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Abstract 
Pre-clinical models have been the workhorse of cancer research for decades. Albeit 

powerful, these models do not perfectly recapitulate the complexity of human tumors 

which has led to a disappointing bench-to-bedside attrition rate. The quest for 

biomarkers of drug response signatures has been particularly challenging, suffering 

from poor translatability from pre-clinical models to human tumors. To address this 

problem, we present a novel computational framework, PRECISE+, that employs non-

linear kernel approaches to capture complex biological processes expressed in both 

pre-clinical models and human tumors. PRECISE+ builds predictors on cell lines that 

show improved performance over competing approaches for a set of 7 of drugs in 

Patient-Derived Xenografts, 5 drugs on TCGA cohorts and show significant 

association with clinical response for 4 drugs in 226 metastatic tumors from the 

Hartwig Medical Foundation data set. We used the interpretability of PRECISE+ to 

validate the approach by identifying known biomarkers to targeted therapies and 

propose novel putative biomarkers of resistance to Paclitaxel and Gemcitabine. 
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Introduction 
The accumulation of somatic alterations on the genome and epigenome transforms 

healthy cells into malignant tumor cells. Although these alterations are required for 

tumor growth, they also confer vulnerabilities on tumor cells. Some well-known 

examples of such genetic vulnerabilities are the amplification of ERBB2 in breast 

cancer1, the BRAFV600E mutation in skin melanoma2 or the BCR/ABL fusion in 

leukemia3. These vulnerabilities have been successfully exploited clinically by 

directing drugs against them. However, for the vast majority of cancer patients, no 

clear biomarkers exist. Hence, expanding our arsenal of accurate biomarkers would 

pave the way for personalized medicine, by identifying, for each patient, the most 

effective drug4. 

 

In order to discover such biomarkers, pre-clinical models have been used extensively 

in the past decades, either in the form of cell lines, patient-derived xenografts (PDX) 

or organoids. This was partially fueled by the relative ease with which these model 

systems can be subjected to drug screening. This has led to break-through discoveries 

with broad clinical impact5. However, Paul Valery’s statement, “what is simple is 

always wrong ; what is not, is unusable”6, also applies to these model systems. 

Specifically, their simplicity also confers weaknesses: the lack of a micro-environment 

in cell lines, and the absence of an immune system in cell lines, PDXs and organoids. 

These shortcomings are further amplified by culture artefacts7,8 that lead to a reduced 

clinical significance of these models9,10 and a high attrition rate in drug development11.  

 

Computational approaches to correct for these differences are therefore much 

needed12. In the particular case of cancer, these approaches are divided into two 

distinct categories. In a first category, mechanistic models are developed on pre-

clinical models and subsequently “humanized” to focus on the similarities between 

pre-clinical models and human tumors13. A second category approaches the problem 

in a statistical fashion. Using molecular profiles and drug screens from large-scale 

panels of pre-clinical models14,15, drug response in cell lines can be inferred based on 

molecular profiles16–18. The resulting predictive models are then applied to predict the 

sensitivity of patients to certain drugs19–21. Although already promising, these 

approaches do not take into account the fundamental differences between pre-clinical 
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models and human tumors and show limited transferrability22. Recently, transfer 

learning and multi-task learning approaches have been developed to explicitly take 

these differences into account, either using partially tumor response23, or solely based 

on pre-clinical labels24. 

 

We present PRECISE+, a general framework for subspace-based transfer learning25–

29 which enables the transfer of drug response predictors trained on a source domain 

(e.g. cell lines and PDXs) to a target domain (e.g. human tumors). PRECISE+ employs 

the powerful mathematical framework of Kernel methods30–35 to capture both linear 

and non-linear relationships between samples. We show that PRECISE24, a linear 

approach, is a special instance of PRECISE+. First, we demonstrate that, compared 

to linear approaches, PRECISE+ improves drug response prediction in PDXs after 

training on cell lines. We fix the hyperparameter controlling the degree of non-linearity 

on the PDX data and then employ PRECISE+ to transfer predictors of drug response 

trained on cell lines to two human tumors datasets: primary tumors from TCGA and 

metastatic lesions from the Hartwig Medical Foundation (HMF). Specifically, we show 

a significant improvement in response prediction for five drugs, including three 

cytostatic and two targeted therapies, compared to linear and non-adapted methods. 

Importantly, this performance improvement is attained without any training on data 

from the human tumors. We finally employ the interpretability of our approach to 

identify genes and pathways associated with drug response. We provide a full 

mathematical derivation of our algorithm, a complete reproducible pipeline and a fully 

open-source software package. 

 

Results 
PRECISE+: Generating non-linear subspace representations to transfer 

predictors of response from pre-clinical models to tumors 
PRECISE+ compares genomic signals contained in the source (e.g. pre-clinical 

models) and target (e.g. human tumors) datasets, and outputs processes that are 

present in both datasets. The nature of these processes depends on the similarity 

function 𝐾 that characterizes the relationships between samples (Methods). 

Depending on the similarity function employed, various types of non-linear 
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relationships can be modelled. For instance, in the case of a Gaussian similarity 

function, these non-linearities include constant, linear, second and higher-order 

interaction terms, all modulated by the exponential of the squared depth (Methods). 

In a first step, PRECISE+ computes the similarities between all samples (Figure 1A), 

yielding three matrices: 𝐾!, 𝐾" and 𝐾!", containing the similarities between source, 

target, as well as source and target samples respectively. Using an eigen-

decomposition of 𝐾! and 𝐾", directions of maximal variance in the similarity space are 

computed using Kernel PCA36 (Figure 1B). This decomposition is performed 

independently on the source and the target spaces and yields two importance score 

matrices: one for the source non-linear principal components (NLPCs) and one for the 

target NLPCs. These importance scores are not the projected sample values –– they 

actually correspond to loadings, in the sense that they represent the geometric 

directions of the NLPCs in sample similarity space (Supp Figure 1A). We then 

quantify the geometric differences between all pairs of NLPCs from the two different 

sets by computing the cosine similarity matrix (Figure 1C). In a subsequent step 

(Figure 1D), we align these two sets of NLPCs by using the notion of principal vectors 

illustrated in Supp Figure 1B. These principal vectors (PV) are pairs of vectors – one 

from the source, one from the target – ranked by decreasing similarity: the top PVs 

correspond to geometrically similar factors, while bottom PVs are almost orthogonal. 

