and having each phase its
own pressure three capillary pressures pij (pressure difference between fluidi and fluidj) can be defined

phl = ph − pl
pth = pt − ph
ptl = pt − pl

(47)

As in (13) and in (14) we assume here that IF is the wetting fluid, HC is the intermediate-wetting fluid
and TC the non-wetting one. Only two between the previously defined capillary pressures are independent
since

ptl = phl + pth (48)

The two capillary pressure-saturation relationships read (13)

Sl = 1−
[

2

π
arctan

(
phl

a

)]
(49)

St =
2

π
arctan

(
σhl
σth

pth

a

)
(50)

where a is a constant parameters depending on ECM microstructure, σhl and σth are HC-IF and TC-HC
interfacial tension respectively. Using definition of capillary pressures, the solid pressure, eqn (32), can
also be expressed as

ps = Stpth +
(
1− Sl

)
phl + pl (51)
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14 Giuseppe Sciumè

2.5.6 Diffusive velocities of oxygen, TAF and EC

To approximate the diffusive flux in eqs (24) and (25), Fick’s law is used

ρlωOluOl = −DOl
effρ

l∇ωOl (52)

ρlωAluAl = −DAl
effρ

l∇ωAl (53)

DOl
eff and DAl

eff are the effective diffusion coefficient of oxygen and TAF respectively. The effective
diffusion coefficient is a function of IF volume fraction

Dil
eff = Dil

0

(
εl
)δi

with i = O,A (54)

where Dil
0 is the diffusion coefficient of species i in the bulk interstitial fluid and δi is a constant

coefficient. Actually, effective diffusion coefficients have a nonlinear dependence on the volume fraction
of IF, because diffusivity depends on the connectivity grade of the extra-cellular spaces (interstitium).
δi is set equal to 2.
To account for diffusion of endothelial cell species a more complex closure relationship is adopted. This
contains a fickian diffusion term and a coupling term to account for chemotaxis induced by TAF gradient.
Coupling with TAF gradient is achieved thanks to a constant coefficient C identified numerically

ωEhuEh = −DEh
eff · ∇ωEh +

CωEh(
1 + CωAl

)DEh
eff · ∇ωAl (55)

Details about derivation of eqn (55) are reported in the Appendix A.

3 Numerical applications

Two numerical applications are presented in the following paragraphs.
The first one is a one-dimensional consolidation case of a bi-compartment porous medium in which
each compartment is saturated by a sole fluid: blood for the vascular porosity and a relatively viscous
interstitial fluid (with dynamic viscosity µl = 1 Pa.s) for the extravascular porosity. This academic case,
thanks to its low degree of complexity (the presented mathematical model reduces importantly, because
of the non-reactive nature of the system and the absence of cell populations), allows a clear interpretation
of system behavior.
In the second example the full model is applied to simulate an initial avascular tumor growth within two
vascular beds followed by stimulation of angiogenesis and increase of the degree of vascularization of the
tissue.
For both numerical examples once the application presented (geometry, initial and boundary condition),
the final form of the governing equations is derived, then numerical results are presented.
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Mechanistic modeling of vascular tumor growth 15

Fig. 3 Geometry and boundary conditions of the modelled case (left); sinusoidal rump modeling the load: time “0”
correspond to the time when the full load is applied (right).

Fig. 4 Extra-vascular fluid pressure, pl along the one-dimensional coordinate for the three modeled cases.

3.1 One-dimensional bio-consolidation: one fluid + blood

The first analyzed case is the simplest configuration of bi-compartment porous medium: one fluid in the
extra-vascular porosity and blood within capillary vessels. This example is essential to understand how
the model works and how flow of blood and the extravascular fluid are coupled. A column of 0.1 mm of
height is compressed on the top with a load going from 0 Pa to p0 = 200 Pa in 5 seconds, then sustained
at 200 Pa during 120 seconds. The applied load increases following a sinusoidal ramp (see figure 3 on
the right). This facilitates convergence of the time integration scheme. Time labelled as zero correspond
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16 Giuseppe Sciumè

Fig. 5 Evolution of the solution with time at fixed points: (a) vertical displacement at the top of the column; (b) extra-
vascular fluid pressure and blood pressure at the bottom of the column; (c) and (d) extravascular and vascular porosities
at the bottom of the column.

to the time when the full load, p0, is applied (so the numerical simulation start 5 seconds before). This
choice has been done to compare the obtained numerical solution with the analytical one of the simple
porosity case (i.e. the Terzaghi problem) available for a load applied instantaneously. Such analytical
solution gives the interstitial fluid pressure as series expansion function of the 1D-coordinate, z and time,
t.

p

p0
=

4

π

∞∑
k=1

(−1)
k−1

2k − 1
cos
[
(2k − 1)

π

2

z

h

]
exp

[
−(2k − 1)

2π
2

4

cvt

h2

]
(56)

Where cv is the consolidation coefficient

cv =
kε

µl
(
S + α2

M

) (57)

In eqn (57) kε is intrinsic permeability of the extra-vascular porosity, µl is dynamic viscosity of the

extravascular fluid, M is the longitudinal modulus (or also called constrained modulus), M = 3K(1−ν)
1+ν ,

