1	Replication stress and FOXM1 drive radiation induced genomic instability and cell
2	transformation
3	
4	Zhentian Li ¹ , David S. Yu ¹ , Paul W. Doetsch ² and Erica Werner ^{3*}
5	
6	¹ Department of Radiation Oncology, Winship Cancer Institute, Emory University School of
7	Medicine, Atlanta. Georgia, United States of America.
8	² Laboratory of Genomic Integrity and Structural Biology, NIH, National Institute of
9	Environmental Health Sciences, Research Triangle Park, North Carolina, United States of
10	America.
11	³ Department of Cell Biology, Emory University School of Medicine, Atlanta. Georgia, United
12	States of America.
13	
14	
15	
16	Running title: radiation induces replication stress and FOXM1
17	Key words: Ionizing radiation, genomic instability, replication stress, DDR, FOXM1,
18	micronucleus, homologous recombination.
19	*Corresponding author:
20	Emory University School of Medicine
21	Department of Cell Biology
22	Whitehead Research Building 4 rd floor /Room 455
23	615 Michael Street Atlanta, GA 30322 USA
24	Tel.: (404)-727-3945 Email: ewerner@emory.edu

IR induces replication stress

1 ABSTRACT

3	In contrast to the vast majority of research that has focused on the immediate effects of
4	ionizing radiation, this work concentrates on the molecular mechanism driving delayed
5	effects that emerge in the progeny of the exposed cells. We employed functional protein
6	arrays to identify molecular changes induced in a human bronchial epithelial cell line
7	(HBEC3-KT) and osteosarcoma cell line (U2OS) and evaluated their impact on outcomes
8	associated with radiation induced genomic instability (RIGI) at day 5 and 7 post-exposure
9	to a 2Gy X-ray dose, which revealed replication stress in the context of increased
10	FOXM1 expression. Irradiated cells had reduced DNA replication rate detected by the
11	DNA fiber assay and increased DNA resection detected by RPA foci and
12	phosphorylation. Irradiated cells increased utilization of homologous recombination-
13	dependent repair detected by a gene conversion assay and DNA damage at mitosis
14	reflected by RPA positive chromosomal bridges, micronuclei formation and 53BP1
15	positive bodies in G1, all known outcomes of replication stress. Interference with the
16	function of FOXM1, a transcription factor widely expressed in cancer, employing an
17	aptamer, decreased radiation-induced micronuclei formation and cell transformation
18	while plasmid-driven overexpression of FOXM1b was sufficient to induce replication
19	stress, micronuclei formation and cell transformation.
20	
21	

- 22
- 23

IR induces replication stress

1 INTRODUCTION

2	Ionizing radiation is an effective and widely used tool for cancer treatment and
3	control. Over 50% of cancer patients will be exposed to ionizing radiation at some point
4	of their illness (1). Therefore, because of radiation's wide use and improved cancer
5	treatment outcomes, adverse effects such as malignancies secondary to radiation are
6	becoming more concerning (2, 3). The mechanism for radiogenic cancers is unknown.
7	All tissues are susceptible to develop radiation-induced tumors of low mutational load,
8	without a unique signature resulting from a known mechanism (4, 5). Ionizing radiation
9	is considered a weak mutagen (2, 6), and generates multiple types of lesions on DNA (7).
10	Among them, double strand breaks (DSB) are the most toxic, however can be readily
11	repaired in normal cells or cause death or senescence in repair-impaired cells (8).
12	Ionizing radiation also generates responses in cells that have not been directly
13	targeted, which include delayed genomic instability, bystander, clastogenic and
14	transgenerational effects (reviewed in (9, 10)). The molecular mechanisms driving these
15	responses and their impact on the overall effects of ionizing radiation remain poorly
16	understood.
17	Among non-targeted effects, radiation induced genomic instability (RIGI) is a
18	quite heterogeneous response defined by the increased rate of acquisition of de novo
19	genomic alterations in the progeny of irradiated cells (11). A diverse set of biological
20	end points have been associated with genomic instability, including micronuclei
21	formation, sister chromatid exchanges, chromosomal gaps, karyotypic abnormalities,
22	microsatellite instability, homologous recombination, gene mutation and amplification,
23	cellular transformation, clonal heterogeneity and delayed reproductive cell death (11).

IR induces replication stress

1	RIGI can be detected following exposure to moderate doses of X-rays in multiple cell
2	lines in vitro and in tissues of animals irradiated in vivo (9).
3	Genomic instability is present in the majority of cancers, driving tumor
4	development and evolution. During tumor initiation, genomic instability has been
5	proposed to accelerate the acquisition of mutations. There is evidence supporting the role
6	of genomic instability as a first step in the genesis of certain radiation-induced cancers in
7	vivo (6, 12). Thus, RIGI can be considered as a model to study inducible genomic
8	instability and as a mechanism contributing to radiation-induced carcinogenesis (9).
9	Several factors have been shown to modulate RIGI. Oxidative stress associated
10	with mitochondrial malfunction promotes a genomic instability state, as interference with
11	reactive oxygen species generation or scavenging attenuates readouts (13). Other factors
12	that have been shown to influence RIGI are epigenetic changes and deficiencies in DNA
13	repair (14) (15). However, no unifying molecular mechanism has been established for
14	RIGI development yet.
15	In the current study we employ an immortalized, non-tumorigenic cell line of
16	human bronchial epithelial cells HBEC3-KT, which have precursor properties as they can
17	differentiate in vitro and can be progressed to further transformed states by oncogene
18	expression or exposure to carcinogenic agents (16-18). The lung is an organ remarkably
19	susceptible to low doses of radiation (2, 19) and it is at high risk for carcinogenesis
20	secondary to radiation therapy (20). HBEC3-KT reproduce several of the attributes and
21	end points associated with RIGI. Our previous work showed that exposure to high and
22	low LET radiation induced transient genomic instability peaking at day 7 and decreasing
23	by days 14 and 21 post-irradiation (21) (22). Phenotypes associated with genomic

IR induces replication stress

- 1 instability such as micronucleus formation and γH2AX and 53BP1 foci are cell
- 2 autonomous at day 7. Micronucleus formation increases with dose, reaching saturation at
- 3 4Gy(23). For the experiments in this work, cells were exposed to a 2Gy dose representing
- 4 the average radiation dose per fraction received by patients during radiation therapy.
- 5 Employing protein arrays, we identify two potential mechanisms, replication stress and
- 6 FOXM1, and evaluate their role in promoting RIGI and cell transformation.

IR induces replication stress

1 RESULTS

2 We have previously shown that radiation induces transient genomic instability in 3 HBEC3-KT cells expressed as increased micronuclei formation, residual 53BP1 and 4 γ H2AX foci, in the context of cellular oxidative stress (21). To identify conserved 5 mechanisms driving these phenotypes we leveraged RIGI development in two cell lines 6 of different tissue origin, HBEC3-KT and the osteosarcoma epithelial cell line U2OS to 7 exclude tissue specific mechanism. As shown in Fig. 1A, following exposure to a 2Gy 8 X-ray dose, a three-fold increase in micronucleus formation can be detected at day 7 in 9 HBEC3-KT and at day 5 in U2OS, timing that corresponds to about 4 population 10 doublings. The micronucleus assay detects fragments or whole chromosomes that can not 11 engage with the mitotic spindle as a result of damage to chromosomes or the mitotic 12 machinery (reviewed by M. Fenech (24)). Consistent with damaged DNA at the moment 13 of mitosis, we measured four and two-fold increased frequency of Replication Protein A 14 (RPA) positive chromosomal bridges in the irradiated cell populations for HBEC3-KT 15 and U2OS respectively, an indication of single stranded DNA generation during genomic 16 material segregation (Fig. 1B). An additional reported consequence of DNA damage 17 during mitosis is that 53BP1 bodies accumulate in the following G1 phase (25). Both cell 18 types showed roughly a three-fold increased accumulation of 53BP1 bodies in cells in G1 19 phase, identified by the absence of nuclear Cyclin A (Fig. 1C). RPA positive 20 chromosomal bridges have been previously observed in cells that undergo mitosis in the 21 presence of accumulated unresolved homologous recombination intermediaries (26, 27). 22 To test whether the homologous recombination repair pathway is used at a higher 23 frequency in irradiated cells, we utilized a panel of genetically engineered U2OS cell

IR induces replication stress

1	lines with integrated GFP constructs to report the repair of a chromosomal DNA double
2	strand break introduced by the endonuclease I-SceI by homologous recombination (HR),
3	non-homologous end joining (c-NHEJ) and alternative non-homologous end joining (a-
4	NHEJ) (Fig. 1D, Supplementary Fig.1)(28). Compared to non-irradiated cells, exposure
5	to X-ray increased the number of GFP positive cells detected in the HR reporter line by
6	2.5 fold while the relative number of cells detected decreased in the c-NHEJ reporter line
7	without affecting a-NHEJ dependent repair. Increased HR is a previously described RIGI
8	outcome (29). Altogether, these results suggest that several days following irradiation,
9	replicating cells are undergoing mitosis with damaged DNA and relying more on the HR
10	pathway to repair double strand breaks.
11	To gain further understanding of the mechanisms and scope of the alterations
12	occurring in irradiated cells, we performed a functional proteomics analysis employing
13	reverse phase protein arrays (RPPA) to assess the expression of 431 proteins including
14	post-translational modifications relevant to cancer. Furthermore, this array is enriched in
15	proteins involved in cell cycle regulation and HR. We analyzed the responses to a 2Gy
16	dose X-ray at day 5 and 7 of HBEC3-KT cells and at day 5 for U2OS. Unsupervised
17	hierarchical clustering of the results for HBEC3-KT show a clear segregation of the day 7
18	samples from the non irradiated and day 5 post-irradiation samples (Supplementary Fig.
19	2), which is consistent with our previous findings that the phenotype at day 7 is a
20	response that emerges overtime after exposure and not residual response to initial
21	damage(22). We reasoned that proteins and pathways that co-variate in both cell lines
22	could be associated with common phenotypes induced by radiation exposure. A
23	comparison between the proteins significantly differentially regulated in U2OS and

