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Abstract 

Histone deacetylase inhibitors, such as valproic acid (VPA), have important clinical implications 

as human therapeutics and cellular reprogramming agents. They induce chromatin re-

organization associated with changes in cell nuclear morphology. Current approaches aiming to 

quantify these changes so far have been limited to basic 2D measures. Here, we quantified 

changes in 3D nuclear morphology of primary human astrocyte cells treated with VPA for 7 days 

(hence, 4D). We compared volumetric and surface-based 3D shape representations of cell nuclei 

and selected subset of features that jointly discriminated between normal and treated cells with 

85% accuracy on day 7. Over time, VPA-treated nuclear morphologies progressed towards larger 

size and higher shape irregularity. On day 7, all 11 selected size and shape descriptors 

demonstrated significant difference between treated and untreated nuclear morphologies, 

including 22.5% increase in volume and 8.3% reduction in extent (shape regularity) for VPA-

treated nuclei. Overall, we showed that 4D surface morphometry accurately characterizes the 

temporal changes in astrocyte nuclear form that are reflective of the underlying valproate-induced 

chromatin re-organization. These nuclear structural alterations may serve as a biomarker for 

histone (de-)acetylation events and provide insights into mechanisms of astrocytes-to-neurons 

reprogramming. 

 

1 Introduction 

Changes in nuclear morphology are reflective of chromatin reorganization that are regulated by 

complex biological mechanisms associated with cell differentiation, proliferation, disease, and 

mechanics1–3. Quantitative analyses of nuclear morphological changes become of major 

relevance as the studies of chromatin and DNA architecture emerge in the spatial and temporal 

framework, known as the 4D nucleome4–7. One of the most important mechanisms in chromatin 

remodeling is the post-translational modification of the N-terminal tails of histones by acetylation8. 
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Histone acetylation is a significant chromatin event tightly controlled by the balance between the 

histone acetyl transferases and histone deacetylases (HDACs). Histone deacetylation results in 

chromatin condensation and subsequent transcriptional repression while acetylation has an 

antagonistic effect leading to increased de-compacted euchromatin and gene expression in cells9–

11. Histone (de-)acetylation and other chromatin remodeling events are associated with 

quantifiable changes in nuclear morphology. For example, they play an important role in 

identifying cancer development and in predicting its progression12,13. This provides an opportunity 

to use nuclear morphometry to quantify complex phenotypes associated with the disease, to 

assess the efficacy of treatments at cellular and subcellular levels, and to link these to the 

underlying biological mechanisms14,15. 

 

To assess the role of chromatin in nuclear morphology, inhibitors of the enzymes that modulate 

histone modification state can be used to mimic chromatin alterations that are observed in human 

diseases11,16,17. Valproic acid (2-propylpentanoic acid, VPA) is an established drug in the long-

term therapy of epilepsy, bipolar disorders, social phobias, and neuropathic pain8,10. VPA is known 

to relieve HDAC-dependent transcriptional repression and to cause hyperacetylation of histones 

in cultured cells and in vivo8. Inhibition of HDACs through small-molecule inhibitors has gained 

significant attention in clinical research10,18,19. Along with other HDAC inhibitors, VPA is now being 

tested in clinical studies as an anticancer drug and as an adjunctive therapeutic for trauma and 

sepsis in preclinical studies19,20. Another potential application of VPA is related to its ability to 

potentially promote neurogenesis and neuronal maturation21–23 as it enhances the efficiency of 

cellular reprogramming mediated by HDAC inhibition24,25. Previous reports indicate that the 

neuronal regeneration capacity in adults may be insufficient for brain repair26–28. Thus, cell 

replacement therapy via neuronal reprogramming of terminally differentiated somatic cells can 

become a strategy to generate functional neurons23,26. Other studies performed in our laboratory 
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indicated that VPA activates neurogenic transcriptional programs in adult brain following traumatic 

brain injury29. 

 

Astrocytes, the most abundant cell types in the brain, play important roles in maintaining brain 

homeostasis and modulating neural circuit activity30,31. Astrocytes developmentally originate from 

the same precursor cells as neurons, are capable of proliferating in response to brain damages, 

and therefore are considered as ideal starting cells to regenerate neurons32. Recent studies have 

demonstrated the ability to directly reprogram human astrocytes into functional neurons with a set 

of small molecules, including VPA22,23,33,34. Compared to transcription-factor-based 

reprogramming, small molecules offer ease of use and a broader range of downstream 

applications22. However, the results reported by these studies are not always congruent. Some 

indicate that the removal of VPA from the chemical small molecule cocktail reduced 

reprogramming efficiency22,33 or even report that VPA alone can induce astrocytes into 

neuroblasts33. Others argue that adding VPA to the reprogramming cocktail may slightly reduce 

reprogramming efficiency35. Treatment protocols, concentrations, and combinations of small 

molecules differ between these studies, indicating that underlying mechanisms driving the trans-

differentiation process are not well understood. 

