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Abstract11

Video data are widely collected in ecological studies but manual annotation is a challenging12

and time-consuming task, and has become a bottleneck for scientific research. Classification13

models based on convolutional neural networks (CNNs) have proved successful in annotat-14

ing images, but few applications have extended these to video classification. We demonstrate15

an approach that combines a standard CNN summarizing each video frame with a recurrent16

neural network (RNN) that models the temporal component of video. The approach is illus-17

trated using two datasets: one collected by static video cameras detecting seal activity inside18

coastal salmon nets, and another collected by animal-borne cameras deployed on African19

penguins, used to classify behaviour. The combined RNN-CNN led to a relative improve-20

ment in test set classification accuracy over an image-only model of 25% for penguins (80%21

to 85%), and substantially improved classification precision or recall for four of six behaviour22

classes (12–17%). Image-only and video models classified seal activity with equally high23

accuracy (90%). Temporal patterns related to movement provide valuable information about24

animal behaviour, and classifiers benefit from including these explicitly. We recommend the25

inclusion of temporal information whenever manual inspection suggests that movement is26

predictive of class membership.27

Keywords: image classification, video classification, deep learning, neural networks, animal-28

borne video, automated detection29

1 Introduction30

Technological advances in quality, size, battery life and storage capacity have enabled video cam-31

eras to record more data at better quality on a broader variety of animals, becoming small enough32

to deploy on numerous animal species (Rutz & Troscianko, 2013; Takahashi et al., 2004) and on33

drones (Anderson & Gaston, 2013; Cruzan et al., 2016), as well as in more conventional fixed34

locations. Footage captured using video cameras needs to be annotated for use in scientific re-35

search, a currently labour intensive process often involving highly trained scientists manually36

annotating the content of videos frame by frame. Even with dedicated annotation software, this37

presents a major bottleneck for scientific research based on these data, necessitating the develop-38

ment of computer-assisted approaches (Schneider, Taylor, Linquist, & Kremer, 2019; Weinstein,39

2015).40
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Video classification is a challenging modelling problem, with the challenges of image classifica-41

tion amplified because the same sources of natural visual variation occur not only between videos42

but also within videos as objects move around and change poses, scales, illuminations and back-43

grounds during the course of a single video. The video camera itself can move around during44

recording, introducing additional variation, particularly in environments where cameras move due45

to wind or water movement, or because cameras are attached to animals moving around their en-46

vironment. The temporal component of video also presents significant modeling challenges not47

only because it dramatically increases the size of video data but because the relevant visual fea-48

tures required to classify a video can span several frames with no single frame containing enough49

information on its own. The pixels of an image representing objects are not only correlated spa-50

tially to form visual object features in a single frame but are also correlated through time.51

Like image classification, traditional computer-based approaches to video classification have pri-52

marily used feature engineering algorithms that create input variables based on predetermined53

traits. Spatial algorithms construct variables such as Harris or SIFT features (Lowe, 2004) that54

discriminate patterns within an image (e.g. morphometric features), while spatio-temporal algo-55

rithms such as the Cuboid and Harris-3D detectors (Dollár, Rabaud, Cottrell, & Belongie, 2005)56

capture additional motion information between frames. The main limitations of these approaches57

arise from their need to know how to represent input features in advance – this requires substan-58

tial knowledge of the study species, and hinders generalization across species and environmental59

contexts (Schneider et al., 2019).60

Deep neural networks (DNNs) are highly flexible machine learning models that use stacked non-61

linear combinations of inputs together with a gradient descent learning procedure to jointly learn62

feature representations together with how these should be translated into classifications, based63
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on labeled data, thus avoiding the main drawback of feature engineering. DNNs are the current64

state-of-the-art for many challenging perceptual problems involving image, video, audio or text,65

where hand-designing input feature representations is nontrivial (Liu, Wang, Liu, Liu, & Alsaadi,66

