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Abstract

Motivation: Meiotic recombination is a vital biological process playing an essential
role in genomes structural and functional dynamics. Genomes exhibit highly various re-
combination profiles along chromosomes associated with several chromatin states. However,
eu-heterochromatin boundaries are not available nor easily provided for non-model organ-
isms, especially for newly sequenced ones. Hence, we miss accurate local recombination rates,
necessary to address evolutionary questions.

Results: Here, we propose an automated computational tool, based on the Marey maps
method, allowing to identify heterochromatin boundaries along chromosomes and estimat-
ing local recombination rates. Our method, called BREC (heterochromatin Boundaries and
RECombination rate estimates) is non-genome-specific, running even on non-model genomes
as long as genetic and physical maps are available. BREC is based on pure statistics and is
data-driven, implying that good input data quality remains a strong requirement. Therefore,
a data pre-processing module (data quality control and cleaning) is provided. Experiments
show that BREC handles different markers density and distribution issues. BREC’s het-
erochromatin boundaries have been validated with cytological equivalents experimentally
generated on the fruit fly Drosophila melanogaster genome, for which BREC returns con-
gruent equivalents. Also, BREC’s recombination rates have been compared with previously
reported estimates. Based on the promising results, we believe our tool has the potential
to help bring data science into the service of genome biology and evolution. We introduce
BREC within an R-package and a Shiny web-based user-friendly application yielding a fast,
easy-to-use, and broadly accessible resource.

Awvailability: BREC R-package is available at the GitHub repository
https://github.com/ymansour21/BREC.

Key words Genomics, Heterochromatin regions, Centromere position, Recombination
rate, non-genome-specific, Graphical user interface.
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» 1 Introduction

39 Meiotic recombination is a vital biological process which plays an essential role for inves-
40 tigating genome-wide structural as well as functional dynamics. Recombination events are
a observed in almost all eukaryotic genomes. Crossover, a one-point recombination event, is
2 the exchange of DNA fragments between sister chromatids during meiosis. Recombination
3 is a fundamental process that ensures genotypic and phenotypic diversity. Thereby, it is
4 strongly related to various genomic features such as gene density, repetitive DNA, and DNA
a5 methylation (Coop and Przeworski, 2007; Duret and Galtier, 2009; Auton and McVean)
46 2012).

a7 Recombination rate varies not only between species, but also within species and within
a8 chromosomes. Different heterochromatin regions exhibit different profiles of recombination
49 events. Therefore, in order to understand how and why recombination rate varies, it is
50 important to break down the chromosome structure to smaller blocks where several genomic
51 feature besides, recombination rate, are known to also exhibit different profiles. Chromatin
52 boundaries allow to distinguish between two main states of chromatin that can be defined as
53 (1) euchromatin which is lightly compact with a high gene density, and on the contrary (2)
54 heterochromatin which is highly compact with a paucity in genes. The heterochromatin is
55 represented in different chromosome regions: the centromere and the telomeres. Euchromatic
56 and heterochromatic regions exhibit different behaviours in terms of genomic features and
57 dynamics related to their biologic function such as the cell division process that insures
58 the organism viability. Consequently, easily distinguishing chromatin states is necessary for
50 conducting further studies in various research fields and to be able to address questions
60 related to cell processes such as: meiosis, gene expression, epigenetics, DNA methylation,
61 natural selection and evolution, genome architecture and organization among others (Chan
62 et al.,|2012; |Stapley et al.l 2017;|Morata et al.,|2018). In particular, a profound understanding
63 of centromeres, their complete and precise structure, organization and evolution is currently
64 a hot research area. These repeat-rich heterochromatin regions are currently still either
65 poorly or not assembled at all across eukaryote genomes. Despite the huge advances offered
66 by NGS technologies, centromeres are still considered as enigmas, mostly because they are
67 preventing genome assembly algorithms form reaching their optimal performance in order to
68 achieve more complete whole genome sequences (Muller et al.l [2019). In addition, the highly
69 diverse mechanisms of heterochromatin positioning (Vanrobays et al.,|2017)) and repositioning
70 (Lu and He, 2019) remain a complicated obstacle in face of fully understanding genome
71 organization. Thus, generating high resolution genetic, physical and recombination maps,
72 and locating heterochromatin regions is increasingly interesting the community across a large
7 range of taxa (Schueler et al., 2001; Weinstock et al.l [2006; Silva-Junior and Grattapaglia,
7 2015} [Robert L. Nussbaum et al. 2015} [Shen et all, [2017; |Gui et all 2018 [Rowan et all,
75 2019)).

76 Numerous methods for estimating recombination rates exist. Population genetic based-
77 methods (Stumpf and McVean, [2003)) provide accurate fine-scale estimates. Nevertheless,
78 these methods are very expensive, time-consuming, require a strong expertise and, most of all,
79 are not applicable on all kinds of organisms. Moreover, the sperm-typing method (Jeffreys,
80 2000), which is also extremely accurate, providing high-density recombination maps, is male-
81 specific and is applicable only on limited genome regions. On the other hand, a purely
82 statistical approach, the Marey Maps (Chakravarti, 1991)), could avoid some of the above
83 issues based on other available genomic data: the genetic and physical distances of genomic
84 markers.

85 The Marey maps approach consists in correlating the physical map with the genetic map
86 representing respectively physical and genetic distances for a set of genetic markers on the
87 same chromosome. Despite the efficiency of this approach and mostly the availability of
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physical and genetic maps, generating recombination maps rapidly and for any organism
is still challenging. Hence, the increasing need of an automatic, portable and easy-to-use
solution.

Some Marey map-based tools already exist, two of which are largely used: (1) the
MareyMap Online (Rezvoy et al., |2007; [Siberchicot et al., [2017) which is applicable on mul-
tiple species, however, it does not allow accurate estimate of recombination rates on specific
regions like the chromosome extremities, and (2) the Drosophila melanogaster Recombina-
tion Rate Calculator (RRC) (Fiston-Lavier et all) [2010) which solves the previous issue by
adjusting recombination rate estimates on such chromosome regions, yet, as indicated by its
name, the RRC is D. melanogaster-specific. With the emerging Next Generation Sequenc-
ing (NGS) technologies, accessing whole chromosome sequences has become more and more
possible on a wide range of species. Therefore, we may expect an exponential increase in
markers number which will require more adapted tools to better handle such new scopes of
data.

Here, we propose a new Marey map-based method as an automated computational solu-
tion that aims to, firstly, identify heterochromatin boundaries along chromosomes, secondly,
estimate local recombination rates, and lastly, adjust recombination rates on chromosome
along the chromosomal regions marked by the identified boundaries. Our proposed method,
called BREC (heterochromatin Boundaries and RECombination rate estimates), is pro-
vided with an R-package (R Core Team, [2018) and a Shiny (RStudio, Inc, [2014)) web-based
graphical user interface. BREC takes as input the same genomic data, genetic and physical
distances, as in previous tools. It follows a workflow that, first, tests the data quality and of-
fers a cleaning option, then, estimates local recombination rates and identify heterochromatin
boundaries. Finally, BREC re-adjusts recombination rate estimates along heterochromatin
regions, the centromere and telomere(s), in order to keep the estimates as authentic as pos-
sible to the biological process (Termolino et al., 2016). Identifying the boundaries delimiting
euchromatin and heterochromatin allows investigating recombination rate variations along
the whole genome, which will help comparing recombination patterns within and between
species. Furthermore, such functionality is fundamental for identifying the position of the
centromeric and telomeric regions. Indeed, the position of the centromere on the chromosome
has an influence on the chromatin environment and recent studies are interested in inves-
tigating how genome architecture may change with centromere organization (Muller et al.,
2019).

Our results have been validated with cytological equivalents, experimentally generated
on the fruit fly D. melanogaster genome (Chan et al.l 2012; Langley et all 2012; Thurmond
et al., [2019). Moreover, since BREC is non genome-specific, it could efficiently been run
on other model as well as non-model organisms for which both genetic and physical maps
are available. Even though it is still an ongoing study, BREC have also been tested with
different further species and results are reported.

