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Abstract

Compensating in classical flow cytometry or unmixing in spectral systems is an

unavoidable challenge in the data analysis of fluorescence-based flow cytometry. In

both cases, spillover coefficients are estimated for each fluorophore using single-color

controls. This approach has remained essentially unchanged since its inception, and

is increasingly limited in its ability to deal with high-parameter flow cytometry.

Here, we present AutoSpill, a novel approach for calculating spillover coefficients

or spectral signatures of fluorophores. The approach combines automated gating of

cells, calculation of an initial spillover matrix based on robust linear regression, and

iterative refinement to reduce error. Moreover, autofluorescence can be compensated

out, by processing it as an endogenous dye in an unstained control. AutoSpill uses

single-color controls and is compatible with common flow cytometry software, but it

differs in two key aspects from current methods: (1) it is much less demanding in the

preparation of controls, as it does not require the presence of well-defined positive

and negative populations, and (2) it does not require manual tuning of the spillover

matrix, as the algorithm iteratively computes the tuning, producing an optimal

compensation matrix. Another algorithm, AutoSpread, complements this approach,

providing a robust estimate of the Spillover Spreading Matrix (SSM), while avoiding

the need for well-defined positive and negative populations. Together, AutoSpill

and AutoSpread provide a superior solution to the problem of fluorophore spillover,

allowing simpler and more robust workflows in high-parameter flow cytometry.
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Introduction

Fluorescently-labeled antibodies and flow cytometry have been the workhorse for single-

cell data generation in many fields of the biosciences since its development in the late ’60s1.

The ability to rapidly collect quantitative data from millions of single cells has driven the

understanding of heterogeneity in complex cellular mixtures, and led to the development

of many fluorescence-based functional assays2–5. The diverse utility of flow cytometry

has driven constant demand for an expansion in the number of parameters to be simul-

taneously measured. Development of novel fluorophores and advances in laser technology

have provided a steady increase in the number of parameters that can be measured on

state-of-the-art machines, roughly doubling each decade since the ’70s (“Roederer’s Law

for Flow Cytometry“)6.

The development from single-color flow cytometry to ultra high-parameter flow cytome-

try has allowed an enormous growth in the data collected per cell. In our own field of

immunology, high-parameter flow cytometry panels have become necessary, with multi-

ple markers required to identify cellular lineages, major subsets, and activation markers.

A key limitation with high-parameter flow cytometry, however, is the spectral overlap

of fluorescent dyes7. This results in the spillover of fluorescence to detectors different

from the detector assigned to each dye (in classical flow cytometry). Removing this un-

wanted spillover, i.e. compensating, is a necessary preliminary step in the data analysis

of multi-color flow cytometry.

State-of-the-art flow cytometers, with ∼30 channels, make compensation increasingly dif-

ficult as the number of channels grows, due to the unavoidable overlap between emission

spectra of fluorescent dyes. The difficulty of experimental design has followed the growth

in fluorophore options, to the point where the development, refinement, and validation

of ultra-high parameter panels can take months to years of expert input4,8–10. Indeed,

the development of mass cytometry as an alternative technology is largely driven by its

lack of spillover11, as otherwise the technology compares unfavorably to flow cytometry
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in several aspects6.

Unlike the extensive development efforts in fluorophore generation, fluidics refinement,

and laser addition, the basis for dealing with spillover in flow cytometry has largely

remained unchanged. Current compensation algorithms are based upon the algorithm for

spillover calculation proposed by Bagwell and Adams, when flow cytometers worked with

only a few fluorophores12. These approaches provide an estimation of the spillover matrix,

in which the degree of spectral spillover between channels is estimated from single-color

controls. A compensation matrix is obtained by inverting the spillover matrix, by which

spillover is compensated out from experimental datasets. While effective in low-parameter

datasets, where spillover is moderate to start with, in the case of high-parameter data this

method often requires manual adjustment before proceeding with downstream analyses.

This manual tuning entails manipulating a matrix with several hundred coefficients, which

can be extremely challenging and time-consuming, thus severely constraining panel design

in practice. In spectral flow cytometry, unmixing is carried out in a different way, but

obtaining the spectral signature of each fluorophore is also based on single-color controls,

and it still requires a similar calculation to estimate the spillover to every detector. In

both cases, these approaches require single-color controls with well-defined positive and

negative populations, which often forces the single-color controls to differ from those of

the actual panel, increasing the complexity of the experiment.

We have developed a new algorithm, AutoSpill, to compensate flow cytometry data.

This approach uses single-color controls, making it compatible with existing datasets

and protocols. Unlike other compensation approaches, however, it calculates spillover

coefficients by means of robust linear models. This method produces better estimation

of spillover coefficients, without requiring well-defined positive and negative populations.

Moreover, AutoSpill uses this improved estimation of the spillover matrix only as the

initial value for an iterative algorithm that automatically refines the spillover matrix

until achieving, for practical purposes, virtually perfect compensation for the given set

of controls. In addition to providing optimal spillover matrices for compensating (or
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unmixing in spectral systems), and given that AutoSpill does not rely on well-defined

positive and negative populations, it can calculate the autofluorescence spectrum of cells

by treating it as an extra endogenous dye. Thus, it allows effective detection and removal

of autofluorescence from experimental data.

A linear modeling approach can equally be used to estimate the increase in fluorescence

noise or spread caused by compensating spillover. Thus, we also propose a second novel al-

gorithm, AutoSpread, which calculates spillover spreading coefficients with linear models,

thereby providing a Spillover Spreading Matrix (SSM) without the need for well-defined

positive and negative populations in the single-color controls.

Together, AutoSpill and AutoSpread remove limiting constraints of traditional compen-

sation methods, easing the preparation of compensation controls in high-parameter flow

cytometry, making errors less likely, and facilitating the practical implementation of ultra

high-parameter flow cytometry. AutoSpill is available through open source code and a

freely-available web service (https://autospill.vib.be). AutoSpill and AutoSpread

are available in FlowJo v.10.7.

Results

Tessellation allows robust gating

A critical first step in the processing of flow cytometry data is the elimination of cel-

lular debris and other non-cellular contamination. This stage is typically performed by

manual or automated gating of particles with the expected size and granularity, based

on forward scatter and side scatter. In order to develop a fully automated pipeline, we

sought to encode this initial cellular gating in the AutoSpill algorithm. After numerous

tests on data provided by collaborating immunologists, we settled on a multi-step process

with two tessellations, which demonstrated the required features of robust cell or bead

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


identification. Figure 1 shows the initial gating for one single-color control of each set

of controls. The multi-step process robustly identified the cellular fractions as desired,

regardless of the presence of high amounts of cellular debris in the HS1 and HS2 datasets

(Fig. 1, second and third column). It also worked correctly with beads (Be1 dataset),

which exhibited substantially different forward-scatter/side-scatter profiles (Fig. 1, fourth

column). For all channels and all datasets, the gate selected the cell/bead population in

the desired density maximum, without needing manual adjustment.

Robust linear regression effectively estimates spillover coefficients

The estimation of spillover coefficients is based on the comparison between the level of

fluorescence detected in the primary channel (i.e. the detector dedicated to the dye or

fluorophore, in classical systems, or the detector with highest signal, in spectral systems)

and the secondary channels (i.e. every other detector). The linear relationship between

the fluorescence levels of primary and secondary channels is not visible in the usual bi-

exponential scale (Fig. 2, first and third column), but it becomes apparent in linear

scale (Fig. 2, second and fourth column). The linear relationship between the primary

and secondary channels shows that the ratio of fluorescence between the two channels

is constant across a broad range of fluorescence levels. Thus, a linear regression can

be used to properly identify the slope between the two channels, that is, the spillover

coefficient. This approach produces a similar result to that achieved by the calculation of

a slope between the median values of the positive and negative populations12, which is the

method usually employed (Fig. 2, first and second column). Notably, however, the use of

linear regression also allows the robust calculation of the slope in cases that the traditional

approach was not designed to deal with: low numbers of positive events (Fig. 2b), without

a well-defined positive population (Fig. 2c), or without well-defined positive and negative

populations (Fig. 2d). The quality of compensation can be evaluated by the difference

between the obtained compensation and the ideal one, with perfectly compensated data

showing an exactly vertical distribution of data along the primary fluorophore (i.e. zero
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slope). While traditional estimation of spillover was successful to some extent in producing

low-error compensation, in particular when distinct positive and negative populations were

present (Fig. 2a, first and second column), errors were identified in particular channels,

especially when populations did not conform to good separation (Fig. 2c, first and second

column). In all cases, linear regression resulted in less compensation error (Fig. 2, third

and fourth column).