2016).67

Convolutional neural networks (CNNs) are a specialized kind of DNN architecture that takes68

advantage of the characteristics of image data to learn hierarchies of local features that are in-69

variant to common translation operations like shifting, stretching and rotation. This reduces the70

number of required parameters while leaving enough representational power to achieve good71

performance on image classification and other tasks involving data that have a regular grid-like72

topology of locally correlated hierarchical features. CNNs typically involve a stacked sequence73

of convolutional layers – traversing the network, the output of each of these layers can be thought74

of as an increasingly complex summary or ‘encoding’ of the input image as a one-dimensional75

numeric vector. CNNs have found numerous, and increasing, applications in ecological studies76

(Christin, Hervet, & Lecomte, 2019; Weinstein, 2018a), where image classification has been used77

for species identification (Gomez Villa, Salazar, & Vargas, 2017; Weinstein, 2018b; Zhang, He,78

Cao, & Cao, 2016), count surveys (Borowicz et al., 2018; Gray, Fleishman, et al., 2019; Torney79

et al., 2019), individual animal re-identification (Schneider et al., 2019), and morphometric mea-80

surement (Gray, Bierlich, et al., 2019). Applications to video classification, however, remain rare.81

With the exception of Trinh, Yoshihashi, Kawakami, Iida, and Naemura (2016), who combined82

neural network architectures to detect birds flying into wind turbines from sequences of input83

frames, most studies have either classified frames in isolation (Siddiqui et al., 2018), or used84

previous frames primarily to improve the discrimination of the focal animal from background85

scenery, using motion-detection algorithms (Weinstein, 2018b; Zhang et al., 2016).86
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There are three approaches to using DNNs for video classification beyond treating the problem as87

an image classification task by modeling frames independently. The simplest approach concate-88

nates the vector encodings obtained from each of a sequence of input images to predict the class89

of the last image in the sequence; images in the input sequence are considered to be independent.90

The second approach uses the sequence of vector encodings produced from the sequence of input91

images as input to a second model – a recurrent neural network (RNN), a specialized architec-92

ture often used to process sequential data involving a temporal component (Donahue et al., 2014;93

Trinh et al., 2016). Finally, CNNs can be directly modified to incorporate motion information in94

videos by extending their convolution from two spatial dimensions (width and height) to three95

spatio-temporal dimensions (width, height and time), parameters of which are jointly estimated96

(Tran, Bourdev, Fergus, Torresani, & Paluri, 2015).97

In this paper we have used these approaches to perform frame-by-frame annotation of two video98

datasets. The first was taken from a fixed underwater camera placed inside nets at a salmon trap99

net fishery in Scotland, for the purpose of detecting seal visits to salmon nets and ultimately re-100

ducing conflict between fisheries and seals. Here the task was to detect whether a seal is present101

in a frame, based on that and preceding frames. The second dataset was collected by animal-102

borne cameras deployed on African penguins in South Africa. Here the purpose was to repli-103

cate manual annotations allocating each frame to one of six pre-defined classes covering diving104

and surface behaviour exhibited by the birds. To the best of our knowledge, this is the first time105

DNNs have been applied to annotate animal-borne video. For each dataset, our primary goal was106

to evaluate whether incorporating the temporal component of video brings any improvement in107

classification accuracy, relative to an image-only benchmark.108
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2 Materials and Methods109

2.1 Data110

2.1.1 Seals111

An underwater video system was used to study seal behaviour at a salmon trap net fishery in112

north east Scotland in 2015 as part of a programme of research aimed at reducing conflict be-113

tween fisheries and seals. Cameras were placed inside static coastal nets to monitor seals as they114

moved in and out of nets to depredate salmon. There was no artificial lighting and so the cameras115

recorded during hours of daylight.116

The labelled component of the dataset consisted of six video recordings of ca 140 minutes each,117

converted into images at 4fps. A total of 152 instances in which a seal entered the net were ob-118

served by manual inspection, and entry and exit times for each of these recorded (Figure A.1,119

Appendix A). Visits lasted between 2s and 59s, with an average duration of 13.5s. Seals were not120

visible in frame for the entire duration of a visit, so all images between the start and end times of121

a recorded visit were manually inspected and labelled as containing a seal or not. After process-122

ing, there were 4419 images containing a seal. While the vast majority of footage does not con-123

tain a seal in frame, we restricted the number of absence images to 7809, roughly twice the num-124

ber of seal images, to avoid a large class imbalance. Absence images were collected by randomly125

sampling segments of video from the remainder of the video. Images from four videos were used126

to train models (3826 seal, 6949 no seal), while images from each of the remaining two videos127

were used as validation (407 seal, 973 no seal) and test (192 seal, 111 no seal) datasets respec-128

tively.129
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2.1.2 Penguins130

