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Abstract 9 

 10 

Characterization of biodiversity from environmental DNA samples and bulk metabarcoding data 11 

is hampered by off-target sequences that can confound conclusions about a taxonomic group of 12 

interest. Existing methods for isolation of target sequences rely on alignment to existing 13 

reference barcodes, but this can bias results against novel genetic variants. Effectively parsing 14 

targeted DNA barcode data from off-target noise improves the quality of biodiversity estimates 15 

and biological conclusions by limiting subsequent analyses to a relevant subset of available data. 16 

Here, we present Alfie, a Python package for the alignment-free classification of cytochrome c 17 

oxidase subunit I (COI) DNA barcode sequences to taxonomic kingdoms. The package 18 

determines k-mer frequencies of DNA sequences, and the frequencies serve as input for a neural 19 

network classifier that was trained and tested using ~58,000 publicly available COI sequences. 20 

The classifier was designed and optimized through a series of tests that allowed for the optimal 21 

set of DNA k-mer features and optimal machine learning algorithm to be selected. The neural 22 

network classifier rapidly assigns COI sequences to kingdoms with greater than 99% accuracy 23 

and is shown to generalize effectively and make accurate predictions about data from previously 24 

unseen taxonomic classes. The package contains an application programming interface that 25 

allows the Alfie package’s functionality to be extended to different DNA sequence classification 26 

tasks to suit a user’s need, including classification of different genes and barcodes, and 27 

classification to different taxonomic levels. Alfie is free and publicly available through GitHub 28 

(https://github.com/CNuge/alfie) and the Python package index (https://pypi.org/project/alfie/). 29 

 30 
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.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177634doi: bioRxiv preprint 

mailto:nugentc@uoguelph.ca
https://github.com/CNuge/alfie
https://pypi.org/project/alfie/
https://doi.org/10.1101/2020.06.29.177634
http://creativecommons.org/licenses/by-nc/4.0/


2 

 

Introduction 33 

 34 

Biodiversity is declining across the globe. Millions of species face the threat of extinction, and 35 

ecosystems are being irreversibly altered due to loss of biomass and changes in species 36 

composition (Barnosky et al. 2011; Ceballos et al. 2015). To maintain the health of ecosystems 37 

and curb biodiversity loss, informed conservation and management practices are required. 38 

Achievement of conservation goals is limited by a lack of fundamental information about species 39 

composition for many of the world’s ecosystems. It is therefore imperative that technological 40 

solutions are developed to enable the accurate and efficient characterization of the world’s 41 

biodiversity, so that existing species can be catalogued, and informed conservation strategies can 42 

be developed to protect the planet’s ecosystems. 43 

 The field of DNA barcoding offers a technological solution to the problem of 44 

taxonomically classifying organismal specimens (Hebert et al. 2003). Instead of relying on 45 

laborious and error-prone phenotypic classifications, sequence diversity within standardized gene 46 

regions is used to enable both specimen identification and species discovery (Hebert et al. 2003; 47 

Ratnasingham & Hebert 2007; Hubert & Hanner 2015). The field has advanced from the 48 

barcoding of single specimens to the bulk analysis of samples, known as metabarcoding 49 

(Hajibabaei et al. 2011, 2016; Taberlet et al. 2012; Cristescu 2014), as well as multi-marker 50 

(Stefanni et al. 2018) and metagenomics approaches (Cuvelier et al. 2010). These methods have 51 

been applied in environmental biomonitoring, where multiple species are identified at once 52 

through the collection of environmental DNA (eDNA) (Taberlet et al. 2012). Despite the 53 

widespread adoption of these techniques, a fundamental problem persists: the accurate and 54 

repeatable characterization of biodiversity from eDNA and bulk-sample metabarcoding data is 55 

difficult, and conclusions drawn from analyses are strongly affected by methodological decisions 56 