We restrict further analysis to the most similar PVs based on a similarity of at least 0.5 

(Supp. Material).  We perform, for each selected pair of PVs, an interpolation between 

the source and the target vectors and select one intermediate representation that best 

balances the contribution of the source and the target signals (Figure 1E, Supp 
Figure 1C). These vectors, called consensus features, define the consensus space, 

into which we project the source (pre-clinical) and target (tumor) samples. This 

projection yields, for all source and target samples, consensus feature values that can 

be used as input to any machine learning model to build predictors of drug response 

(Figure 1G, Method). In the case of a linear similarity function, PRECISE+ reduces to 

PRECISE24 (Subsection Supp. 8) and is fundamentally different from approaches such 

as Canonical Correlation Analysis (CCA)37 (Subsection Supp. 9). 
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Non-linearities improve response prediction of predictors transferred 

from cell lines to patient-derived xenografts (PDXs) 
When it comes to predicting drug response in one model system, it is known that 

inducing non-linearities can lead to improved performance35, although linear methods 

remain competitive18,38. We investigated whether the introduction of non-linearities in 

the computation of sample similarities resulted in improved response prediction of 

predictors trained on cell lines (source domain) and transferred to PDXs (target 

domain). Since gene expression is known to have predictive power comparable to 

other omics datasets combined16,18,39,40, we restricted our analysis to the expression 

of 1 780 genes known to be related to cancer41. Using PRECISE+, we computed 

consensus features for cell lines (1 049 cell lines from 26 different tissues) and all 

PDXs (399 samples from 5+ different tissues) (Methods). We projected the gene 

expression data of all cell lines and all PDXs onto these consensus features. We 

employed Elastic Net to train models of drug response with the projected cell line 

expression data as input and the measured drug response (AUC) data as output. We 

applied this trained predictor on the projected PDX expression data and compared the 

predicted response to the measured best average response by Spearman Correlation 

(Figure 2A). We made use of the standard Gaussian similarity function (Methods) to 

vary the level of non-linearity introduced. This similarity function is characterized by a 

single scaling factor 𝛾, whose size is directly proportional to the proportion of non-

linearity introduced (Figure 2B). We studied the predictive performance in PDXs for 

seven different values of 𝛾, ranging from a set of consensus features with an almost 

purely linear (𝛾 = 1	 × 10#$) to an almost purely non-linear composition (𝛾 =

1	 × 10#%). We employed a non-domain adapted baseline (Elastic Net regression) and 

linear PRECISE as references. All models were trained to predict response to seven 

different drugs (Erlotinib, Cetuximab, Gemcitabine, Afatinib, Paclitaxel, Trametinib and 

Ruxolitinib) for which we had response data available for both PDX models and cell 

lines (Figure 2C-H). For these seven drugs, we observe, in general, a clear 

improvement of domain-adaptation over the baseline, indicating a necessity to correct 

the input signal when moving from the source to the target domain. Except for 

Cetuximab, we observe that the introduction of non-linearity tends to increase the 

predictive performance on PDXs. Specifically, we observe for several drugs that the 

predictive performance increases with the scaling factor until a maximal performance 
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is reached (𝛾 = 10#& for Erlotinib, Cetuximab and Afatinib and 𝛾 = 10#' for 

Gemcitabine, Paclitaxel and Trametinib), after which the predictive performance drops 

dramatically. We therefore decided to fix the scaling factor to the average value (𝛾∗ =

5 × 10#&) and employ the associated consensus space to transfer the predictors of 

response to the tumor samples. As a further check, we analyzed the properties of the 

consensus space obtained using 𝛾∗. We observe a concentration of the offset 

contribution in the top consensus features and an increasing proportion of non-linear 

terms contribution to lower order features (Supp Figure 6C). The UMAP42 projection 

of the consensus features shows a clear co-clustering of cell lines and PDXs of the 

same tissue (Supp Figure 6D). 

 

Consensus features between cell lines (GDSC) and human tumors 

conserve primary tumor information. 
With the scaling factor (𝛾) calibrated on PDX models, we moved to the clinical setting 

to investigate domain adaptation between cell lines to two different human tumor 

datasets: primary tumors from TCGA and metastatic lesions from the HMF. We 

selected 30 consensus features in the GDSC-TCGA analysis (Supp Figure 8) and 20 

in the GDSC-HMF analysis (Supp Figure 9) after a first selection of NLPCs based on 

the inflexion point of the cumulative eigenvalues, and a subsequent cut-off of PVs with 

similarity above 0.5. We observe that the consensus features computed between 

GDSC and TCGA (Figure 3A) and between GDSC and HMF (Figure 3B) show the 

same proportion of non-linearities with a concentration of offset and linearities in the 

top consensus features. 

In order to visualize the structure retained in the consensus space, we embedded our 

consensus scores into a 2D space using UMAP42. We observed that primary tumors 

cluster together based on their tissue type (Figure 3C). Cell lines, however, show 

different behaviors – most do cluster with the tumors with a similar tissue of origin, 

while a group of cell lines cluster together and away from the tumors, regardless of 

their tissue of origin, as observed in previous studies43. To quantify the degree of co-

clustering of cell lines and tumors, we compared distances between tumors and cell 

lines from similar and non-similar tissues, and observed, as expected, a higher 

similarity between tumors and cell lines from the same tissue (Supp Figure 10C). 

Metastatic lesions show a weaker clustering based on the tissue of origin of the 
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primary tumor (Supp Figure 10D-E). This is not unexpected, as the expression 

profiles are derived from biopsy sites distant from the primary tissue. Of particular 

interest, we observe the existence of a hematopoietic cell-line cluster that co-clusters 

with metastatic samples from various biopsy sites. Most of these tumor samples (7 out 

of 12 samples) are lymph nodes metastasis and most likely display a hematopoietic 

expression profile due to blood infiltration in the samples (Supp Figure 10B). 

 

Consensus features increase transfer of response predictors from cell 

lines to primary tumors and metastatic lesions 
To further validate our approach, we transferred response predictors from cell lines to 

the TCGA and HMF collections of human tumors. First, we projected the GDSC and 

TCGA expression data onto the GDSC-TCGA consensus features. Then we trained, 

for each drug, a regression model using solely the cell line response data (AUC). 