IR induces replication stress

1	HBEC3-KT (Fig. 2A) reveals common up-regulation of phospho Aurora Kinase A and an
2	increase in FOXM1 expression, a transcription factor that regulates the expression of
3	multiple DNA repair proteins, increases HR dependent repair in the direct repeats
4	conversion assay (30, 31) and cell cycle progression (32). Analysis focused on proteins
5	involved in cell cycle regulation and HR is shown in Fig. 2B. The heat map exhibits an
6	overall milder response for U2OS than HBEC3-KT cells, but both cell models display
7	increased expression of markers related to end-resection (CtIP in U2OS and S4/S8 RPA
8	phosphorylation in HBEC3-KT) in the context of small changes in levels and
9	phosphorylation of proteins involved in checkpoint activation such as ATM, ATR, Chk1
10	and Chk2. The interrogation also reveals upregulation of proteins promoting M phase
11	entry reflected by increases in CDK1 and Wee1 phosphorylation with increased PLK1
12	and Cdc25C, which are more prevalent in HBEC3-KT, but supported by a significant
13	decrease in p21 expression in U2OS cells. In HBEC3-KT, RAD51 and Cyclin B, two
14	targets for FOXM1 regulation, had increased expression at day 7. Collectively, these
15	findings suggest the presence of a modest replication stress and checkpoint activation
16	within the context of increased FOXM1 expression and activity.
17	To validate these findings, we measured DNA replication rate employing the
18	DNA fiber assay. As shown in Fig. 3A, replication speed was significantly slower (all
19	doses vs. non irradiated p<0.0001, one way ANOVA) in cells that have been irradiated,
20	reduced from 0.8 kb/min in non-irradiated cells to 0.61, 0.54 and 0.59 following doses of
21	2, 4 or 6 Gy. As the radiation dose increases, a larger fraction of the replication tracks
22	become shorter, but the assay did not detect pausing or stalling as all tracks incorporated
23	both labeled nucleotides and no significant track labeling asymmetry was detected

IR induces replication stress

1	(Supplementary Fig. 3A) (33). As a reference, we measured a replication rate of 0.26
2	kb/min in cells treated with 25μ M hydroxyurea for 24h. This low dose has been reported
3	to cause replication stress by reducing the availability of nucleotides following inhibition
4	of ribonucleotide reductase (34). Reduced replication speed leads to increased single
5	stranded DNA accumulation, which binds RPA and commits damage repair by HR. This
6	prediction was examined by immunofluorescence to detect RPA associated with
7	chromatin, which revealed that exposure to radiation increased by three-fold the
8	percentage of cells with RPA foci in HBEC3-KT at day 7 and in U2OS at day 5 (Fig.
9	3B). These results are consistent with increased RPA phosphorylation detected by RPPA
10	(Fig. 2B). Reduced availability of nucleotides is a mechanism leading to replication stress
11	frequently found in cancer and can be reversed by nucleoside supplementation (35).
12	However, addition of nucleosides to the cultures in conditions that reduced micronucleus
13	formation induced by HU was not effective in reducing radiation-induced effects
14	(Supplementary Fig. 3B). FOXM1 is one of the proteins significantly elevated at day 7
15	but not at day 5 post-irradiation in HBEC3-KT cells and increased in U2OS cells as well
16	(Fig. 3C), which we confirmed by western blot in lysates from both cell lines (Fig. 3D).
17	Interestingly, FOXM1 expression as well as RAD51 and EXO1, two genes that have
18	been reported to be transcriptional targets for FOXM1 (36, 37) also increased in HBEC3-
19	KT at day 7. U2OS cells have a higher basal FOXM1 expression, which was increased by
20	radiation, but the up-regulation of the transcriptional targets measured was less robust
21	than in HBEC3-KT cells.
22	Given the significant impact that FOXM1 expression has on the expression of

23 DNA repair proteins and on carcinogenesis, we tested whether it is contributing to the

IR induces replication stress

1	genomic instability phenotypes in irradiated cells employing an aptamer oligonucleotide
2	that was selected to interfere with transcriptional activity of FOXM1 (Aptamer) and
3	compared to an oligomer of random sequence (Control) (38) instead of FOXM1
4	knockdown, because it has been shown that reduction in FOXM1 protein disrupts mitosis
5	and causes DNA damage (39, 40). The FOXM1-specific aptamer reduced the radiation-
6	induced upregulation of EXO1, Cyclin B and RAD51 when delivered by transfection to
7	HBEC3-KT cells (Fig. 4A) without increasing micronucleus (Figs. 4B, 6B) or HR (Fig.
8	4C) in non-irradiated cells. The aptamer significantly reduced micronucleus formation
9	rates in irradiated HBEC3-KT cells by 50% (Fig. 4B), and reduced the number of GFP-
10	positive cells resulting from homology-dependent repair in both irradiated and non-
11	irradiated U2OS cells (Fig. 4C). Taken together, these results suggest a role for FOXM1
12	in promoting RIGI in both cell types.
13	We tested next, whether FOXM1 overexpression is sufficient to induce some of
14	the radiation-induced phenotypes. To increase FOXM1 expression levels we employed a
15	cDNA construct regulated by Doxocyclin (Fig. 5A), which in U2OS cells increased the
16	expression of EXO1 and RAD51 under our cell culture conditions even without
17	Doxocyclin addition. FOXM1 overexpression, but not empty vector, was sufficient to
18	induce micronucleus formation in HBEC3-KT and U2OS (Fig. 5B). FOXM1
19	overexpression, was sufficient to induce RPA phosphorylation in Serines 4 and 8, similar
20	to the induction produced by a 48h treatment with $25 \mu M$ HU or a 4h treatment with 3mM
21	HU, conditions that induce mild and high replication stress, respectively (Fig. 5C),
22	consistent with previous reports (34). FOXM1 overexpression also induced mild
23	increases in CHK1phosphorylation, which is an indicator of checkpoint activation

IR induces replication stress

1	occurring as a response to disruptions in S phase. Collectively, these results indicate that
2	FOXM1 expression alone induces replication stress as indicated by RPA and CHK1
3	phosphorylation and defects during mitosis measured by the micronucleus assay,
4	reproducing some of the phenotypes induced by radiation.
5	The RPPA platform has been widely employed to analyze cell lines and tumor
6	samples in the TCGA database and the results have been compiled in searchable
7	databases (41, 42). We asked next, how general is the correlation between FOXM1
8	expression and markers for replication stress (pS345 Chk1 and/or pS428 ATR) and
9	FOXM1 transcriptional targets Cyclin B and RAD51 in cancer cell lines and tumor
10	samples. A survey of the databases revealed that the cell lines derived from multiple
11	cancer types show a significant (p<0.05) positive correlation of FOXM1 with Cyclin B
12	and/or RAD51 expression suggesting FOXM1 activity, which did not necessarily
13	correlate with average FOXM1 expression levels of each cancer type category (Fig. S4A,
14	B). The cell lines of 3 cancer types had a strong (R>0.66) and another 3 had a moderate
15	(0.65>R>0.35) positive correlation between FOXM1 expression and a marker for
16	replication stress. A significant positive correlation, although moderate (0.65>R>0.35)
17	between FOXM1 and pS345 Chk1, is observed in tumor samples from liver, ovarian,
18	cervical and testicular cancer (Supplementary Fig. 5B). In tumor samples, liver, cervical
19	and testicular tumors had higher levels of FOXM1 (Supplementary Fig. 5A). These
20	observations suggest that this is a mechanism highly represented in cancer lines and in a
21	wide range of tumor types.
22	Given that our results show that radiation and FOXM1 induce replication stress, a

23 known driver of cancer initiation and progression, we tested next whether exposure to

IR induces replication stress

1	radiation promotes cell transformation in HBEC3-KT and involves FOXM1 in this
2	process. HBEC3-KT cells are immortalized but not transformed (16). However,
3	transformation and progression towards malignancy can be induced by exposure to
4	carcinogens such as radiation, and cigarette smoke condensate (43, 44) and by expression
5	of several oncogenes (45). As an intermediate step in transformation and progression,
6	HBEC3-KT cells acquire the capability to form colonies in soft agar, which measures
7	anchorage independent growth. Cell cultures were irradiated in triplicate with a 4 Gy
8	dose to increase the sensitivity of the assay by inducing a greater response measured by
9	reduced DNA replication (Fig. 3A) and higher levels of micronuclei formation (Fig 6A)
10	and (23). At day 7, the effects of the different treatments were evaluated by
11	micronucleus formation shown in Fig. 6A. At 4 weeks of continuous growth, the cells
12	were evaluated for the capability to grow in soft agar. Exposure to radiation significantly
13	increased the number of colonies in mock and in control aptamer transfected cells.
14	Transient interference with FOXM1 activity at the time of genomic instability by the
15	aptamer, reduced the radiation response, demonstrating a role for both, RIGI and FOXM1
16	activity on cell transformation events. All together these results suggest that low levels of
17	FOXM1 activity, such as the ones induced by radiation exposure, are sufficient to
18	promote cell transformation.
19	
20	
21	
22	
23	