(Clare et al. 2016; Braukmann et al. 2019).   57 

 Environmental biomonitoring often aims to answer ecological questions through the 58 

targeted examination of a taxonomic group of interest. DNA barcodes from a group of focus are 59 

targeted using group-specific PCR primers for one or more selected marker genes in the PCR 60 

amplification step that precedes high-throughput sequencing (Braukmann et al. 2019; Wilson et 61 

al. 2019). Some commonly used primers are overly general, which results in the amplification of 62 

non-target barcodes, introducing noise into data and confounding efforts to characterize true 63 

species composition for targeted taxonomic groups (Brandon-Mong et al. 2015; Zinger et al. 64 

2019). Additionally, intra-group PCR bias can further confound the characterization of 65 

biodiversity. The over representation of certain taxa within the target group can result in other 66 

taxa being overlooked due to poorer amplification and sequencing coverage (Elbrecht & Leese 67 

2015). 68 

 Shotgun sequencing of eDNA overcomes the primer issues of eDNA metabarcoding but 69 

also produces substantial sequencing noise and sequences from non-standardized genomic 70 

regions (Stat et al. 2017; Wilson et al. 2019). A trade off therefore exists; shotgun sequencing 71 

overcomes the amplification bias associated with PCR, but the majority of shotgun sequencing 72 

outputs cannot be assigned even high-level taxonomic classifications with confidence (Stat et al. 73 

2017; Singer et al. 2020). Despite present technical limitations, eDNA shotgun sequencing and 74 

other next-generation biomonitoring techniques are seeing increased adoption thanks to their 75 

potential to characterize biodiversity more broadly (Makiola et al. 2020). Within this next 76 

generation of biomonitoring methodologies, tools leveraging machine-learning algorithms and 77 
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available data will be essential to overcoming the limitations associated with existing methods 78 

(Cordier et al. 2019). 79 

 The detection of the presence and abundance of species from a specific group is 80 

hampered by off-target barcodes that are amplified and sequenced in metabarcode analysis. The 81 

failure to parse target sequences effectively from off-target noise can result in erroneously 82 

inflated estimates of biodiversity (Bengtsson et al. 2011). Currently, the characterization of 83 

biodiversity via metabarcode samples is primarily dependent on the alignment of sequences 84 

against a pre-defined set of reference barcodes or comparison of sequences against taxon-specific 85 

models (Altschul et al. 1990; Wang et al. 2007; Bengtsson et al. 2011; Bengtsson-Palme et al. 86 

2015). These processes limit comparison to previously characterized barcode sequences, 87 

potentially exhibiting bias against novel genetic variants. The methods are also computationally 88 

intensive, often requiring each novel variant to be compared to each reference entry. These 89 

methods would therefore be improved through the incorporation of an alignment-free pre-90 

filtering step that allowed for target sequences to be rapidly and accurately isolated from the 91 

whole set of metabarcode output sequences using algorithms with lower computational 92 

complexity (Zielezinski et al. 2017). This would reduce the number of spurious barcodes and 93 

improve inflated biodiversity estimates. Additionally, the speed of analyses would be improved 94 

by limiting subsequent alignment-based analyses to the isolated target sequences. 95 

 Alignment-free methods have been widely applied in biological sequence annotation and 96 

classification problems (Zielezinski et al. 2017). Alignment-free comparison is defined as any 97 

method of quantifying sequence similarity that does not produce an alignment; these methods are 98 

generally less computationally intensive and can be as effective as conventional alignments 99 

(Bonham-Carter et al. 2014; Zielezinski et al. 2017). To compare sequences without alignment, 100 

features must be extracted from sequences in order to characterize their structure. One common 101 

set of alignment-free features is k-mer counts, where the number of occurrences of fixed length 102 

DNA words of length k are quantified (Crusoe et al. 2015). These features can be used as inputs 103 

for machine learning models trained to predict classifications such as the taxonomic designation 104 

associated with sequences (Solis-Reyes et al. 2018). Machine learning models that operate on k-105 

mer input features have previously been applied in DNA barcode sequence classification and 106 

other predictive tasks (Kuksa & Pavlovic 2009; Langenkämper et al. 2014; Ainsworth et al. 107 