α is the Biot’s coefficient, and S is the inverse of Biot’s modulus

S =
1

B
=
α− ε0

Ks
+
ε0

Kl
(58)
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As assumed (hypothesis 1) phases’ compressibility is very larger with respect to the overall porous
medium compressibility. This allows assuming Biot’s coefficient, α, equal to 1 and S = 0. Consequently
the consolidation coefficient simplify to

cv =
kεM

µl
(59)

Concerning boundary conditions at the top edge (red line in the left part of figure 3) Dirichlet’s conditions
are imposed for pressures of fluid phase (pl = pb = 0 Pa). On the rest of the boundary (black lines in
the left part of figure 3) no fluid flow is permitted (i.e. sealed condition), horizontal displacement is
restrained for the vertical bounds and vertical displacement is restrained for the bottom bound.

3.1.1 Derivation of the final form of governing equations

The primary variables of the model are pl, pb and us. Interstitial fluid and blood are considered as a pure
phases. Furthermore no mass exchange terms are present. The presented system of governing equations
reduce substantially as follows (note that εl = ε and therefore Sl = 1)

Ds

Dt
(ρsεs) + ρsεs∇ · vs = 0 (60)

Ds

Dt

(
ρlε
)

+∇ ·
(
ρlεvls

)
+ ρlε∇ · vs = 0 (61)

Ds

Dt

(
ρbεb

)
+∇ ·

(
ρbεbvbs

)
+ ρbεb∇ · vs = 0 (62)

∇ · tT = 0 (63)

−k
ε

µl
· ∇pl = εvls (64)

−k
b

µb
· ∇pb = εbvbs (65)

where kε

µl
and kb

µb
are hydraulic conductivity of interstitial fluid and blood phases respectively.

Dividing eqn (60) for ρs and introducing eqn (14), some simple operations give

Dsε

Dt
= −Dsεb

Dt
+ (1− ε)∇ · vs − εb∇ · vs (66)

The mass balance equation of interstitial fluid is now considered. Dividing it for ρl, and exploiting the
product rule, eqn (61) can be rewritten as

Dsε

Dt
+∇ ·

(
εvls

)
+ ε∇ · vs = 0 (67)

Introducing eqn (66) and (64) in eqn (67) gives

−Dsεb

Dt
−∇ ·

(
kε

µl
∇pl

)
+
(
1− εb

)
∇ · vs = 0 (68)
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18 Giuseppe Sciumè

Table 2 Summary of input parameters for the three modelled cases.

Parameter class Parameter Symbol Value Unit
ECM and Young’s modulus E 5000 Pa

extravascular Poisson’s ratio ν 0.2 -
porosity Porosity ε 0.5 -

Intr. permeability kε 1.E-14 m2

Dynamic viscosity IF µl 1.0 Pa.s

Vascular Initial vessel fraction εb0 0.02 -
porosity Vascular permeability kb 2.E-16 m2

Case1 Vessels Bulk’s modulus Kv 1000 Pa
Blood dynamic viscosity µb 0.004 Pa.s

Vascular Initial vessel fraction εb0 0.04 -
porosity Vascular permeability kb 4.E-16 m2

Case2 Vessels Bulk’s modulus Kv 1000 Pa
Blood dynamic viscosity µb 0.004 Pa.s

Performing analogous operations eqn (62) can be rewritten as

Dsεb

Dt
−∇ ·

(
kb

µb
· ∇pb

)
+ εb∇ · vs = 0 (69)

Thinking forward on numerical solution, it is useful to express eqs (68) and (69) in term of temporal
variation of primary variables pb and pl. From state equation (35), disregarding angiogenesis term, and
being in this case ps = pl the time variation of volume fraction of blood vessels can be computed as

Dsεb

Dt
=

εb0
Kv

(
Dspb

Dt
− Dspl

Dt

)
(70)

Introducing eqn (70) in eqs (68) and (69) and expressing eqn (63) in rate form (customary in geome-
chanics for incremental numerical resolution, see (17)) the governing final system of coupled equations
reads 

− εb0
Kv

(
D
spb

Dt
− D

spl

Dt

)
−∇ ·

(
kε

µl
∇pl

)
+
(
1− εb

)
∇ · vs = 0

εb0
Kv

(
D
spb

Dt
− D

spl

Dt

)
−∇ ·

(
kb

µb
· ∇pb

)
+ εb∇ · vs = 0

∇ ·
(
J ṫT

)
= 0

(71)

All parameters used for the numerical example are reported in table 2. The weak form of governing
equations is obtained by means of the standard Galerkin procedure and is then discretized in space by
means of the finite element method. Integration in the time domain is carried out with the generalized
mid-point rule where a Crank-Nicolson scheme is used. The fix point method is used to account for the
nonlinear nature of the system of equations. A mixed finite element space is adopted where quadratic
elements (triangular with six nodes and quadrangular with eight nodes) are used for us, while linear
elements (triangular with three nodes and quadrangular with four nodes) are used for pl and pb. The
described model has been implemented in the code CAST3M (http://www-cast3m.cea.fr) of the French
Atomic Energy Commission.
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Fig. 6 Schematic representation of load transfer. (a) Not loaded configuration. (b) Loaded configuration: load applied to
the solid is transmitted to the blood phase thanks to the intercession of the interstitial fluid phase.