These drug-specific regression models were then used to predict response on the 

projected TCGA data. Finally, we compared the predicted response to the known 

categorical clinical responses using a one-sided Mann-Whitney test and computed the 

effect size using a Cohen’s d statistic. We trained models for the seventeen different 

drugs (Table 1A) and observe a significant association for seven drugs : Trastuzumab, 

Cisplatin, Carboplatin, Etoposide, Gemcitabine, Oxaliplatin and Paclitaxel. We 

compared the prediction of PRECISE+ to the predictions obtained using PRECISE 

(linear instantiation of PRECISE+) and a non-adapted baseline (Figure 4A). We 

observe that PRECISE+ out-performs both on five drugs (Afatinib, Carboplatin, 

Cisplatin, Gemcitabine and Paclitaxel), with the baseline and PRECISE reaching 

significance in three and five drugs, respectively. For the HMF data, we repeated the 

steps above, while employing the GDSC-HMF consensus features as well as the HMF 

and GDSC expression and response data. We trained models for Irinotecan, 

Carboplatin (using Cisplatin GDSC response), Trastuzumab (using Afatinib GDSC 

response), Gemcitabine, Paclitaxel and 5-Fluorouracil. We observe a significant 

association between the predicted AUC and clinical responses for four of the five drugs 

(Irinotecan, Carboplatin, Trastuzumab and Gemcitabine) (Table 1B, Figure 4A) – in 

contrast, the baseline and PRECISE reach significance for zero and two drugs, 

respectively. PRECISE+ out-performs PRECISE in three of the five drugs (Irinotecan, 

Cisplatin and Gemcitabine). PRECISE+ does not obtain a significant association for 
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Paclitaxel, but we do, however, observe a trend that indicates a positive association 

between predicted and clinical response. In contrast, the non-domain-adapted 

baseline fails to recapitulate any association.  

Two drugs, already standing out from the GDSC-PDX analysis, are of particular 

interest. We first observe that Gemcitabine is consistently better predicted by 

PRECISE+ than by PRECISE or the baseline (Figure 4B). When it comes to Paclitaxel 

(Figure 4C), PRECISE+ shows a clear improvement over PRECISE and baseline in 

TCGA. PRECISE+ is also the only method to recover a positive association in HMF, 

although not significant. Finally, for Carboplatin (Figure 4C), we observe that 

PRECISE+ outperforms PRECISE and the baseline on TCGA, and is the only method 

to obtain a significant association on HMF. Altogether, these results show that the 

consensus features can be used to construct non-linear features that, when trained 

on cell lines, deliver superior performance in predicting drug response in human 

tumors. 

 

Interpretability of consensus features confirms known mechanisms for 

targeted therapies and unveils potential biomarkers of sensitivity for 

cytotoxic drugs 
We finally made use of the interpretability of our approach to mechanistically validate 

our predictors (Methods). We first validated targeted therapies with documented 

modes of action. We started with the PRECISE+ predictor of response for Afatinib, a 

small molecule inhibitor of the EGFR family, which includes HER2 (Figure 5A). We 

performed a gene set enrichment analysis of the linear terms that constitutes to 80% 

of the predictor. Most enriched gene sets are related to breast cancer subtypes as 

defined by Charafe and colleagues44 where, contrary to the definition based on the 

intrinsic breast cancer subtypes, the Luminal subtype contains both ER+ and HER2+ 

tumors. The top ranked gene set amongst the genes associated with sensitivity (genes 

with a negative coefficient in the predictor) are genes associated with the “Luminal” 

subtypes (FDR < 0.001). Conversely, genes associated with resistance (genes with a 

positive coefficient in the predictor) show enrichment for the “Mesenchymal” molecular 

signatures, shared by basal and mesenchymal subtypes, i.e. HER2 negative samples, 

which is in line with our expectation as absence of the drug target would indicate lack 

of response. Similarly, in the PRECISE+ response predictor for Gefitinib (EGFR 
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inhibitor) the genes constituting the linear portion and associated with sensitivity 

(negative predictor coefficients) show an enrichment for genes downregulated in 

Gefitinib resistant tumors (Figure 5B). 

Cytotoxic drugs such as Gemcitabine or Paclitaxel have complex modes of actions 

involving different pathways which interplays remain challenging to understand. Since 

the predictions of these two drugs showed a significant association in both PDXs and 

patients, we set out to interpret the mechanisms of sensitivity or resistance inferred by 

our predictor. In Gemcitabine, we observe that over-expression of the CDC42 pathway 

is a significant marker of resistance (FDR = 0.012, Figure 5C) together with pathways 

linked to microtubule formation and cell migration (Supp Figure 11), both known to 

be promoted by CDC4245. Together, these enriched pathways highlight CDC42 over-

expression as a potential in-vivo mechanism of Gemcitabine resistance, which 

suggests the use of CDC42 inhibitors46,47 for Gemcitabine-resistant tumors. Another 

interesting finding is the significant enrichment of TNF𝛼 signaling in the sensitive 

portion (FDR=0.046). A clinical trial has shown that co-administration of TNF with 

gemcitabine improves patient survival and further inhibits tumor growth48, lending 

additional credence to this finding. Last, we observe a concentration of sensitive 

interactions involving BLK, a pro-apoptotic Src-proto oncogene involved in B-cell 

signaling and differentiation. Since hematopoietic cell lines respond better to 

Gemcitabine, these interactions can either act as a tissue-type marker, or could 

potentially represent a potential sensitive pathway. 

Finally, we looked for enriched pathway in Paclitaxel predictor (Figure 5D) and 

observed three potential mechanisms of resistance. We first observe that the resistant 

linear coefficients are significantly enriched in genes linked to silencing of YBX149 

(FDR=0.106), a gene associated with proliferation in certain tumor types50. In ovarian 

cancer, YBX1 has been shown to regulate ABCB1 expression levels, a gene related 

to Paclitaxel resistance52–56. Our pan-cancer analysis therefore further supports the 

role of drug transporters in Paclitaxel resistance. Second, we observe a significant 

resistant enrichment for PI3K activation (FDR=0.18), which is corroborated by the 

observed activation of PI3K/AKT/mTOR signaling pathway in Paclitaxel-resistant 

cancer cells56,57. Moreover, a recent investigation suggests that PI3K catalytic 

subunits can regulate ABCB1 expression58. Finally, when it comes to the non-linear 

part, we observe a concentration of Fibroblast growth factors interactions in the 

resistant parts of non-linearities, in particular FGF3, FGF20 and FGF8 and FGF4. This 
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behavior, although suggested by previous studies59,60, is all the most interesting as 

cell lines do not contain any micro-environment that would elicit such resistance. 