Iterative reduction of compensation error yields optimal spillover

coefficients

The spillover coefficients obtained in the first iteration step by robust linear regression

produced low-error estimates of the spillover matrix for all channels (Fig. 3). While this

error level outperformed that of the traditional approach (Fig. 3), some channels exhibited

a degree of overcompensation or undercompensation. While such errors are small, they

nonetheless produce overcompensation or undercompensation noticeable in bi-exponential

scale, which visually amplifies fluorescence levels close to zero. In a high-parameter flow

cytometry panel, with multiple fluorophores present on small subpopulations, such errors

can accumulate to the point of making individual channels effectively unusable. We there-

fore developed an iterative reduction of error, by successively obtaining better spillover

matrices and compensated data. This iterative refinement of the spillover matrix reduced

the compensation errors to negligible values (Fig. 3).

While effective in most cases, this strategy for reducing compensation error can become

compromised when using controls with low fluorescence levels in the primary channel or

other fluorescence artifacts. Under these circumstances, iterations gave rise to oscillations

in the observed compensation errors before reaching convergence (Fig. 3a,c). In order to

deal with these extreme cases, we applied a fraction of the update to the spillover matrix,

slowing down convergence and further decreasing compensation error (Fig. 3a,c).

Overall, the iterative refinement of spillover coefficients was effective at reducing errors in
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compensation. In the four representative datasets reported here, the refinement reduced

error from the initial compensation step in 4–6 orders of magnitude (Fig. 3). This low

error amounts to optimal spillover coefficients and compensation matrices, relative to the

quality of the single-color controls used as input, and therefore it removes a key challenge

to successful compensation in high-dimensional flow cytometry.

Removal of autofluorescence through compensation with an ad-

ditional autofluorescence channel

Cells produce autofluorescence, due to the interaction of the constituent organic molecules

with the incoming photons. The amount of autofluorescence varies between cell types,

and it is, for example, higher on cells from the myeloid lineage13,14. This can create

problems in the analysis of certain flow cytometry datasets. Although the amount of

autofluorescence varies between cell types, the spillover from autofluorescence observed in

an unstained control (Fig. 4a) behaved similarly to the spillover detected from (exogenous)

fluorescent dyes (Fig. 2, first and third column), with the key feature of not having well-

defined positive and negative populations. The capacity of AutoSpill to estimate spillover

coefficients without needing these populations allowed the treatment of autofluorescence as

coming from an endogenous dye, whose single-color control was an unstained control, and

whose fluorescence level was recorded in an extra empty channel assigned to a dummy dye.

We therefore tested the ability of AutoSpill to compensate out autofluorescence, which

was in issue in the HS1 and HS2 datasets. In effect, we were able to use the extra channel

to measure the intensity of autofluorescence and greatly reduce its impact onto the other

channels (Fig.4b,c). Importantly, the empty channel assigned to autofluorescence worked

best when it was the channel with higher level of signal in the unstained control. This way,

the most autofluorescent channel was sacrificed during panel design to enhance resolution

across all the other channels.
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Linear models for estimation of the Spillover Spreading Matrix

Spillover spreading is defined as the incremental increase in standard deviation of fluores-

cent intensity in one parameter caused by the increase in fluorescent intensity of another

parameter. The SSM coefficients can be calculated by comparing the fluorescent inten-

sity in the primary detector to the standard deviation of fluorescence in the secondary

detector, for a pair of positive and negative populations in a single-color control corre-

sponding to the primary detector15. It can also be demonstrated the linearity of this

relationship for different sizes
√

∆F , and that the estimation of each spillover spreading

coefficient is machine-dependent and compensation-matrix-dependent, but is, however,

dataset independent15. Here, we used quantile partitioning and linear regression to esti-

mate the linear relationship observed by Nguyen et al, thereby allowing the inclusion of

events above, below, or in-between the positive and negative populations of the original

approach.

The events of each single-color control were partitioned quantile-wise in the primary de-

tector, and the standard deviation of the level of autofluorescence was estimated, for each

quantile bin, in every secondary detector. Next, two linear regressions were used to esti-

mate, first, the standard deviation at zero fluorescence, and second, the spillover spreading

coefficient. Coefficients deemed non-significant using an F -test were replaced with zeros,

as well as any negative coefficients. The majority of quantiles were, in fact, subsamples of

the traditional positive and negative populations, but the inclusion of additional quantiles

improved the precision of AutoSpread in estimating spillover spreading effects, because

all these events conform to the same linear relationship, assuming that they are on-scale

and in the linear range of the flow cytometer (Fig. 5a). As a result, AutoSpread accu-

rately estimated spillover spreading for datasets whose compensation matrices successfully

orthogonalized the fluorescent signals present in the single-color controls (Fig. 5b).

The adjustment step of AutoSpread (the first regression) was critical. The adjustment

removed the minor quadratic effect caused by σ0 in the initial estimates, thereby allowing
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a more accurate estimation of the coefficients SSP
C . If this adjustment step were skipped,

that is, if the β’s were taken as the spillover spreading coefficients, then spreading effects

would be consistently underestimated. In that case, comparison against the traditional

SSM algorithm would show a clear negative bias (Fig. 5c). Including the adjustment

step eliminated that bias. For datasets whose single-color controls were contaminated

by uncompensated signals (e.g. autofluorescence), both AutoSpread and the traditional

SSM calculation may fail to accurately estimate spillover spreading. Initial gating that

actively eliminates such effects, as well as the use of an extra autofluorescence channel,

can alleviate the problem for both algorithms.

Biological utility of AutoSpill

To demonstrate the biological utility of improving the spillover matrix, we compared

downstream analyses resulting from data compensated with AutoSpill versus the current

traditional compensation algorithm. Analyzing 18- and 28-parameter flow cytometry

datasets (MM3 and MM2, respectively), we identified multiple examples of poor discrim-

ination of well-described immunological populations due to over- and undercompensation

(Fig. 6a). While these errors can readily be identified as compensation errors, AutoSpill

also corrected less obvious downstream analyses. For example, in the 18-parameter MM3

dataset, where we gated for CD4+CD8-CD25+ lymphocytes, the population was 10-fold

lower using traditional compensation algorithms than with AutoSpill, despite similar com-

pensation identified between the CD4, CD8, and CD25 channels (Fig. 6b). Backgating

the missing CD25+ population identified the problem as undercompensation between the

CD25 and CD19 channels, leading to elimination of more than 90% of the CD25+ pop-

ulation during early gating stages (Fig. 6c). Finally, we display two clear examples of

the benefit of autofluorescence reduction, both based on highly autofluorescent myeloid

populations (MM4 & MM5 datasets). First, microglia, a brain-resident macrophage-like

population, are often described as having low expression of MHCII during homeostasis16.