This paper is organized as follows: in Section [2, BREC is presented in a detailed step
by step workflow. Section [3| presents the data and methods involved in BREC and describes
how the methods was calibrated and validated. Section {4] introduces the set of results, using
both simulated and real data. The results are then discussed in Section [5| and concluding
remarks with some perspectives are given in Section [6]

2 New Approach: BREC

BREC is designed following the workflow represented in Figure[l]l In order to ensure that the
widest range of species could be analyzed by our tool, we designed a pipeline which adapts
behaviour with respect to input data. Mostly, each step of the pipeline relies on statistical
analysis, adaptive algorithms and decision proposals led by empirical observation.
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The workflow starts with a pre-processing module (called ”Step 0”) aiming to prepare the
data prior to the analysis. Then, it follows six main steps: (1) estimate Marey Map-based
local recombination rates, (2) identify chromosome type, (3) prepare the heterochromatin
boundaries identification, (4) identify the centromeric boundaries, (5) identify the telomeric
boundaries, and (6) extrapolate the local recombination rate map and generate an interactive
plot encompassing all BREC outputs (see Figure . Each step is detailed hereafter.

2.1 Step 0 - Apply data pre-processing

Since we have noticed that BREC estimates are sensitive to the quality of input data, we
propose a pre-processing step to assess data quality and suggest an optional data cleaning
for outliers. As such, we could ensure a proper functioning during further steps.

Data quality control The quality of input data is tested regarding two criteria: (1)
density of markers and (2) the homogeneity of their distribution on the physical map, along
a given chromosome. First, the mean density, defined as the number of markers per physical
map length, is computed. This value is compared with the minimum required threshold of
2 markers/Mb. Based on the displayed results, the user gets to decide if data cleaning is
required or not. The threshold of 2 markers/Mb is selected based on a simulation process
that allowed to test BREC results while decreasing markers density until the observed het-
erochromatin boundaries estimates seemed to be no longer exploitable (see Materials and
Methods in Section . Second, the distribution of input data is tested via a comparison
with a simulated uniform distribution of identical markers density and physical map length.
This comparison is applied using Pearson’s Chi — squared test (Agresti, 2007) which allows
to examine how close the observed distribution (input data) is to the expected one (simulated
data).

Data cleaning The cleaning step aims to reduce the disruptive impact of noisy data,
such as outliers, in order to provide more accurate recombination rate and heterochromatin
boundary results. If the input data fails to pass the Data Quality Control (DQC) test, the
user has the option to apply or not a cleaning process. This process consists of identifying the
extreme outliers and eliminating them upon the user’s confirmation. Outliers are detected
using the distribution statistics of the genetic map (see Figure . More precisely, inter-
marker distances (separating each two consecutive points) are computed along the genetic
map. Using a boxplot, distribution statistics (quartiles, mean, median) are applied on these
inter-marker distances in order to identify outliers, which are chosen as the 5% of the data
points with a genetic distance greater than the maximum extreme value, and should be
discarded. Thus, the cleaning is targeting markers for which the genetic distance is quite
larger than most of the rest. After the first cleaning iteration, DQC is applied again to assess
the new density and distribution. The user can also choose to bypass the cleaning step, but
in such case, BREC’s behaviour is no longer guaranteed.

2.2 Step 1 - Estimate Marey Map-based local recombination
rates

Once the data are cleaned, the recombination rate can be estimated based on the Marey
map (Chakravarti, 1991) approach by: (1) correlating genetic and physical maps, (2) gener-
ating two regression models -third degree polynomial and Loess- that better fits these data,
(3) computing the prime derivative for both models which will represent preliminary recom-
bination maps for the chromosome. The main purpose of interpolation here is to provide
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local recombination rate estimates for any given physical position, instead of only the ones
corresponding to available markers.

At this point, both recombination maps are used to identify the chromosome type as
well as the approximate position of centromeric and telomeric regions. Yet, as a final output,
BREC will return only the Loess-based adjusted map for recombination rates since it provides
finer local estimates than the polynomial-based map.

2.3 Step 2 - Identify chromosome type

BREC provides a function to identify the type of a given chromosome, with respect to the
position of its centromere. This function is based on the physical position of the smallest
value of recombination rate estimates, which primarily indicate where the centromeric region
is more likely to be located. Our experimentation allowed to come up with the following
scheme (see Figure [S2). Two main types are identified: telocentric and atelocentric (Levan
et al., |1964). Atelocentric type could be either metacentric (centromere located approxi-
mately in the center with almost two equal arms) or not metacentric (centromere located
between the center and one telomere of the chromosome). The latter includes the two most
known subtypes, submetacentric and acrocentric (recently considered as types rather than
subtypes). It is tricky for BREC to correctly distinguish between submetacentric and acro-
centric chromosomes because the position of their centromeres varies slightly, and capturing
this variation (based on the smallest value of recombination rate on both maps -polynomial
and Loess-) could not be achieved, yet. Therefore, we chose to provide this result only if
the identification process allowed to automatically identify the subtype. Otherwise, the user
gets the statistics on the chromosome and is invited to decide according to further a priori
knowledge. The two subtypes (metacentric and not metacentric) are distinguished follow-
ing an intuitive reasoning inspired by their definition found in the literature. First, BREC
identifies whether the chromosome is an arm (telocentric) or not (atelocentric). Then, test
if the physical position of the smallest value of the estimated recombination rate is located
between 40% and 60% interval, the subtype is displayed as metacentric, otherwise, it is
displayed as not metacentric. The recombination rate is estimated using the Loess model
("LOcal regrESSion”) (Cleveland and Devlin, |1988; (Cleveland and Loader} 1996).

2.4 Step 3 - Prepare the heterochromatin boundaries identi-
fication

The heterochromatin boundaries identification is a purely statistical approach relying on the
coefficient of determination R?, which measures how good the generated regression model
fits the input data (Zhang, 2017). We chose this approach because the Marey map usually
exhibits lower quality of markers (density and distribution) on the heterochromatin regions.
Thus, we aim to capture this transition from high to low quality regions (or vice versa)
as it reflects the transition from euchromatin to heterochromatin regions (or wice versa).
The coefficient R? is defined as the cumulative sum of squares of differences between the
interpolation and observed data. R? values are accumulated along the chromosome. In order
to eliminate the biased effect of accumulation, R? is computed twice: R?— forward starts the
accumulation from the beginning of the chromosome to provide the left centromeric and left
telomeric boundaries, while R? —backwards starts from the end of the chromosome providing
the right centromeric and right telomeric boundaries. These R? values were calculated using
the rsq package in R (Zhang), [2018)). To compute R? cumulative vectors, rsq function is
applied on the polynomial regression model. In fact, there is no such function for non-linear
regression like Loess, because in such models, high R? does not always mean good fit. A
sliding window is defined and applied on the R? vectors with the aim of precisely analysing
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their variations (see details in the next step). In case of a telocentric chromosome, the
position of the centromere is then deduced as the left or the right side of the arm, while in
case of an atelocentric chromosome, the existence of a centromeric gap is investigated.

2.5 Step 4 - Identify centromeric boundaries

Since the centromeric region is known to present reduced recombination rates, the starting
point for detecting its boundaries is the physical position corresponding to the smallest
polynomial-based recombination rate value. Then, a sliding window is applied in order to
expand the starting point into a region based on R? variations in two opposite directions.
The size of the sliding window is automatically computed for each chromosome as the largest
value of ranges between each two consecutive positions on the physical map (indicated as 4
and 7 + 1 in Equation . After making sure the sliding window includes at least two data
points, the mean of local growth rates inside the current window is computed and tested
compared to zero. If it is positive (resp. negative) on the forward (resp. backwards) R?
curve, the value corresponding to the window’s ending edge is returned as the left (resp.
right) boundary. Else, the window moves by a step value equal to its size.

sliding_window_size(chromosome) = maz{|physPos;+1 — physPos;| : 1 <i<n—1} (1)

There are some cases where chromosome data present a centromeric gap. Such lack of
data produces biased centromeric boundaries. To overcome this issue, chromosomes with a
centromeric gap are handled with a slightly different approach: after comparing the mean of
local rates of growth regarding to zero, accumulated slopes of all data points within the sliding
window are computed adding one more point at a time. If the mean of accumulated slopes
keeps the same variation direction as the mean of growth rates, the centromeric boundary
is set as the ending edge of the window. Else, the window slides by the same step value as
before (equal to its size). The difference between the two chromosome types is that for the
telocentric case, only one sliding window is used, it’s starting point is the centromeric side,
and it moves away from it. As for the atelocentric case, two sliding windows are used (one
on each R? curve), their starting point is the same, and they move in opposite directions to
expand the centromere into a region.