2016; Cordier et al. 2017). The application of these tools is often limited to specific taxonomic 108 

classification tasks (Kuksa & Pavlovic 2009), or they rely on user-provided sets of sequence data 109 

for model training (Langenkämper et al. 2014). 110 

 The goals of this study were to: (1) develop a high-level alignment-free taxonomic 111 

classification tool for metabarcoding and environmental DNA marker gene data. This tool was 112 

initially designed for the kingdom-level classification of barcode sequences from the most 113 

common animal barcode, a region of the mitochondrial cytochrome c oxidase subunit I (COI) 114 

gene. (2) To achieve this, we explore different feature sets (k-mer sizes) and machine learning 115 

algorithms to determine the optimal machine learning architecture for alignment-free barcode 116 

classification. (3) To make the tool accessible to other researchers, we develop a Python package 117 

and command line interface to allow the alignment-free classifier to be easily deployed in future 118 

research applications. (4) Within the Python package, we also develop an application 119 

programming interface (API) to facilitate the construction of customized alignment-free 120 

classifiers for any barcode, gene, or taxonomic group of interest. Addressing these goals led to 121 

the creation of the Python package Alfie, which contains a kingdom-level alignment-free DNA 122 

barcode classifier, as well as an API to aid users in custom alignment-free classifier construction. 123 
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Alfie is free and publicly available through GitHub (https://github.com/CNuge/alfie) and the 124 

Python package index (https://pypi.org/project/alfie/). 125 

 126 

Methods 127 

 128 

Data acquisition 129 

 130 

The Barcode Of Life Data system (BOLD) (Ratnasingham & Hebert 2007) was queried to obtain 131 

all publicly available sequences for the DNA barcode: cytochrome c oxidase subunit I (COI) 132 

(https://github.com/CNuge/data-alfie). Sequences were filtered to ensure a minimum length of 133 

300 base pairs (bp). The five kingdom-level classifications used by the BOLD database (Animal, 134 

Bacteria and Archaea, Fungi, Plant, Protist) were maintained and utilized as the labels in 135 

subsequent classifier development. As a result of BOLD’s mandate to catalogue animal 136 

biodiversity, the database displays a significant sampling bias towards the animal kingdom. To 137 

ensure that models could be trained effectively and not be biased towards animal classification, 138 

down sampling of the animal data was performed to ensure more even representation of 139 

sequences among kingdoms. Stratified sampling of animal sequences was performed to obtain a 140 

representative subsample of 0.2% of the total set of sequences available (sequences were 141 

sampled proportionally on the taxonomic level: class; a sample size of 0.2% was chosen as this 142 

yielded a set of animal sequences roughly equal to the kingdom with the second highest number 143 

of available COI barcodes, plants) (Table 1). To train models robust to variable data quality and 144 

barcode sequence coverage, each individual barcode sequence was randomly subsampled, with a 145 

200-600 base pair subsection of the complete barcode being retained at random and subsequently 146 

utilized in model training and testing. 147 

 Prior to splitting the data into a train and test set, a validation set was created to provide a 148 

stringent test of the final models’ ability to make external predictions. From each kingdom, a 149 

complete taxonomic class was withheld to create the validation set and simulate rare or 150 

previously unseen sequences. The class withheld from each kingdom was chosen manually, with 151 

selection being based on the distribution of barcodes across the taxonomic classes of the given 152 

kingdom. Barcode distribution was variable across kingdoms, so no suitable rule-based selection 153 

method was found; classes with intermediate levels of representation within their kingdom were 154 

selected. Classes with intermediate representation levels were chosen to provide good sample 155 

sizes for subsequent classification tests without grossly detracting from the size of available 156 

training data. For the protist kingdom, two classes were selected for inclusion in the validation 157 

set due to small intra-class barcode counts. The composition of the final validation set is 158 

described in Table 2. After the validation set was withheld, the remaining data were split into a 159 

train and test (stratified split on level: kingdom), with 80% of data comprising the training set, 160 

and the other 20% being withheld as the test set (Table 2; Supplementary File S1). 161 