3.1.2 Results

Figure 4 shows the extravascular pressure profile along the one dimensional coordinate at three different
times: 20 seconds, 50 seconds and 80 seconds after the application of the full load. Three cases are
studied:

– “0%” is the case with no vascular porosity, this corresponds with a porous medium saturated by the
sole interstitial fluid; for this case the analytical solution calculated with eqn (56) is provided;

– “2%” is the case with a volume fraction of blood initially equal to 0.02;
– “4%” is the case with a volume fraction of blood initially equal to 0.04.

A difference can be appreciated between the numerical and analytical solution for the 0% case. This
is due to difference in the application of the load that in the numerical case is sinusoidal and starts
5 second before the instantaneous load assumed for the analytical solution (see figure 3, right). As
can be appreciated by the graphs the higher the volume of vessel is the lower will be the amplitude
of the extravascular fluid pressure. Actually, vessels deformation contribute to dissipate more rapidly
the increase of extravascular pressure induced by the application of the load. Figure 5.a shows the
displacement of the top point (z = 100 µm) whose initial amplitude increases with the increase of the
vascular porosity. Despite the initial differences the vertical displacement after a certain time tends
asymptotically to the same value for the three analyzed cases. Figure 5.b shows evolution of blood and
extravascular fluid pressures versus time at the bottom point (z = 0 µm). This graph another time shows
the effect that vasculature has on reducing the extravascular fluid pressure. From figure 5.b one can also
observe that the difference on initial blood volume fraction does not affect importantly the peak value of
blood pressure. It is interesting to note that the blood pressure becomes negative 5 second after the full
application of the load. In the first phase (from -5 to 5 seconds) blood is expulsed because part of the
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Fig. 7 Geometrical configuration and boundary conditions for the second example.

deformation is absorbed by the vasculature which reduces its volume; then the extravascular pressure
decreases slowly so the pressure on vessel walls also decreases and vascular porosity regains gradually its
initial volume fraction (blood comes back inside the vasculature). This behavior can be also appreciated
in figures 5.c and 5.d where evolution of extravascular and vascular porosity at the bottom point (z = 0
µm) are depicted. A counterpart of the volumetric deformation is initially taken by vessels, then, with
the decrease of interstitial fluid pressure, the volume fraction of vessels regains progressively its initial
value whereas extravascular porosity decreases with time due to consolidation. In figure 6 it is possible
to understand schematically how the load is transferred from the solid scaffold to the vascular system
by mediation of the extravascular fluid.

3.2 Angiogenesis and vascular tumor growth

In this second example tumor growth during the avascular stage, angiogenesis and the subsequent vascular
stages are analyzed. A cylindrical domain of 2 mm and 0.8 mm height is modeled (see figure 7). The
tumor spheroid has an initial radius of 30 µm. It is placed at 350 µm from the bottom of the domain.
Two arterioles beds are assumed at the bottom and top basis of the cylinder respectively. Blood pressure
in the in the bottom arterioles is 10 Pa higher than that in the top ones so a blood flow is established
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Table 3 Summary of initial conditions in the three zones of the domain.

Zone pl phl pth Sl St pb εb ωOl ωAl ωEl

[Pa] [Pa] [Pa] [-] [-] [Pa] [-] [-] [-] [-]
Initial tumor zone 0.0 1800 20 0.2 0.13 0.0 0.001 4.2 · 10−6 0.0 0.0

Healthy zone 0.0 1800 0.0 0.2 0.0 0.0 0.001 4.2 · 10−6 0.0 0.0
Highly vascularized zone 0.0 1800 0.0 0.2 0.0 0.0 0.06 4.2 · 10−6 0.0 0.0

in the vertical direction from the bottom to the top basis of the cylinder. Near to arterioles a zone of 20
µm of thickness is assumed being high vascularized (εb = 0.06).

3.2.1 FE mesh, initial and boundary conditions

As for the first example a mixed finite element space is adopted with quadratic elements (triangular
with six nodes and quadrangular with eight nodes) used for us, and linear elements (triangular with
three nodes and quadrangular with four nodes) used for scalar primary variables nominally pth, phl, pl,

pb, ωOl, ωAl and ωEh. Mass fraction of necrotic tumor cells, ωNt, the angiogenesis parameter, Γ , and
porosity, ε, can be treated as internal variables and updated according to variation of primary variables.
The computational model exploits cylindrical symmetry.
The system comprises five phases: i) the tumor cells, t; ii) the host cells (healthy cells), h; iii) a solid
ECM, s; iv) the interstitial fluid, l; and v) blood, b.
In the whole discretized domain the extra-vascular porosity is set equal to 0.8, the initial interstitial
fluid pressure (IFP), pl, and blood (over)-pressure, pb, are set equal to 0 Pa, while the HC-IF pressure
difference, phl, is set equal to 1800 Pa (this corresponds to a saturation degree of IF, equal to 0.2). Mass
fraction of oxygen is initially set equal to 4.2 · 10−6 (corresponding to dissolved oxygen in the plasma of
a healthy individual) while mass fractions of TAF and endothelial cell are null. Volume fraction of blood
vessel is set equal 0.001 in the whole computational domain with exception of high vascularized areas
(20 µm of thickness in proximity of the top and bottom vascular beds) where it is set equal to 0.06. In
the tumor zone (purple region in figure 7) all five phases coexist while in the remaining regions of the
domain no tumor cells are present. in this zone the initial saturation degree of the tumor cells, St, is set
equal to 0.13, corresponding to pth ∼= 20 Pa. The initial conditions are summarized in table 3.