2.6 Step 5 - Identify telomeric boundaries

Since telomeres are considered heterochromatin regions as well, they also tend to exhibit a
low fitness between the regression model and the data points. More specifically, the accu-
mulated R? curve tends to present a significant depletion around telomeres. Therefore, a
telomeric boundary is defined here as the physical position of the most significant depletion
corresponding to the smallest value of the R? curve. As such, in the telocentric case, only
one R? curve is used and it gives one boundary of the telomeric region (the other boundary is
defined by the beginning of the left telomere or the end of the right telomere). Whilst in the
atelocentric case, where the are two telomeres, the depletion on R? — forward detects the
end of the left telomeric region and the depletion on R? — backwards detects the beginning
of the right telomeric region. The other two boundaries (the beginning of the left telomere
and the end of the right telomere) are defined to be, respectively, the same values of the two
markers with the smallest and the largest physical position available within the input data
of the chromosome of interest.
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2.7 Step 6 - Extrapolate the local recombination rate esti-
mates and generate interactive plot

The extrapolation of recombination rate estimates within the identified centromeric and
telomeric regions automatically performs an adjustment by resetting the initial biased values
to zero along these heterochromatin ranges. Then, each of the above BREC outputs are
combined to generate one interactive plot displayed for visualisation and download (see details

in Section [4.5)).

3 Materials and Methods

3.1 Validation data

The only input dataset to provide for BREC is genetic and physical maps one or several
chromosomes. A simple CSV/TXT file with at least two columns for both maps is valid. If
the dataset is for more than one chromosome or for the whole genome, a third column, with
the chromosome identifier, is required.

Our results have been validated using the Release 5 of the fruit fly D. melanogaster
(Hoskins et al.,|2007,2015) genome as well as the domesticated tomato Solanum lycopersicum
genome (version SL3.0).

We also tested BREC using other datasets of different species: house mouse (Mus muscu-
lus castaneus, MGI) chromosome 4 (Cox et all 2009), roundworm (Caenorhabditis elegans,
ws170) chromosome 3 (Hillier et al., 2008), zebrafish (Danio rerio, Zv6) chromosome 1 ([Free-
man et al., 2007), respectively (see Figure , as samples from the multi-genome dataset
included within BREC (see Table [S3)).

3.1.1 Fruit fly genome D.melanogaster

Physical and genetic maps are available for download from the FlyBase website (http:
//flybase.org/; Release 5) (Thurmond et al.,2019)). This genome is represented here with
five chromosomal arms : 2L, 2R, 3L, 3R and X (see Table , for a total of 618 markers,
114.59Mb of physical map and 249.5cM of genetic map. This dataset is manually curated
and is already clean from outliers. Therefore, the cleaning step offered within BREC was
skipped.

3.1.2 Tomato genome S. lycopersicum

Domesticated tomato with 12 chromosomes has a genome size of approximately 900Mb.
Based on the latest physical and genetic maps reported by the Tomato Genome Consortium
(Sato et al., 2012), we present both maps content (markers number, markers density, physical
map length and genetic map length) for each chromosome in Table For a total of 1957
markers, 752.47Mb of physical map and 1434.49¢M of genetic map along the whole genome.

3.2 Simulated data for quality control testing

We call data scenarios, the layout in which the data markers are arranged along the physical
map. Various data scenarios, for experimentally testing the limits of BREC, have been
specifically designed based on D. melanogaster chromosomal arms (see Figure .
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Markers density analysis In an attempt to investigate how markers density vary within
and between the five chromosomal arms of D. melanogaster Release 5 genome, markers den-
sity is analyzed in two ways: locally (with 1-Mb bins) and globally (on the whole chromo-
some). Figure [S| shows the results of this investigation where each little box indicates how
many markers are present within each bin of 1 Mb size on the physical map, while global
markers density per chromosomes is represented by the mean value. Global markers density
per chromosomes is also shown in Table where the values are slightly different. This is
due to computing markers density in two different ways with respect to the analysis. Ta-
ble presenting the genomic features of the validation dataset, shows markers density in
Column 3, which is simply the result of the division of markers number (in column 2) by
the physical map length (in Column 4). For example, in the case of chromosomal arm X,
this gives 165/21.22 = 7.78markers/Mb. On the other hand, Figure aimed for analysing
the variation of local markers density, displays the mean of of all 1-Mb bins densities which
is calculated as the sum of local densities divided by the number of bins, and this gives
165/22 = 7.5markers/Mb.

The exact same analysis has been conducted on the tomato genome S. lycopersicum
where the only difference lies is using 5-Mb instead of 1-Mb bins, due to the larger size of its
chromosomes (see Figure [S@)).

3.3 Validation metrics

The measure we used to evaluate the resolution of BREC’s heterochromatin boundaries is
called shift hereafter. It is defined as the difference between the observed heterochromatin
boundary (observed_HC B) and the expected one (expected_HC B) in terms of physical dis-
tance (in Mb)(see Equation [2).

shift = |observed_.HC B — expected_HC B| (2)

The shift value is computed for each heterochromatin boundary independently. There-
fore, we observe only two boundaries on a telocentric chromosome (one centromeric and one
telomeric) while we observe four boundaries in case of an atelocentric chromosome (two cen-
tromeric giving the centromeric region and two telomeric giving each of the two telomeric
regions).

The shift measure was introduced not only to validate BREC’s results with the reference
equivalents, but also to empirically calibrate the DQC module, where we are mostly interested
in the variation of its value with respect to variations of the quality of input data.

3.4 Implementation and Analysis

The entire BREC project was developed using the R programming language (version 3.6.3 /
2020-02-29) (R Core Team), 2018) and the RStudio environment (version 1.2.5033) (RStudio
Team, 2019). The graphical user interface is build using the shiny (RStudio, Inc, [2014) and
shinydashboard (Chang and Borges Ribeiro, 2018)) packages. The web-based interactive plots
are generated by the plotly package. Data simulations, result analysis, reproducible reports
and data visualizations are implemented using a large set of packages such as tidyverse,
dplyr, R markdown, Sweave and knitr among others. The complete list of software resources
used is available on the online version of BREC package accessible at https://github.com/
ymansour21/BREC.
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w15 4 Results

349 In this section, we present the results obtained through the following validation process.
350 First, we automatically re-identified heterochromatin boundaries with approximate resolu-
351 tion to the reference equivalents. Second, we tested the robustness of BREC method accord-
352 ing to input data quality, using the well-studied D. melanogaster genome data, for which
353 recombination rate and heterochromatin boundaries have already been accurately provided
354 (Fiston-Lavier et al.l |2010;|Comeron et al., 2012; Chan et al., 2012; Langley et al,[2012)(Fig-
355 ure . In addition, we extended the robustness test to a completely different genome, the
356 domesticated tomato S. lycopersicum (Sato et al.l |[2012) to better interpret the study results.
357 Even if the Loess span value does not impact the heterochromatin boundaries identification,
358 but only the resulting recombination rate estimates, the span values used in this study are:
350 15% for D. melanogaster (for comparison purpose) and 25% for the rest of experiments. Our
360 analysis shows that BREC is applicable on data from a various range of organisms, as long
361 as the data quality is good enough. BREC is data-driven, thus, the outputs are strongly de-
362 pendant of the markers density, distribution and chromosome type specified (automatically,
363 or with the user’s a priori knowledge).

364 4.1 Approximate, yet congruent heterochromatin boundaries
365 4.1.1 Fruit fly genome D.melanogaster

366 Our method for identifying heterochromatin boundaries has been primarily validated with
367 cytological data experimentally generated on the D. melanogaster Release 5 genome (Riddle
368 et al.,|2011; Chan et al., 2012; |Langley et al., 2012 |Thurmond et al. [2019). For all five chro-
360 mosomal arms (X, 2L, 2R, 3L, 3R). his genome presents a mean density of 5.39 markers/Mb
370 and a mean physical map length of 22.92Mb. We obtained congruent heterochromatin bound-
371 aries with a good overlap and shift, distance between the physical position of the reference
372 and BREC, from 20Kb to 4.58Mb (see Section [3). We did not observe a difference in terms
373 of mean shift for the telomeric and centromeric BREC identification (x? = 0.10, df = 1,
374 p — value = 0.75)(See Tables [1] and [S1]). We observe a lower resolution for the chromosomal
375 arms 3L and 3R (see Figure . This suggests that the data for those two chromosomal arms
376 might not present a quality as good as the rest of the genome. Interestingly, the local mark-
377 ers density for these two chromosomal arms shows a high variation, not like for the other
378 chromosomal arms. For instance, the 2L for which BREC returns accurate results, shows a
379 lower variation (see Figure[SH). Without these two arms, the max shift for both centromeric
380 and telomeric BREC boundaries is smaller than 1.54Mb with a mean shift decreasing from
381 1.43Mb to 0.71Mb.