 

Discussion 
We introduced an approach to integrate pre-clinical and clinical data in a fully 

unsupervised way. Our approach geometrically aligns sample-to-sample similarity 

matrices and extract directions of important variations for both datasets, without 

requiring any sample-level pairing. By performing a geometrical alignment instead of 

a direct distribution comparison, our approach limits the effect of any sample selection 

bias. This geometrical alignment is implicitly performed in a space induced by our 

similarity function, which enable the integration of various non-linearities, 

corresponding to hypothesis made on the system. Although we restricted ourselves to 

the Gaussian similarity, designing similarity functions that incorporate a wide range of 

prior knowledge is a potentially promising avenue. Learning the similarity matrix, e.g. 

using multiple kernel learning or deep learning methods, could also help increase 

performance. Our method is versatile and general and can be applied beyond the 

scope of our study, e.g. to integrate single cell sequencing data. 

We showed that the consensus features can be used to build translatable predictors 

of drug response. Although we do not require a strong covariate shift assumption as 

in a previous study61,  we do assume that  the functions modelling the response from 

these consensus features follow the same monotonicity in pre-clinical models and 

human tumors. This assumption, albeit reasonable, may be questioned. 

In this study, we limited ourselves to gene expression. Making use of other genomics 

levels – e.g. mutations, copy number, methylation, chromatin accessibility – may help 

refine the prediction by providing additional signal. The integration of our approach 

with multi-omics integration strategies62,63 may offer a solution to the translation of 

multi-omics signatures. 

Finally, we focused in our study on cytotoxic and targeted therapies, still widely used 

in the clinic. The recent advent of immuno-therapies calls for methods able to predict 

the clinical response from model systems. This requires model systems able to mimic 

the action of the immune system and screening technologies able to measure the 

response for large panels. We believe that our approach can be extended to such 

problems once data is made available. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 

 

Methods 
Public data download and pre-processing 

GDSC dataset, download and processing. 

We made use of the GDSC1000 cell line panel14, which contains complete molecular 

profiles for 1,049 cell lines (Supp Figure 2). Gene expression is provided in the forms 

of both read counts and FPKM. For both settings, we corrected the dataset for library-

size using TMM64 and log-transformed the corrected read counts65,66. Finally, we 

performed a gene-level mean-centering and standardization. Response to 397 drugs 

is provided in the form of Area Under the Curve (AUC). 

Novartis PDXE dataset, download and processing. 

We made use of NIBR PDXE dataset for patient-derived xenografts15, which contains 

the gene expression profiles of 399 PDXs (Supp Figure 3). Gene expression is 

provided in the form of FPKM. We corrected for library-size using TMM64 and log-

transformed the corrected read counts65,66. Finally, we performed a gene-level mean-

centering and standardization. Response to drugs overlapping with GDSC is provided 

in the form of Best Average Response. 

TCGA dataset, download and processing. 

We made use of the TCGA dataset for analyzing human biopsies67, which comprises 

10,347 human tumors (Supp Figure 4). Gene expression is provided in the forms of 

both read counts and FPKM and we used the same pre-processing pipeline as for 

GDSC. 

 

Hartwig Medical Foundation dataset (HMF) download and processing. 
 
We validated our approach on a cohort of 1,049 patients provided by the Hartwig 

Medical Foundation – referred to as HMF (Supp Figure 5A). Gene expression was 

measured for each metastatic sample prior to indicated drug regimen. We used 

MultiQC for quality control68, salmon v1.0.0 for alignment to reference transcriptome69, 

and finally edgeR for gene-level quantification70. Comparison with results obtained 

using STAR71 and featureCounts72 shows high degree of concordance (Supp Figure 
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5D) and we used this comparison to refine our filtering. Read counts were then 

processed using the same pipeline as in GDSC and TCGA. 

Drug response was measured in 802 unique metastatic samples using the RECIST 

criteria. Response was measured differently for each patient (Supp Figure 5B) with 

most patients having one single measure of response around 2.5 weeks after 

treatment start (Supp Figure 5C). Since we are interested in the response of the drug 

given the molecular characterization measured, we considered for each patient the 

first response after treatment. 

 

Mathematical settings 
We denote by 𝑝	the number of genes. We consider one source dataset 𝒳! =

,𝑥)!, … , 𝑥*!
! 0 ⊂ ℝ+and one target dataset 𝒳" = ,𝑥)" , … , 𝑥*"

" 0 ⊂ ℝ+ with corresponding 

source and target data matrices 𝑋! ∈ ℝ*!×+ and 𝑋" ∈ ℝ*"×+.  

We consider a similarity function 𝐾 -- also called kernel function -- that assigns to two 

samples a scalar value that is large for similar samples and small for dissimilar 

samples. In this work, we assume the kernel to be positive semi-definite (p.s.d.), which 

implies73 that there exists a Hilbert space ℋ and a mapping 𝜑:	ℝ+ ↦ ℋ such that  

 
∀𝑥, 𝑦 ∈ ℝ!, 𝐾(𝑥, 𝑦) = 〈𝜑(𝑥), 𝜑(𝑦)〉ℋ . (1) 

In particular, we use two kernels: 

§ Linear kernel: 𝐾-.*/01(𝑥, 𝑦) = 𝑥2𝑦. 

§ Radial Basis Function, also referred to as “Gaussian”: 𝐾3
145(𝑥, 𝑦) =

exp(−𝛾‖𝑥 − 𝑦‖%), with 𝛾 > 0. 

We denote by 𝐾! the matrix of similarity between source samples, 𝐾" between target 

samples and 𝐾!" the matrix of similarity between source and target, formally: 

𝐾! = B𝐾C𝑥.!, 𝑥6!DE)7.,67*!
𝐾" = B𝐾C𝑥." , 𝑥6"DE)7.,67*"
𝐾!" = B𝐾C𝑥.!, 𝑥6"DE)7.7*!