 

There have been few studies that quantified nuclear size or shape changes associated with 

valproate-induced chromatin re-organization. For example, it has been shown that VPA treatment 

of prostate cancer cells after 7 days leads to an increase in the nuclear maximum diameter36. 

Similar results showing increase in cell or nuclear size in 2D have been demonstrated in other 

cell lines16,37,38. Some recent studies took basic measures of nuclear shape and reported an 

increase in 2D nuclear outline irregularity and an emergence of nuclear protrusions (“blebs”) that 

are reflective of altered histone modifications and chromatin decompaction under VPA 

treatment3,11. However, these approaches were limited to very few basic 2D surrogates of 
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geometric measures, such as cross-sectional nuclear area or maximum diameter. In our previous 

works, we have demonstrated that combining 3D size and shape characteristics yields a more 

representative characterization of the nuclear form that accurately reflects underlying changes in 

nuclear architecture and enables better discrimination of morphological phenotypes7,39,40. To our 

knowledge, there have been no studies that assessed effects of VPA-induced chromatin 

decompaction on astrocyte nuclear morphology. 

 

To address these issues, we quantified VPA-induced changes in 4D nuclear morphology of 

primary human astrocyte cells. We first compared volumetric and surface-modeled 

representations of astrocyte nuclei, in order to assess their utility in characterizing changes in 3D 

nuclear organization over time. In order to do so, we extracted various size and shape descriptors 

from both representations. This allowed us to compare the predictive performance of machine 

learning models trained to distinguish between nuclear morphological profiles of treated cells vs. 

normal astrocytes over time. Machine learning-derived feature ranking was used to identify 11 

surface-based features that were the most representative of changes in 3D structure. Further 

statistical analysis identified the increase of nuclear size in VPA-treated cells over the course of 

treatment, confirming and extending previously reported results. Valproate-induced changes in 

the 4D nuclear architecture were also captured in our analysis by shape features, showing higher 

nuclear shape irregularity and elongation in treated cells compared to the control population. 

These results allow to accurately characterize the effects of VPA on the astrocyte nuclear 

morphology as an effect of chromatin re-organization and provide insight towards describing the 

underlying biological mechanisms of astrocyte-to-neuron reprogramming. 
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2 Results  

2.1 Experiment and data 

In order to determine how valproate-induced alterations of astrocyte chromatin structure are 

reflected in 4D nuclear morphology, we treated human astrocyte cells with 1.5 mM of VPA at 

multiple time points (days 1, 3, and 5). We obtained volumetric images of DAPI-labeled nuclei 

using confocal microscopy at 3 time points (days 3, 5, and 7). This provided us with 4D images 

(3D + time) in following conditions: normal human astrocytes (NHA) and cells treated with VPA 

(VPA), as schematically shown in Figure 1a. In order to perform morphometric analysis, we first 

segmented individual nuclei of both normal and treated astrocytes. The automatic 3D 

segmentation of DAPI-stained nuclei using the Farsight Nuclear Segmentation algorithm41 

allowed avoiding a labor-intensive process of manual pixel-level annotation of large 3D volumetric 

imaging data. As the result, we extracted 3D nuclear binary segmentation masks for each cell 

condition on days 3, 5, and 7 (Figure 1b). We then performed post-segmentation processing that 

included 3D hole filling and semi-automated quality control of the extracted binary masks by 

removing the objects on edges of the volume, touching objects, or those with volume values 

outside of the empirically estimated interval. Numbers of nuclear masks after segmentation and 

quality control are listed in Table 1 for each day and treatment condition. Details of the 

segmentation and quality control protocols can be found in the Methods section. 