This is a key difference from brain-resident macrophages, with high baseline MHCII ex-
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pression, and determines the ability of the cell to present antigen to CD4 T cells. Using

traditional compensation algorithms, low expression of MHCII was detected on 40% of

microglia. This figure, however, dropped to near 0% when autofluorescence reduction

was added (Fig. 6d), consistent with the complete absence of MHCII expression at the

mRNA level in single cell transcriptome analysis (not shown). We validated the result

by including microglia from MHCII knockout mice, where a similar level of background

MHCII expression was observed (Fig. 6d), demonstrating that autofluorescence reduction

gave the biologically correct outcome. As an independent example, we investigated Foxp3

expression, the key lineage-determining factor of regulatory T cells. Foxp3 expression has

also been reported on various autofluorescent lineages, including thymic epithelium17,

lung epithelium9, tumor cells18 and macrophages19. While expression outside the regula-

tory T cell lineage was later demonstrated to be due to autofluorescence artifacts20–23, the

incorrect reports resulted in research misdirection for several years. Using high dimen-

sional analysis on a Foxp3GFP reporter line and traditional compensation, low expression

of the reporter was detected in 10% of the CD11b+ macrophage population (Fig. 6e).

This expression was almost entirely eliminated through the use of the autofluorescence

correction of AutoSpill, and was validated against wildtype mice, which do not have

a GFP reporter present (Fig. 6e). Together, these practical examples demonstrate the

added value of AutoSpill to flow cytometry analysis.

Discussion

Flow cytometry has been a revolutionary force in single-cell analysis. The ability to

rapidly analyze protein expression of millions of cells at single-cell level, coupled with the

purification capacity of fluorescence-activated cell sorting, has provided a remarkable tool

for understanding cellular heterogeneity and function. Initial limitations were overcome

through ingenious technical developments: the number of fluorescent parameters were

expanded through the development of new dyes and lasers, intracellular staining protocols

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


were optimized for the detection of intracellular (and even post-translationally modified)

proteins, RNAflow techniques allowed measurement at the RNA level24, and numerous

non-antibody-based dyes were able to detect processes from redox potential25 to organelle

content and status26. The very utility of the technique has pushed flow cytometry to its

technical barrier —the desire to measure everything on every cell has driven up the number

of parameters that can be distinctly measured. The constraints imposed by overlapping

fluorescent spectra are arguably the largest limit to the potential of flow cytometry, yet

progress in the mathematical underpinnings of the analysis have substantially lagged

behind the advances in the chemical and physical bases of the technology.

Newer single-cell technologies, most notably mass cytometry and single-cell RNA-Seq, do

not have the spillover issues of flow cytometry. Mass cytometry is a direct competitor

to flow cytometry, also primarily utilizing antibody-based detection of single-cell expres-

sion27. As the heavy metal labels do not overlap, mass cytometry panels can be built up

in an modular manner, without the same design constraints required for flow cytometry28.

While spectral flow cytometry and mass cytometry can readily run more than 40 param-

eters, classical flow cytometry experiments struggle to use more than 30 parameters, due

to the challenge of distinguishing signals from each dye or fluorophore. Nonetheless, flow

cytometry has major advantages over mass cytometry, most notably the speed of data

acquisition (around 50-fold more rapid data collection) and the ability to sort live cells.

The other main competitor to flow cytometry is single-cell RNA-Seq27. While initially

limited to measurement of RNA content in a semi-quantitative manner, the advent of

barcoded antibodies in protocols such as CITE-Seq29 and Abseq30 provided data directly

comparable to that of flow cytometry. As barcoding approaches have no practical limit

concerning compensation issues, they can compete with flow cytometry. Even in this

case, however, flow cytometry has distinct technological advantages. In addition to the

previously mentioned advantage of live-cell sorting, flow cytometry produces data at an

unparalleled speed, with more than 106 cells measured per minute, and with a data for-

mat enabling immediate analysis. In terms of price, current flow cytometry assays are
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several orders of magnitude cheaper than RNA-Seq, with costs on the order of 10 USD

per 106 cells27. Flow cytometry is therefore very much a living technology, with important

advantages over competitor technologies and limited only by the parameter barrier.

We have presented here a novel compensation method, which greatly reduces compensa-

tion error and expands the possible number of parameters in flow cytometry experiments.

The use of robust linear regression and iterative refinement allows the calculation of

spillover matrices without the need for using controls with well-defined positive and nega-

tive populations, thus permitting the use of the actual panel antibodies for the controls in

many experiments. This method can be applied to any flow panel from 4–6 fluorophores

up to multi-color staining sets with more than 30 fluorescent dyes. Given that the typi-

cal number of gated events in single-color controls is at least in the order of thousands,

the amount of data points available enables this approach to reduce compensation errors

to such small values that the resulting compensation is, in practical terms, functionally

perfect for the given set of single-color controls. On the other hand, the method needs

some level of fluorescence in the primary channel for each control (or at least in one of

the detectors for spectral systems), to be able to regress the spillover coefficients.

An added feature of AutoSpill is the ability to compensate out autofluorescence. Although

some methods have been proposed31–33, typically it is not possible to remove autofluores-

cence, with the exception of some spectral systems34,35. By default, AutoSpill does not

use an unstained control, but it can be included and assigned to an extra unused channel

in the flow cytometer. Data collected in this extra channel can be treated as coming from

an endogenous fluorescent dye, which results in the inclusion of autofluorescence levels in

the calculation of spillover coefficients and ensuing compensation. This optional approach

is recommended when there are non-negligible levels of autofluorescence in one or several

channels (as observed from an unstained control), and one of those high-autofluorescence

channels is not used in the design of the panel. As autofluorescence can be increased by

physiological and cellular processes13,36, the ability to compensate out autofluorescence

can remove distortions appearing as false positives, where cellular changes are mistakenly
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identified as altered expression of a marker, while the signal is in fact caused by autofluo-

rescence. This approach will be of particular utility in the study of cell populations with

high intrinsic autofluorescence, such as myeloid-lineage cells13,14 or tumor cells37,38.

AutoSpill focuses on a better estimation of the spillover coefficients, rather than how

these coefficients are used to compensate. This distinction is important for spectral flow

cytometers39, because for those systems different algorithms have been proposed for un-

mixing40,41, and most of them use single-color controls to estimate the emission spectra

of dyes. Each of these spectra is no different from a collection of spillover coefficients,

one per channel or detector in the spectral system. In this sense, the method proposed

here is equally applicable for a better estimation of the spillover coefficients, that is, of

the spectral signatures of dyes in these systems.

In comparison with previous compensation methods, which do not guarantee an upper

bound on the compensation error, AutoSpill provides a spillover matrix with such a guar-

antee, given a set of controls. Therefore, it is possible now to address a new question: To

which extent a set of single-color controls is sufficient to ensure proper compensation of

data obtained with a complete panel, that is, not just for the set of controls. In our expe-

rience, some panels still require minor modifications of the spillover matrix, which implies

that the single-color controls do not fully describe the fluorescence properties of the com-

plete panel, probably because of second-order phenomena such as secondary fluorescence

or other interactions between dyes. Thus, this remains an open question.

While we demonstrate the utility of this method using eight representative datasets, the

tool has been beta-tested more than 1,000 times over a period of 22 months by more

than 100 collaborating immunologists. This has allowed the development of a robust

algorithm, designed to accommodate diverse datasets and to deal with less-than-perfect

data arising in real-world experiments. The code is open source and is released with

a permissive license, allowing integration into existing flow cytometry analysis pipelines

in academia and industry. To increase access by research communities in immunology
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and other fields, we also provide a website (https://autospill.vib.be) that allows the

upload of sets of single-color controls for calculating the spillover matrix with AutoSpill,

produced in formats compatible with common software for flow cytometry analysis. As

we have demonstrated by including AutoSpill in FlowJo v.10.7, this algorithm is suitable

for integration into commercial software, allowing for rapid and widespread uptake of

superior flow cytometry compensation.

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Herzenberg, L. A. et al. The history and future of the Fluorescence Activated Cell

Sorter and flow cytometry: A view from Stanford. Clinical Chemistry 48, 1819–1827

(2002).