Animal-borne video recorders (AVR) were deployed on breeding African penguins attending131

small chicks at Stony Point, South Africa, between 2015 and 2016 (McInnes, McGeorge, Gins-132

berg, Pichegru, & Pistorius, 2017). The AVRs were tube-shaped, and together with the casing133

weighed 100g with dimensions 104×26×28mm. Devices were attached to the lower backs of the134

penguins with strips of waterproof tape during the evening preceding an anticipated foraging trip.135

AVRs were programmed to divide the battery life into two recording bins of ca 30 min each, at136

sunset and midday to reflect potential temporal differences in diving behaviour. Recorders where137

retrieved when the bird returned to the colony, either on the same day that the bird was at sea and138

after the bird had time to provision its chicks, between 16:00 and 20:00, or the following morning139

if the bird could not be located the previous day.140

The labelled component of the dataset consisted of 12 video recordings of ca 30 minutes each,141

again converted into images at 4fps. These were manually classified into five diving behaviours142

(subsurface diving (less than 1m); shallow diving (1-5 m); and the descent, bottom, and ascent143

phases of deep dives) and one surface behaviour (searching, see Figure A.2, Appendix A). A total144

of 52722 images were obtained, with substantial imbalance between behaviours (Table A.1, Ap-145

pendix A). Images from nine videos were used to train models (41958 images, see Table A.1 for146

distribution over behaviours), while images from the remaining videos were used as validation147

(two videos, 7168 images) and test (one video, 3596 images) datasets respectively.148

2.2 Neural networks149

We consider four broad classes of models, of increasing complexity. The first ignores the tem-150

poral aspect of video data and attempts to classify each image independently using a standard151
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CNN-based approach. Pretrained CNNs (VGG16, ResNet50, Inception v3 and Inception-ResNet152

v2) were truncated at an intermediate layer – the output of this intermediate layer summarizes153

or ‘encodes’ an image in a one-dimensional vector. Up to three dense layers were added to the154

truncated network, and a new output layer added for the (seal or penguin) classification task. The155

second model used the same approach, but classified an image by first concatenating the vector156

encoding obtained from the truncated layer for that image with similar vectors obtained for the157

previous F − 1 images. This concatenated vector, which summarizes a set of F consecutive im-158

ages rather than (as in the first model) just a single image, was then passed these to subsequent159

dense layers as before. The third model was the spatial-then-temporal model described in the160

introduction. To classify a single image, it took the vector encodings from the last F images (in-161

cluding the current image), as in the previous model, but instead of concatenating the encodings it162

passed these as input to a recurrent neural network, which combined these temporally (Figure 1).163

We used two pre-trained CNNs to encode frames (ResnNet50, VGG16) and three different RNN164

architectures (Long Short-Term Memory (LSTM), SimpleRNN, Gated Recurrent Units (GRU)).165

One key step was to pre-compute the frame vector encodings from the pre-trained CNN mod-166

els so that these did not have to be re-computed in each RNN model. A single training epoch for167

the mixed recurrent convolutional network (RCNN) architecture with a VGG encoder took ap-168

proximately 15 minutes without pre-computation but only 3 seconds with pre-computed features169

(because most of the computation time was spent in the CNN part of RCNN). The final model170

jointly modelled spatial and temporal aspects using a 3-dimensional CNN that convolves simul-171

taneously over space and time. Because convolutions occur simultaneously over space and time,172

the 3-D CNN cannot leverage pre-computation, and generators had to be used to stream the data173

from disk to avoid out-of-memory problems. Despite various attempts at optimization, a single174
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model took approximately 3 days to converge on a single GPU, and returned substantially worse175

accuracy than even an image-only model. We therefore do not report on these results further.176