382 This first analysis suggests that BREC method returns accurate results on this genome.
383 However, the boundaries identification process appears very sensitive to the local density
384 and distribution of the markers along a chromosome (see Figure . Therefore, we conducted
385 further experiments on a different dataset, the tomato genome (see Figure .

386 4.1.2 Tomato genome S. lycopersicum

387 Results of experimenting BREC behaviour on all 12 chromosomes of S. lycopersicum genome
388 (Sato et all [2012)) are shown as values in Table [2| and as plots in Figure This genome
389 presents a mean density of 2.64 markers/Mb and a mean physical map length of 62.71Mb.
300 We observe a variation in the shift value representing the difference on the physical map be-
301 tween reference heterochromatin boundaries and their equivalents returned by BREC. Unlike
392 D. melanogaster genome which is of a smaller size, with five telocentric chromosomes (chro-
303 mosomal arms) and a strongly different markers distribution, the tomato genome exhibits a
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Figure 2: Plots of the BREC heterochromatin boundaries and reference boundaries
from the D. melanogaster genome. The results are summarized in Table From top to
bottom are the five chromosomal arms X, 2L, 2R, 3L, 3R, respectively. Black dots represent
genetic markers in ascendant order according to their physical position (in Mb). Vertical lines
represent heterochromatin boundaries for BREC centromeres (in red dashed line), for BREC
telomeres (in grey dashed line) and for the reference (in solid blue line). The heterochromatin
regions identified by BREC are highlighted for the centromere (in red) and the telomere (in grey).
For each chromosomal arm, two shift values of centromeric and telomeric boundaries are shown
under the chromosome identifier.
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Centromeric (Mb) Telomeric (Mb)

Chromosomal arm Boundaries Shift Boundaries Shift

Reference | BREC Reference | BREC

X 20.67 20.10 0.56 2.46 0.92 1.54

2L 19.95 20.33 0.38 0.70 0.68 0.02

2R 6.09 5.01 1.08 20.02 20.71 0.69

3L 18.41 20.30 1.90 0.36 2.26 1.91*

3R 8.35 3.77 4.58* 27.25 25.64 1.61
Min. shift 0.38 0.02
Max. shift 4.58 1.91
Mean shift 1.70 1.15
Median shift 1.08 1.54

Table 1: BREC heterochromatin boundaries compared to reference boundaries from
the reference genome of D. melanogaster. The shift is the absolute value of the distance
between the BREC and the reference physical heterochromatin boundary. The first five rows
represent all chromosomal arms. Grouped columns present reference, BREC and shift values
for the centromeric boundaries (Columns 2-4), and for the telomeric boundaries (Columns 4-6).
Here the boundary values correspond to the internal heterochromatin boundaries. The external
boundaries are represented by the physical positions of the first and the last markers of the
chromosomes. All values are expressed in Megabase (Mb). The red asterisk indicates the largest
shift value reported on centromeric and telomeric boundaries separately (see corresponding Figure
2). The last four rows represent general statistics on the shift value. From top to bottom, they are
minimum, maximum, mean, and median respectively. See details on the shift metrics in Section

B-3

completely different study case. This is a plant genome, with an approximately 8-fold bigger
size genome. It is organized as twelve atelocentric chromosomes of a mean size of 60Mb
except for chromosomes 2 and 6 which are more likely to be rather considered telocentric
based on their markers distribution. Also, we observe a long plateau of markers along the
centromeric region with a lower density than the rest of the chromosomes, something which
highly differs from D. melanogaster data. We believe all these differences between both
genomes gives a good validation but also evaluation for BREC behaviour towards various
data quality scenarios. Furthermore, since BREC is a data-driven tool, these experiments
help analysing data-related limitations that BREC could be facing while resolving differ-
ently. From another view point, BREC results on the tomato genome highlights the fact
that markers distribution along heterochromatin regions, in particular, strongly impacts the
identification of eu-heterochromatin boundaries, even when the density is of 2 markers/Mb
or more.

4.2 Consistency despite the low data quality

We aim in this part to study to what extent BREC results are depending on the data quality.

4.2.1 BREC handles low markers density

We start by assessing the marker density on the BREC estimates. We generated simulated
datasets with decreasing fractions of markers for each chromosomal arms (from 100% to
30%). For that, we randomly select a fraction of markers 30 times and compute the mean
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Centromeric left (Mb) Centromeric right (Mb)
Chromosome Boundaries Shift Boundaries Shift
Reference | BREC Reference | BREC
1 5.78 22.88 17.09 67.80 76.48 8.68
2 3.15 1.51 1.64 27.43 21.31 6.12
3 5.75 6.98 1.23 55.34 49.28 6.06
4 5.48 1.21 4.27 54.92 47.21 7.72
5 6.02 15.03 9.01 60.23 51.04 9.19
6 1.50 1.68 0.19 29.62 20.42 9.20
7 5.62 23.05 17.43 52.51 33.52 18.98*
8 5.10 22.87 17.77 51.73 43.96 7.7
9 4.38 32.51 28.12* 61.16 49.16 12.00
10 4.40 24.37 19.97 58.83 49.92 8.91
11 5.56 10.86 5.29 47.57 32.77 14.80
12 7.27 14.34 7.07 60.27 54.33 5.94
Min. shift 0.19 5.94
Max. shift 28.12 18.98
Mean shift 10.76 9.61
Median shift 8.04 8.80

Table 2: BREC heterochromatin boundaries compared to reference boundaries from
the reference genome of S. lycopersicum. The shift is the absolute value of the distance
between the BREC and the reference physical heterochromatin boundary. The first twelve rows
represent all chromosomes. Grouped columns present reference, BREC and shift values for the
left centromeric boundaries (Columns 2-4), and for the right centromeric boundaries (Columns
4-6). All values are expressed in Megabase (Mb). The red asterisk indicates the largest shift value
reported on centromeric and telomeric boundaries separately (see corresponding Figure . The
last four rows represent some general statistics on the shift value. From top to bottom, they are
minimum, maximum, mean, and median respectively. See details on the shift metrics in Section

B-3

shift between the BREC and the reference telomeric and centromeric boundaries. We note
that BREC’s resolution decreases drastically with the fraction and thus with the marker
density (see Figure . However, BREC results appears stable until 70% of the data for
all the chromosomal arms and more specifically for the telomeric boundary detection. Only
for the centromeric boundary of the chromosomal arm 3R, we observe the opposite pattern:
BREC returns more accurate telomeric boundary estimates when the number of markers
decreases. This supports the low quality of the data around the 3R centromere.

This simulation process allowed to set a min density threshold representing the minimum
value for data density in order to guarantee an accurate results of BREC estimates at 5
markers/Mb (fraction of around 70% of the data) on average in D. melanogaster. This
analysis also supports that as the marker density alone can not explain the BREC resolution,
BREC may be also sensitive to the marker distribution.

Figure clearly shows that markers density varies within and between the five chro-
mosomal arms with a mean of 4 to 8 markers/Mb. The variance is induced by the extreme
values of local density, such as 0 or 24 markers/Mb on the chromosomal arm X. Still, the
overall density is around 5 markers/Mb for the whole genome.
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4.2.2 BREC handles heterogeneous distribution

Along chromosomes, genetic markers are not homogeneously distributed. Therefore, to assess
the impact of the markers distribution on BREC results, we designed different data scenarios
with respect to reference data distribution (see Materials and Methods: [3.2). We choose as
reference the chromosomal arms 2L and 2R of D. melanogaster as we obtained accurate
results for these two chromosomal arms. After the concatenation of the two arms 2L and
2R, we ended up with a metacentric simulated chromosome as a starting simulation (total
physical length of 44 Mb). While this length was kept unchanged, markers local density and
distribution were modified (see Materials and Methods: Figure .

One particular yet common case is the centromeric gap. Throughout our analysis, we
consider that a chromosome presents a centromeric gap if its data exhibit a lack of genetic
markers on a relatively large region on the physical map. As centromeric regions usually
are less accessible to sequence due to its high compact state. Consequently, these regions
are also hard to assemble and that is why a lot of genomes have chromosomes presenting
a centromeric gap. It is important to know that a centromeric gap is not always exactly
located on the middle of a chromosome. Instead, its physical location depends on the type
of chromosome (see more details on Figure [S2)).

We also assess the veracity of BREC on datasets with variable distribution using simulated
data with and without centromeric gap (see Figure .