[2] O’Gorman, M. R. Clinically relevant functional flow cytometry assays. Clinics in

laboratory medicine 21, 779–94 (2001).

[3] Krutzik, P. O. & Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows

high-throughput drug screening and signaling profiling. Nature Methods 3, 361–368

(2006).

[4] Maciorowski, Z., Chattopadhyay, P. K. & Jain, P. Basic Multicolor Flow Cytometry.

Current Protocols in Immunology 117, 5.4.1–5.4.38 (2017).

[5] Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in

immunological studies (second edition). European Journal of Immunology 49, 1457–

1973 (2019).

[6] Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler’s

guide to cytometry. Trends in Immunology 33, 323–332 (2012).

[7] Roederer, M. Spectral compensation for flow cytometry: Visualization artifacts,

limitations, and caveats. Cytometry 45, 194–205 (2001).

[8] Carr, E. J. et al. The cellular composition of the human immune system is shaped

by age and cohabitation. Nature Immunology 17, 461–468 (2016).

[9] Mair, F. & Prlic, M. OMIP044: 28color immunophenotyping of the human dendritic

cell compartment. Cytometry Part A 93, 402–405 (2018).

[10] Brummelman, J. et al. Development, application and computational analysis of

high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nature

Protocols 14, 1946–1969 (2019).

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


[11] Bandura, D. R. et al. Mass cytometry: Technique for real time single cell multitarget

immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

Analytical Chemistry 81, 6813–6822 (2009).

[12] Bagwell, C. B. & Adams, E. G. Fluorescence spectral overlap compensation for any

number of flow cytometry parameters. Annals of the New York Academy of Sciences

677, 167–84 (1993).

[13] Mitchell, A. J. et al. Technical Advance: Autofluorescence as a tool for myeloid cell

analysis. Journal of Leukocyte Biology 88, 597–603 (2010).

[14] Vermaelen, K. & Pauwels, R. Accurate and simple discrimination of mouse pul-

monary dendritic cell and macrophage populations by flow cytometry: Methodology

and new insights. Cytometry Part A 61, 170–177 (2004).

[15] Nguyen, R., Perfetto, S., Mahnke, Y. D., Chattopadhyay, P. & Roederer, M. Quan-

tifying spillover spreading for comparing instrument performance and aiding in mul-

ticolor panel design. Cytometry Part A 83A, 306–315 (2013).

[16] Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease.

Nature Reviews Immunolology 18, 225–242 (2018).

[17] Chang, X. et al. The Scurfy mutation of FoxP3 in the thymus stroma leads to

defective thymopoiesis. Journal of Experimental Medicine 202, 1141–1151 (2005).

[18] Zuo, T. et al. FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Im-

portant Repressor of the HER-2/ErbB2 Oncogene. Cell 129, 1275–1286 (2007).

[19] Manrique, S. Z. et al. Foxp3-positive macrophages display immunosuppressive prop-

erties and promote tumor growth. Journal of Experimental Medicine 208, 1485–1499

(2011).

[20] Liston, A. et al. Lack of Foxp3 function and expression in the thymic epithelium.

Journal of Experimental Medicine 204, 475–480 (2007).

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


[21] Li, F. et al. Autofluorescence contributes to false-positive intracellular Foxp3 staining

in macrophages: A lesson learned from flow cytometry. Journal of Immunological

Methods 386, 101–107 (2012).

[22] Kim, J. et al. Cutting Edge: Depletion of Foxp3 + Cells Leads to Induction of

Autoimmunity by Specific Ablation of Regulatory T Cells in Genetically Targeted

Mice . The Journal of Immunology 183, 7631–7634 (2009).

[23] Put, S. et al. Macrophages have no lineage history of Foxp3 expression. Blood 119,

1316–1318 (2012).

[24] Hanley, M. B., Lomas, W., Mittar, D., Maino, V. & Park, E. Detection of Low

Abundance RNA Molecules in Individual Cells by Flow Cytometry. PLoS ONE 8

(2013).

[25] Li, R., Jen, N., Yu, F. & Hsiai, T. K. Assessing mitochondrial redox status by flow

cytometric methods: Vascular response to fluid shear stress. Current Protocols in

Cytometry 58, 9.37.1–9.37.14 (2011).

[26] Poot, M., Gibson, L. L. & Singer, V. L. Detection of apoptosis in live cells by Mito-

Tracken(TM) red CMXRos and SYTO dye flow cytometry. Cytometry 27, 358–364

(1997).

[27] Chattopadhyay, P. K., Winters, A. F., Lomas, W. E., Laino, A. S. & Woods, D. M.

High-Parameter Single-Cell Analysis. Annual Review of Analytical Chemistry 12,

411–430 (2019).

[28] Spitzer, M. H. & Nolan, G. P. Mass Cytometry: Single Cells, Many Features. Cell

165, 780–791 (2016).

[29] Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single

cells. Nature Methods 14, 865–868 (2017).

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


[30] Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq:

Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.

Scientific Reports 7 (2017).

[31] Roederer, M. & Murphy, R. F. Cellbycell autofluorescence correction for low

signaltonoise systems: Application to epidermal growth factor endocytosis by 3T3

fibroblasts. Cytometry 7, 558–565 (1986).

[32] Alberti, S., Parks, D. R. & Herzenberg, L. A. A single laser method for subtraction

of cell autofluorescence in flow cytometry. Cytometry 8, 114–119 (1987).

[33] Roederer, M. Distributions of autofluorescence after compensation: Be panglossian,

fret not. Cytometry Part A 89, 398–402 (2016).

[34] Nitta, N., Veltri, G. & Dessing, M. Method and theory of the autofluorescence

unmixing in sp6800 spectral cell analyzer. Tech. Rep., Sony Corporation (2015).

[35] Schmutz, S., Valente, M., Cumano, A. & Novault, S. Spectral cytometry has unique

properties allowing multicolor analysis of cell suspensions isolated from solid tissues.

PLoS ONE 11 (2016).

[36] Surre, J. et al. Strong increase in the autofluorescence of cells signals struggle for

survival. Scientific Reports 8 (2018).

[37] Smith, C. A., Pollice, A., Emlet, D. & Shackney, S. E. A simple correction for

cell autofluorescence for multiparameter cell-based analysis of human solid tumors.

Cytometry Part B - Clinical Cytometry 70, 91–103 (2006).

[38] Pantanelli, S. M. et al. Differentiation of malignant B-lymphoma cells from normal

and activated T-cell populations by their intrinsic autofluorescence. Cancer Research

69, 4911–4917 (2009).

[39] Nolan, J. P. & Condello, D. Spectral flow cytometry. Current Protocols in Cytometry

63, 1.27.1–1.27.13 (2013).

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Methods

Datasets

Collaborating immunologists beta-tested AutoSpill over a period of 22 months, which

allowed extensive testing and improvement of the algorithm for niche cases. Among these

datasets, four are used as examples here, covering mouse cells, human cells, and beads.

Compensation using AutoSpill, with default parameters, was carried out for each of these

four sets of single-color controls: mouse splenocytes (MM1 dataset), human PBMCs (HS1

& HS2 datasets), and beads (Be1 dataset). We also analyzed four fully stained datasets,

as examples of biological utility: mouse splenocytes (MM2 & MM3 datasets), and mouse

microglia (MM4 & MM5 datasets).