At the right boundary (B1), Dirichlet essential conditions are assumed for the interstitial fluid pres-
sure, radial displacement, mass fraction of endothelial cells and TAF. For remaining primary variables
natural type conditions are assumed (no fluxes of tumor and healthy cells and no diffusion oxygen).
At the top and bottom bounds, boundary conditions are almost identical with exception of the value
imposed for blood pressure. Dirichlet essential conditions are assumed for the interstitial fluid pressure,
vertical displacement, oxygen mass fraction and blood pressure (assumed at the bottom bound, B3, 10
Pa higher than that of the top bound, B2); a Robin type condition is set for TAF diffusive flow assumed
being proportional to boundary concentration of TAF (a coefficient hTAF = 3 ·10−8 kg

m2s has been identi-
fied numerically to obtain a realistic behavior). This condition allows us to model TAF decay due to the
presence of the two vascular beds. For remaining primary variables natural type conditions are assumed
(no fluxes of tumor and healthy cells and no diffusion of endothelial cells).
The boundary conditions at the z axis are assumed respecting cylindrical symmetry. Described boundary
conditions are depicted in figure 7.
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3.2.2 Derivation of the final form of governing equations

The mathematical model for this second application corresponds to the full version of the multiphase
system described in section 2. Dividing each one of equations (17)-(20) by its relative phase density
(assumed to be constant), applying the product rule, introducing eqs (27) to express relative velocity of
each phase, introducing the previously derived eqn (66) (in eqs (17)-(19) only) and finally expressing pt

and ph as function of pl and capillary pressures give

− StD
sεb

Dt
+ ε

DsSt

Dt
−∇ ·

[
kktrel
µt
∇
(
pl + phl + pth

)]
+

St
(
1− εb

)
∇ · vs =

1

ρt
l→t
M

(72)

− ShDsεb

Dt
+ ε

DsSh

Dt
−∇ ·

[
kkhrel
µh
∇
(
pl + phl

)]
+

Sh
(
1− εb

)
∇ · vs =

1

ρh
l→h
M

(73)

− SlD
sεb

Dt
+ ε

DsSl

Dt
−∇ ·

(
kklrel
µl
∇pl

)
+

Sl
(
1− εb

)
∇ · vs =

1

ρl

(
−
l→t
M −

l→h
M +

b→l
M

) (74)

Dsεb

Dt
−∇ ·

(
kb

µb
∇pb

)
+ εb∇ · vs = − 1

ρb
b→l
M (75)

In eqs (72-74) hydraulic conductivity is function of the so-called relative permeability (Ki =
kkirel
µi 1, i

= t, h, and l) to account for the presence of the three fluid phases in the extravascular porosity (14);
vascular permeability, kb, is assumed linearly proportional to volume fraction of of blood vessels εb.
Deriving constitutive eqn (35) with respect to time gives

Dsεb

Dt
=
εb0 + αΓ

Kv

(
Dspb

Dt
− Dsps

Dt

)
+ α

(
1− ps − pb

Kv

)
DsΓ

Dt
(76)

Deriving the solid pressure, eqn (51), with respect to time gives

Dsps

Dt
=

(
St + pth

∂St

∂pth

)
Dspth

Dt
+

(
1− Sl − phl ∂S

l

∂phl

)
Dsphl

Dt
+

Dspl

Dt
(77)

Introducing this equation in eqn (76), this last can be rewritten as

Dsεb

Dt
= −ath

Dspth

Dt
− ahl

Dsphl

Dt
− al

Dspl

Dt
+ ab

Dspb

Dt
+ aΓ

DsΓ

Dt
(78)
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Table 4 Parameters depending on cells’ type and IF.

Parameter Symbol Value Unit

Dynamic viscosity of IF µl 0.01 Pa·s
Dynamic viscosity of TC µt 36 Pa·s
Dynamic viscosity of HC µh 36 Pa·s

Critical mass fraction of oxygen ω̄Ol1 1 · 10−6 -
Inhibition mass fraction of oxygen ω̄Ol2 3 · 10−6 -
Growth coefficient of tumor cells γtgrowth 9.6 · 10−3 kg/(m3·s)

Necrosis coefficient γtnecrosis 9.6 · 10−3 kg/(m3·s)
Consumption related to growth γOlgrowth 2.4 · 10−4 kg/(m3·s)

Consumption related to metabolism γOl0 6 · 10−4 kg/(m3·s)
HC-IF interfacial tension σhl 72 mN/m
TC-HC interfacial tension σth 12 mN/m

Table 5 Parameters related to oxygen, TAF and endothelial cells diffusion.