IR induces replication stress

1 **DISCUSSION**

2	In this work we have uncovered two mechanisms, replication stress and FOXM1
3	expression, driving RIGI following exposure to X-rays. We employed functional
4	proteomics to evaluate the expression of a selected number of proteins in two cell lines,
5	HBEC3-KT and U2OS, exhibiting RIGI at days 7 and 5 post-irradiation respectively. The
6	signature of changes detected indicated the presence of replication stress and implicated
7	FOXM1 as a candidate molecule to promote RIGI. These predictions were confirmed by
8	measuring slower DNA replication rates with the DNA fiber assay and accumulation of
9	ssDNA in irradiated cells as well as by modifying RIGI outcomes by altering FOXM1
10	activity. Furthermore, employing these tools to interfere with delayed genomic
11	instability, we demonstrate a contribution of RIGI to radiation-induced cell
12	transformation of HBRC3-KT cells in vitro.
13	One of our most significant finding is replication stress in cells undergoing RIGI,
14	which mechanistically may explain several of the outcomes associated with RIGI
15	
10	measured in previous studies and add novel outcomes to further describe this non-
16	measured in previous studies and add novel outcomes to further describe this non- targeted effect. Employing the DNA fiber assay, we detected lower replication elongation
16	targeted effect. Employing the DNA fiber assay, we detected lower replication elongation
16 17	targeted effect. Employing the DNA fiber assay, we detected lower replication elongation rates in irradiated cells, slowing down as the dose of the initial exposure increases (Fig.
16 17 18	targeted effect. Employing the DNA fiber assay, we detected lower replication elongation rates in irradiated cells, slowing down as the dose of the initial exposure increases (Fig. 3A). Reduced processivity of the replication machinery is known to be sufficient to cause
16 17 18 19	targeted effect. Employing the DNA fiber assay, we detected lower replication elongation rates in irradiated cells, slowing down as the dose of the initial exposure increases (Fig. 3A). Reduced processivity of the replication machinery is known to be sufficient to cause uncoupling with replicative helicases, exposing RPA-binding ssDNA(46), which we
16 17 18 19 20	targeted effect. Employing the DNA fiber assay, we detected lower replication elongation rates in irradiated cells, slowing down as the dose of the initial exposure increases (Fig. 3A). Reduced processivity of the replication machinery is known to be sufficient to cause uncoupling with replicative helicases, exposing RPA-binding ssDNA(46), which we detected as increased RPA-positive foci (Fig. 3B). HR (Fig. 1D) is activated as a

IR induces replication stress

1	incomplete replication of the genome, particularly in late replicating regions rich in
2	chromosomal fragile sites or of low density in replication origins (48). Non-replicated
3	regions result in nondisjunction of sister chromatids during mitosis, which leads to the
4	formation of anaphase bridges (49), often exposing ssDNA, which we detected as RPA-
5	positive bridges (Fig. 1B). RPA positive chromosomal bridges, associated with
6	chromosomal aberrations, are observed when replication stress is induced in cancer cells
7	(35). DNA damaged during mitosis, is protected by 53BP1 binding until repair during the
8	following phase of the cell cycle (25), which we measured in irradiated cultures as an
9	increased frequency of 53BP1 bodies in Cyclin A-negative cells (Fig. 1C). A screen to
10	identify factors contributing to the formation of 53BP1 bodies found that the most
11	effective condition was a low aphidicolin dose, sufficient to impair replication fork
12	progression through physiological barriers (48), supporting the notion that a reduction in
13	replication elongation rate such as the observed in our work, would be sufficient to
14	induce all these RIGI phenotypes (25). Replication stress could also explain additional
15	RIGI outcomes previously described in the literature but not investigated in this work:
16	Slow or arrested replication forks stimulate the use of potentially mutagenic DNA repair
17	pathways that can lead to the accumulation of mutations and to chromosomal
18	rearrangements (reviewed by Gaillard et. al (46)). Replication stress induces DSB
19	formation and ssDNA gaps which lead to chromosomal fragility and gap formation at
20	metaphase (35). Increased HR activity is associated with increased sister-chromatid
21	exchanges and recombination events (reviewed in references (50-52)).
22	The main causes for replication stress have been attributed to the reduced
23	availability of resources required for replication, including nucleotides or histones as well

IR induces replication stress

1	as structural impediments in the DNA, such as damage, bound proteins or DNA
2	secondary structures (53). We examined whether a deficiency in the nucleotide pool was
3	a factor, which is a common mechanism leading to replication stress in oncogene-driven
4	cancer (35), however increasing the availability of nucleotides had no effect
5	(Supplementary Fig. 3B). Another factor affecting replication rate could be chronic
6	oxidative stress, which we have previously shown to be present in HBEC3-KT at day 7-
7	post irradiation (21). Chronic oxidative stress has been shown to slow replication in HR
8	defective cells, however this deficiency can be suppressed by supplying nucleotide
9	precursors (54). Low levels of ROS have been shown to induce the dissociation of the
10	component of the replication protection complex Timeless, from the replisome causing
11	fork slowdown (55) and the modification of several other factors involved in replication
12	(53). However, our previous characterization of the oxidative stress response in these
13	cells indicates that oxidative stress is a permissive factor for genomic instability engaged
14	at low dose, while many of the genomic instability readouts show dose dependency
15	pointing to an additional determinant factor (21, 23).
16	We identified FOXM1 as a second factor modulating RIGI outcomes. FOXM1 is
17	a transcription factor widely expressed in pre-malignant lesions and cancer, and is
18	included in a chromosomal instability signature correlating with functional aneuploidy
19	and highly predictive for clinical outcomes (56, 57). Our findings are consistent with
20	FOXM1 activity promoting genomic instability. We show that radiation increased
21	FOXM1 expression with dose at day 7 post-exposure (Fig. 3C,D) and that FOXM1
22	overexpression is sufficient to induce RPA and Chk1 phosphorylation (Fig. 5C),
23	considered as the most specific indicators for replication stress (58, 59). While the

IR induces replication stress

1	induced phosphorylation levels were small, they were comparable to low doses of HU,
2	which we show reduced replication rate and increased micronucleus formation
3	(Supplementary Fig. 3B). Low doses of aphidicolin or HU are sufficient to reduce
4	replication speed without significant ATR and Chk1 activation (34, 60) have been also
5	shown to induce 53BP1bodies optimally (25) and expression of CFS (48). Replication
6	stress would offer a mechanism to explain reported FOXM1 dependent increases in LOH,
7	and CNV (61, 62), which have been also identified as RIGI outcomes. Interference with
8	FOXM1 transcriptional activity reduced radiation-induced micronucleus formation and
9	increased HR dependent repair, while overexpression was sufficient to induce
10	micronuclei formation (Figs. 4 and 5).
11	FOXM1 controls the expression of multiple genes involved in DNA homeostasis
12	including NBS, BRIP1, XRCC1, BRCA2, EXO1, RAD51 and RRM2 as well as cell
13	cycle regulation, Cyclin B and PLK1 ((30, 31, 36, 37, 40, 63, 64) and reviewed in (32)).
14	Several of these targets could mediate FOXM1 role during RIGI. Overexpression of
15	RAD51 increases HR activity and chromosomal instability (65-67), and overexpressed
16	EXO1 promotes end resection (68). An alternative mechanism could be by promotion of
17	premature entry into mitosis by inducing the expression of Cyclin B and PLK1 (39).
18	Given these pleiotropic effects, further experiments beyond the scope of this work, are
19	needed to identify the transcriptional target of FOXM1 promoting RIGI.
20	We show evidence supporting a role for FOXM1 in radiation-induced cell
21	transformation as transient interference with FOXM1 transcriptional activity was
22	sufficient to dampen cell growth in soft agar induced by IR (Fig. 6B). This activity is
23	consistent with transgenic mice models showing that FOXM1 expression promotes early

IR induces replication stress

1	steps in tumorigenesis, promoting Clara cell and hepatocyte hyperplasia for example (69,
2	70) and acting in conjunction with many other carcinogens (71) as well as cancer cell
3	lines (72, 73). Replication stress has been shown to be a source for genomic instability in
4	pre-neoplasic lesions, while in normal cells replication stress leads to cell death or
5	senescence through activation of DDR (74-76). FOXM1 expression could be a tolerance
6	mechanism to evade anti-proliferative signals, such as oncogene-induced differentiation
7	(77), DNA damage-induced senescence (31) and aging (78), and allow the proliferation
8	of genomically unstable cells. Thus, we propose that FOXM1 expression is enabling
9	radiation induced cell transformation.
9 10	radiation induced cell transformation. In summary, we show that HBEC3-KT is a model system to elucidate
10	In summary, we show that HBEC3-KT is a model system to elucidate
10 11	In summary, we show that HBEC3-KT is a model system to elucidate mechanisms driving RIGI, as it reproduces many of the outcomes for RIGI reported in
10 11 12	In summary, we show that HBEC3-KT is a model system to elucidate mechanisms driving RIGI, as it reproduces many of the outcomes for RIGI reported in other model systems. Moreover, by transient interference with FOXM1 activity, we
10 11 12 13	In summary, we show that HBEC3-KT is a model system to elucidate mechanisms driving RIGI, as it reproduces many of the outcomes for RIGI reported in other model systems. Moreover, by transient interference with FOXM1 activity, we demonstrate that the observed transient increase in genomic instability contributes to

IR induces replication stress

1	ACKNOWLEDGMENTS
2	We thank Kathryn Aziz for coordinating sample analysis at the MD Anderson RPPA
3	core, funded by NCI#CA16672. Flow cytometry was performed in the
4	Emory +Pediatric's/Winship Flow Cytometry Core.
5	
6	FUNDING
7	This work was funded by DoD grant W81XWH-17-1-0187 to PWD/EW and supported
8	by US National Institute of Health Intramural Research Program Projects: Z1AES103328
9	to PWD.
10	
11	
12	COMPETING INTEREST
13	The authors declare no competing interests.
14	
15	AUTHOR CONTRIBUTIONS
16	Conceptualization E.W.: Investigation, Z.L., E.W.; Resources: D.S.Y.; Writing – Original
17	Draft, Z.L., E.W.; Writing - Review and Editing, Z.L., E.W., D.S.Y, P.W.D.; Funding
18	Acquisition, E.W. and P.W.D.
19	
20	ABREVIATIONS
21	IR: ionizing radiation, LET: Linear Energy Transfer, LOH: loss of heterozygocity, CNV:
22	copy number variation, ssDNA: single stranded DNA, dsDNA: double stranded DNA,
23	CFS: chromosomal fragile site.