)767*"

. (2) 
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Implicit mean centering 
In a linear-setting, it is standard to perform a gene-level centering prior to any statistical 

analysis. In the case of non-linear analysis, we perform a feature-level centering in the 

embedding space ℋ implicitly using Equation (1). We perform this implicit centering 

independently in source and target datasets. As shown in (Subsection Supp. 2), the 

corresponding kernel matrices are: 

 

KI9 = C:#K9C:#
KI; = C:$K;C:$
KI9; = C:#K9;C:$

,	with	C: =	 I: −
1
n1:

<1:	(n ≥ 1) (3)	

 

Kernel PCA by eigen-decomposition of centered kernel matrix for 

capturing directions of principal variance 
Using the embedding introduced in Equation (1), the similarity matrices from Equation 

(3) can be seen as sample-covariance matrices and therefore decomposed to 

compute principal components inside the embedded space ℋ, a procedure known as 

Kernel PCA36. We perform Kernel PCA on source and target data independently to 

compute 𝑑! and 𝑑" principal components respectively. Kernel PCA on the source 

dataset consists in an eigen-decomposition of the matrix 𝐾I!, yielding 𝛼! ∈ 	ℝ=!×*!, 

while Kernel PCA on the target dataset decomposes 𝐾I", yielding 𝛼" ∈ 	ℝ="×*" (Def 

Supp 3.1). 

 

Comparing and aligning pre-clinical and tumor non-linear principal 

components 
Similarly to the “cosine similarity matrix” in other related works24,28, we define the non-

linear cosine similarity matrix 𝑴> as the matrix that geometrically compares the source 

NLPCs to the target NLPCs (Def Supp 5.1). This matrix can be computed as follow 

(Prop Supp 5.2): 
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𝑴> = 𝛼!𝐾I!"𝛼"
% =	𝛼!𝐶*!𝐾!"𝐶*"𝛼

"% . (4) 

 

In a first step of our domain adaptation approach, we use the matrix 𝑴> to align NLPC, 

yielding non-linear principal vectors 𝑠), . . , 𝑠= for source and 𝑡), . . , 𝑡= for target with 𝑑 =

min(𝑑!, 𝑑") (Def Supp. 4.1). These principal vectors are pairs of vectors: one linear 

combinations of source NLPCs and one linear combinations of target NLPCs, ordered 

by decreasing similarity with the first pair being the most similar. The computation of 

these PVs rely on the Singular Value Decomposition74 of 𝑴>, 𝑴> =	𝛽!Σ𝛽"2that helps 

us define the source and target sample importance loadings 𝜌! and 𝜌" as follows (Def. 

Supp. 5.4) 

 

𝜌! = 𝛽!2𝛼!	and	𝜌" =	𝛽"%𝛼" . (5) 

 

We also define the principal angles 𝜃), . . , 𝜃= 	as follows (Def. Supp. 5.6) 
∀k ∈ {1, . . , d}, cos	 𝜃? = Σ?,? . (6) 

 

Owing to the duality elicited in Equation (1), these principal vectors can be seen both 

as functions that map samples in cell-view to a one-dimensional vector, or a vector 

onto which we project the sample embedding (Proposition Supp. 5.8). 

 

Interpolation between kernel principal vectors for balancing effect of 

source and target 
Each pair of principal vectors contains two vectors that are geometrically similar. 

Projection on them will create two highly correlated covariates that would not be 

optimal for subsequent statistical treatment. In order to compute one vector out of each 

pair, we interpolate between the source and the target PV within each pair (Def Supp 

6.2). For the 𝑘"@	PV, the interpolation is modulated by a coefficient 𝜏? that ranges 

between 0, when the interpolation returns the source PV, and 1, when the interpolation 

returns the target PV. This interpolation between vectors within each PV pair relies on 

two functions Γ(τ) = [Γ)(𝜏)), . . , Γ=(𝜏=)]2 and ξ(τ) = [ξ)(𝜏)), . . , ξ=(𝜏=)]2 defined as 

(Definition Supp. 6.1): 
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∀𝑘 ∈ {1, . . , 𝑑},						Γ?(𝜏?) =
sin(1 − 𝜏?)𝜃?

sin 𝜃?
					and						ξ?(𝜏?) =

sin 𝜏?𝜃?
sin 𝜃?

		 (7) 

 

For a set of 𝑑 interpolation coefficients [𝜏), . . , 𝜏=], we compute the projection of source 

and target datasets 𝐹(𝜏) ∈ 𝑅(*!B*")×= as follows (Theorem Supp. 6.6) 

 

𝐹(𝜏) = r𝐾
! 𝐾!"

𝐾"! 𝐾" s t
𝐶*! 0
0 𝐶*"

u v
𝜌!2 0
0 𝜌"2

w t𝛤
(𝜏)
𝜉(𝜏)u . (8) 

 

Such an interpolation between PVs balance the effect of source and target datasets. 

We prove that, in the case of linear kernel, our interpolation scheme is equivalent to 

the one from previous approaches26,75 (Supp Subsection 8). 

Within each pair of PVs, we select one intermediate representation where the source 

and target projected match the most. For the 𝑘"@ PV-pair, we compare the source and 

target projected data using a Kolmogorov-Smirnov statistic and select the interpolation 

time 𝜏?∗  where the statistics is maximal. We obtain a set of optimal interpolation times 

𝜏∗ ∈ [0,1]= when for each PV, source and target influence are balanced and we call 

the corresponding vector consensus features. These consensus features show a 

limited difference between source and target domain, a theoretical necessary 

condition for domain adaptation76. 

 

Prediction using Elastic Net 
In order to predict drug response, we use Elastic Net regression77. Elastic Net is a 

linear model that imposes two penalties on the coefficients to predict: an ℓ)penalty 

that leads to sparse model and an ℓ% penalty that jointly shrinks correlated features. 

We chose Elastic Net first because it has repeatedly been shown in the drug response 

prediction literature to give equivalent, if not better, predictive performance as more 

complex models16,18,38. Second, target error is upper-bounded, among other terms, by 

the VC dimension of the classifier76. Using a linear classifier limits the complexity and 

therefore makes the transfer theoretically more robust. 
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Taylor expansion of the similarity function for interpretability of the model 
In the case of RBF, we perform a PCA in an infinite-dimensional feature space. 