Parameter Symbol Value Unit

Diffusion coeff. of oxygen in IF DOl0 3.2 · 10−9 m2/s

Diffusion coeff. of TAF in IF DAl0 2.9 · 10−11 m2/s
Coefficient δi (i = O,A) in eqn (54) δi 2 -

Diffusion coeff.of EC in HC DEh0 1 · 10−13 m2/s
Chemotactic coefficient in eqn (55) C 1 · 10−4 -

Normal mass fraction of oxygen ω̄Olenv 4.2 · 10−6 -

Table 6 Parameters depending on ECM type.

Parameter Symbol Value Unit
Poisson’s ration of ECM ν 0.4 -

Young’s modulus of ECM E 1000 Pa
Extravascular porosity (initial) ε 0.8 -

Coeffcient a in eqs (49,50) a 590 Pa
Intrinsic permeability k 1.8 · 10−15 m2

with terms ai being equal to

ath =
εb0+αΓ
Kv

(
St + pth ∂S

t

∂pth

)
ahl =

εb0+αΓ
Kv

(
1− Sl − phl ∂S

l

∂phl

)
al =

εb0+αΓ
Kv

ab =
εb0+αΓ
Kv

aΓ = α
(

1− ps−pb
Kv

)
(79)

At this point eqn (78) can be introduced in eqs (72-75) which will result expressed in term of the primary
variables and internal variable Γ . Joining the resulting equations with the rate form of momentum
conservation equation of the multiphase system (eqn (26)) and mass balance equations of species, eqs
(23-25) (integrated by Fick’s laws defined in subparagraph 2.5.6 and divided by relative phase density),
give the final system of governing equation. As for the previous example this system of equation is
discretized in time by a centred finite difference scheme. A fix-point scheme is used to address system
nonlinearity, with eqn (21) solved at the end of each iteration to updated mass fraction of necrotic tumor
cells.
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Table 7 Vasculature, angiogenesis and blood parameters.

Parameter Symbol Value Unit
Vascular compressibility parameter Kv 5000 Pa
Microvascular intrinsic permeability kb 5 · 10−16 m2

Blood dynamic viscosity µb 0.004 Pa·s
TAF release coefficient γAl 1 · 10−10 kg/(m3·s)

Mass fraction of TAF activating EC proliferation ω̄Al1 8 · 10−12 -
Mass fraction of TAF maximizing EC proliferation ω̄Al2 8.8 · 10−12 -

Production rate of EC γEh 1 · 10−4 kg/(m3·s)
Parameter governing the rate of angiogenesis bΓ 50 -

Additional vascular porosity when Γ = 1 α 0.06 -

Fig. 8 Regularized Heaviside functions governing growth, oxygen consumption, necrosis and endothelial cell production.
(a) Impact of oxygen availability on tumor growth; (b) impact of pressure on tumor growth; (c) Coupled effect of tumor
pressure and oxygen availability on tumor growth; (d) Function HTAF versus normalized mass fraction of TAF.

3.2.3 Mass exchange terms related to growth, oxygen consumption and necrosis

Regularized Heaviside functions depending on two constant parameters σ̄1 and σ̄2 are used for the
definition of mass exchange terms. The function H (σ̄1, σ̄2, σ) has the following form

H (σ̄1, σ̄2, σ) =



0 if σ ≤ σ̄1

1

2
− 1

2
cosπ

σ − σ̄1

σ̄2 − σ̄1
if σ̄2 ≤ σ ≤ σ̄2

1 if σ ≥ σ̄2

(80)
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As shown in (12) growth and necrosis and oxygen consumption are importantly impacted by oxygen

availability, ωOl, and pressure in the tumor cell phase pt. Two couple of values must be identified for
oxygen availability, ω̄Ol1 and ω̄Ol2 , and pressure in the tumor cell phase, p̄t1 and p̄t2, respectively. ω̄Ol2 is the
value below which cell growth starts to be inhibited by oxygen availability while ω̄Ol1 is a critical value
below which cell growth is fully inhibited and necrosis starts; conversely p̄t1 is the critical value of the
tumor cell pressure above which growth rate starts to decrease and p̄t2 is the critical value above which
growth is fully inhibited. Three Heaviside functions based on the four introduced parameters govern
growth, oxygen consumption and necrosis

H0

(
ωOl

)
= H

(
0, ω̄Ol1 , ωOl

)
H1

(
ωOl

)
= H

(
ω̄Ol1 , ω̄Ol2 , ωOl

)
H (pt) = H (p̄t1, p̄

t
2, p

t)

(81)

The functions are depicted in figure 8.a-c.