IR induces replication stress

1 MATERIALS AND METHODS

2 Cell lines, reagents and irradiations

3	The human	bronchial	epithelial	cell line	(HBEC3-KT) was a gift from	Dr. Story	UT) /

- 4 Southwestern), was authenticated by karyotyping and tested for mycoplasma at the
- 5 moment of stock preparation. Cells were cultured in Keratinocyte serum free media
- 6 (Invitrogen) supplemented with antibiotics, Epidermal growth Factor and Bovine
- 7 Pituitary extract. HBEC3-KT cells were transfected with Fugene HD or Lipofectamine
- 8 3000. FOXM1 and control aptamers were custom synthesized by Sigma with thio-
- 9 modification, prepared and used at a 100nM concentration as described in (38). DRG,
- 10 EJ5 and EJ2-U2OS cells were a gift from Dr. Jeremy Stark (Beckman Research Institute

11 of the City of Hope). pCW57.1-FOXM1b was a gift from Adam Karpf (Addgene plasmid

12 # 68811), pRRL sEF1a HA.NLS.Sce (opt).T2A.IFP was a gift from Andrew Scharenberg

- 13 (Addgene plasmid # 31484).
- 14 Low-LET irradiation was carried out using an X-ray machine (X-RAD320, Precision X-
- 15 Ray, N. Branford, CT, USA) at 320kV, 10mA. Irradiation was delivered at room
- 16 temperature as a single dose or multiple fractions of 320 kV X-rays (Precision X-Ray

17 Inc., North Branford, CT, USA), at dose-rate approximately 2.3 Gy/min. For irradiations,

- 18 200 000 cells were plated in a T25 flask two days before irradiation in triplicates to
- 19 ensure continuous proliferation before and after exposure. At day 4, each flask was
- 20 subcultured at a1:3 ratio.
- 21 DNA Repair reporter assay

22 DRG, EJ5 and EJ2 U2OS reporter cell lines, a gift from Dr. Jeremy Stark, were grown in

23 DMEM 10% FBS. At day 3 after irradiation, 500 000 cells were transfected with I-SceI

IR induces replication stress

1	IFP in triplicate. At day 6, all cells were incubated with $25\mu M$ biliverdin, and 18h later
2	the cells were collected to measure expression of GFP and IFP (for transfection
3	efficiency normalization) by flow cytometry in a FACS LSRII Instrument (BD
4	Biosciences). The data collected was analyzed using FlowJo software as described (79).
5	Control and FOXM1 aptamer were transfected at 100nM at day 2 after irradiation.
6	Micronucleus assay
7	Cells were plated at a density of 20 000/well on glass coverslips and treated for 18h with
8	3 μ g/ml Cytochalasin B in media to block cytokinesis before fixing with 4% PFA and
9	staining with DAPI. Binucleated cells, which are the cells that underwent mitosis during
10	the cytochalasin incubation period, were scored for the presence of micronuclei and/or
11	nuclear blebs as previously described (21).
12	Reverse Phase Protein Array
13	Cell lysates were prepared from three biological replicates in 50mM Hepes pH7.4, 1%
14	Triton X-100, 150mMNaCl, 1.5mM MgCl ₂ , 1mMEGTA, 10% Glycerol containing anti
15	proteases and anti phosphatases (Roche) and sent for analysis at the Reverse Phase
16	Protein Array Core Facility at MD Anderson. Relative protein levels are obtained by
17	interpolating several sample dilutions into a standard curve and then normalized for
18	protein loading. The scatter plot was generated by graphing the difference between
19	irradiated and non-irradiated averages of triplicate samples normalized and transformed
20	to linear values. Included are only the proteins that yielded a significant difference
21	(paired t-test, p<0.05) in HBEC3-KT and/or U2OS cell lysates. Heat maps were
22	generated with normalized log2 median centered data for each marker employing
23	Morpheus software (Broad Institute).

IR induces replication stress

1 DNA Fiber assay

2	Cells were pulsed with 25 μ M IdU and then with 250 μ M CldU for 30 minutes each at
3	37°C then released with trypsin and spotted on glass slides. DNA was spread following a
4	7min lysis with 0.5% SDS, 200 mM Tris-HCl pH 7.4, 50 mM EDTA. Dried slides were
5	fixed with a (3:1) Methanol/Acetic acid mixture and denatured for 60min in 2.5 N HCl.
6	Following 1h blocking in 15%FBS in PBS, the slides were incubated in primary
7	antibodies for 2h 1:400 rat anti-bromodeoxyuridine (ab6326 Abcam) and 1:50 mouse
8	anti- bromodeoxyuridine (B44, BD). After a stringency wash with 10 mM Tris-HCl pH
9	7.4, 400 mM NaCl, 0.2% Nonidet P40 (NP40), the slides were incubated with Alexafluor
10	conjugated secondary antibodies: 488-conjugated chicken anti-rat, 488-conjugated goat
11	anti-chicken, 594-conjugated rabbit anti-mouse and 594-conjugated goat anti-rabbit in
12	1:300 dilution. The slides were mounted in Fluoromount-G (Southern Biotech). Images
13	of the fibers were acquired with a 63x oil immersion objective on a Zeiss Observer Z1
14	microscope equipped with Axiovision 4.8 software. 200 dual color labeled replication
15	track length was measured employing Fiji Software and were converted to replication
16	speed using conversion factor is 2.59 kb/µm (80, 81). Statistical significance between
17	groups was assessed using One Way ANOVA with a Bonferroni all pairs comparison
18	post- test.
19	Immunofluorescence
20	RPA foci and anaphase bridges were detected in cells fixed with 4% paraformaldehyde
04	

and permeabilized with 0.2% TritonX-100. For RPA foci, cells were pre-extracted with

22 0.5% TritonX-100 before fixing. Antibodies used were RPA70 (Millipore), 53BP1

23 (Novus Biologicals), Cyclin A (Santa Cruz). The slides were mounted in Fluoromount-G

IR induces replication stress

1	(Southern Biotech). Images were acquired with a 63x oil immersion objective on a Zeiss
2	Observer Z1 microscope equipped with Axiovision 4.8 software. Images were processed
3	using contrast/brightness enhancement only. Foci were counted in at least 5 different
4	fields totaling 50 or more cells in duplicate irradiations.
5	Western Blot analysis
6	Cell lysates were preparing employing RIPA buffer (50mM Tris pH=7.4, 150mM NaCl,
7	2mM EDTA, 0.5% NP40, 0.25% Sodium Deoxycholate) supplemented with Complete
8	protease inhibitor and PHOSStop phosphatase inhibitor (Roche). Hundred micrograms of
9	protein were separated in 10% SDS PAGE and transferred to a PVDF membrane. The
10	membrane was probed with antibodies for FOXM1, Cyclin B, CHK1 S345, (CST),
11	Rad51, Exo1 (Abcam), RPA2 s4/s8 (Bethyl), GAPDH (GeneTex), tubulin (T6074,
12	Sigma). Bound antibodies were detected with infrared fluorescent secondary antibodies
13	and imaged with a LI-COR Odyssey system. The numbers below the bands are fold of
14	change over the non-treated condition calculated from the relative intensity of the bands
15	quantified employing Image Studio Software.
16	Growth in soft agar
17	HBEC3-KT cells were irradiated in triplicate flasks and transfected at day 4 with the
18	indicated DNA. At day 6, samples were collected to analyze for micronucleus formation.
19	Cells were continuously passaged for 3 weeks. At week 4 media was changed to a 1:1
20	mixture of complete Keratinocyte Serum Free media and 10% FBS RPMI to
21	accommodate potential metabolic changes and promote clone growth (82). At the end of
22	week 4, 50 000 cells per well were plated in 0.37% agar in triplicate wells over a 0.7%
23	agar bottom layer. Colonies of a diameter larger than 10 cells were counted after 3 weeks.