 162 

Feature set evaluation – k-mer size 163 

 164 

Following the train-test split, different sets of alignment-free features were generated, and the 165 

accuracy of kingdom-level classifications by the resulting models were tested. For barcode 166 

sequences in the training set, k-mer frequencies were generated for values of k from 1 to 6.  167 

K-mer frequencies (count of a given k-mer divided by the total number of k-mers counted in a 168 

given barcode) were used as model inputs, so as to standardize the scale of input values and also 169 
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ensure the models were robust to inputs of different lengths. For each k-mer feature set, deep 170 

neural networks with five hidden neuron layers were trained and evaluated through 5-fold cross 171 

validation (neural networks implemented using the package Tensorflow Version 2.1.0, Abadi et 172 

al. 2016). The choice of deep neural network-based classifiers with five hidden neuron layers 173 

was based on exploratory data analysis and preliminary model construction that showed this 174 

architecture to produce effective classifiers. The number of neurons in the hidden layers of the 175 

neural network were adjusted according to the size of the input feature set (Table 3). The 5-fold 176 

loss and accuracy metrics for the neural networks with different k-mer inputs were compared via 177 

a one-factor analysis of variance (ANOVA) to determine if there were significant differences in 178 

classification accuracy for different feature sets (k-mer sizes) and to select an optimal value of k 179 

for further model testing. 180 

 181 

Algorithm evaluation 182 

 183 

After selection of the optimal k-mer size, a series of different machine learning models were fit 184 

using the training set and optimized through a grid search of hyperparameters. Five classification 185 

algorithms were utilized: k nearest neighbour (KNN), support vector machine (SVM), random 186 

forest (RF), extreme gradient boosting (XGB), and deep neural network (DNN). All models were 187 

deployed using the Python programming language (Version 3.7.4). The KNN, SVM, and RF 188 

models were implemented using the package scikit-learn (Version 0.21.3, Pedregosa et al. 2011), 189 

the XGB model was implemented using the package XGBoost (Version 0.90, Chen & Guestrin 190 

2016), and the DNN was implemented using the package Tensorflow (Version 2.1.0, Abadi et al. 191 

2016). In order to select optimal hyperparameters and optimize performance, for each algorithm 192 

a grid search was performed using scikit-learn’s GridSearchCV function to train a series of 193 

models on the training data set using 5-fold cross validation (Supplementary File S2). Optimal 194 

hyperparameters were selected based on the highest classification accuracy. For the DNN, a 195 

custom grid search script was used, with 5-fold cross validation and several potential values for 196 

each of the models’ respective hyperparameters (Supplementary File S3). 197 

 Following the selection of optimal hyperparameter sets through the grid searches, a final 198 

version of each model was trained using the optimal set of hyperparameters and the complete 199 

training data set. Final trained models were then used to make predictions for the previously 200 

withheld test and validation sets (Table 1; Table 2). Predicted classifications were compared to 201 

true values to determine the model with the highest classification accuracy. A single optimal 202 

alignment-free kingdom-level classifier was selected for inclusion in the Alfie package based on 203 

the accuracy of predictions made on the test and validation data. Several secondary classifier 204 

characteristics were also considered to ensure model reusability. Specifically, the file size of the 205 

trained models and the time required to make predictions were quantified to ensure that the 206 

package’s memory and time requirements were not prohibitive. The Alfie package was then 207 

constructed to allow for the model to be reused in external analyses. 208 

 209 

 210 

Results and Discussion 211 

 212 

K-mer size 213 

 214 
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The cross-validation accuracy scores for the different neural networks and corresponding k-mer 215 

feature sets were compared to determine an optimal k-mer feature size. The results showed that 216 

the accuracy of models improved with the k-mer feature size, with diminishing improvements 217 

beyond k = 3 (Table 3; Figure 1). A one-factor ANOVA revealed the differences to be significant 218 