For all six simulation datasets, BREC results overlap the reference boundaries. Thus
BREC correctly handles the presence of a centromeric gap (see Figure (a)(c)(e)). BREC
stays robust to a non-uniform distribution of markers, under the condition that regions
bordering the boundaries are greater than 2 markers/Mb (see Figure [S10). In case of non-
uniform distribution, BREC resolution is higher when the local density is stronger around
heterochromatic regions (see Figure (c)(d)(e)(f)). This suggests that low density on
euchromatin regions far from the boundaries is not especially a problem either.

4.3 Accurate local recombination rate estimates

After the identification of heterochromatin boundaries, BREC provides optimized local es-
timates of recombination rate along the chromosome by taking into account the absence of
recombination in heterochromatic regions. Recombination rates are set to zero across the
centromeric and telomeric regions regardless of the regression model. To closely compare the
third degree polynomial with Loess, using different span values, we experimented this aspect
on D. melanogaster chromosomal arms and reported the results in Figure

To assess the veracity of the recombination rates along the whole genome, we compared
BREC results with previous recombination rate estimates (see Figure |3; (Chan et al., 2012;
Langley et al., [2012)). BREC recombination rate estimates are significantly strongly cor-
related with reference data (Spearman’s: P << 0.001) while the reference estimates fail in
telomeric regions.

4.4 BREC is non-genome-specific

NGS, High Throughput Sequencing (HTS) technologies and numerous further computational
advances are increasingly providing genetic and physical maps with more and more accessible
markers along the centromeric regions. Such shift on the availability of data of poorly
accessible genomic regions is a huge opportunity to shift our knowledge of the biology and
dynamics of heterochromatin DNA sequences as Transposable Elements (TEs) for example.
Therefore, BREC is not identifying centromeric gaps as centromeric regions as it might seem,
instead, it is targeting centromeric as well as telomeric boundaries identification no matter of
the presence or absence of markers neither of their density or distribution variations across
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Figure 3: Comparison of BREC wvs. FlyBase recombination rate recombination rates
along the five chromosomal arms (X, 2L, 2R, 3L, 3R) of D. melanogaster Release 5.
Both recombination maps are obtained using the same regression model: Loess with span 15%.
The heterochromatin boundaries defined by BREC are represented in red and the reference data
are in blue. Heterochromatic regions identified by BREC are highlighted in yellow.
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such complicated genomic regions (see Figure . Given BREC is non-genome-specific,
applying heterochromatin boundaries identification on various genomes allows to widen the
experimental design and to test more thoroughly how BREC responds to different data
scenarios. Despite the several challenges due to data quality issues and following a data-
driven approach, BREC is a non-genome-specific tool that aims to help tackling biological
questions.

4.5 FEasy, fast and accessible tool via an R-package and a
Shiny user interface

BREC is an R-package entirely developed in R programming language (R Core Team) [2018)).
Current version of the package and documentation are available on the GitHub repository:
https://github.com/ymansour21/BREC

In addition to the interactive visual results provided by BREC, the package comes with a
web-based Graphical User Interface (GUI) build using the shiny and shinydashboard libraries
(RStudio, Inc}, 2014). The intuitive GUI makes it a lot easier to use BREC without struggling
with the command line (see screenshots in Figures [4] and [S12).

As for the speed aspect, BREC is quite fast when executing the main functions. We
reported the running time for D. melanogaster R5 and S. lycopersicum in Tables and
respectively (plotting excluded). Nevertheless, when running BREC wvia the Shiny ap-
plication, and due to the interactive plots displayed, it takes longer because of the plotly
rendering. Still, it depends on the size of the genetic and physical maps used, as well as the
markers density, as slightly appears in the same tables. The results presented from other
species (see Figure highlight better this dependence.

All BREC experiments have been carried out using a personal computer with the following
specs:

e Processor: Intel® Core™ i7-7820HQ CPU @ 2.90GHz x 8
Memory: 32Mo

Hard disc: 512Go SSD

e Graphics: NV117 / Mesa Intel® HD Graphics 630 (KBL GT2)
Operating system: 64-bit Ubuntu 20.04 LTS

From inside an R environment, the BREC package can be downloaded and installed
using the command in the code chunk in Figure In case of installation issues, further
documentation is available online on the ReadMe page. If all runs correctly, the BREC
shiny application will be launched on your default internet browser (see Shiny interface
screenshots in Figure and description of the build-in dataset as well as GUI elements in
Supplementary materials).

5 Discussion

The main two results of BREC are the eu-heterochromatin boundaries and the local recom-
bination rate estimates (see Figures [2} [3)).

The heterochromatin boundaries algorithm, which identifies the location of centromeric and
telomeric regions on the physical map, relies on the regression model obtained from correla-
tion the physical distance and the genetic distance of each marker. Then, the goodness-of-fit
measure, the R-squared, is used to obtain a curve upon which the transition between euchro-
matin and heterochromatin is detectable.

On the other hand, the recombination rate algorithm, which estimates local recombination
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(c) Outputs - Here, the interactive summarizing plot of BREC main results is showing the telocentric
chromosome X. Respectively with the plot legend order, it includes the input genetic markers (blue dots),
the generated regression model (orange line), the local recombination rate estimates (green line), the
centromeric boundary (dashed red vertical line on the right) delimiting the centromeric region (highlighted
in light red), and the telomeric boundary (dashed black vertical line on the left) delimiting the telomeric
region (highlighted in light grey)

Figure 4: Screenshots of BREC web application - Run BREC web page @) and
show the inputs interface. shows the output of running BREC on the specified inputs,
represented with an interactive web-based plot as a result.
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rates, returns the first derivative of the previous regression model as the recombination rates,
then, resets the derivative values to zero along the heterochromatin regions identified (see
Figure .

We validated the BREC method with a reference dataset known to be of high quality
. D. melanogaster. While two distinct approaches were respectively implemented for the
detection of telomeric and the centromeric regions, our results show a similar high resolution
(see Table 1] and Figure . Then we analysed BREC’s robustness using simulations of a
progressive data degradation (see Figures . Even if BREC is sensitive to the markers
distribution and thus the local marker density, it can correctly handle a low global marker
density. For D. melanogaster genome, a density of 5 markers/Mb seems to be sufficient to
detect precisely the heterochromatin boundaries.

We also validated BREC using the domesticated tomato S. lycopersicum dataset (see
Table [2| and Figure . At first glance, one might ask: why validating with this species
when the results do not seem really congruent? In fact, we have decided to investigate this
genome as it provides a more insightful understanding of the data-driven aspect of BREC and
how data quality strongly impacts the heterochromatin identification algorithm. Variations
in the local density of markers in this genome are particularly associated with the relatively
large plateaued centromeric region representing more than 50% of the chromosome’s length.
Such data scenario is quite different compared to what we previously reported on the D.
melanogaster chromosomal arms. This is partially the reason for which we chose this genome
for testing BREC limits. While analysing the experiments more closely, we found that BREC
processes some of the chromosomes as presenting a centromeric gap, while that is not actually
the case. Thus, we forced the heterochromatin boundaries algorithm to automatically apply
the with-no-centromeric-gap-algorithm, then, we were inspired to implement this option into
the GUI in order to give the users the ability to take advantage of their a priori knowledge
and by consequence to use BREC more efficiently. Meanwhile, we are considering how to
make BREC completely automated regarding this point for an updated version later on.
In addition, the reference heterochromatin results we used for the BREC validation are in
fact rather an approximate than an exact indicator. The reference physical used correspond
to the first and last markers tagged as ”heterochromatic” on the spreadsheet file published
by the Tomato Genome Consortium authors in (Sato et al., 2012). However, we hesitated
before validating BREC results with these approximate reference values due to the redundant
existence of markers tagged as ”euchromatic” directly before or after these reference positions.
Unfortunately, we were not able to validate telomeric regions since the reference values were
not available. As a result, we are convinced that BREC is approximating well enough in the
face of all the disrupting factors mentioned above.

On the other hand, the ambition of this method is to escape species-dependence, which
means it is conceived to be applicable to a various range of genomes. To test that, we thus
also launched BREC on genomic data from different species (the house mouse’s chromosome
4, roundworm’s chromosome 3 and the chromosome 1 of zebrafish). Experiments on these
whole genomes showed that BREC works as expected and identifies chromosome types in
95% of cases (see Figure [S3)).

One can assume, with the exponential increase of genomics resources associated with the
revolution of the sequencing technologies, that more and more fine-scale genetic maps will
be available. Therefore, BREC has quite the potential to widen the horizon of deployment of
data science in the service of genome biology and evolution. It will be important to develop
a dedicated database to store all these data.