Be1 dataset, beads

UltraComp eBeads� Compensation Beads (Thermofisher) were used to optimize fluo-

rescence compensation settings for multi-color flow cytometric analysis at a Symphony

flow cytometer. UltraComp eBeads� were stained with the following fluorochrome-labeled

anti-human antibodies: anti-CD8–BUV805, anti-CD4–BUV496, anti-CD86–BUV737, anti-

CD141–BUV615-P, anti-CD56–BUV563, anti-CD16–BUV395, anti-CD123–BB660-P, anti-

CD80–BB630, anti-CD21–BV785, anti-CD27–BV750-P, anti-BAFF-R–BV650, anti-CD94–

BV605, anti-CD40–APC-R700 (all BD bioscience); anti-CD3–PerCP-Vio700 (Miltenyi

Biotec); anti-CD57–FITC, anti-CD14–PE-Cy5.5, fixable viability dye eFluor780 (all eBio-

science); anti-CD24–BV711, anti-CD19–BV480, anti-HLA-DR–BV570, anti-IgM–BV421,

anti-CD11c–APC, anti-CD38–PE/Dazzle 594, anti-CD10–PE-Cy5, anti-IgD–PE-Cy7 (all

BioLegend).
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HS1 dataset, human PBMCs

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood samples

of human healthy donors using Ficoll-Paque density centrifugation (MP biomedicals),

frozen and then stored in liquid nitrogen. Frozen PBMCs were thawed and counted,

and cell concentration was adjusted to 1 × 106 for each single-color control. Cells were

plated in a V-bottom 96-well plate, washed once with PBS (Fisher Scientific) and stained

with live/dead marker and fluorochrome-conjugated antibodies against surface markers:

anti-CD8–BUV805, anti-CD4–BUV496, anti-CD95–BUV737, anti-CD4–BUV615-P, anti-

CD28–BB660-P, anti-CD4–BB630, anti-CD4–BV750-P, anti-CD31–BV480, anti-CXCR5–

BV650, anti-CD4–PE, anti-CD4–PE-Cy5 (all BD Biosciences); anti-CD3–PerCP-Vio700

(Miltenyi Biotec); anti-CD3–FITC, anti-CD4–PE-Cy5.5, anti-CCR7–PE-Cy7, anti-CD4–

eFluor780 (all eBioscience); anti-CD4–BV786, anti-CD4–BV711, anti-CD4–BV605, anti-

HLA-DR–BV570, anti-CD127–BV421, anti-CD4–PE/Dazzle 594, anti-CD4–AF647 (all

BioLegend).

Samples were stained for 60 min at 4◦C, washed twice in PBS/1% FBS (Tico Europe),

and then fixed and permeabilized with Foxp3 Transcription Factor Staining Buffer Set

(eBioscience), according to manufacturers instructions. Cells were stored overnight at

4◦C and were then acquired on a Symphony flow cytometer with Diva software (BD

Biosciences). A minimum of 5× 104 events were acquired for each sample.

HS2 dataset, human PBMCs

Frozen PBMCs from human healthy donors were processed as for the HS1 datasset

and stained with live/dead marker and fluorochrome-conjugated antibodies against the

following surface markers: anti-CD8–BUV805, anti-CD4–BUV496, anti-CD95–BUV737,

anti-CD28–BB660-P, anti-ICOS–BB630, anti-CXCR3–BV785, anti-PD-1–BV750-P, anti-

CXCR5–BV650, anti-CCR2–BV605, (all BD Biosciences); anti-CD3–PerCP-Vio700 (Mil-
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tenyi Biotec); anti-CD45RA–FITC, anti-CD14–PE-Cy5.5, fixable viability dye eFluor780

(all eBioscience); anti-CD25–BV711, anti-CD31–BV480, anti-HLA-DR–BV570, anti-CD127–

BV421, anti-CCR4–PE/Dazzle 594, anti-CCR7–PE-Cy7 (all BioLegend).

Samples were stained for 60 min at 4◦C, washed twice in PBS/1% FBS (Tico Europe),

and then fixed and permeabilized with Foxp3 Transcription Factor Staining Buffer Set

(eBioscience), according to manufacturers instructions. Cells were stained overnight at

4◦C with anti-Ki67–BUV615-P, anti-CTLA-4–PE-Cy5, anti-RORγt–PE (BD Biosciences)

and anti-FOXP3–AF647 (BioLegend) anti-human intracellular antibody. Samples were

acquired on a Symphony flow cytometer (BD Biosciences).

MM1 dataset, mouse splenocytes

Splenocytes from C57Bl/6 mice were disrupted with glass slides, filtered through 100 µm

mesh, and red blood cells lysed. Cells were fixed and permeabilized with Foxp3 Transcrip-

tion Factor Staining Buffer Set (eBioscience) according to the manufacturer’s instructions,

and stained overnight at 4◦C with Fixable Viability Dye eFluor780 (eBioscience) or the

following antibodies: anti-CD4–BV421, anti-CD24–BV510, anti-CD3–BV570, anti-CD4–

BV605, anti-CD3–BV650, anti-CD4–BV711, anti-CD4–BV785, anti-CD3–AF488/anti-

CD4–AF488/anti-TCRβ–AF488, anti-CD4–PerCP-Cy5.5, anti-CD4–PE-594, anti-CD8–

PE-Cy7, anti-MHC-II–AF700 (all Biolegend), anti-CD19–BV750, anti-CD3–BB630-P/anti-

Thy1.2–BB630-P, anti-CD45.2–BB660-P2/anti-CD3–BB660-P2, anti-TCRβ–BB790-P, anti-

CD4–BUV395, anti-IgD–BUV496, anti-CD3–BUV563, anti-CD3–BUV615-P, anti-CD19–

BUV661, anti-CD21–BUV737, anti-CD8–BUV805 (all BD Biosciences), anti-CD4–PE/anti-

CD3–PE/anti-CD8–PE, anti-IgM–PE-Cy5, anti-CD3–PE-Cy5.5 or anti-CD4–APC (all

eBioscience). For some fluorophores, multiple antibodies were used in the same compen-

sation control, which is indicated by slashes. Samples were acquired on a Symphony flow

cytometer (BD Biosciences).
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MM2 dataset, mouse splenocytes

Splenocytes from C57Bl/6 mice were disrupted with glass slides, filtered through 100 µm

mesh, and red blood cells lysed. Cells were stained with Fixable Viability Dye eFluor780

(eBioscience), fixed and permeabilized with Foxp3 Transcription Factor Staining Buffer

Set (eBioscience) according to the manufacturer’s instructions, and stained overnight

at 4◦C with the following antibodies: anti-CD4–BV421, anti-CD24–BV510, anti-Ly6G–

BV570, anti-XCR1–BV650, anti-CD19–BV785, anti-CD3–AF488, anti-PDCA-1–PerCP-

Cy5.5, anti-CD23–PE, anti-CD64–PE-594, anti-CD172a–PE-Cy7, anti-CD45–APC, anti-

MHCII–AF700 (all Biolegend), anti-IgE–BV605, anti-CD93–BV711, anti-CD11b–BV750,

anti-CD80–BB630-P, anti-CD95–BB660-P2, anti-TCRβ–BB790-P, anti-CD103–BUV395,

anti-IgD–BUV496, anti-Ly6C–BUV563, anti-Siglec F–BUV615-P, anti-c-Kit–BUV661, anti-

CD21/35–BUV737, anti-CD8a–BUV805 (all BD Biosciences), anti-IgM–PE-Cy5 and anti-

NK1.1–PECy5.5 (eBioscience). Compensation controls were stained as described in the

MM1 dataset. Samples were acquired on a Symphony flow cytometer (BD Biosciences).