(p < 2e-16, F statistic = 318.3, DF1,2 = 5, 24), and a subsequent Tukey’s HSD test showed the 219 

accuracy of both k = 1 and k = 2 to differ significantly from all larger values of k but no 220 

significant differences in the performance of pairwise comparisons between k 3-6. A final k 221 

value of 4 was selected for subsequent tests, due to the insignificant differences between the 222 

values of k = 3 to k = 6 and the conservative choice to select a k-mer size one larger than the 223 

apparent minimal effective feature set.  224 

 225 

Training and validation  226 

 227 

For each of the machine learning algorithms, a grid search was used to obtain an optimal 228 

hyperparameter set (Supplementary File S3). Final models were trained using the complete 229 

training data set and then used to make predictions for the test and validation sets (Table 1; Table 230 

4). Performance on the test data (withheld barcodes from taxonomic groups otherwise 231 

represented in the training data) was strong for all models, with the lowest classification 232 

accuracy exceeding 98% (RF), and all other models exceeding 99.5% accuracy (Table 4). All 233 

models made less accurate kingdom-level predictions on the validation data (barcodes from 234 

taxonomic classes that were completely withheld during training) (Table 5). The accuracy was 235 

more variable across models as well. On the validation data, the accuracy score of the RF model 236 

was 0.861, and accuracy for the KNN model was 0.927, indicating poorer generalization for 237 

these methods to previously unseen data. Each of the DNN, SVM, and XGB models had 238 

accuracy >97% on the validation data, and the most accurate model was the DNN (0.976). 239 

 240 

Final model 241 

 242 

The DNN (operating on 4-mer input features) was selected as the final default kingdom-level 243 

classification model for the Alfie package. The DNN provided the highest accuracy on the 244 

validation data, as well as high accuracy on the test dataset. These results indicated that the 245 

model was not likely to be over fit to the training data and that it was able to generalize 246 

effectively and make predictions about data from previously unseen taxonomic classes. This 247 

generalizability of the model to rare or unseen taxa is an important feature that indicates the Alfie 248 

package can likely be used effectively in the analysis of under-studied environments where 249 

uncharacterized biodiversity is more likely to be present. The 4-mer DNN’s high accuracy on the 250 

test and validation data also indicated that the features and model can effectively capture a 251 

taxonomic signal despite no alignment being performed and variable input sequence length. The 252 

model was robust to sequences of variable lengths that spanned various subsections of the COI 253 

barcode region (variable start and stop positions in the COI barcode region, as opposed to 254 

primer-standardized sub-regions). This indicates that the alignment-free classification by Alfie is 255 

an effective method for processing DNA barcoding, metabarcoding (specific subsections of the 256 

barcode region in a given study), and potentially even applied in analysis of metagenomics data 257 

(non-standardized fragments from shotgun sequencing). 258 

 259 

 260 
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Alignment-free model framework 261 

 262 

The design and testing of the Alfie package presented here focuses on high-level (kingdom) 263 

classification for the most common animal barcode, COI. However, the Alfie package provides a 264 

robust framework that a user can easily apply to produce and test alignment-free classification 265 

tools for any taxonomic distinction, DNA barcode, or combination thereof (Supplementary File 266 

S4). As a kingdom-level classifier, Alfie acts as an effective data filter, allowing the barcode 267 

sequences from a kingdom of interest to be separated from the large amount of off-target noise 268 

common in metabarcode or metagenomics data. The alignment-free methods can be reapplied to 269 

further home in on taxonomic targets; for example, using publicly available data 270 