BREC package and design offer numerous advantageous (see Table compared to
similar existing tools (Siberchicot et al., [2017; |[Fiston-Lavier et al.l 2010]). Thus, we believe
our new computational solution will allow a large set of scientific questions, such as the ones
raised by the authors of (Lenormand et al., 2016; [Stapley et al.l [2017), to be addressed more
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571 confidently, considering model as well as non-model organisms, and with various perspectives.
- 6 Conclusion

573 We designed a user-friendly tool called BREC that analyses genomes on the chromosome
574 scale, from the recombination point-of-view. BREC is a rapid and reliable method designed
575 to determine euchromatin-heterochromatin frontiers on chromosomal arms or whole chromo-
576 somes (resp. telocentric or metacentric chromosomes). BREC also uses its heterochromatin
577 boundary results to improve the recombination rate estimates along the chromosomes.

578 Whole genome version of BREC is a work in progress. Its will allow to run BREC on
579 all the chromosomes of the genome of interest at ones. This version will also present the
580 identified heterochromatin regions on chromosome ideograms. As short-term perspectives
581 for this work, we may consider extending the robustness tests to other datasets with high
582 quality and mandatory information (e.g. boundaries identified with cytological method, high
583 quality maps). Retrieving such datasets seems to become less and less difficult. As well, we
584 may improve the determination of boundaries with a finer analysis around them, for instance
585 using an iterative multi-scale algorithm. Finally, we will be happy to take into account users
586 feedback and improve the ergonomy and usability of the tool. As mid-term perspectives,
587 we underline that BREC could integrate other algorithms aiming to provide further analysis
588 options such as the comparison of heterochromatin regions between closely related species.
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Supplementary materials

Figure S1: The data cleaning process implemented within BREC. Inter-marker distances
(i.e. genetic distances between each two consecutive points along the genetic map) are represented
using a boxplot in order to identify outliers and give the user the option to remove them. Here is
an example showing raw data of a simulated chromosome (left) with the specific markers detected
as outliers (red dots circled with red dashed ovals) and the corresponding genetic distances (also
in red) on the boxplot (right).
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Figure S2: A schematic description of the chromosome type identification process
implemented within BREC. (a) Telocentric chromosome type is when the centromere (the
grey colored circle) is located on one of the chromosomal arm extremities (indicated with the
green upside down triangle). (b) Atelocentric chromosome type -confirmed as metacentric- is when
the centromere is located approximately on the middle of the chromosome, here showed within
the physical positions 40% and 60% of the chromosome’s size (delimited by the red brackets and
indicated with the tag ”"Meta”). (c) Atelocentric chromosome type -with no specification- is when
the centromere is located either inside the first arm (between the beginning of the chromosome
and 40% of its size), or inside the second arm (between 60% and the end, indicated with the tag
"Don’t know”).
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Figure S3: BREC results on different species: from top to bottom are M. musculus
(house mouse) chromosome 4, C. elegans (roundworm) chromosome 3, D. rereo (ze-
brafish) chromosome 1, respectively. For each species, two plots are shown: on the left is
the chromosome’s genetic markers (black points), their distribution along the physical map (rug
on the x-axis), and reported genomic features (label in blue). On the right is BREC results: (HB)
heterochromatin boundaries for centromeric (red highlight) and telomeric (grey highlight) regions,
(RR) local recombination rate estimates (red line), and the running time of BREC’s algorithms
to get these results (loading data and plotting are excluded).
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Figure S4: Distribution simulations. BREC results on the simulated chromosomes with different scenarios
of markers distribution around heterochromatin regions, as presented in the table (top) . Plots (right after) are
presenting the corresponding results for each simulation scenario. On the left, (a, ¢, e) show the cases with the
existence of centromeric gap while the ones on the right (b, d, f) show the cases with no centromeric gap. From
top to bottom, cases (a) and (b) show a uniform distributions while (c) to (f) are for non uniform distributions.
Cases (¢) and (d) show a higher density of markers around heterochromatin regions while cases (e) and (f) show a
lower density on the same regions. Black dots represent genetic markers. Vertical lines represent heterochromatin
boundaries for BREC centromeres (in red dashed line), for BREC telomeres (in grey dashed line) and for the
reference (in solid blue line). The heterochromatin regions identified by BREC are highlighted for the centromere
(in red) and the telomere (in grey). The rug plot, added on the x axis, shows more clearly the variation in markers
density as well as the existence or not of the centromeric gap.
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Figure S5: Variations of markers local density per 1-Mb bins along D. melanogaster
Release 5 chromosomal arms. The red dashed line indicates the mean and represents the
global density. Each bin indicates the number of markers it contains. Local density values are
represented within the little boxes.
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Figure S6: Variations of markers local density per 5-Mb bins along the tomato genome
S. lycopersicum 12 chromosomes. The red dashed line indicates the mean and represents
the global density. Each bin indicates the number of markers it contains. Local density values are
represented within the little boxes.
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Figure S7: BREC pipeline steps applied on chromosome 2L of D. melanogaster Release
5. On each plot, the x-axis represents physical distances (Mb). The left y-axis represents genetic
distances (cM) shared between markers (blue data points) and the regression model (orange line).
The right y-axis represents recombination rates (cM/Mb) for local estimates (green line). R?
values, varying between zero and one, are following R? — forward (red line) and R? — backwards
(purple line). Left telomere and Right centromere (resp. black and purple dashed lines) indicate
heterochromatin boundaries for the corresponding identified heterochromatin region.
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Figure S8: Plots of the BREC heterochromatin boundaries and reference boundaries
from the S. lycopersicum genome. The results are summarized in Table 2] From top to
bottom are the twelve chromosomes 1 to 12, respectively. Black dots represent genetic markers in
ascendant order according to their physical position (in Mb). Vertical lines represent heterochro-
matin boundaries for BREC centromeres (in red dashed line), and for the reference (in solid blue
line). The heterochromatin regions identified by BREC are highlighted for the centromere (in
red). Rug plot on the x-axis represents the markers density according to the physical map.
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Figure S9: The impact of decreasing markers density on the resolution of BREC’s heterochromatin
boundaries expressed by the shift value. Here is an overview of the variation of shift values (see Equation
for BREC’s heterochromatin boundaries compared to reference results for the five D. melanogaster chromosomal
arms (X, 2L, 2R, 3L, 3R). For each arm, two heterochromatin boundaries are shown: squares (in red) for telomeric
and triangles (in light blue) for centromeric boundaries. The horizontal dashed line (in black) delimits results
smaller than a shift value of 3Mb for all arms while the vertical dashed line (in black) indicates up to which
fraction the 3Mb shift is conserved on each chromosomal arm’s simulations. Note that the x axis is reversed, so
from left to right it goes from 100% to 30% with a step of -5%at each point. The simulation process is further
clarified for one fraction on the chromosomal arm 2L and is illustrated in Figure @

Chromatin boundary

4% Telomeric
4 Centromeric

124
114
10 A
9_
8-
o -
= 7
= 61
» 57
4-
Bl e e
2-
1_
T T T T I T T T T
100 90 80 70 60 50 40 30
Decreasing fractions (%)
5_
4_
i)
S sl e o s
‘."E
n
2_
1_
O-
100 90 80 70 60 50 40 30 100 90 80 70 60 50 40 30
Decreasing fractions (%) Decreasing fractions (%)
5
i)
=3
=
E p— — — — — — — —
%)
T I T