MM3 dataset, mouse splenocytes

Splenocytes from C57Bl/6 mice were disrupted with glass slides, filtered through 100 µm

mesh, and red blood cells lysed. Cells were stained with Fixable Viability Dye eFluor780

(eBioscience), anti-CD90.2–BV510, anti-CD25–BV650, anti-CD45–BUV395 (all Biole-

gend), anti-CD127–PE and anti-B220–PE-Cy5 (all eBioscience). Cells were fixed and per-

meabilized with Foxp3 Transcription Factor Staining Buffer Set (eBioscience) according

to the manufacturer’s instructions, and stained overnight at 4◦C with the following anti-

bodies: anti-T-bet–BV421, anti-CD8–BV785, anti-NKp46–FITC, anti-NK1.1–PE-Cy5.5,

anti-MHCII–AF700 (all Biolegend), anti-CD11b–eFluor450, anti-GATA3–PE-Cy7, anti-

CD3–biotin, anti-RORt–APC (all eBioscience), anti-TCRβ–BB790-P, anti-CD4–BUV496

and anti-CD19–BUV661 (all BD Biosciences). Antibodies used for compensation con-

trols were anti-CD25–BV421, anti-CD44–BV510, anti-CD3–BV650, anti-CD8–BV785,
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anti-NK1.1–PE-Cy5.5, anti-MHCII–AF700 (all Biolegend), anti-CD11b–eFluor450, anti-

TCRβ–FITC, anti-B220–PE-Cy5, anti-CD23–PE-Cy7, anti-CD8–biotin, anti-Foxp3–APC,

anti-CD69–PE (all eBioscience), anti-TCRβ–BB790-P, anti-CD103–BUV395, anti-CD4–

BUV496 and anti-CD19–BUV661 (all BD Biosciences). Streptavidin AF350 (Invitrogen)

was used to identify biotinylated antibody. Samples were acquired on a Yeti/ZE5 flow

cytometer (Propel Labs/BioRad).

MM4 dataset, mouse microglia

MHCII knockout mice42 were used on the B6 background. Leukocytes and microglia were

extracted from mouse brains by chopping with a razor blade, digest in 0.4mg/ml collage-

nase D (Sigma-Aldrich) and separation over 40% Percoll (GE Healthcare). Microglia were

stained with anti-MHCII–FITC (clone M5/114.15.2, eBioscience), anti-CD11b–PE-Cy7

(clone M1/70, eBioscience), anti-CD45–APC (clone 30-F11, eBioscience), anti-CD4–PE-

Dazzle594 (clone GK1.5, BioLegend) and fixable viability dye eFluor780 (eBioscience).

MM5 dataset, mouse microglia

Foxp3DTR−GFP mice43 were used on the B6 background. Leukocytes and microglia were

extracted from mouse brains by chopping with a razor blade, digest in 0.4mg/ml collage-

nase D (Sigma-Aldrich) and separation over 40% Percoll (GE Healthcare). Microglia were

stained with anti-MHCII–FITC (clone M5/114.15.2, eBioscience), anti-CD11b–PE-Cy7

(clone M1/70, eBioscience), anti-CD45–APC (clone 30-F11, eBioscience), anti-CD4–PE-

Dazzle594 (clone GK1.5, BioLegend) and fixable viability dye eFluor780 (eBioscience).
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General implementation details of AutoSpill

AutoSpill was implemented in R v.3.6.3, using the packages flowCore v.1.52.1, flow-

Workspace v.3.34.1, ggplot2 v.3.3.2, moments v.0.14, and RColorBrewer v.1.1-2. Further

details on packages specific to particular steps of the algorithm are listed below.

Initial gating

The initial gate was calculated independently for each control, over the 2d-density of

events on forward and side scatter (FSC-A and SSC-A parameters). To robustly detect the

population of interest, two tessellations were successively carried out to isolate the desired

density peak. First, data was trimmed on extreme values (1% and 99%). Then, maxima

were located numerically by a moving average (window size 3) on a soft estimation of the

2d-density (bandwidth factor 3). The first tessellation was carried out on these density

maxima, and the tile corresponding to the highest maximum was selected, ignoring peaks

with lower values of both FSC-A and SSC-A (less than 5% of range). A rectangular region

in the FSC-A/SSC-A-plane was chosen by using the median and 3× the mean absolute

deviation of the events contained in the selected tile. A second, finer 2d-density estimation

(bandwidth factor 2) was obtained on this region, followed again by numerical detection

of maxima (window size 2) and tessellation by the maxima. A final 2d-density estimation

(bandwidth factor 1) was obtained on the tile containing the highest maximum, with the

gate being defined as the convex hull enclosing the points that belonged to this tile and

had a density larger than a threshold (33% of range).

Tessellations were carried out with package deldir v.0.1-28, density estimations with pack-

ages MASS v.7.3-51.6, surface interpolations with package fields v.10.3, and spatial oper-

ations with packages sp v.1.4-2 and tripack v.1.3-9.
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Robust linear models for estimation of spillover coefficients

The linearity of the quantum mechanical nature of photons implies that the ratio between

the average fluorescence level (that is, the average number of photons) detected in any two

detectors and from any dye is equal to the ratio between the corresponding values of the

emission spectrum of the dye, regardless of the level of fluorescence. As the value of the

spillover coefficient for the primary channel (the channel assigned to the dye in the single-

color control, in classical systems) is usually normalized to one, the spillover coefficient of

every secondary channel is equal to the fluorescence ratio above. This implies that each

spillover coefficient can be directly read from the slope of a linear regression considering

the fluorescence in the primary channel as the independent variable and the fluorescence

in the secondary channel as the dependent variable (that is, with x and y swapped for

the usual representation of single-color controls when compensating). Thus, absence of

spillover corresponds to a zero slope in this regression, that is, to the vertical direction

in the usual plot were the primary channel is displayed in the y-axis. To protect the

algorithm against distortions in the data, specially those coming from autofluorescence

issues, robust linear regression was used, giving lower weights to events farther away from

the estimated regression line. Robust linear models were implemented with the package

MASS v.7.3-51.6, with default parameters.

Refinement of spillover matrix

After the first iteration of the algorithm, applying on compensated data the same kind of

calculation used for the spillover coefficients, on channels in classical systems or on dyes

in spectral systems, would produce zero values with perfect compensation, corresponding

to perfectly vertical compensation plots. Otherwise, errors in compensation would yield

non-zero values reflecting residual spillover. Overcompensated data would amount to

excessively negative values in the secondary channel/dye, corresponding to a negative

slope. Similarly, undercompensation would produce excessively positive values in the

28

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.06.29.177196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177196
http://creativecommons.org/licenses/by-nc-nd/4.0/


secondary channel/dye, corresponding to a positive slope.

Observed errors in compensation arise from errors in the estimation of the spillover coeffi-

cients. Crucially, it can be proved that, for the average event at any level of fluorescence,

the error matrix T in the calculation of the spillover matrix S can be calculated from the

observed compensation errors E as:

T = −EU , (1)

U = S + T being the (erroneous) spillover matrix used to compensate the data (see

below).

By successively applying equation Eq. (1), that is, by iteratively refining the spillover

matrix and recalculating the compensation, errors in the spillover matrix and errors in

compensation can be reduced to a negligible magnitude. The algorithm starts working in

linear scale, and switches to bi-exponential scale when the maximum compensation error

across all single-color controls is less than a threshold fixed a priori (10−2). To be used

in Eq. (1), compensation errors obtained in bi-exponential scale are transformed back to

linear scale, by using the two points in the regression line with extreme values in the

primary channel. Iterations stop near convergence of the algorithm, when the maximum

compensation error across all single-color controls is less than a threshold of 10−4.

While effective in most cases, this strategy for reducing compensation error can become

compromised when using controls with low fluorescence levels in the primary channel or

other fluorescence artifacts. In these situations, iterations can give rise to oscillations

in the observed compensation errors before reaching convergence. To deal with these

extreme cases, oscillations are detected by a moving average (size 10, initial value 1) of

the decrease in the standard deviation of spillover errors. When this moving average gets

below a threshold of 10−6, a fraction (10%) of the update to the spillover matrix is applied

in Eq. (1), slowing down convergence and further decreasing compensation error.
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Spillover error

In a flow cytometry system with c channels, let us consider the spillover matrix for a

set of d single-color controls, that is for d dyes, with d ≤ c. We concentrate on the dye

i = 1 . . . d during the following argument.