IR induces replication stress

1

2 Statistical analysis

- 3 The statistical test applied in each case is stated in the figure legend. Excel was used for
- 4 two-tailed Student's t-test analysis assuming equal variance of the samples. Kaleidagraph
- 5 (Synergy Software) was used for One Way ANOVA employing a Bonferroni or Fisher's
- 6 LSD post-hoc test as indicated in the figure legend. Statistical significance is represented

```
7 by asterisks: *=p \le 0.05; **=p \le 0.01; ***=p \le 0.005; ****=p \le 0.001.
```

- 8
- 9
- 10

IR induces replication stress

1 Figure Legends

2	Figure 1: X-ray irradiated cells have damaged DNA at mitosis and increased usage of the
3	HR pathway.
4	A) Micronucleus formation rates at day 7 (HBEC3-KT) or day 5 (U2OS) following
5	exposure to 2Gy X-ray. Average of 2 experiments, error bars represent SEM.
6	Student's t-test. Inserts depict a representative image of binucleated HBEC3-KT
7	cells with a micronucleus or a nuclear bud, respectively.
8	B) Increased frequency of RPA-positive chromosomal bridges in irradiated cells.
9	Proliferating cultures of day 7 (HBEC3-KT) or day 5 (U2OS) following exposure
10	to 2Gy X-ray were fixed and stained for RPA 70. An average of 90 mitosis per
11	condition were scored for RPA positive bridges. Error bars represent standard
12	deviation of triplicate samples. Student's t-test. Insert depicts a representative
13	image of RPA-positive chromosomal bridge in U2OS (left panel) and HBEC3-KT
14	(right panel) cells.
15	C) Frequency of nuclei with more than three 53BP1-positive foci per nuclei scored in
16	an average of 100 Cyclin A negative nuclei per sample in HBEC3-KT at day 7
17	and in U2OS cells at day 5 following a 2Gy X-ray dose. Error bars represent
18	standard deviation of triplicate samples. Student's t-test. Insert depicts HBEC3-
19	KT cells with Cyclin A positive nuclei without 53BP1 bodies and Cyclin A
20	negative nuclei with 53BP1 bodies.
21	D) Relative GFP induction levels in U2OS reporter cell lines for homologous
22	recombination dependent repair (DRG), cNHEJ (EJ2) and aNHEJ (EJ5) at day 7

IR induces replication stress

1	following exposure to a 2Gy X-ray dose. Average of 2 experiments, error bars
2	represent SEM.
3	
4	Figure 2: Reverse Phase Protein Array analysis of proteins and post-translational
5	modifications altered by exposure to X-ray.
6	A) Scatterplot representing the relative protein level difference between irradiated
7	and non-irradiated samples. Averages of triplicate samples normalized and
8	transformed to linear values for each condition were subtracted. Each dot
9	represents a protein that yielded a significant difference after irradiation
10	(Student's t-test, p<0.05) in cell lysates of HBEC3-KT at day 7 and/or U2OS at
11	day 5.
12	B) Heat map for proteins involved in cell cycle regulation and homologous
13	recombination DNA repair pathway. The normalized log2 values for protein
14	levels in each sample were median centered for each protein measured.
15	
16	Figure 3: Irradiated cells have low levels of replication stress and induce FOXM1
17	expression.
18	A) Frequency distribution plot of replication speed measured by the DNA fiber
19	assay in HBEC3-KT cells at day 7 following exposure to the indicated X-ray
20	doses. As a control, HBEC3-KT cells were treated for 48h with $25\mu M$ HU to
21	reduce replication speed. Arrows indicate average speed. Inserts show
22	examples of replication tracks of different length.

IR induces replication stress

1	B) Quantification of the percentage of cells with RPA70 foci detected by
2	immunofluorescence. Between 50 and 100 cells were scored in replicate
3	samples of non-irradiated and day 7 irradiated HBEC3-KT cells or day 5
4	irradiated U2OS cells. Error bars represent standard deviation. Student's t-test.
5	C) Boxplots for the relative FOXM1 expression levels detected by reverse phase
6	protein arrays in HBEC3-KT at day 5 and 7, and in U2OS at day 5 post-
7	exposure to a 2Gy X-ray dose. Student's t-test.
8	D) Western blot for FOXM1 expression and known transcriptional target proteins
9	in HBEK3-KT at day 7 and in U2OS at day 5 post-exposure to the indicated
10	X-ray dose.
11	
12	Figure 4: Interference with FOXM1 transcriptional activity reduces radiation induced
12 13	Figure 4 : Interference with FOXM1 transcriptional activity reduces radiation induced phenotypes.
13	phenotypes.
13 14	phenotypes. A) Western blot analysis of known transcriptional target proteins for FOXM1 in
13 14 15	phenotypes. A) Western blot analysis of known transcriptional target proteins for FOXM1 in HBEC3-KT at day 7 following exposure to 2Gy X-ray and transfection at day
13 14 15 16	phenotypes. A) Western blot analysis of known transcriptional target proteins for FOXM1 in HBEC3-KT at day 7 following exposure to 2Gy X-ray and transfection at day 3 with 100nM aptamer of random sequence (Control) or of a sequence
13 14 15 16 17	phenotypes. A) Western blot analysis of known transcriptional target proteins for FOXM1 in HBEC3-KT at day 7 following exposure to 2Gy X-ray and transfection at day 3 with 100nM aptamer of random sequence (Control) or of a sequence interfering with FOXM1 transcriptional activity (Aptamer).
13 14 15 16 17 18	 phenotypes. A) Western blot analysis of known transcriptional target proteins for FOXM1 in HBEC3-KT at day 7 following exposure to 2Gy X-ray and transfection at day 3 with 100nM aptamer of random sequence (Control) or of a sequence interfering with FOXM1 transcriptional activity (Aptamer). B) Micronucleus assay in the same cells analyzed in A. Error bars represent
 13 14 15 16 17 18 19 	 phenotypes. A) Western blot analysis of known transcriptional target proteins for FOXM1 in HBEC3-KT at day 7 following exposure to 2Gy X-ray and transfection at day 3 with 100nM aptamer of random sequence (Control) or of a sequence interfering with FOXM1 transcriptional activity (Aptamer). B) Micronucleus assay in the same cells analyzed in A. Error bars represent standard deviation. 1 of 2 experiments shown. One Way ANOVA followed by

IR induces replication stress

1	Average of two experiments. One Way ANOVA followed by Bonferroni post-
2	test.
3	
4	Figure 5: FOXM1b overexpression is sufficient to induce genomic instability.
5	A) Western blot for Flag-tagged FOXM1 expression and transcriptional target
6	proteins in stably expressing U2OS cells induced for 48h with the indicated
7	Doxocyclin concentration.
8	B) Micronucleus formation in HBEC3-KT and U2OS transiently expressing
9	FOXM1. Empty vector or FOXM1 were transfected 72h prior to the 18h
10	incubation with cytochalasin. U2OS cells were treated with 1μ g/ml Dox. Error
11	bars represent SEM. Student' t-test.
12	C) Western blot analysis for RPA2 and Chk1 phosphorylation in HBEC3-KT and
13	U2OS cells overexpressing FOXM1 or treated with HU 25 μ M for 48h or
14	3mM for 4h.
15	
16	Figure 6: FOXM1 expression promotes cell transformation. Triplicate flasks of HBEC3-
17	KT cells were exposed to 4Gy X-ray and transfected at day 4 with the indicated
18	construct. At day 6 post-irradiation, the cells were passaged and samples were collected
19	for micronucleus assay shown in (A). After a month of continuous growth, the cells were
20	tested for growth in soft agar shown in (B). Error bars represent SEM. Student' t-test and
21	One Way ANOVA with Fisher's LSD post-test for aptamer and radiation samples.
22	
23	

IR induces replication stress

1	Supplementary Figures:
2	Supplementary Figure 1: Detail of the constructs engineered in U2OS cells to report
3	the repair of a double strand break introduced by cleavage with the endonuclease I-SceI.
4	GFP expression is gained when repair occurs by the specific mechanism.
5	
6	Supplementary Figure 2: Heat Map of the relative expression of all the antigens
7	profiled by the reverse phase protein array after hierarchical clustering. Triplicate
8	samples of non-irradiated (NI) or 2Gy irradiated HBEC3-KT cell lysates collected at day
9	5 or day 7. Heat map represents "rank-ordered" changes induced by each treatment,
10	calculated by summing median-centered normalized protein amount.
11	
12	Supplementary Figure 3: Characterization of radiation induced replication stress.
13	A) Asymmetry of replication track: the graph depicts the ratio of CldU/IdU track
14	length for each dose. No statistical divergence following One Way ANOVA
15	analysis.
16	B) Micronucleus formation rates in HBEC3-KT or U2OS cells were irradiated or
17	treated for 48h with $25\mu M$ HU with or without $30\mu M$ nucleosides. Error bars are
18	SEM. Student' t-test. 1 of 2 experiments.
19	
20	Supplementary Figure 4: Correlation of FOXM1 expression with transcriptional targets
21	and replication stress marker levels in cancer cell lines samples analyzed with the RPPA
22	platform:

IR induces replication stress

1	A) Relative FOXM1 expression across datasets of cell lines grouped by cancer type
2	extracted from the MD Anderson Cell Lines Project Portal.
3	https://tcpaportal.org/mclp/#/
4	B) Table listing the correlation factor and significance of paired comparison of the
5	indicated protein with FOXM1 expression in each dataset of cell lines grouped by
6	cancer types. Included are the comparisons that were significant ($p \le 0.05$).
7	Supplementary Figure 5: Correlation of FOXM1 expression with transcriptional targets
8	and replication stress marker levels in tumor samples analyzed with the RPPA platform:
9	A) Relative FOXM1 expression across datasets of tumor samples grouped by cancer
10	type extracted from the The Cancer Proteome Atlas. https://tcpaportal.org/tcpa/
11	B) Table listing the correlation factor and significance of paired comparison of the
12	indicated protein with FOXM1 expression in each dataset of tumor samples
13	grouped by cancer types. Included are the comparisons that were significant (p \leq
14	0.05)
15	
16	
17	
18	
19	
20	
21	
22	
23	

IR induces replication stress

1 **BIBLIOGRAPHY**:

2 1	. Delar	ev GP.	Barton MB.	Evidence-based	estimates	of the	demand for
-----	---------	--------	------------	----------------	-----------	--------	------------

3 radiotherapy. Clin Oncol (R Coll Radiol). 2015;27(2):70-6.