100 90 80 70 60 50 40 30 100 90 80 70 60 50 40 30
Decreasing fractions (%) Decreasing fractions (%)


https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/

N i Am_ms mocﬂm%_mo_&_zmm E )
BOISAY, & - .
. Am__\,: mocmm%_ _ < 0 , " nzﬁ,“ WQNE.M“M: » ] o W
(qi) @ouelSIp _mu_m\fn_m 0 T o ee T = Asuep ik m _ [ oz M
1sAud 0z St o g o 1 (%08 = LoRoBl | 2 | w..
o — (aw) mocﬁmo_“w e S 0 . p— mmu.u - a.a.c% 2 ol | — 0z g " I m
EllIEIE) 0z St — T ° % o 4 uonoes, ! w. ! o m . ) o g
=20 G | e - i | =4 "2 | FRA o8 " . I 2
m - duswonusd 53Hg — 1 I 0z © " | ] 1 . 1 = | oo *" !
o= i e | _ 3 . =2 oy
mm, Krepunog unewoiyy " _ : o | o W " e I (an) sovmsp sy .
= | o @ = = 51 0 1o
..m m- " - I W N - ! _ An_\,_mvvmo:mww_ﬂ_,mo_mfn_ S 9 o T T QN/W 20°E u_b_wnhw_u 3 | m
= . 0z .r % 09 = UOROB), R 3
2 %. -1 _ : (an) eouessip _mu_m\fmm 0 DEEEQ.N,""“%.H% Al m " ’ - " re e
= oL = 1o %05 = donoey R 3 L s
3 = (aw) ooueisp orsiyd 0 % %ﬂé A R g 1 . " s " | _ B
m m i o 2 = kusuep ‘ o) I [ 08 - vouoE) [ | m. ! I M ! K _ oy \“%
¢ M ks ~uabu 0 m | a I & " ! w8 oL 1
ww 1 .- 0z s 1 . I 2 _”" | W et
=2 [ g 1 : | ) - | =
mw | %m ! | W Jo.-r 1 Eﬁmv_mocﬂm_ﬂ_,mo_m%n_ . 0 .
- r s 1 et | 1sAud 0z - K
W.W - g N ) An_\,_m,mocma_ﬂ teorshud |o . _E\M_w wmmcm_,w_m_ P x.u... m
o M ; - - | (an) mocm«m_w_mu_m?m B 0 1 /M 2g°€ = Aisuop el e , e 0z M
= Q ] %o = ¢ 3 o @
Qg (o oovmsp eosig " ~Fr, | A e IRNE ¥
Nag s o = 1o - 3 1 S o ! )" o 3
o0l 02 e T o) I . 2 1 5 . K =
mo= AN/ L62 ¥ o g i . 0z S ] 3 g
= Iy = uopoeyy - & 1 % oy @
(3] © o 0L 2 o N > 1 . "
m ” m .... GNN. I m I v = ST I
e a 1 oy © | i k{0
Wm m ) oqw i — B Al (an) eoueiop fashid :
DS m = | 2 1 P ' (an) soueisip [eaishyd . 0 wm Qb 18 = Kisuep - T o
m-d - . = e Ijoee 0z Si ok F 1o ] %00} = uonoel) ....v M
5 m 3 | (an) @ouetsip Eashyd 0 T awscer - aisuep ol £ | o 05
o < < . ofud . st ok F 1o | % 06 = UOIORI s.t 3 e m..
% Wum S_\,_mvfwu:m«m_ﬂ_fmo. N 0 , 1 e u,b_m,“mu u... B m 1 I .n 02 m " fre . m
ay 2 o %00} = uojoel 3 B o > 3
2 & i e ¥ g " \ ot =g _ Lo H ! - £
Eon 1 1608 = voRcey o g ’ @ | : o2 I . -
20 | X e & 1 g | W theee "
% W,ﬂ | m 1 1 qu | poeet -
—cg I : 2 i e Adv
PR _ : R Suruee 010§0¢]
NE o et :
E£3 S S ur) orowo} oYy
M EE A v dso1100 UL A%O.H ut ue
[
Soz Sutues> YRV (q ue uoIpoRI) SUIPUO 08 UI) 90U0I0JOI [} 0] P
SEQ UMOUS ST AJISUSD SIONIRW P H@p.@a ot T, “(our] anq pIjos uI 0s01doI SO [BITIIOA
P uo - WOIY20 010307 U .
dsE o[ doy oty o181 urje TYRUIOID 01D oA
o3 IS D®9 JO 3 OUIIUOPI SUOT Tepunoq ury g ) somosou
cd “jo1d woryernUII q Aq poyr : I0J sorrep (e ¢ T¢ X
oS 301 : SIYSIY o1 HHY oI1uad HHYY (Mg ‘1¢ “v¢ "SOLIRPUNO(
= 103 PIYY oIyl oI UI) SoTou IOUM SOW) ()¢ o1} Uo (®) 'Sl
2= o0 o) . oysep p : oW 9[) 919y ST 3Jo1 9 3
25 01 UT) 9I0WOIY 10§ ‘(our] p RA YIS TR ) Pue 2103o( SI oY ], "OUIOUD
58 pue (por ur omO[d) DY o110do1 st on : Suoyy uo (q) p OTYRTIUIS 9SAY T,
22 £o13 ) sor 9INSL,] Ul poy . TojJe ST 4Y3l 0} MO[[e STOT . Suryef
33 oysep . oelqg E o surueo oY) ‘ oy} Apnjs SUISROIOOP SUI
23 (our] p 1do1 sj0p e[ *dogs Sur 0 joedut oy SIoyIewr sul
S5 o8 Juoaso nuIts 9soy T, olqeLrea J . g %ﬁwﬁ@.@ . pﬁmﬂm
£ jou suorje NI o3 IeW o[l I] SUI0 : 1S 2InasI
=g "SI IeW Ol 9 9ARY : A)1Suop SI19y %0071 woJj sut op Mo 0
C = u0d U9 q uo A1 0 9%0¢€ 01 %0 IS AJIsuop
=E 0 pajonp symsaI DY 8110 91} JO 9, uoryeNUII I
k5 O [oeo U Tedwon s3] D [euIst g suot
T O oyl J I9Jo1 03 PO QUWIOSOWIOIY; . O S1TNSOI Omm
Es UL EWOO0IN9Y 90U m.Q T3 JO (qINET 218 JO) g OLIIUSO0[9} PIR[IMIS o1} UO S}
s : D)W SOWIOITD OT
o9 4238DbOU M SOUWIO
s Seoro 1
2 @0 M.m RUDS AYSUSD JUDIIIP 1)
25 g sott .
x.e .
2=
52

10


https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.178095; this version posted June 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Figure S11: Comparison of regression models for recombination rate estimates along
the five chromosomes (X, 2L, 2R, 3L, 3R) of D. melanogaster Release 5. Regression
models used here are Loess with span values, 15%, 25%, 50%, 75% and third degree polynomial.
The heterochromatin boundaries defined by BREC remain unchanged and only local recombina-
tion rates differ according to the model used to fit the genetic and physical maps. Recombination
rate is represented by the derivative of the model. In case of two or more models yielding the
same recombination rate estimates on the same physical position, the overlap results in only one
curve line. Here, all curves show null recombination rate value on the centromeric and telomeric
regions.
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Figure S12: Screenshots of BREC web application - Genomic data web pages.

(a) Download data files page from the Genomic data section, indicated on the left dark panel, is
displayed Here, After selecting on the top list the Gallus gallus genome and clicking the ”Download
selected” button, a dialog box is open waiting for the user to specify the file path to save the selected
data file.

Show 15 v entries

Select a genome to display the
corresponding data chr marker cm mb sp

1 21  a.enolase.chr21.3074309 17.8 3223143 ggal
Gasterosteus aculeatus
Glycine max 2 1 ABR0002 96.7 35411286  ggal
3 2 ABR0004 29.8 7.198854  ggal
& Download selected
4 26 ABR0006 316 4088058 ggal
& Download all
<> Install 5 1 ABRO0OT 101.8 38185622 ggal
6 2 ABR0009 56.4 17.945817  ggal
@ Help Opening Gallus gallus_2020-01-13.csv
Tl R 7 10 ABR0012 88.2 19.051057  ggal

~| Gallus gallus_2020-01-13.csv

whichis: €5V document (310 KB) 8 9 ABR0014 57.7 1477787  ggal
from: http://127.0.0.1:5898

What should Firefox do with this file? 9 8  ABROOLT 118 3.883612 ggal
©openwith | Sublime Text (default) v
swerte 10 9 ABR0018 67.6 17.327678  ggal
saveFile

Do this automatieally for files like this From now on.

1 2 ABR0020 75 2544121  ggal
g CANCE L | e O 12 2 ABR0022 285.8 131127371 ggal
13 8  ABR0029 231 5289437 ggal

(b) Dataset details page from the Genomic data section is showing a sample of ten available genomes
provided within the BREC package. The table is intentionally sorted using the forth column values with
descending number of ” Total markers”.