Although this space cannot be analytically computed, it can be approximated using a 

Taylor expansion78 (Subsection Supp. 7). For the 𝑞th consensus feature, we get three 

kinds of contributions (Def Supp. 7.4): 

- Offset 𝒪D: Gaussian term that models the squared depth. For each sample 𝑥 ∈

𝑅+, it corresponds to exp	(−𝛾‖𝑥‖%). 

- Linear contributions CℒD,6D)767+	: analog to linear term, i.e. expression of one 

gene. For each sample 𝑥 ∈ 𝑅+ and gene 𝑗 ∈ {1, . . , 𝑝}, it corresponds to 

𝑥6exp	(−𝛾‖𝑥‖%). 

- Interaction terms CℐD,6,?D)76,?7+: analog to interaction term, i.e. product of 

expressions of two genes. For each sample 𝑥 ∈ 𝑅+ and gene 𝑗, 𝑘 ∈ {1, . . , 𝑝}, it 

corresponds to 𝑥6𝑥?exp	(−𝛾‖𝑥‖%). 

Higher order interactions are also taken into account into the consensus feature, but 

for computational reasons, we do not look at individual contributions. These 

contributions can be computed from sample importance loadings of consensus 

features (Prop. Supp. 7.7). We consider the contributions’ sum-of-squares as a 

geometrical proportion since these sum up to one (Def. Supp. 7.8). 

In order to look for enrichment in a particular consensus feature, we look for 

enrichment of particular gene sets79. Specifically, for the linear contribution, we 

compute the loading of all linear terms (Equation Supp. 48) corresponding each to one 

gene and we performed a Pre-Ranked gene set enrichment analysis with FDR 

correction at 20% and 1000 permutations. Since these loadings corresponds to a 

Euclidean geometric proportion, we used a squared statistic to compare them. 

 

Code and availability. 
PRECISE+ is available as a Python 3.6 module (https://github.com/NKI-

CCB/PRECISE_plus). All our experiments are reproducible and use state-of-the-art 

libraries80–83 (https://github.com/NKI-CCB/precise_plus_manuscript) 
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Figure 1 PRECISE+: Generating non-linear subspace representations to transfer predictors 

of response from pre-clinical models to human tumors. (A) Samples are compared using a 

similarity function – also referred to as kernel.  This yields a similarity matrix containing 

similarities between pre-clinical (source) models (𝐾#), between tumors (target samples) (𝐾$) 

and between pre-clinical models and tumors (𝐾#$). (B) Using non-linear PCA, the pre-clinical 

and tumor similarity matrices are independently decomposed to compute directions of 

maximal variance induced by the similarity function – these are referred to as non-linear 
principal components (NLPCs). Each NLPC corresponds to a direction in a very high-

dimensional space induced by the similarity function, that is often computationally intractable. 

Thus, instead of a feature space representation, these NLPCs are geometrically represented 

by “sample importance scores” (Supp Figure 1A) that represent the importance of each 

sample in each NLPC. These scores are aggregated in the matrices 𝛼# and 𝛼$, for source and 

target space, respectively. (C) These pre-clinical and tumor NLPCs are then geometrically 

compared in a non-linear cosine similarity matrix 𝑴%. Each pre-clinical NLPC (y-axis) is 

geometrically compared to each tumor NLPC (x-axis) but no clear 1-1 correspondence 

appears as shown by the large number of off-diagonal elements. (D) To find directions of 

significance for both pre-clinical models and tumors, we align these non-linear principal 

components using the notion of principal vectors (Supp Figure 1B). Principal vectors are 

pairs of vectors (one from pre-clinical NLPCs, one from tumor NLPCs) that are maximally 

geometrically similar. (E) Within each pair of vectors, we perform an interpolation to select one 

non-linear vector that balances the effect of pre-clinical and tumor signals (Supp Figure 
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1C).This yields a few robust consensus features that correspond to non-linear gene 

combinations of significance for both tumors and pre-clinical models. (F) We project each 

tumor and pre-clinical sample on these consensus features to obtain consensus scores. 

These scores correspond to the activity of processes conserved between tumors and pre-

clinical models. (G) Finally, these scores can be used as input to any predictive model, for 

instance to predict drug response based on these consensus scores. 
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Figure 2 Impact of modelling non-linearities for drug response prediction transfer from cell 

lines to PDXs. (A) Main workflow of the prediction on PDXs. Using cell lines and PDX gene 

expression, we compute consensus features and project each dataset onto these. We then 

trained a regression model (Elastic Net) on cell lines projected scores to predict AUC. Finally, 

we used this regression model to predict drug response in PDXs and correlate the predicted 

AUC to the known best average response. (B) Proportion of non-linearities induced by the 

Gaussian similarity function as a function of the scaling factor 𝛾. For different values of  𝛾, we 

compute the average contribution over all consensus features of offset, linear, interaction and 

higher order features. Offset is here to be understood as the exponential of the squared depth 

and does not correspond to a constant term. We finally evaluated the PDX prediction for 

different values of 𝛾, for a linear similarity function, and a non-domain-adapted baseline. We 

report results for Erlotinib (C), Cetuximab (D), Gemcitabine (E), Afatinib (F), Paclitaxel (G), 

Trametinib (H) and Ruxolitinib (I). Concordance on PDX is measured as the Spearman 

correlation between predicted AUC and Best Average Response. 
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Figure 3 Pan-cancer consensus features between cell lines and tumors conserve tissue 

type information. We used cell lines (GDSC) as source data and computed two sets of 

consensus features with two different target datasets: primary tumors (TCGA, A and C) and 

metastatic lesions (HMF, B and D). (A) Proportion of linear and non-linear contributions to 

each of the 30 GDSC-to-TCGA consensus features.  (B) Proportion of linear and non-linear 

contributions to each of the 20 GDSC-to-HMF consensus features. (C) UMAP plot of primary 

tumors (TCGA, 21 tissues) and cell lines (GDSC, 22 tissues) projected on the consensus 

features, using the same parameters as selected in Figure 2. (D) UMAP plot of metastatic 

lesions (HMF) and cell lines, colored by primary tissue for both HMF and GDSC. For both 

UMAP plot, the full legend can be found in Supp Figure 10A. 
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Figure 4 Consensus features improve response prediction in patients. (A) We used 

consensus features computed between GDSC and each tumor dataset to train a predictor for 

17 drugs on TCGA and 5 drugs on HMG, using GDSC response only. We then predicted the 

AUC for each drug and compared this predicted value to the observed clinical response using 

a one-sided Mann-Whitney test (Table 1). We summarized here the associations for the 

3	 × 22 predictors in a Volcano plot. (B) Results for the two Gemcitabine predictors. (B.1) For 

the Gemcitabine predictor on TCGA, we compared predicted AUC for each patient to the 

known clinical response (top) and compared this association to the results obtained using a 

non-domain-adapted baseline and PRECISE (bottom). The black line indicates p = 0.05. (B.2) 

Results for Gemcitabine predictor on HMF. (C.1) Results for Paclitaxel predictor on TCGA. 