4 2. Suit H, Goldberg S, Niemierko A, Ancukiewicz M, Hall E, Goitein M, et al.

5 Secondary carcinogenesis in patients treated with radiation: a review of data on

6 radiation-induced cancers in human, non-human primate, canine and rodent

7 subjects. Radiat Res. 2007;167(1):12-42.

8 3. Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD, et

9 al. Proportion of second cancers attributable to radiotherapy treatment in adults: a

10 cohort study in the US SEER cancer registries. Lancet Oncol. 2011;12(4):353-60.

11 4. Sherborne AL, Davidson PR, Yu K, Nakamura AO, Rashid M, Nakamura JL.

12 Mutational Analysis of Ionizing Radiation Induced Neoplasms. Cell Rep.

13 2015;12(11):1915-26.

14 5. Lee CL, Mowery YM, Daniel AR, Zhang D, Sibley AB, Delaney JR, et al.

15 Mutational landscape in genetically engineered, carcinogen-induced, and radiation-

16 induced mouse sarcoma. JCI Insight. 2019;4(13).

17 6. Little JB. Radiation carcinogenesis. Carcinogenesis. 2000;21(3):397-404.

18 7. Frankenberg-Schwager M. Induction, repair and biological relevance of

19 radiation-induced DNA lesions in eukaryotic cells. Radiat Environ Biophys.

20 1990;29(4):273-92.

21 8. Jackson SP, Bartek J. The DNA-damage response in human biology and

disease. Nature. 2009;461(7267):1071-8.

IR induces replication stress

1	9.	Morgan WF. Non-targeted and delayed effects of exposure to ionizing		
2	radiat	ion: II. Radiation-induced genomic instability and bystander effects in vivo,		
3	clasto	genic factors and transgenerational effects. Radiat Res. 2003;159(5):581-96.		
4	10.	Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, et al.		
5	Non-ta	argeted effects of ionising radiationimplications for low dose risk. Mutat Res.		
6	2013;2	752(2):84-98.		
7	11.	Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability		
8	induce	ed by ionizing radiation. Radiat Res. 1996;146(3):247-58.		
9	12.	Ullrich RL, Ponnaiya B. Radiation-induced instability and its relation to		
10	radiat	ion carcinogenesis. Int J Radiat Biol. 1998;74(6):747-54.		
11	13.	Kim GJ, Chandrasekaran K, Morgan WF. Mitochondrial dysfunction,		
12	persistently elevated levels of reactive oxygen species and radiation-induced			
13	genomic instability: a review. Mutagenesis. 2006;21(6):361-7.			
14	14.	Baulch JE, Aypar U, Waters KM, Yang AJ, Morgan WF. Genetic and epigenetic		
15	changes in chromosomally stable and unstable progeny of irradiated cells. PLoS One.			
16	2014;9	9(9):e107722.		
17	15.	Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, Zabriskie R, et al. Elevated		
18	breast	cancer risk in irradiated BALB/c mice associates with unique functional		
19	polym	orphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene.		
20	Cance	r Res. 2001;61(5):1820-4.		
21	16.	Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J, et al.		
22	Immo	rtalization of human bronchial epithelial cells in the absence of viral		
23	oncop	roteins. Cancer Res. 2004;64(24):9027-34.		

IR induces replication stress

1	17.	Delgado O, Kaisani AA, Spinola M, Xie XJ, Batten KG, Minna JD, et al.		
2	Multipotent capacity of immortalized human bronchial epithelial cells. PLoS One.			
3	2011;6(7):e22023.			
4	18.	Sato M, Larsen JE, Lee W, Sun H, Shames DS, Dalvi MP, et al. Human lung		
5	epithe	lial cells progressed to malignancy through specific oncogenic manipulations.		
6	Mol Ca	ancer Res. 2013;11(6):638-50.		
7	19.	Ron E. Cancer risks from medical radiation. Health Phys. 2003;85(1):47-59.		
8	20.	Kumar S. Second malignant neoplasms following radiotherapy. Int J Environ		
9	Res Pı	ıblic Health. 2012;9(12):4744-59.		
10	21.	Werner E, Wang H, Doetsch PW. Opposite roles for p38MAPK-driven		
11	respo	nses and reactive oxygen species in the persistence and resolution of		
12	radiat	ion-induced genomic instability. PLoS One. 2014;9(10):e108234.		
13	22.	Werner E, Wang Y, Doetsch PW. A Single Exposure to Low- or High-LET		
14	Radiat	tion Induces Persistent Genomic Damage in Mouse Epithelial Cells In Vitro and		
15	in Lun	g Tissue. Radiat Res. 2017;188(4):373-80.		
16	23.	Werner E, Wang H, Doetsch PW. Role of Pro-inflammatory Cytokines in		
17	Radiat	tion-Induced Genomic Instability in Human Bronchial Epithelial Cells. Radiat		
18	Res. 2	015;184(6):621-9.		
19	24.	Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc.		
20	2007;	2(5):1084-104.		
21	25.	Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS, et al.		
22	53BP1	nuclear bodies form around DNA lesions generated by mitotic transmission		
23	of chr	omosomes under replication stress. Nat Cell Biol. 2011;13(3):243-53.		

IR induces replication stress

1	26.	Fernandez-Casanas M, Chan KL. The Unresolved Problem of DNA Bridging.
2	Genes	(Basel). 2018;9(12).
3	27.	Chan YW, Fugger K, West SC. Unresolved recombination intermediates lead
4	to ultr	a-fine anaphase bridges, chromosome breaks and aberrations. Nat Cell Biol.
5	2018;2	20(1):92-103.
6	28.	Bennardo N, Cheng A, Huang N, Stark JM. Alternative-NHEJ is a
7	mecha	nistically distinct pathway of mammalian chromosome break repair. PLoS
8	Genet.	2008;4(6):e1000110.
9	29.	Allen CP, Hirakawa H, Nakajima NI, Moore S, Nie J, Sharma N, et al. Low- and
10	High-I	ET Ionizing Radiation Induces Delayed Homologous Recombination that
11	Persis	ts for Two Weeks before Resolving. Radiat Res. 2017;188(1):82-93.
12	30.	Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, et al.
13	The Fo	orkhead Box M1 protein regulates BRIP1 expression and DNA damage repair
14	in epir	rubicin treatment. Oncogene. 2013;32(39):4634-45.
15	31.	Khongkow P, Karunarathna U, Khongkow M, Gong C, Gomes AR, Yague E, et
16	al. FOX	KM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin
17	resista	ance. Oncogene. 2014;33(32):4144-55.
18	32.	Nestal de Moraes G, Bella L, Zona S, Burton MJ, Lam EW. Insights into a
19	Critica	ll Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic
20	Drug I	Resistance. Curr Drug Targets. 2016;17(2):164-77.
21	33.	Techer H, Koundrioukoff S, Azar D, Wilhelm T, Carignon S, Brison O, et al.
22	Replic	ation dynamics: biases and robustness of DNA fiber analysis. J Mol Biol.
23	2013;4	425(23):4845-55.

IR induces replication stress

1	34.	Koundrioukoff S, Carignon S, Techer H, Letessier A, Brison O, Debatisse M.		
2	Stepv	vise activation of the ATR signaling pathway upon increasing replication stress		
3	impa	cts fragile site integrity. PLoS Genet. 2013;9(7):e1003643.		
4	35.	Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al.		
5	Repli	cation stress links structural and numerical cancer chromosomal instability.		
6	Natur	re. 2013;494(7438):492-6.		
7	36.	Zhang N, Wu X, Yang L, Xiao F, Zhang H, Zhou A, et al. FoxM1 inhibition		
8	sensi	tizes resistant glioblastoma cells to temozolomide by downregulating the		
9	expre	ession of DNA-repair gene Rad51. Clin Cancer Res. 2012;18(21):5961-71.		
10	37.	Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, et al. FOXM1 modulates cisplatin		
11	sensi	tivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9(5):e96989.		
12	38.	Xiang Q, Tan G, Jiang X, Wu K, Tan W, Tan Y. Suppression of FOXM1		
13	Trans	scriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX.		
14	Sci Rep. 2017;7:45377.			
15	39.	Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A, et al.		
16	FoxM	1 is required for execution of the mitotic programme and chromosome		
17	stabil	ity. Nat Cell Biol. 2005;7(2):126-36.		
18	40.	Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1		
19	trans	cription factor to stimulate expression of DNA repair genes. Mol Cell Biol.		
20	2007	;27(3):1007-16.		
21	41.	Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, et al. TCPA: a resource for cancer		

22 functional proteomics data. Nat Methods. 2013;10(11):1046-7.

IR induces replication stress

1	42.	Li J, Zhao W, Akbani R, Liu W, Ju Z, Ling S, et al. Characterization of Human		
2	Cance	er Cell Lines by Reverse-phase Protein Arrays. Cancer Cell. 2017;31(2):225-39.		
3	43.	Ding LH, Park S, Xie Y, Girard L, Minna JD, Story MD. Elucidation of changes in		
4	molec	cular signalling leading to increased cellular transformation in oncogenically		
5	progr	essed human bronchial epithelial cells exposed to radiations of increasing LET.		
6	Mutag	genesis. 2015;30(5):685-94.		
7	44.	Vaz M, Hwang SY, Kagiampakis I, Phallen J, Patil A, O'Hagan HM, et al. Chronic		
8	Cigare	ette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial		
9	Epith	elial Cells to Single-Step Transformation by KRAS Mutations. Cancer Cell.		
10	2017;	32(3):360-76 e6.		
11	45.	Sato M, Vaughan MB, Girard L, Peyton M, Lee W, Shames DS, et al. Multiple		
12	oncog	enic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass,		
13	telomerase) are not sufficient to confer a full malignant phenotype on human			
14	bronc	hial epithelial cells. Cancer Res. 2006;66(4):2116-28.		
15	46.	Gaillard H, Garcia-Muse T, Aguilera A. Replication stress and cancer. Nat Rev		
16	Cance	er. 2015;15(5):276-89.		
17	47.	Ait Saada A, Lambert SAE, Carr AM. Preserving replication fork integrity and		
18	comp	etence via the homologous recombination pathway. DNA Repair (Amst).		
19	2018;	71:135-47.		
20	48.	Durkin SG, Glover TW. Chromosome fragile sites. Annu Rev Genet.		
21	2007;	41:169-92.		