For any event in the flow cytometer, we have the following two row vectors: the true

event data x, with length d, and the observed event data y, with length c. On average for

any level of fluorescence, true and observed events are related linearly through the d× c

spillover matrix S, according to

xS = y. (2)

Classical flow cytometry systems have c = d, and compensation is usually achieved by

inverting the spillover matrix S and multiplying by the observed data y. Spectral systems

feature c > d, and compensation is usually called unmixing and is not unequivocally

defined, because Eq. (2) produces an overspecified system of equations. In the following,

and for simplicity, we refer to unmixing in spectral systems also as compensation.

Independently of the compensation method used, when the spillover matrix S is estimated

as U = S+T, thus with some error T, it unavoidably gives rise to incorrectly compensated

data x + p, which verifies, on average,

(x + p)(S + T) = y. (3)

Therefore,

xT = −pU. (4)

The vectors x and p, and the matrices S, T, and U, have the following properties:

� Because x represents the true value of events in the single-color control for dye i,

then xi > 0 and xj = 0, for all j 6= i.
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� The i-th row of the spillover matrix S is normalized with 1 = Sir ≥ Sis ≥ 0, for

some r = 1 . . . c and every s 6= r.

� The row normalization of S implies that the true value of the dye in the control, xi,

can always be obtained from the observed value yr, as Eq. (2) implies yr = xiSir = xi.

Therefore, pi = 0, irrespective of errors in the estimation of the spillover matrix.

� Also because of the row normalization of the spillover matrix, the estimation of the

spillover coefficient Sir = 1 will always be exact, i.e. Uir = 1 and Tir = 0, irrespective

of errors in the estimation of the spillover matrix.

Let us consider now the LHS of Eq. (4), i.e. the row vector xT. Its s-th coefficient, for

any s = 1 . . . c, equals

(xT)s =
d∑

j=1

xjTjs = xiTis. (5)

Note that (xT)r = 0 .

Let us consider the RHS of Eq. (4), i.e. the row vector −pU. Its s-th coefficient, for any

s = 1 . . . c, equals

(−pU)s = −
d∑

j=1

pjUjs. (6)

Note that the summation term piUis = 0.

Equations (4)–(6) imply that, for any s = 1 . . . c,

Tis = −
d∑

j=1

pj
xi
Ujs. (7)

The ratio pj/xi can be considered as the compensation error for the average event, cor-

responding to a spurious signal assigned to dye j, caused by incorrectly compensated

spillover from dye i. Equation (3) implies that the ratio pj/xi is invariant w.r.t. the level

of fluorescence, and thus it can be estimated by regressing pj vs xi.
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Let us define the compensation error matrix E as the d× d matrix with coefficients

Eij =
pj
xi
. (8)

Note that Eii = 0. We can then rewrite Eq. (7) as

Tis = −
d∑

j=1

EijUjs = −E(i, ∗) U(∗, s), (9)

for any s = 1 . . . c.

In summary, Eq. (9) allows to calculate the i-th row of the spillover error matrix T. By

repeating the same argument for every dye, we can obtain all the rows i = 1 . . . d, and

thus the complete matrix as

T = −EU. (10)

Refinement of the spillover matrix

The algorithm calculates a first approximation to the spillover matrix, and then it refines

it iteratively by successively applying Eq. (10). As before, we refer to unmixing in spectral

systems as compensation.

Input: Collection of d single-color controls (one per dye) {Yi}, i = 1 . . . d, each one being

a matrix with ni rows (events) and c columns (channels), c ≥ d.

Output: Spillover matrix S, a matrix with d rows (dyes) and c columns (channels), and

the collection of compensated controls {Xi}, i = 1 . . . d, each one being a matrix with ni

rows (events) and d columns (dyes).

Parameters: Upper bound ε in the compensation error required to achieve convergence.

Algorithm:
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1. For each single-color control Yi, i = 1 . . . d,

For each channel j = 1 . . . c, j 6= hi, hi being the channel with highest signal for dye i,

Calculate robust linear model Yi(∗, j) ∼ Yi(∗, hi) and obtain slope s
(0)
ij .

2. Build initial spillover matrix S(0) as

S(0)(i, j) =


1 if i = hi,

s
(0)
ij if i 6= hi.

3. Obtain initially compensated controls {X(0)
i }, by applying the algorithm of choice with S(0)

on the controls {Yi}.

4. Refine spillover matrix S(t) and compensated controls {X(t)
i },

obtaining spillover matrix S(t+1) and compensated controls {X(t+1)
i },

until convergence.

4.1. For each compensated single-color control X
(t)
i , i = 1 . . . d,

For each other dye j = 1 . . . d, j 6= i,

Calculate robust linear model X
(t)
i (∗, j) ∼ X

(t)
i (∗, i)

and obtain slope e
(t)
ij .

4.2. Build matrix of compensation errors E(t) as

E(t)(i, j) =


0 if i = j,

e
(t)
ij if i 6= j.

4.3. Calculate non-normalized spillover matrix Ŝ(t+1) = S(t) + E(t)S(t).

4.4. Calculate normalized spillover matrix S(t+1) by rows, as

S(t+1)(i, ∗) = Ŝ(t+1)(i, ∗)/Ŝ(t+1)(i, i).

4.5. Obtain compensated controls {X(t+1)
i }, by applying the algorithm of choice

with S(t+1) on the initial controls {Yi}.

4.6. Convergence is attained when ||E(t)|| < ε.
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5. At convergence, t∗ being the last iteration, obtain final spillover matrix and compensated

controls as

S = S(t∗),

Xi = X
(t∗)
i , i = 1 . . . d.

Linear models for estimation of SSM

Successful compensation equilibrates around zero the fluorescence levels in all secondary

channels, but with the cost of introducing undesirable variance or spread in those channels.

Again for quantum mechanical reasons, the spread in fluorescence for any (compensated

or uncompensated) channel/dye grows linearly with the fluorescence level, and therefore

the coefficients of the SSM can be estimated with linear regression.

We start with the formula for an SSM coefficient SSP
C , which characterizes the incremental

standard deviation induced in parameter C by the spillover from parameter P 15,

SSP
C =

√
σ2
positive − σ2

negative√
Fpositive − Fnegative

, (11)

where σpositive and σnegative are the standard deviations in C-fluorescence in a positive and

negative population, respectively, and Fpositive−Fnegative is the difference in P -fluorescence

intensity between them. While the traditional algorithm estimates the above quantities

using medians and robust standard deviations of fluorescence in the positive and negative

populations, we will, for the sake of linear regression, let our negative be the theoretical

quantity when P -fluorescence (F ) is equal to zero, while the standard deviation is an

unknown quantity, which we call σ0. This gives us the following equation relating F to

σ, which is suitable for estimating σ0 by linear regression:

σ =
√
F β + σ0 . (12)
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Notice that the slope β is not equal to the spillover spreading coefficient SSP
C , except in

the unique case where σ0 equals zero. We thus proceed with the estimation of σ0 as the

first step of AutoSpread.

To supply data for the regression, we partition the events of the single-color control for

parameter P by quantile. For controls with a large number of events, we use 256 quantiles,

but we allow as few as 8 to ensure enough events in each quantile to estimate standard

deviation reliably. For each other parameter C, we calculate in each quantile the robust

standard deviation of fluorescence (the 84th percentile minus the median) as the estimate

of σ, and the median fluorescence as the estimate of F . The F values may be negative

and/or close to zero, so they are passed through a square-root-like transform defined by

f√ (x) = sign(x) (
√
|x|+ 1 − 1) prior to regression, instead of the simple square root

function. The resulting regression provides an estimate of σ0.