(https://github.com/CNuge/data-alfie) a binary classifier can be trained and subsequently 271 

deployed with Alfie to allow for any taxonomic group of interest to be separated from a complete 272 

set of COI metabarcode sequences. Using other publicly available data (i.e. Pruesse et al. 2007; 273 

Banchi et al. 2020), the same custom model construction and training tools in Alfie can be used 274 

to construct binary or multiclass alignment-free classification tools for other DNA barcodes or 275 

genes. 276 

 Although the Alfie package is an effective alignment-free classification framework at 277 

high taxonomic levels, traditional alignments are likely more effective for lower-level 278 

classification tasks (i.e. classification to genus or species level). The k-mer frequency method 279 

used by Alfie is not likely to be effective for resolving differences between closely related 280 

species with more subtle genetic differences than those seen at higher taxonomic levels. 281 

Similarly, for taxonomic groups with few representatives and no closely related outgroups, 282 

available training data may be scant, providing a limitation in training of DNNs or other machine 283 

learning models which rely on abundant training data. The integration of alignment-based and 284 

alignment-free methods for biological sequence classification has been shown to leverage the 285 

strengths of the individual approaches to yield an efficient and accurate classification method 286 

(Borozan et al. 2015).  287 

A similar hybrid approach using the Alfie package for filtration of sequences and 288 

subsequent alignment of sequences for a group of interest can narrow the scope of the 289 

application of alignment methods and thereby improve both analysis speed and accuracy. The 290 

alignment-free model construction framework of Alfie can allow for multiple models to be 291 

trained with relative ease and applied in conjunction with one another to isolate barcode 292 

sequences of interest from large and messy inputs such as metagenomics data. Models could be 293 

trained and applied to: (a) separate sequences from key mitochondrial genes from other 294 

sequences, (b) assign sequences to a barcode or gene of origin, (c) conduct kingdom-level 295 

classification for different barcode genes, and (d) conduct classification at lower taxonomic 296 

levels. All this could be accomplished using the same 4-mer frequency data and would allow for 297 

messy inputs to be filtered and categorized. Processing of metagenomics data in this manner 298 

would allow subsequent alignment effort to be more strategically targeted, improving analysis 299 

speed and accuracy. 300 

 301 

 302 

Conclusions 303 

 304 

We have developed and tested the Python package Alfie, which extracts k-mer features and uses 305 

a neural network to make kingdom-level classifications of COI DNA barcode fragments with 306 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177634doi: bioRxiv preprint 

https://github.com/CNuge/data-alfie
https://doi.org/10.1101/2020.06.29.177634
http://creativecommons.org/licenses/by-nc/4.0/


8 

 

greater than 99% accuracy. The Alfie package can therefore be used to separate barcode data for 307 

a kingdom of interest from off-target noise, narrowing the scope of subsequent analyses to only 308 

relevant data. The model is robust to full-length barcodes and short sequence fragments and is 309 

therefore an effective classifier for use in both barcode and metabarcode analyses. The Alfie 310 

package can be incorporated into broader analyses pipelines (Elbrecht et al. 2018; Cordier et al. 311 

2019) and paired with tools that conduct quality control (Callahan et al. 2016; Nugent et al. 312 

2020) and taxonomic annotation (Altschul et al. 1990; Wang et al. 2007) to characterize 313 

biodiversity from large and complex data sets. The default model of Alfie is limited to kingdom-314 

level classification for the most common animal barcode, COI. Researchers may expand upon 315 

this narrow scope to fit custom research needs by using the training module of Alfie. This allows 316 

Alfie to be applied in different taxonomic classification tasks or for the classification of data 317 

from different DNA barcodes (where labelled training data are available). The generalized and 318 

customized nature of the Alfie package will allow for it to adapt along with the field of 319 

biodiversity genomics. As metagenomics becomes more prevalent, the Alfie package can be 320 

expanded with additional default models for tasks such as the isolation of mitochondrial DNA or 321 

sequences from specific mitochondrial genes from large, messy shotgun sequencing datasets. 322 