We chose model hyperparameters using a grid search over the number of nodes in each of the177

three dense layers in Model 1 and 2 (32,64,96, . . . ,512), the dropout rate (0,0.1,0.2, . . . ,0.5),178

and the length of the sequence of images used in Models 2 and 3 (1,3,5,7,9, . . . ,31). Follow-179

ing Krizhevsky, Sutskever, and Hinton (2012), each model’s weights were initialized using the180

Xavier initialization and each model was trained in 3 rounds of 20 epochs with an early stopping181

patience of 5 epochs using the Adam optimizer (Kingma & Ba, 2014). The learning rate was ini-182

tially set to 0.001 and reduced by a factor of 10 between training rounds, and max pooling was183

used. Models were evaluated based on test set accuracy (proportion of all predictions that were184

correct), precision (proportion of positive predictions that were correct), and recall (proportion185

of positive examples correctly predicted). For the seals dataset, seal presence is a natural choice186

for the positive class. For multi-class classification problems, precision and recall were obtained187

for each class, and overall precision and recall calculated as an average of these, weighted by188

sample size. Models were implemented using the TensorFlow (Abadi et al., 2016) library with189

Keras (Chollet et al., 2015). Training and testing were done on a three separate Linux virtual ma-190

chine instances running on Google Cloud Platform, each with eight Nvidia Tesla K80 Graph-191

ics Processing Units (GPUs), 160 GB of RAM and 32 CPU cores. Code and analysis scripts192

are available online at https://github.com/alxcnwy/Deep-Neural-Networks-for-Video193

-Classification.194
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3 Results195

A video component did not bring meaningful benefits in detecting seals, with both image-only196

and video models accurately classifying 89% of images in the test set, and small improvements197

in precision being offset by marginally worse recall (Table 1). Most incorrect classifications oc-198

curred at the beginning and end of visits, as the seal was entering or exiting the field of view and199

where only a small part of the seal may be in view (Figure B.1, Appendix B). All 152 seal visits200

across training, validation, and test sets were detected by either model.201

Including temporal information in video data, in the form of spatial-then-temporal models, im-202

proved the accuracy of penguin behaviour classifications from 80.5% (image-only benchmark)203

to 85.4%, a 25% relative reduction in classification error (Table 1), and improved both precision204

and recall. Models concatenating frame encodings occupied an intermediate position between205

full video and image-only models. Classification accuracy improved for most penguin behaviour206

types (Table B.1, Appendix B), but particularly for descent and bottom dive phases (precision in-207

creasing by 17% and 14%), and for shallow and subsurface dives (recall increasing by 12% and208

13%). Image-only models tended to misclassify bottom dives as descent dives, and mistook parts209

of the ascending and descending dive phases for shallow dives. To some extent this reflects fuzzy210

boundaries between behavioural classes, but temporal information resolved some of these mis-211

classifications (Figure 2). Search activity, the sole surface behaviour and also the most prevalent212

class, was almost perfectly discriminated.213

Preferred RCNN models for seal detection achieved a degree of parsimony by using a relatively214

short sequence of frames, and in exchange used relatively complex pre-trained CNN (ResNet50)215

and RNN (LSTM) architectures (Table B.2, Appendix B). In contrast, equivalent preferred mod-216
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els for penguin behaviour classification used longer sequences of frames, but simpler CNN (VGG16)217

and, sometimes, RNN (SimpleRNN) architectures (Table B.3, Appendix B). Both applications se-218

lected a relatively large number of nodes in the final hidden layers.219

4 Discussion220

Although images are more commonly used in ecological research and are easier to work with221