The mass exchange term
l→t
M depends on a constant coefficient γtgrowth, on the functions H1

(
ωOl

)
and

H (pt), and on volume fraction of necrotic tumor cells as follows

l→t
M = γtgrowthH1

(
ωOl

) [
1−H

(
pt
)]

(1− ωNt)εSt (82)

To view coupled impact of functions factors H1

(
ωOl

)
and [1−H (pt)] their product if plotted in figure

8.b.
The sink term accounting for oxygen consumed by tumor cells has the following form

Ol→Ot
M = γOlg H1

(
ωOl

) [
1−H

(
pt
)]

(1− ωNt)εt︸ ︷︷ ︸
LTCs growth

+

γOl0 H0

(
ωOl

)
(1− ωNt)εt︸ ︷︷ ︸

Consumption due to LTCs metabolism

(83)

As shown in the previous equation nutrient consumption is due to growth of the tumor cells and to their

metabolism. Indeed parameter γOlg is related to cell division whereas the parameter γOl0 relates to cell
metabolism. Oxygen consumed due to cells metabolism depends on the oxygen availability and becomes

zero when the mass fraction of oxygen is zero. The function H0

(
ωOl

)
(depicted in figure 8.a) allows us

preserving positive values of the local mass fraction of oxygen since negative values have not physical
meaning. Observing the form of eqn (83) it easy to shown that, by introducing eqn (82) it can also be
expressed in the following form

Ol→Ot
M =

γOlg
γtgrowth

l→t
M︸ ︷︷ ︸

LTCs growth

+ γOl0 H0

(
ωOl

)
(1− ωNt)εt︸ ︷︷ ︸

Consumption due to LTCs metabolism

(84)

Necrosis depends on nutrient availability and cells pressure. The rate of necrosis, εtrNt in eqn (21), is
modeled by the relation

εtrNt = γtnecr

[
1−H0

(
ω0l
)

+ δnecrH
(
pt
)]

(1− ωNt)εt (85)
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where γtnecrosis is the rate of cell death in absence of nutrient (and without pressure excess), and δnecr
controls the additional necrosis induced when pt ≥ p̄t2. The form of function H (pt) (see figure 8.b)
indicates that stress impacts cell necrosis rate only when pt ≥ p̄t1. Hence, cell death is assumed to be
solely regulated by insufficient concentration of oxygen and excessive mechanical pressure. No drugs or
other pro-apoptotic molecules are used in the present model, but eqn (85) can be readily modified to
include also this contribution.
The previous presented equations (82), (83) and (85) are an evolution of those used in the the previous
version of (12; 14; 15). The advantages of these implemented modifications are: i) the meaning of the
coefficients that can easier be related to experiments (for instance γtnecrosis is the rate of cell death in
absence of nutrient); ii) the absence of Heaviside step functions which are not suitable from the numerical
point of view because often lead to convergence issues.

3.2.4 Mass exchange terms related to TAF release and angiogenesis

TAF is released by hypoxic cells. The higher is hypoxia, the higher is TAF release rate. The following
equation is proposed here

t→Al
M

TAF release
= γAl

[
1−H1

(
ωnl
)]

(1− ωNt)εt (86)

where γAl is a constant parameter representing maximum release rate. Production of endothelial cells is
related to the intensity of the TAF signal. The higher is the mass fraction of TAF the higher is production
rate of endothelial cells. To model this dependence a new regularized Heaviside function is introduced

HTAF

(
ωAl
)

= H
(
ω̄Al1 , ω̄Al2 , ωAl

)
(87)

This function is depicted in figure 8.d. If mass fraction of TAF is lower than the critical value ω̄Al1 no
endothelial cells are produced, when mass fraction of TAF is comprised between ω̄Al1 and ω̄Al2 endothelial
cell generation depend on the intensity of the TAF signal, finally when TAF signal is relatively high (mass
fraction higher than ω̄Al2 ) endothelial cells are produced at the maximum rate. The rate of production of
endothelial cells depends also on the degree of vascularization of the tissue. The proposed equation reads

l→h
M = γEChHTAF

(
ωAl
)
εb (88)

Finally the exchange of oxygen from the vascular porosity, εb, to the extravascular porosity, ε, is modeled
with a convective type condition at the interface between two porosities. A coefficient hv is representative
of vessel wall permeability. The following relationship is adopted

Ob→Ol
M = hv

(
ω̄Ob − ωOl

)
εb (89)

where ω̄Ob is the mass fraction of oxygen in the blood assumed as a constant parameter.
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Fig. 9 Volume fraction of blood (left column) and mass fraction of oxygen (right column) prior to angiogenesis (from 0
to 8 days).

3.2.5 Results

Parameters used for the numerical simulation are reported in the following four tables: table 4 shows
parameters associated to cell phases and IF; table 5 refers to those related to oxygen, TAF and EC dif-
fusion; table 6 shows parameters associated to the ECM; finally table 7 regroups parameters associated
to the vascular porosity, blood and angiogenesis.
To simplify model parametrization and results interpretation the effect of pressure on tumor cell metabolism-
growth-necrosis and oxygen mass exchange terms from the vascular to the extra-vascular compartment

(terms
Ob→Ol
M and

b→l
M ) are not accounted (so associated parameters are not reported in the tables).

Figures 9 and 10 show volume fraction of blood vessels (left column) and mass fraction of oxygen (right
column) before and after angiogenesis respectively. Furthermore the two white lines in the left columns of
figures 9 and 10 depict the tumor front and the limit between fully viable areas and more internal zones
where necrosis occurs while the three isovalue lines in the right columns refers to TAF mass fraction.