 323 

  324 
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Tables and Figures 531 

 532 

Table 1. The numbers of COI barcode sequences obtained from BOLD for each kingdom and 533 

the number of sequences retained within different data sets used in development of the Alfie 534 

package. The raw barcode counts represent the complete set of publicly available sequences for 535 

the given kingdom. The ‘Barcodes utilized’ column is the total number of sequences used in the 536 

analysis for the given kingdoms after filtering based on minimum sequence length and down 537 

sampling to decrease imbalanced representation of the different kingdoms. The breakdown of 538 

these sequences between the train, test, and validation data sets is also shown. 539 

Kingdom 

Raw 

barcode 

count 

Barcodes 

utilized 

Train data 

set size 

Test data 

set size 

Validation 

data set size 

(see Table 2) 

Animal 1,137,552 23,493 18,189 4,547 757 

Bacteria and 

Archaea 
5,565 5,547 4,380 1,095 72 

Fungi 1,407 1,368 1,038 260 70 

Plant 22,638 22,599 18,017 4,505 77 

Protist 5,029 5,026 4,014 1,003 9 

Total 1,172,191 58,033 45,638 11,410 985 

  540 
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Table 2. The taxonomic breakdown of the validation data set. For each kingdom, a taxonomic 541 

class with a near average number of sequences in the kingdom’s whole data set was chosen for 542 

exclusion from the training set and inclusion in the validation data set. The names of the 543 

taxonomic classes and the numbers of barcode sequences withheld from training and testing for 544 

subsequent validation are shown. 545 

Kingdom Withheld class Sequence count 

Animal Diplopoda 757 

Bacteria and Archaea Flavobacteria 72 

Fungi Leotiomycetes 70 

Plant Liliopsida 77 

Protist Heterotrichea and Colpodea 9 

  546 
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Table 3. The architectures of the neural networks tested in conjunction with the different k-mer 547 

feature sets. For each k-mer feature set and corresponding neural network, the average loss and 548 

accuracy scores from 5-fold cross validation on the training data are presented. Each neural 549 

network was comprised of a dense input layer (neuron number = number of unique k-mers, or 550 

4k), five hidden layers of neurons (neuron counts for each layer given in table), and a dense 551 

output layer (neuron size equal to number of classes). The input and hidden layers utilized a 552 

rectified linear unit (relu) activation function (Agarap 2018), and the hidden layers had dropout 553 

rates of 0.3. The final output layer utilized a softmax activation function, and the models were 554 

trained using an Adam optimizer (Kingma & Ba 2014), minimizing sparse categorical cross 555 

entropy. 556 

  557 

K-mer size NN hidden layers sizes Average accuracy Average loss 

1 [4,64,128,32,16] 0.684 0.899 

2 [16,64,128,64,16] 0.935 0.216 

3 [64,128,64,32,16] 0.993 0.038 

4 [256,128,64,32,16] 0.994 0.033 

5 [1024,512,256,64,16] 0.995 0.047 

6 [2080,1040,520,260,130] 0.997 0.023 
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Table 5. The accuracy scores for the predictions made by the five different machine learning 559 

models (trained on 4-mer frequency features and the complete training data set). Accuracy on the 560 

test and validation data sets (Table 1) are shown. 561 

 562 

Algorithm Test accuracy Validation accuracy 

DNN 0.996 0.976 

Support Vector 

Machine 
0.996 0.974 

K Nearest 

Neighbors 
0.997 0.927 

Random Forest 0.983 0.861 

XGBoost 0.998 0.972 

563 
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 564 
Figure 1. Boxplot of the 5-fold cross validation accuracy results for the training of models of 565 

different k-mer feature sets and corresponding neural network architectures on the training data. 566 

Each dot represents an accuracy score for one of the individual fold in the cross-validation  567 

corresponding to the given k-mer feature set. 568 
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