Using the estimate of σ0, AutoSpread calculates for each quantile the estimate of σ′,

defined by σ′ = f√ (σ2 − σ2
0), and these adjusted standard deviation estimates provide

the data for the second regression, σ′ =
√
F SSP

C . This regression is calculated without

an intercept term because the adjustment of σ0 forces it to zero.

Data and Code Availability

The raw data for the eight analyzed datasets is available at FlowRepository

(https://flowrepository.org), with ids FR-FCM-Z2SV (Be1), FR-FCM-Z2ST (HS1

& HS2), FR-FCM-Z2SS (MM1), FR-FCM-Z2SW (MM2), FFR-FCM-Z2SJ (MM3), FR-

FCM-Z2SK (MM4), and FR-FCM-Z2SL (MM5). Note that the compensation controls

for the MM2 dataset are the MM1 dataset.

Source code for AutoSpill is available through the R package autospill, available at the

github repository https://github.com/carlosproca/autospill, which includes batch

code that reproduces the reported results for the datasets MM1, HS1, HS2, and Be1. The
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R package is also available in the Supplementary Information as Supplementary Data. In

addition, AutoSpill is accessible as a freely-available web service at

https://autospill.vib.be. The R package also includes batch code to reproduce re-

sults as generated by the website.

To allow a large user base to take immediate advantage of the new approaches reported

here, an implementation of AutoSpill is included in the release of FlowJo v.10.7. Au-

toSpread is available in binary form in FlowJo v.10.7 (patent pending).
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d

MM1 - APC HS1 - FITC HS2 - PE-Cy5.5 Be1 - APC

e

Figure 1
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Figure 1: Tessellation allows robust initial gating. Results of gating before the calculation
of compensation, using forward and side scatter parameters (as shown in the axes), for
different samples with cells or beads. Columns show one gate example for each dataset, as
indicated. Rows show the successive steps of the algorithm for each example: (a) bound
calculation (dashed black line) and first tessellation (in blue), to identify the density
maxima (blue points, with numbers showing decreasing order of density value); (b) region
identification (solid black line) around the target maximum; (c) second tessellation (in
blue), to isolate the target maximum from close maxima inside the region (point color
and number as in (a)); (d) calculation of the boundary gate (black closed curve), by a
threshold on density and a convex hull; (e) gate summary provided to package/website
users, with same line, point, and color code as in (a)–(d).
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Traditional compensation - linear scale AutoSpill first step - bi-exp scale AutoSpill first step - linear scaleTraditional compensation - bi-exp scale
a

b

c

d

Figure 2
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Figure 2: Robust linear regression effectively estimates spillover coefficients. Each row (a–
d) shows a compensation example from the MM1 dataset, with the primary and secondary
channels indicated, respectively, in the y-axes and x-axes. Compensation results are dis-
played using positive and negative populations (first column, bi-exponential scale; second
column, linear scale), and robust linear regression (third column, bi-exponential scale;
fourth column, linear scale). The linear relationship between the levels of fluorescence is
not visible in bi-exponential scale, but it is very clear in linear scale. Uncompensated data
is displayed in blue and compensated data in black. Dim points correspond to gated-out
events, not used in the calculation. Lines in the second and fourth column (linear scale)
show regressions of uncompensated (blue) and compensated (black) data. The slope coef-
ficient of the latter provided the compensation error (number at the bottom right of each
panel). Vertical green dashed lines are shown as a reference for perfectly compensated
data.
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Figure 3
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Figure 3: Iterative reduction of compensation error yields optimal spillover coefficients.
Each row shows the iterative reduction of compensation error for each dataset: (a) MM1,
(b) HS1, (c) HS2, and (d) Be1. Left column displays the densities of compensation er-
ror after compensating with positive and negative populations (red), after the first step
of AutoSpill (green), and at the final step of AutoSpill (blue). Errors are displayed in
log-scale of absolute values, separated in positive (solid lines) and negative (dashed lines)
values. Right column displays the convergence of AutoSpill, with points showing standard
deviations of errors (brown), maximum absolute error (orange), and the moving average
of the decrease in the standard deviation of errors (pink), used to detect oscillations. Lin-
ear regressions were carried out in linear scale (triangles) or bi-exponential scale (circles).
Empty triangles (same color code) show compensation errors resulting from calculating
spillover coefficients with positive and negative populations. Dashed lines display the
thresholds for changing from linear to bi-exponential scale (10−2, on the maximum abso-
lute error), reaching convergence (10−4, on the maximum absolute error), and detecting
oscillations (10−6, on the moving average of the decrease in the standard deviation of
errors).
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Figure 4
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Figure 4: Removal of autofluorescence through compensation with an additional aut-
ofluorescence channel. (a) Examples, for the unstained control of the HS1 dataset, of
compensation of spillover from the autofluorescence channel (y-axes) to two secondary
channels (x-axes). Uncompensated data is displayed in blue and compensated data in
black. Lines show calculated regressions (same color code as data). Resulting compen-
sation errors (slope coefficients of the regressions on compensated data) are shown at
the bottom right of each panel. Vertical green dashed lines are shown as a reference
for perfectly compensated data. (b) Compensation of two channels (one case per row)
severely affected by autofluorescence in the HS1 dataset (left, without autofluorescence
channel; right, with autofluorescence channel), with primary channels in y-axes and the
secondary channels in x-axes. Same color and line code, and number with compensation
error, as in (a). (c) Density of spillover skewness in the HS1 dataset, without (left) or
with (right) autofluorescence channel. Errors are displayed in log-scale of absolute values,
separated in positive (solid lines) and negative (dashed lines) values. Autofluorescence,
causing spurious positive spillover, corresponds to anomalously large positive skewness in
the affected channels (left).
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Figure 5: Linear models for estimation of the Spillover Spreading Matrix. Examples are
shown for the datasets MM1 (left) and HS1 (right). (a) Regression carried out over the
gated events of one single-color control of each dataset, with no well-defined positive and
negative populations, with the primary and secondary channels as indicated, respectively,
in the y- and x-axes. Uncompensated data points are displayed in blue and compensated
ones in black. Regression from uncompensated (resp. compensated) data is displayed
with dashed (resp. solid) lines, in black (resp. gray) when the regression coefficient is
significant and positive (resp. non-significant or non-positive). (b) Comparison between
the results obtained with AutoSpread vs the usual SSM algorithm, showing the small
difference between both calculations. Values are displayed in log-scale of the absolute
value of the difference, separated in positive (solid lines) and negative (dashed lines)
values. (c) Comparison between results obtained with AutoSpread vs the usual SSM
algorithm, but with the omission of the first regression in AutoSpread, which leads to a
systematic downward bias in AutoSpread results. Same scale and line code as in (b).
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Figure 6: Biological utility of AutoSpill. Downstream analyses of data compensated by
either the traditional compensation algorithm or AutoSpill. All plots were prepared from
the same FCS files and compensated using FlowJo v.10.7, using either the traditional
algorithm or the AutoSpill option. (a) Representative flow cytometry plots illustrating
errors corrected by AutoSpill (first and second column, MM3 dataset; third and fourth
column, MM2 dataset). (b) Hierarchical gating for CD4+CD8+CD25+ lymphocytes,
using data compensated by the traditional algorithm or AutoSpill (MM3 dataset). (c)
The CD4+CD25+ population was backgated to identify the source of population loss in
the traditional algorithm (MM3 dataset). (d) MHCII expression on known negative cells
(CD4 T cells), known positive cells (CD11b+ splenocytes), and microglia (MM4 dataset).
Percent positive was thresholded using CD4 T cells as the negative. MHCII knockout
microglia were used as a “true negative” staining control. (e) Foxp3GFP expression on
known bimodal cells (CD4+ splenocytes) and CD11b+ macrophages (MM5 dataset).
The positive population was thresholded using the negative CD4 T cell peak. Wildtype
mice, without the GFP transgene, were used as a “true negative” staining control.
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