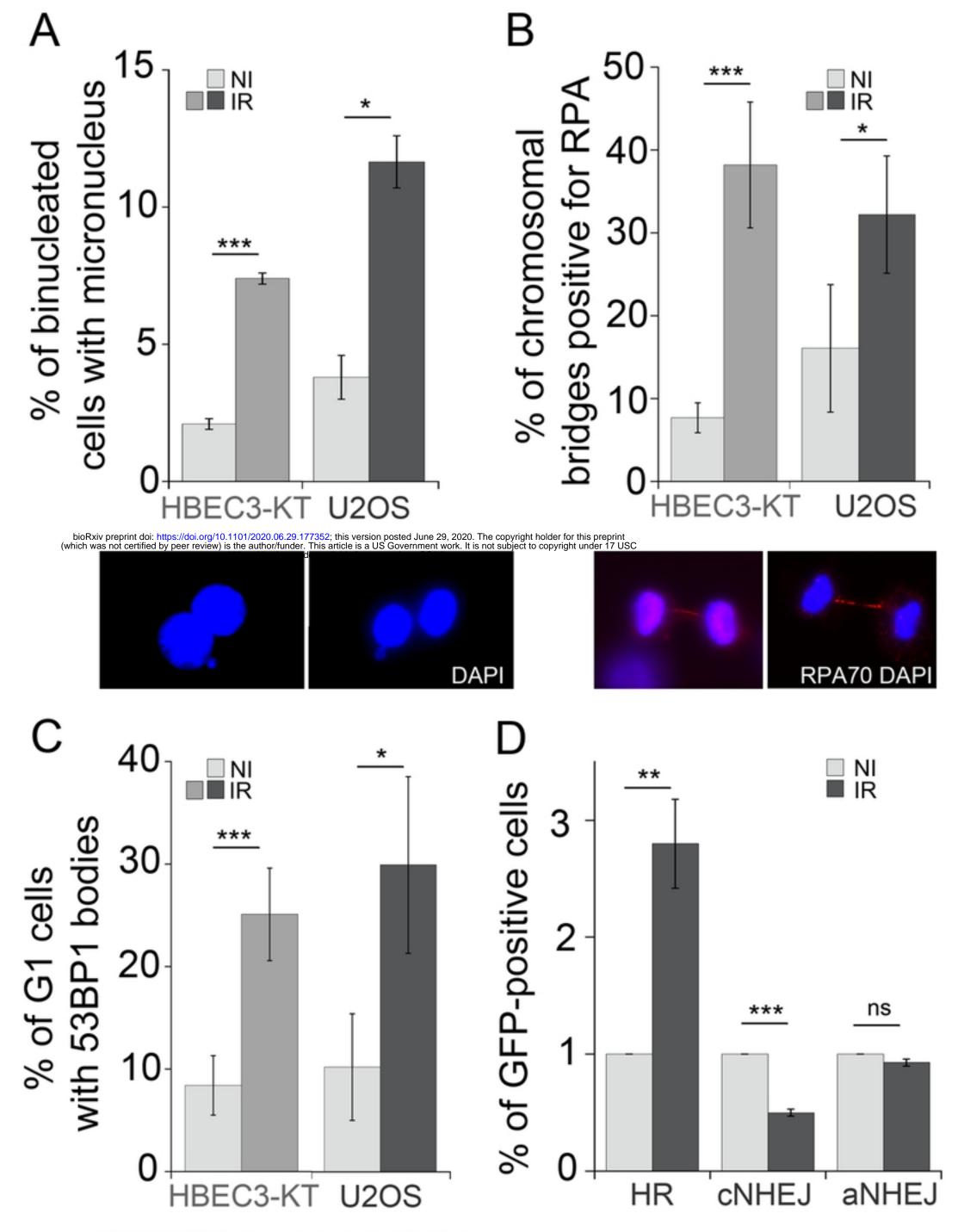
IR induces replication stress

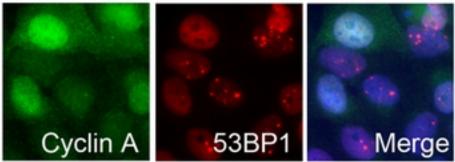
1	49.	Chan KL, Palmai-Pallag T, Ying S, Hickson ID. Replication stress induces			
2	sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol.				
3	2009;11(6):753-60.				
4	50.	Aguilera A, Garcia-Muse T. Causes of genome instability. Annu Rev Genet.			
5	2013;	47:1-32.			
6	51.	Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M, Takeda S.			
7	Sister	chromatid exchanges are mediated by homologous recombination in			
8	vertel	brate cells. Mol Cell Biol. 1999;19(7):5166-9.			
9	52.	Nagasawa H, Wilson PF, Chen DJ, Thompson LH, Bedford JS, Little JB. Low			
10	doses	of alpha particles do not induce sister chromatid exchanges in bystander			
11	Chine	se hamster cells defective in homologous recombination. DNA Repair (Amst).			
12	2008;7(3):515-22.				
13	53.	Gelot C, Magdalou I, Lopez BS. Replication stress in Mammalian cells and its			
14	conse	quences for mitosis. Genes (Basel). 2015;6(2):267-98.			
15	54.	Wilhelm T, Ragu S, Magdalou I, Machon C, Dardillac E, Techer H, et al. Slow			
16	Replie	cation Fork Velocity of Homologous Recombination-Defective Cells Results			
17	from	Endogenous Oxidative Stress. PLoS Genet. 2016;12(5):e1006007.			
18	55.	Somyajit K, Gupta R, Sedlackova H, Neelsen KJ, Ochs F, Rask MB, et al. Redox-			
19	sensit	tive alteration of replisome architecture safeguards genome integrity. Science.			
20	2017;	358(6364):797-802.			
21	56.	Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of			
22	chron	nosomal instability inferred from gene expression profiles predicts clinical			
23	outco	me in multiple human cancers. Nat Genet. 2006;38(9):1043-8.			

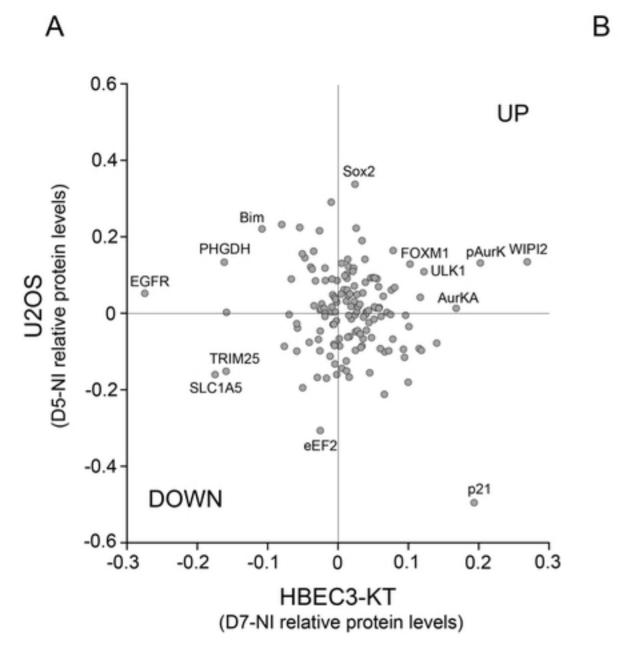
IR induces replication stress

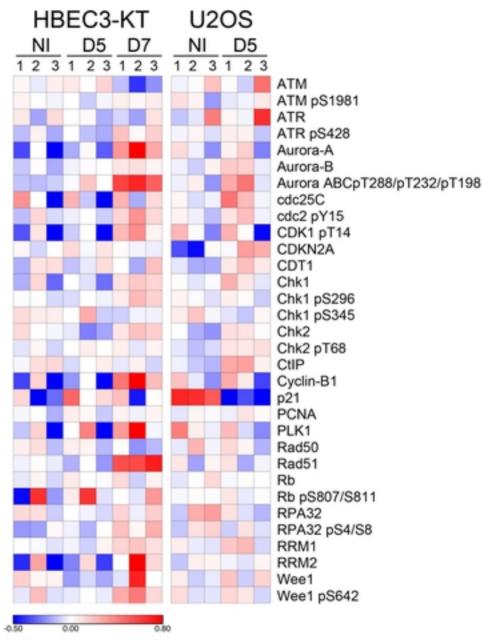
1	57.	Barger CJ, Branick C, Chee L, Karpf AR. Pan-Cancer Analyses Reveal Genomic
2	Featu	res of FOXM1 Overexpression in Cancer. Cancers (Basel). 2019;11(2).
3	58.	Marechal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold
4	Spring	g Harb Perspect Biol. 2013;5(9).
5	59.	Nam EA, Cortez D. ATR signalling: more than meeting at the fork. Biochem J.
6	2011;	436(3):527-36.
7	60.	Wilhelm T, Magdalou I, Barascu A, Techer H, Debatisse M, Lopez BS.
8	Spont	aneous slow replication fork progression elicits mitosis alterations in
9	homol	ogous recombination-deficient mammalian cells. Proc Natl Acad Sci U S A.
10	2014;	111(2):763-8.
11	61.	Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP. Upregulation of
12	FOXM	1 induces genomic instability in human epidermal keratinocytes. Mol Cancer.
13	2010;	9:45.
14	62.	Arlt MF, Wilson TE, Glover TW. Replication stress and mechanisms of CNV
15	forma	tion. Curr Opin Genet Dev. 2012;22(3):204-10.
16	63.	Mazzu YZ, Armenia J, Chakraborty G, Yoshikawa Y, Coggins SA, Nandakumar
17	S, et al	. A Novel Mechanism Driving Poor-Prognosis Prostate Cancer: Overexpression
18	of the	DNA Repair Gene, Ribonucleotide Reductase Small Subunit M2 (RRM2). Clin
19	Cance	r Res. 2019;25(14):4480-92.
20	64.	Park YY, Jung SY, Jennings NB, Rodriguez-Aguayo C, Peng G, Lee SR, et al.
21	FOXM	1 mediates Dox resistance in breast cancer by enhancing DNA repair.
22	Carcin	ogenesis. 2012;33(10):1843-53.