(Swinnen, Reijniers, Breno, & Leirs, 2014), movement information contained in video provides222

richer insight into animal behaviour and taking this into account can improve the identification223

of animals and their behaviours (Trinh et al., 2016). We found that for a relatively simple task –224

detecting seal activity in an image – an image-only CNN was adequate, and incorporating tempo-225

ral information did not meaningfully improve out-of-sample performance, even for those difficult226

cases in which a seal enters or exits the field of view. For a more difficult task of inferring pen-227

guin behaviour from animal-borne cameras, using a video model led to substantial reduction in228

classification error over an image-only model, and was particularly useful in disentangling cer-229

tain kinds of diving behaviour. In both applications accuracy is not sufficient for full automa-230

tion of the tasks, but can facilitate manual processes by partially labelling the data – identifying231

those classes that can be accurately discriminated and pointing the researcher to segments re-232

quiring closer inspection. Our datasets were relatively small, consisting of 6-12 hours of labelled233

footage, and the ability of the models to generalize to new environments is unclear, but even in234

those classes where absolute performance was moderate, video models outperformed image-only235

models. Improvements are likely to be larger with larger datasets.236

Practically, researchers wanting to construct a model for the frame-by-frame annotation of video237

have to follow a number of steps: manually labelling a subset of the data; converting the video238
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into images; allocating these images between training, validation, and test sets; choosing appro-239

priate neural network architectures and estimating the parameters of those models; selecting a240

preferred model and using it to process the unlabelled portion of the data; and linking frame-by-241

frame predictions to the broader research objectives for which the classifier was developed.242

Video data are manually annotated by recording the start and end times of events whose bound-243

aries may be difficult to distinguish precisely. Poorly separated classes can reduce classification244

accuracy, and preprocessing steps for image classification sometimes remove ambiguous images245

to improve class separability. Video models, however, use a sequence of frames t, t − 1, . . . , t −F246

to predict the class of frame t, and removing ambiguous images makes the time difference be-247

tween adjacent images variable. While it is possible that removing ambiguous examples may248

improve accuracy more than maintaining constant time difference between images, this is likely249

to be case-specific, and not generally recommended. Rather, the presence of ambiguous images250

places an effective upper limit on the accuracy that can be achieved, which may or may not im-251

pact on broader research objectives. For seal visits, for example, the detection of a seal presence252

is more important than identifying the exact time of entry. The first and last few frames of a visit253

often contain only a tiny sliver of seal or, because the times are approximate, no seal at all. These254

frames reduce classification accuracy but have very little bearing on the practical usefulness of255

the classifier.256

Video data are converted to images at a user-specified frame rate, with the recording equipment257

setting an upper bound. A higher frame rate increases the number of images available to train258

models, which is always beneficial as long as there are meaningful differences between adjacent259

images. It is important to randomly allocate contiguous sequences of frames i.e. video sequences,260

to training, validation and test datasets, rather than randomly allocating the frames themselves.261
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Doing the latter breaks apart sequences, losing potentially valuable information, and also means262

that very similar images occur in both training and test sets. We also recommend assessing whether263

the video in the test dataset has the same environmental conditions as video used to train the264

model (e.g. if a random segment of each file is used to test). If so, the ability of the model to gen-265

eralize to new environments may be overestimated.266

When building an RCNN, key choices are what frame rate and sequence length to use. These267

factors are study-specific, and the chosen frame rate need not be the same as the frame rate used268

to convert video to frames. Higher frame rates allow for fine-scale changes in movement to be269

captured, but the same number of frames covers a shorter time interval. Increasing sequence270

length requires more parameters, increasing the chances of overfitting and requiring more data.271

Which of the two – looking back further in time or capturing fine-scale movement – benefits272

classification accuracy more will be study-specific. These factors can be investigated by search-273

ing over possible frame rate/length pairs, but this quickly becomes computationally expensive.274

Our applications have relatively little labelled data and so we fixed the frame rate to one that275

would allow broad differences in behaviour, observed over a few seconds, with 5 < F < 10. Pre-276

trained CNNs offer a parsimonious way of summarizing images in a form that can be passed on277

the second-stage RNN (Donahue et al., 2014). Our best seal model combined a relatively com-278

plex CNN and RNN with a short frame sequence, whereas the best penguin model had a sim-279

ple CNN and RNN, but used a longer sequence of frames. Since model complexity is primarily280

achieved through more parameters, this balance reflects the familiar goal of reducing validation281

error through model parsimony.282

Our models allow new video footage to be classified on a frame-by-frame basis, with some ex-283

pected degree of accuracy. Linking this back into research objectives is the final step in the pro-284
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cess. The seal classifier is intended to be used as a detection system. Even with a frame-specific285