(C.2.) Results for Paclitaxel predictor on HMF. (D.1) Results for Carboplatin predictor on 

TCGA. (D.2.) Results for Carboplatin predictor on HMF. 
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Figure 5 Interpretability of PRECISE+ consensus features highlight mechanisms of sensitivity 

and resistance to Gemcitabine and Paclitaxel. (A) For the Afatinib (HER-2 protein kinase 
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inhibitor) response model trained on GDSC samples projected on GDSC-to-TCGA consensus 

features we show the proportions of contributions from various terms (left) and the PreRanked 

gene set enrichment analysis (GSEA) result for genes contributing geometrically to the linear 

portion of the predictor. Positive (negative) weights in the predictor indicate that high (low) 

expression of the genes leads to resistance (sensitivity) represented by larger (smaller) AUCs. 

(B) We repeated the same experiment on a Gefitinib (EGFR inhibitor) model and show the 

significant enrichment for genes known to be downregulated in Gefitinib resistant cell lines. 

(C) Gemcitabine analysis showed enrichment of CDC42 pathway (FDR < 0.001) in resistant 

coefficients and TNF𝛼-signalling via NF-𝜅𝐵 signaling in sensitive coefficients.  (D) Paclitaxel 

analysis. Enrichment for genes linked to silencing of YBX1 by shRNA, and genes linked to 

aberrant PI3K-behavior in resistant coefficients.  
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A. GDSC-to-TCGA 
GDSC TCGA p-val [effect-size] on TCGA 
Drug Samples Drug Samples Baseline PRECISE PRECISE+ 

Afatinib 800 Trastuzumab 16 
0.089 
[0.82] 

0.024 
[0.96]  

0.016 
[1.00] 

Bleomycin 856 Bleomycin 53 
0.153 
[0.63] 

0.106 
[0.67] 

0.091 
[0.78] 

Cetuximab 868 Cetuximab 19 
0.118 
[0.67] 

0.451  
[0.52] 

0.0765  
[0.7] 

Cisplatin 764 Cisplatin 308 
1.11E-06 

[0.69] 
2.15E-05 

[0.66] 
3.92E-07 

[0.70] 

Cisplatin 764 Carboplatin 166 
0.0419 
[0.58] 

0.0241 
[0.59] 

0.0035 
[0.63] 

Cyclophospha
mide 747 

Cyclophospha
mide 102 

0.571  
[0.48] 

0.112 
[0.65] 

0.642 
[0.46] 

Docetaxel 665 Docetaxel 102 
0.616 
[0.48] 

0.728 
[0.46] 

0.107  
[0.57] 

Doxorubicin 871 Doxorubicin 101 
0.0674 
[0.59] 

0.925 
[0.41] 

0.0969 
[0.58] 

Etoposide 880 Etoposide 84 
0.209 
[0.58] 

0.00708  
[0.73] 

0.0273 
[0.68] 

5-Fluorouracil 801 Fluorouracil 186 
0.219 
[0.53] 

0.800  
[0.46] 

0.352  
[0.52] 

Gemcitabine 752 Gemcitabine 156 
0.248 
[0.53] 

0.0289 
[0.59] 

0.00466 
[0.62] 

Irinotecan 796 Irinotecan 25 
0.810  
[0.39] 

0.536 
[0.49] 

0.488  
[0.51] 

Oxaliplatin 724 Oxaliplatin 66 
0.379 
[0.52] 

0.0280 
[0.64] 

0.0450 
[0.63] 

Paclitaxel 753 Paclitaxel 160 
0.0318 
[0.59] 

0.103 
[0.56] 

0.00424 
[0.63] 

Pemetrexed 898 Pemetrexed 38 
0.157 
[0.59] 

0.164 
[0.59] 

0.2370 
[0.57] 

Temozolomide 746 Temozolomide 96 
0.555  
[0.49] 

0.587 
[0.48] 

0.185  
[0.58] 

Vinorelbine 746 Vinorelbine 30 
0.312 
[0.56] 

0.189 
[0.61] 

0.422  
[0.53] 

B. GDSC-to-HMF 
GDSC HMF p-val [effect-size] on HMF 
Drug Samples Drug Samples Baseline PRECISE PRECISE+ 

Afatinib 800 Trastuzumab 25 
0.1776 
[0.70] 

0.02098 
[0.93] 

0.03223 
[0.89] 

Irinotecan 796 Irinotecan 67 
0.0596 
[0.73] 

0.1003 
[0.69] 

0.01975 
[0.8] 

Cisplatin 764 Carboplatin 64 
0.23 

[0.58] 
0.05848 

[0.59] 
0.004491 

[0.78] 

5-Fluorouracil 801 Fluorouracil 65 
0.06548 

[0.68] 
0.2144 
[0.59] 

0.2435 
[0.58] 

Paclitaxel 753 Paclitaxel 45 
0.5626 
[0.48] 

0.3884 
[0.53] 

0.06137 
[0.70] 