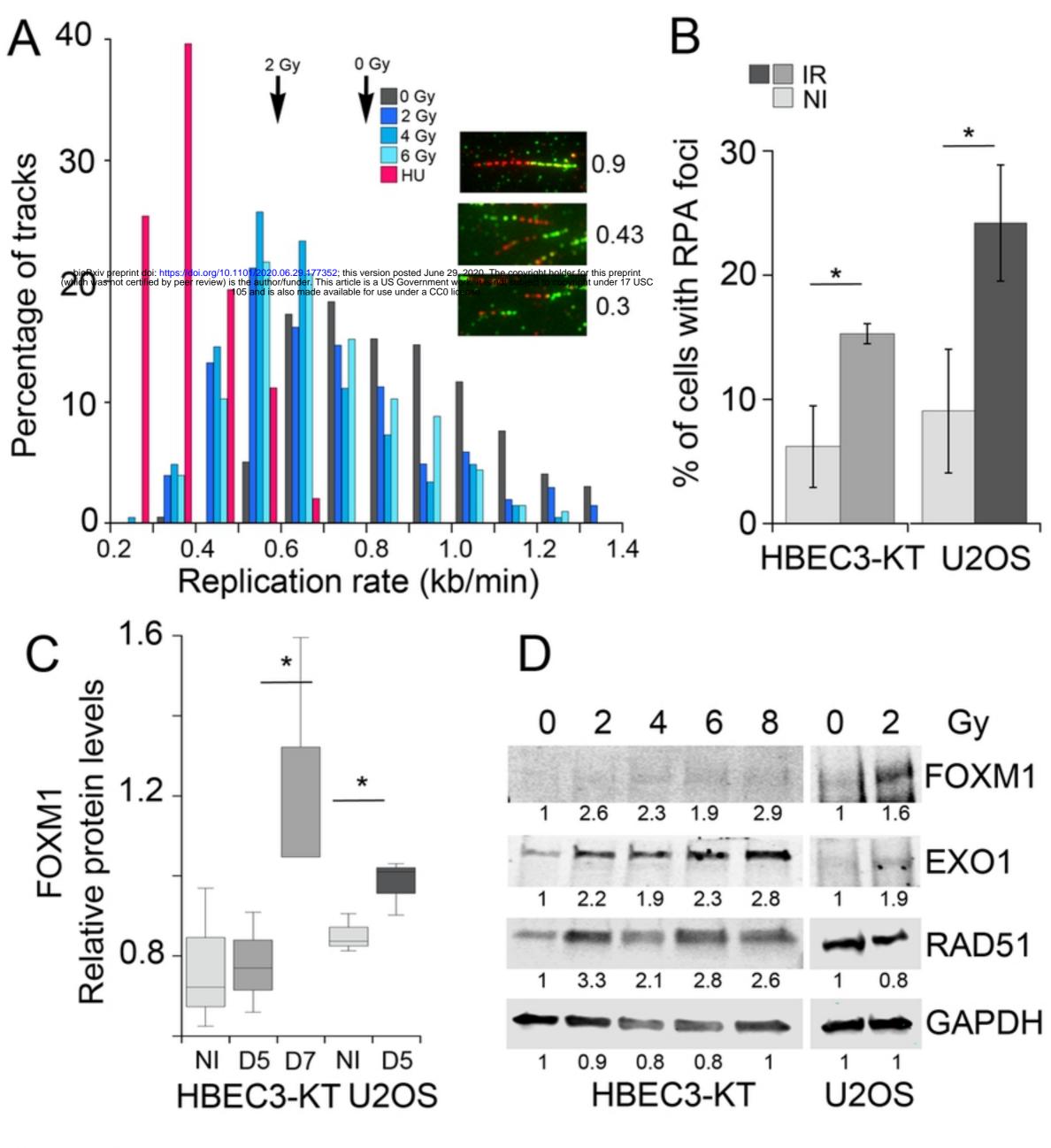
IR induces replication stress


1	65. Vispe S, Cazaux C, Lesca C, Defais M. Overexpression of Rad51 protein	
2	stimulates homologous recombination and increases resistance of mammalian ce	lls
3	to ionizing radiation. Nucleic Acids Res. 1998;26(12):2859-64.	
4	66. Arnaudeau C, Helleday T, Jenssen D. The RAD51 protein supports	
5	homologous recombination by an exchange mechanism in mammalian cells. J Mol	l
6	Biol. 1999;289(5):1231-8.	
7	67. Richardson C, Stark JM, Ommundsen M, Jasin M. Rad51 overexpression	
8	promotes alternative double-strand break repair pathways and genome instabilit	y.
9	Oncogene. 2004;23(2):546-53.	
10	68. Tomimatsu N, Mukherjee B, Catherine Hardebeck M, Ilcheva M, Vanessa	
11	Camacho C, Louise Harris J, et al. Phosphorylation of EXO1 by CDKs 1 and 2	
12	regulates DNA end resection and repair pathway choice. Nat Commun. 2014;5:35	61.
13	69. Wang IC, Zhang Y, Snyder J, Sutherland MJ, Burhans MS, Shannon JM, et al.	
14	Increased expression of FoxM1 transcription factor in respiratory epithelium	
15	inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol.	
16	2010;347(2):301-14.	
17	70. Kalinina OA, Kalinin SA, Polack EW, Mikaelian I, Panda S, Costa RH, et al.	
18	Sustained hepatic expression of FoxM1B in transgenic mice has minimal effects of	n
19	hepatocellular carcinoma development but increases cell proliferation rates in	
20	preneoplastic and early neoplastic lesions. Oncogene. 2003;22(40):6266-76.	
21	71. Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription	n
22	factor: lessons from transgenic mouse models. Cell Cycle. 2011;10(3):396-405.	


IR induces replication stress


1	72. Wang Z, Park HJ, Carr JR, Chen YJ, Zheng Y, Li J, et al. FoxM1 in tumorigen	icity
2	of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res.	
3	2011;71(12):4292-302.	
4	73. Gu C, Yang Y, Sompallae R, Xu H, Tompkins VS, Holman C, et al. FOXM1 is	а
5	therapeutic target for high-risk multiple myeloma. Leukemia. 2016;30(4):873-8	2.
6	74. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA dama	ge
7	response as a candidate anti-cancer barrier in early human tumorigenesis. Natu	re.
8	2005;434(7035):864-70.	
9	75. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Lilog	ou
10	T, et al. Activation of the DNA damage checkpoint and genomic instability in hur	nan
11	precancerous lesions. Nature. 2005;434(7035):907-13.	
12	76. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al.	
13	Oncogene-induced senescence is part of the tumorigenesis barrier imposed by l	ONA
14	damage checkpoints. Nature. 2006;444(7119):633-7.	
15	77. Molinuevo R, Freije A, de Pedro I, Stoll SW, Elder JT, Gandarillas A. FOXM	1
16	allows human keratinocytes to bypass the oncogene-induced differentiation	
17	checkpoint in response to gain of MYC or loss of p53. Oncogene. 2017;36(7):956	5-65.
18	78. Smirnov A, Panatta E, Lena A, Castiglia D, Di Daniele N, Melino G, et al. FC	XM1
19	regulates proliferation, senescence and oxidative stress in keratinocytes and car	ncer
20	cells. Aging (Albany NY). 2016;8(7):1384-97.	
21	79. Li Z, Hudson FZ, Wang H, Wang Y, Bian Z, Murnane JP, et al. Increased	
22	mutagenic joining of enzymatically-induced DNA double-strand breaks in high-	
23	charge and energy particle irradiated human cells. Radiat Res. 2013;180(1):17-	24.


IR induces replication stress


1	80.	Jackson DA, Pombo A. Replicon clusters are stable units of chromosome
2	struct	ure: evidence that nuclear organization contributes to the efficient activation
3	and pr	opagation of S phase in human cells. J Cell Biol. 1998;140(6):1285-95.
4	81.	Daigaku Y, Davies AA, Ulrich HD. Ubiquitin-dependent DNA damage bypass is
5	separa	able from genome replication. Nature. 2010;465(7300):951-5.
6	82.	Hamburger AW, White CP, Dunn FE, Citron ML, Hummel S. Modulation of
7	humai	n tumor colony growth in soft agar by serum. Int J Cell Cloning. 1983;1(4):216-
8	29.	