In particular the yellow isovalue line is the critical mass fraction of TAF (ωAl = ω̄Al1 ) that activates
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Fig. 10 Volume fraction of blood (left column) and mass fraction of oxygen (right column) during angiogenesis process
(from 12 to 20 days).

endothelial cells production.
Figure 9 shows that during the first phase tumor growth in a quite spherical shape and an hypoxic area
progressively appears in the center of the tumor spheroid. Such hypoxic area starts to necrotize and to
release TAF. TAF mass fraction increases with time (see the three isovalue lines in the right part of
figure 9). The tumor is more in proximity of the bottom vascular bed so the TAF critical mass fraction is
reached firstly at the bottom vascular bed (see yellow line at 8 days in figure 9). This induces proliferation
of endothelial cells that start to migrate and to form the new microvasculature. A first sprout is clearly
visible in figure 10 at 12 days (left column). At this time TAF mass fraction reaches it critical value at
the top vascular bed also (yellow isovalue line in the right column), and four days later a second sprout
becomes visible (see figure 10, left column, 16 days). As depicted in figure 10, at 20 days the new vessels
surround the tumor mass that has assumed a more complex growth pattern due to the modifications
and spatial heterogeneities induced by neo-vascularization in its surrounding.
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4 Conclusions

In this paper the tumor growth model of (15) is further extended to account for angiogenesis and growth
in the vascular stage. Improvements are substantial and allow us to define a hierarchy of mathematical
models (see figure 2) of decreasing complexity: the most general vascular growth model with angiogenesis
(VGA); a simplified vascular growth model (VG) (without angiogenesis); and finally the avascular growth
model (AG) (corresponding to the model of (15)). The paper shows how the biophysical behavior of
the multiphase vascularized tissue (tumor growth, blood flow, angiogenesis, etc.) can be modeled in a
mechanistic fashion within the framework of porous media mechanics thanks to a non-conventional ad
hoc definition of the effective stress tensor. The mathematical model allows us to account for the bio-
chemo-mechanical interaction between the five phases constituting the tissue: the ECM, the two cell
populations, the interstitial fluid and blood. Blood is in the vasculature while cell phases and interstitial
fluid are in a separate porous compartment. ECM is the solid fibrous/porous scaffold. The mathematical
model is detailed in the first part of the paper then two applications are presented.
The first application, “one-dimensional bio-consolidation: one fluid + blood”, is very simple but at
the same time tremendously useful to understand how the model works. It is shown that when an
external load is applied it is instantaneously transferred to the fluid in the extravascular porosity, which
transfers it to the blood phase: both extravascular fluid and blood start to move and to be drained
but with a different dynamics (see figures 4 and 5). To better explain this behavior, one can observe
from the blood volume fraction constitutive model (eqn (35)) that the solid scaffold and blood in the
vasculature are mechanically connected thanks to the intercession of the extravascular fluid (see idealized
mechanism in figure 6). Considering an indirect coupling between the solid scaffold (ECM) and the blood
allows us to substantially simplify the closure of the mathematical model otherwise difficult to perform
without the introduction of unreliable simplifications declassing the biophysical significance of the model
(e.g. incompressible vessels, constant blood pressure, etc.). Biophysical significance is conversely not
prejudiced by the assumption of an indirect ECM-blood interaction. Actually, in biological tissues the
volume fraction of the ECM and that of blood vessels are normally much lower than the cumulative
volume fraction of TC, HC and IF; hence, both ECM and blood vessels have privileged mechanical
relationships with extravascular fluid phases (interaction modeled by means of the solid pressure ps) and
not between themselves.
In the second application the results of the full model are presented. A tumor mass growing between two
vascular beds is modeled. At a certain time the oxygen mass fraction in the core of the tumor decreases
below a critical value inducing necrosis and production of tumor angiogenic factors (TAF). TAF diffuse
within the tissue, so TAF mass fraction increases progressively until it starts to stimulate division of
endothelial cells in the highly vascularized vascular beds. Endothelial cells proliferate and move towards
the tumor driven by their own gradient and by the gradient of TAF (chemotaxix ). Endothelial cells move
and at the same time arrange themselves forming the microvasculature and improving blood flow in
the neo-vascularized areas. As anticipated in the introduction, some of adopted angiogenesis-constitutive
relations are not of demonstrated biophysical significance because no specific information is available in
literature for their validation. Hence, results of the full VGA model have today only a qualitative value
because are not validated with a suitable in vitro or in vivo experiment. Taking advantage from a previous
in vitro-in silico study (20) where we have exhaustively validated the AG model, an improvement of the
presented experimental methodology (confined co-culture of endothelial and tumor cells based on Cellular
Capsule Technology, (21)) is under development to validate VG and VGA models.
Despite the model is here specialized and applied for numerical simulation of vascular tumor growth, this
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general framework can be also used to simulate drugs delivery, physiological behavior of healthy tissues
and further extended to account for the lymphatic system.