false negative rate of 10%, no visits were missed entirely. An alarm system, triggered by N pre-286

dicted presences in a sequence of M frames, is easily established, with N and M determined by287

balancing costs of false positives and negatives. Graphical displays such as Figure 2 convey this288

information in an easily digested way. Higher error rates prevent the use of the penguin behaviour289

classifier for the purpose it was intended for – replicating a human observer and calculating en-290

ergy budgets – because certain classes of behaviour are poorly identified. However, surface be-291

haviour was nearly perfectly distinguished from diving behaviour, and deep and shallow/subsur-292

face dives were also well differentiated. These distinctions hold practical value, and also limit the293

amount of manual labelling that must be done.294

Deep learning holds enormous promise for automating the labelling of video data, a process that295

looks increasingly unsustainable with manual methods. Case studies such as the ones reported296

here play an important role in reporting successes and failures, and developing and disseminat-297

ing best practices. Classification of ecological data is difficult. Limited time and other resources,298

remote locations, and rare or difficult-to-detect target species, serve to decrease sample sizes at299

the same time that variable background environments increase the necessary sample sizes for300

good classification. In these contexts full automation is perhaps, for the time being, unrealistic.301

Facilitating the process of manually annotating video datasets is both valuable and achievable.302

Video data has the great advantage that large datasets, in terms of numbers of images, are often303

collected relatively quickly. At 60fps, a one minute encounter with an animal provides 3600 im-304

ages. This offers exciting opportunities for developing and testing deep learning approaches. Our305

study suggest that many applications may benefit from incorporating temporal information in306

video, where the goal remains to predict the class to which a particular frame or image belongs.307
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We expect these models to be widely used and developed in the near future.308
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Seal detection model
Architecture RCNN RCNN RCNN IMAGE
Accuracy (Test) 89.4% 89.2% 89.1% 89.1%
Precision (Test) 100% 99.4% 100% 97.6%
Recall (Test) 83.9% 83.9% 83.3% 84.9%
Accuracy (Validation) 96.3% 95.9% 95.7% 93.7%
Accuracy (Train) 95.4% 95.4% 95.3% 95.2%

Penguin behaviour classifier
Architecture RCNN RCNN RCNN IMAGE
Accuracy (Test) 85.4% 84.0% 84.2% 80.5%
Precision (Test) 85.4% 84.0% 84.2% 80.5%
Recall (Test) 87.6% 87.6% 85.5% 82.8%
Accuracy (Validation) 82.6% 82.4% 81.0% 81.5%
Accuracy (Train) 90.0% 88.9% 94.4% 88.7%

Table 1: Classification accuracy for three best video models and best image model. Including
temporal information in the form of an RCNN led to very marginal improvement in the easier
seal detection task, but gave a 25% relative improvement in the ability to discriminate penguin
behaviours, largely due to improved performance at the start and end of behaviours (Figure 2).
Further details on the architectures and run times of these models are given in Table B.2 and B.3,
Appendix B.
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Figure legends328

Figure 1329

A “spatial-then-temporal” neural network for frame-by-frame video classification. To predict the330

class of a frame (Frame 5), a pre-trained, truncated CNN (e.g. ResNet50) is used to summarize331

or ‘encode’ each of a sequence of images (here, the last five frames) as one-dimensional numeric332

vectors. The sequence of vector encodings is then used as input in a recurrent neural network333

(RNN), here shown using two SimpleRNN layers. The RNN outputs predicted probabilities that334

the behaviour in the final frame is of type i, i = 1, . . . ,6.335

Figure 2336

Predicted probabilities for penguin behaviour classes, with misclassifications plotted as crosses.337

Observed and predicted classes are plotted above the probabilities, using the same notation. Image-338

only models tend to misclassify bottom dives as descent dives (frame 350–390), and ascending339

and descending dive phases as shallow dives (frame 90–110 and 260–280). Video models resolve340

some of these errors. They also smooth transitions between behaviours (frame 260–280), better341

identify periods where classification uncertainty is high (frame 570-620, 750-850) and where al-342

ternate interpretations are possible (frame 570-620).343
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Figure 1
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Figure 2
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