Home

Show 10 - entries Search:
Genomic data Species X..Chr.Used Total.Map.Length Total kers y  X..Mapped kers X..Markers.Used Total.Mb.Covered Use
25 Homosapiens 22 3179.9563005 276280 276230 276215 2670.616352
31 Oryzasativa 12 1863.5528 30984 30979 30971 370.526242
Run Brec
30  Mus musculus 19 1436.348 9905 9885 9872 2366.842124
20  Gallus gallus 28 2867.6 8558 8445 8349 910.751309
5 Bos taurus 29 3097.366 6923 6285 5499 2452.301738
g6 Lepisosteus 29 2923.736 5440 5002 2820 877.903483
oculatus
p  COSTERE 5 233287 5221 5221 5220 82313198
elegans
22 Glycine max 20 224132 4534 4534 2549 943.186207
Ficedula
19 - 32 3132.061 4121 3997 3996 966.491435
albicollis
9 Canis lupus 38 2084.8 3075 3071 3065 2148.425799
Showing 1 to 10 of 40 entries Previous ‘ 1 ‘ 2 3 4 Next

12


https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.178095; this version posted June 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

Description of main components of the Shiny app

Build-in dataset Users can either run BREC on a dataset of 40 genomes, mainly im-
ported from (Corbett-Detig et al., 2015), enriched with two mosquito genomes from (Dud-
chenko et al., 2017) and updated with D. melanogaster Release 6 from FlyBase (Thurmond
et al.l [2019)) (see Table , already available within the package, or, load new genomes data
according to their own interest.

User-specific genomic data should be provided as inputs within at least a 3-column
CSV/TXT file format including for each marker: chromosome identifier, genetic distance
and physical distance respectively. On the other hand, outputs from BREC running results
are mainly represented wvia interactive plots.

GUI inputs The BREC shiny interface provides the user with a set of options to select
as parameters for a given dataset (see figure [da]). These options are mainly necessary in case
the user works on his/her own dataset and this way the appropriate parameters would be
available to choose from. First, a tab to specify the running mode (one chromosome). Then,
a radio button group to choose the dataset source (existing within BREC or importing new
dataset). For the existing datasets case, there is a drop-down scrolling list to select one of
the available genomes (over 40 options), a second one for the corresponding physical map
unit (Mb or pb) and a third one for the chromosome ID (available based on the dataset and
not the genome biologically speaking). While for the import new dataset case, three more
objects are added (see Figure ; a fileInput to select csv or txt data file, a textInput to
enter the genome name (optional), and a drop-down scrolling list to select the data separator
(comma , semicolon or tab character -set as the default-). As for the Loess regression model,
the span parameter is required. It represents the percentage of how many markers to include
in the local smoothing process. There is a numericInput object set by default at value 15%
with an indication about the range of the span values allowed (min = 5%, max = 100%, step
= 5%). The user should keep in mind that the span value actually goes from zero to one, yet,
in a matter of simplification, BREC handles the conversion on it’s own. Thus, for example,
a value of zero basically means that no markers are used for the local smoothing process
by Loess, and so, it will induce a running error. Lastly, there is a checkbox to apply data
cleaning if checked. Otherwise, the cleaning step will be skipped. This options could save
the user some running time if s/he already have a priori knowledge that a specific genome’s
dataset has already been manually curated). The user is then all set to hit the Run button.
BREC will start processing the chromosome of interest by identifying its type (telocentric or
atelocentric). Since this step is quite difficult to automatically get the correct result, the user
might be invited to interfere via a popup alert asking for a chromosome type confirmation
(see Figure . As shown in Figure (S12al), all available genomes could be accessed from the
left-hand panel (in dark grey) and specifically on the tab ” Genomic data” where two pages are
available: "Download data files” which provides a data table corresponding to the selected
genome on a scrolling list along with download buttons, and ”"Dataset details” displaying
a more global overview of the whole build-in aata repository (see Figure . To give a
glance at the GUI outputs, Figure [dc| shows BREC results displayed within an interactive
plot where the user will have the an interesting experience by hovering over the different plot
lines and points, visualising markers labels, zooming in and out, saving a snapshot as a PNG
image file, and many more available options thanks to the plotly package (Sievert| 2018]).
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Figure S13: Download, install and launch BREC. Code chunk showing the R commands
allowing to download, install and run the BREC shiny application. The entire R package is
available with open access on the indicated GitHub repository.

install.packages("devtools", "shiny")

library(devtools, shiny)

install_github("ymansour21/BREC")

library(Brec)

library(shiny)

runApp("shinyApp/Brec_dashboard.R", launch.browser = TRUE)
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Table S1: Genomic features and BREC running time for the D. melanogaster Release
5 genome. The first five rows represent chromosomal arms. Columns represent the genome
features as follows: (1) the names of chromosomal arms X, 2L, 2R, 3L, and 3R; (2) the markers
number included in the study; (3) the markers density (in markers/Mb); and (4) the physical map
length (in Mb). The last row summarizes the same features for the whole genome.

Chromosomal | Markers | Markers density | Physical map | Genetic map | BREC run
arms number (marker/Mb) length (Mb) | length (cM) | time (sec)

X 165 7.78 21.22 65.8 1.278

2L 110 4.81 22.88 54.8 0.949

2R 101 4.78 21.12 52.5 0.821

3L 82 3.56 21.81 45.9 0.916

3R 160 5.80 27.57 57.5 1.379

Whole genome 618 5.39 114.59 276.5 5.343

Table S2: Genomic features and BREC running time for the S. lycopersicum . The first
twelve rows represent chromosomes. Columns represent the genome features as follows: (1) the
identifiers of chromosomes 1 to 12; (2) the markers number included in the study; (3) the markers
density (in markers/Mb); (4) the physical map length (in Mb); and the elapsed time when running
BREC. The last row summarizes the same features for the whole genome.

Chromosomes Markers | Markers density | Physical map | Genetic map | BREC run
number (marker/Mb) length (Mb) | length (cM) | time (sec)

1 232 2.58 89.85 150.72 2.164

2 176 3.66 48.10 154.58 1.391

3 184 2.84 64.77 134.52 1.434

4 160 2.55 62.79 122.64 1.295

) 150 2.32 64.52 137.91 1.098

6 151 3.34 45.20 106.63 1.197

7 145 2.22 65.18 92.48 1.102

8 144 2.29 62.87 106.63 1.047

9 171 2.54 67.37 108.90 1.357

10 148 2.32 63.66 88.92 1.095

11 142 2.68 52.98 119.99 1.081

12 154 2.36 65.18 110.72 1.221

Whole genome 1957 2.64 752.47 1434.49 15.479

15


https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.178095; this version posted June 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Table S3: BREC’s built-in dataset of genomic data. The available genetic and physical maps
for 40 species from (Corbett-Detig et al., 2015|), enriched with two recently assembled mosquito
genomes: Culex pipiens and Aedes aegypti from (Dudchenko et al. 2017), domesticated tomato
S. lycopersicum from (Sato et all 2012), and D. melanogaster Release 6 (update) from FlyBase
(Thurmond et al., [2019). The species in red bold text are the one we use in BREC experiments.
Since the data collection process is still ongoing, the current version of this dataset is continuously

evolving.

Species

Common Name

Kingdom and Subgroup

Aedes aegypti
Anopheles gambiae

Yellow fever mosquito
African malaria mosquito

Animal Invertebrate

Equus ferus przewalskii
Ficedula albicollis
Gallus gallus
Gasterosteus aculeatus
Homo sapiens
Lepisosteus oculatus
Macaca mulatta
Meleagris gallopavo
Mus musculus castaneus
Oryzias latipes

Ovis canadensis

Papio anubis

Sus scrofa

Prewalksii’s horse
Collared flycatcher
Chicken
Stickleback
Human

Spotted gar
Rhesus macaque
Turkey

House mouse
Medaka

Bighorn sheep
Olive baboon
Wild boar

Apis mellifera scutellata Honeybee

Bombyx mandarina Silkworm

Caenorhabditis briggsae Roundworm
Caenorhabditis elegans Roundworm

Culex pipiens Common house mosquito
Drosophila melanogaster R5 Fruit fly

Drosophila melanogaster R6 Fruit fly

Drosophila pseudoobscura Fruit fly

Heliconius melpomene melpomene Postman butterfly

Bos taurus Cow Vertebrate
Canis lupus Wolf

Cynoglossus semilaevis Tongue sole

Danio rerio Zebrafish

Citrus reticulata
Gossypium raimondii
Populus trichocarpa
Prunus davidiana

Mandarin Orange
New world cotton
Black cottonwood
David’s peach

Plant Woody

Arabidopsis thaliana
Brachypodium distachyon
Capsella rubella

Citrullus lanatus lanatus
Cucumis sativus var. hardwickii
Glycine soja

Medicago truncatula

Oryza rufipogon

Setaria italica

Sorghum bicolor subsp. verticilliflorum
Solanum lycopersicum

Zea mays ssp parviglumis

Thale cress

Purple false brome
Pink Shepherd’s Purse
Watermellon
Cucumber

Wild soybean

Barrel medic

Wild rice

Foxtail millet

Wild Sudan grass
Domesticated tomato
Teosinte

Plant Herbaceous
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