A Appendix: Chemotactic-fickian model for EC diffusive velocity

Let us assume that all non-endothelial cell species (e.g. non endothelial host cells, chemical species etc.) can be modeled
jointly as a species named H, dominant species in h. Consequently let us treat species E as a diluted species in h. For
such a situation, neglecting body forces potential and assuming isothermal condition, TCAT (11) provides from simplified
entropy inequality the following force-flux pair

1

θ
ρhεhωEhuEh︸ ︷︷ ︸

flux

·∇
(
µEh − µHh

)
︸ ︷︷ ︸

force

≥ 0 (90)

where θ is the temperature and ∇µEh and ∇µHh are chemical potentials of endothelial and non-endothelial species respec-
tively. At equilibrium both force and flux terms are zero. Conversely near equilibrium a first order closure approximation
for the force-flux relationship reads

ωEhuEh = −χEhχHhDEh · ∇
(
µEh − µHh

)
(91)

where DEh is a second order symmetric tensor, and χih is the molar fraction of species i. Gibbs-Duhem equation for this
binary mixture reads

ηh∇θh −∇ph +
∑

i
ρhωih∇µih = 0 (92)

The expected pressure gradient in the phase h is relatively weak. Hence, for the isothermal case considered eqn (89) reduces
for a binary mixture to

ρhωEh∇µEh + ρhωHh∇µHh = 0 (93)

Eqn (90) allows us to obtain the gradient of the chemical potential of species H as

∇µHh = −
ωEh

ωHh
∇µEh (94)

being ωEh � ωHh it follows that ∇µHh � ∇µEh and consequently eqn (90) reduces to

ωEhuEh = −χEhχHhDEh · ∇µEh (95)

To gain usefulness of the previous equation a relationship between the macroscale chemical potential of species E and its
mass fraction is needed. The macroscale chemical potential for the species E can be written as

µEh = µEh0

(
ph, θ

)
+

Rθ

ME
ln

(
χEhγEh

)
(96)

where µEh0

(
ph, θ

)
is a reference chemical potential for species E, R is the ideal gas constant, ME is the molar mass of

species E, and γEh is the macroscale activity coefficient. Being the system in isothermal condition (θ = θ0) and the impact
of pressure gradient of phase h assumed negligible, differentiating this expression in space gives

∇µEh =
Rθ0

ME

1

χEh
∇χEh +

Rθ0

ME

1

γEh
∇γEh (97)

For dilute species the macroscale activity coefficient is usually assumed constant and equal to 1. To account for chemotaxis
we set here an activity coefficient linearly dependent on the mass fraction of TAF in h. We assume here local chemical

equilibrium so despite the mass fraction of TAF in h, ωAh, is not a primary variable of the model, its value can be linearly

related (as a first approximation) to mass fraction of TAF in the adjacent IF phase, ωAh ∝ ωAl. This allows us to assume
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that the activity coefficient, γEh, is linearly dependent on the mass fraction of TAF in l. Thanks to short-range diffusion
and molecular signalling the TAF in the phase l interferes (via the hl interface) with endothelial cell modifying their activity

coefficient. The following relationship is assumed with c constant chemotactic coefficient and χAl the molar fraction of TAF
in IF

γEh = 1− cχAl (98)

Introducing eqn (98) in eqn (97) gives

∇µEh =
Rθ0

ME

1

χEh
∇χEh −

Rθ0

ME

c(
1− cχAl

)∇χAl (99)

We reasonably assume here that molar masses of phases h and l are weakly affected by variation of species concentration.
This allows us to assume constant molar masses of phases h and l and to express molar fraction of species E, A and H as
function of respective mass fractions

χEh =
Mh

ME
ωEh χAl =

Ml

MA
ωAl χHh =

Mh

MH
ωHh (100)

Introducing the first two relationships of eqn (100) in eqn (99) and setting C = c Ml
MA

give

∇µEh =
Rθ0

ME

1

ωEh
∇ωEh −

Rθ0

ME

C(
1 + CωAl

)∇ωAl (101)

We now introduce eqn (101) in eqn (95) and express χiα as function of ωiα. After some calculations we obtain

ωEhuEh = −
(Mh)2

MEMH
ωHh

Rθ0

ME
DEh︸ ︷︷ ︸

∼= Constant second order tensor

·∇ωEh+

CωEh(
1 + CωAl

) (Mh)2

MEMH
ωHh

Rθ0

ME
DEh︸ ︷︷ ︸

∼= Constant second order tensor

·∇ωAl
(102)

As shown in the previous eqn some quantities are expected to stays almost constant being always ωHh ∼= 1. This observation
allows us to rewrite the previous equation in a simplified form

ωEhuEh = −D̂Eh · ∇ωEh +
CωEh(

1 + CωAl
) D̂Eh · ∇ωAl (103)

Where the diffusivity tensor D̂Eh reads

D̂Eh =

(
Mh

ME

)2 Rθ0

MH
ωHhDEh (104)

We assume here an isotropic effective diffusivity which linearly increases with volume fraction of phase h. Therefore eqn
(103) can be rewritten in this form

ωEhuEh = −DEheff · ∇ω
Eh +

CωEh(
1 + CωAl

)DEheff · ∇ωAl (105)

where indicating with DEh0 the bulk diffusivity of endothelial cells in h, the effective diffusivity reads

DEheff = DEh0 εh (106)
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13. G. Sciumè, M. Ferrari, B.A. Schrefler, Saturation–pressure relationships for two- and three-phase flow analogies for
soft matter, Mechanics Research Communications 62, 132 (2014)
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