Gemcitabine 752 Gemcitabine 50 
0.03899 

[0.71] 
0.008851 

[0.78] 
0.004233 

[0.81] 
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Table 1 Results of PRECISE+ compared to PRECISE (linear) and baseline (ElasticNet without 

domain adaptation) for 17 drugs on TCGA and 5 drugs on HMF. For each drug, we divide the 

patients in two categories: Responders and Non Responders. For TCGA, Responders 

correspond to Partial Responders (PR) and Complete Responders (CR) – for HMF, 

Responders correspond to PR only. For TCGA, Non Responders correspond to Stable 

Disease (SD) and Progressive Disease (PD) – for HMF to PD only. For each drug, we train 3 

predictors – baseline, PRECISE and PRECISE+ – and compare in each scenario the 

predicted AUC to the known clinical response using one-sided Mann-Whitney test. For each 

predictor, we report the p-value and the effect size (Area under the ROC, effect size 

associated to Mann-Whitney test) under bracket. Bold cells correspond to significant 

association (pval < 0.05). Red cells correspond to significant associations with the largest 

effect size across the 3 methods. 
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Supp Figure 1 Visual explanation of geometric alignment. A: Difference between importance 

scores (𝛼#, 𝛼$) and projected scores. Since the space induced by the similarity function 𝐾 is 

intractable, we use a dual representation of the NLPC in terms of samples: the importance 

scores. To project samples on NLPCs, one needs to compute the similarity between this 

sample and all of the samples used to gauge the NLPC. The projected score is obtained by 

taking the vector-product between this similarity vector and the importance scores. The same 

rational holds principal vectors that are represented by 𝛾#and 𝛾$ .  B: Visual example of 

principal vectors (PV). We here consider 3 genes (features) and 2 NLPCs. The pre-clinical 

(source) and tumor (target) NLPCs intersect in one direction, which form the pair of closest 

vectors: the first PV forms the pair of the two red vectors – although these are identical. The 

second pair of PVs is defined orthogonally to the red pair. This defines the green vectors (with 

a swap in direction for visual purposes). These pairs reconstruct the original NLPC spaces 

and are ordered by similarity. C: Interpolation between PVs. For one pair of PVs – e.g. the 

green one in B – source and target vectors are different. In order to generate one robust vector 

out of these two and avoid redundancy, we draw an arc between these two vectors. We then 

project source and target datasets onto these interpolated vectors and select one intermediate 

representation where source and target projected signals are maximally matched. This optimal 

intermediate vector is called the consensus feature. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 
 
Supp Figure 2 Composition of the GDSC dataset (cell lines). We make use of the GDSC1000 

cell line panel14. A: Number of cell lines per tissue type. B: Number of cell lines screened for 

each drug that we used in our experiments. 
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Supp Figure 3 Composition of the NIBR PDXE dataset (patient derived xenografts). We make 

use of the NIBR PDXE patient derived xenograft panel15. A: Number of PDXs per tissue type. 

B: Number of unique PDXs screened for each drug that we used in our experiments. 
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Supp Figure 4 Structure of the TCGA dataset (primary tumors). We make use of the TCGA 

dataset for primary tumors. A: Number of samples per cancer type. B: For each drug, number 

of samples with known response. 
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Supp Figure 5 Structure of the HMF dataset (metastatic lesions). We make use of the Hartwig 

Medical Foundation (HMF) dataset for metastatic lesions. (A) Number of samples per cancer 

type (primary tumor location). (B) For each patient, number of response measurements made. 

For further analysis, we considered the first response measure – i.e. first measure after 

treatment start. (C) Histogram of number of weeks between treatment start and response 

measurement. (D) For each protein coding gene, we measure the Spearman correlation 

between read counts obtained using Salmon and STAR alignment tools using all samples in 

the HMF dataset. We then ranked genes based on the obtained Spearman correlation (x-axis) 

and plotted it against the mean-expression of these genes obtained using Salmon (y-axis). 
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Since lowly concordant genes tend to have low expression, we put a threshold at 𝑐𝑜𝑟𝑟 = 0.5 

and discarded genes below this threshold. (E) After the previous selection, we computed the 

sample-level Pearson and Spearman correlations between read counts obtained with STAR 

and Salmon. All samples but 5 shows a correlation above 0.8 – these were discarded. We 

finally further restricted to genes from the mini-cancer genome. 
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Supp Figure 6 Analysis of consensus features between cell lines (GDSC) and PDXs with 

𝛾 = 0.0005.  
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Supp Figure 7 Tissue clustering analysis for baseline and linear similarity. 
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Supp Figure 8 Choice of the number of NLPCs and consensus features between 

GDSC and TCGA. (A) Cumulative sum of eigenvalues of 𝐾!� (GDSC) with 𝛾∗ =

5 × 10#&. The cumulative sum increases steeply, reaches an inflexion points and then 

follows an almost-linear behavior. We select all the NLPCs corresponding before this 

almost-linear zone, corresponding to 75 NLPCs. (B) Cumulative sum of eigenvalues 

of 𝐾"� (TCGA) with 𝛾∗ = 5 × 10#&. Following a similar thinking as in (A), we restrict the 

study to the first 150 NLPCs. (C) Similarity between PV when 75 NLPCs are 

considered for GDSC and 150 for TCGA. We observe that the 33 first PVs have a 

similarity above 0.5 (our cut-off) and round the selection to 30 PVs. 
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Supp Figure 9 Choice of the number of NLPCs and consensus features between 

GDSC and HMF. (A) Cumulative sum of eigenvalues of 𝐾!� (GDSC) with 𝛾∗ = 5 × 10#&. 

The cumulative sum increases steeply, reaches an inflexion points and then follows 

an almost-linear behavior. We select all the NLPCs corresponding before this almost-

linear zone, corresponding to 75 NLPCs. (B) Cumulative sum of eigenvalues of 𝐾"� 

(HMF) with 𝛾∗ = 5 × 10#&. Following a similar thinking as in (A), we restrict the study 

to the first 75 NLPCs. (C) Similarity between PV when 75 NLPCs are considered for 

both GDSC and HMF. We observe that the 21 first PVs have a similarity above 0.5 

(our cut-off) and round the selection to 20 PVs. 
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Supp Figure 10 Pan-cancer consensus features between cell lines and tumors 

conserve tissue type information (Supplement of Figure 3) A: Legend of UMAP plots 

for  Figure3C-D. B: UMAP plot of HMF metastatic lesions (same as Figure 3D) colored 

by metastatic site. C: In TCGA, for each tumor type, distance between tumors and cell 

lines from similar (blue) and non-similar (orange) tissue.  D: In HMF, for each primary 

tumor type, distance between metastatic sample and cell line from similar and non-

similar tissue of origin. E: In HMF, for each metastatic site, distance between 

metastatic sample and cell line from tissue of origin similar (blue) or dissimilar from 

the metastatic site. 
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Supp Figure 11 Pathway enriched for resistant linear coefficients in GDSC-to-TCGA 
Gemcitabine drug response predictor. 
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