 

Day 
3 5 7 

Treatment 
NHA 164 150 93 

VPA 123 55 70 

Total 187 205 163 

Table 1. Number of segmented 3D nuclear binary masks per day for each treatment condition. 
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Using segmented 3D binary masks, we performed the extraction of the volumetric and surface 

model-based nuclear shape representations, see Figure 1b. From raw voxels, we computed the 

total of 15 geometric characteristics of the individual nuclear masks: nuclear volume, bounding 

box and convex hull volumes, extent, solidity, lengths of main axes, inertia tensor principal 

components, and sphericity. As an alternative to a raw volumetric representation, we also used 

shape modeling to obtain nuclear surface reconstructions. Robust and smooth surface 

reconstruction was obtained from a 3D binary voxel mask via Laplace-Beltrami eigen-projection 

followed by topology-preserving boundary deformation to remove artifacts42. We obtained 

extracted surfaces that were smooth, accurately represented the shape of an object, and were 

well-suited for morphometric analysis of cell nuclei and subnuclear structures40. Surface 

reconstructions of nuclear morphologies were saved as discretized triangular meshes. From 

these surface representations, we computed a set of size and shape measures that were 

equivalent to that extracted from volumetric data, with an addition of bounding cylinder and sphere 

volumes, mean and Gaussian curvatures, curvedness, shape index, and fractal dimension. All 

extracted features were aggregated into per-nucleus feature vectors, from which we constructed 

a feature table per each day of treatment with the labels corresponding to phenotypic conditions 

(NHA and VPA). Combined, these feature tables formed the feature tensor containing nuclear 

morphological profiles (Figure 1b) that was used for model and feature selection, statistical and 

machine learning-based analysis, and interpretation of results (Figure 1c). 

 

2.2 Classification and feature selection 

We compared volumetric and surface-based feature sets as inputs for training a number of 

machine learning algorithms to discriminate between NHA and VPA nuclear morphological 

phenotypes (Figure 2a). Six different sets of features were used to train eight different classifiers 

at each time point. Area under the Receiving Operator Characteristic curve (AUC) was used as 

the main classification performance metric to evaluate models. To compare classifiers, we 
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averaged the performance of each model over days 3, 5, and 7, and over all feature sets. To 

compare feature sets, we averaged the AUCs over all models and days. AUCs (Figure 2a and 

Figure 2d), confusion matrices (Figure 2e), and feature ranking (Figure 2f) were averaged from 

10 repetitions of the internal statistical 5-fold stratified cross-validation. Due to the ~3:1 sample 

imbalance for day 5 data, we used random subsampling of the prevalent class by the total number 

of per-fold training samples from an underrepresented class at each iteration of the cross-

validation procedure. Although all classifiers demonstrated consistent performance with time-

averaged AUCs between 74% and 80%, the random forest classifier (RFC)43 robustly 

demonstrated highest average performance across all feature sets (mean AUC=80%) compared 

to alternatives. Therefore, we used it for further analysis. 

 

We compared two subsets of equivalent features Vsub and Ssub extracted from voxel data and 

surface representations, respectively. Each of subsets consisted of 10 size and shape 

descriptors: volume, bounding box volume, convex hull volume, extent, solidity, inertia tensor 

eigenvalues, major axis length, and sphericity. As shown in Figure 2a, the results were similar, 

although voxel features resulted in slightly better performance in some models, including random 

forest. When we compared full sets of volumetric (V) and surface-based features (S), additional 

shape descriptors measured from surfaces alleviated that difference in performance. However, 

the best average performance was achieved when using the voxel and surface-based features 

together (V+S). 

 

In order to identify the set of features that are the most predictive of the phenotype on these data, 

we first computed correlations between all features that identified 2 large clusters, roughly 

corresponding to size and shape descriptors (Figure 2b). To handle multicollinearity, we 

performed hierarchical clustering on the features’ Spearman rank-order correlations. We 

computed AUCs for tested classifiers at different thresholds to choose one that produced the 
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minimal number of clusters without sacrificing average AUC. This provided us with 11 groups of 

features, from which we chose a single measure per cluster to obtain the unbiased estimation of 

feature relevance by calculating permutation importance and to perform univariate statistical 

analysis. As shown by the t-SNE44 2D projection in Figure 2c, the selected features provided a 

good representation of morphological profiles of nuclei at different time points. Specifically, there 

was a fairly good separation between NHA and VPA density clusters on days 3 and 7, with the 

exception for the day 5, when clusters densities were close. Figure 2c shows that S11 feature set 

provided an informative representation of nuclear morphologies in treated and control 

populations, although discriminating between conditions may be not trivial. It should be noted that 

cluster sizes and inter-cluster distances should be interpreted with care when using t-SNE45. 

 

These observations are further confirmed by the analysis of the random forest classifier 

performance, see Figure 2d. The model showed robust results with only 1% decrease in AUC on 

S11 features compared to V+S, and reached high classification performance on days 3 and 7 with 

mean AUCs of 82% and 85%, respectively. However, AUC was only 70% on the day 5, suggesting 

that morphological differences induced by VPA by day 3 become less prominent 24 hours later 

and then show large effect again by day 7. The confusion matrix in Figure 2e shows that 

classification errors were split almost equally between false positives and false negatives for each 

day, confirming the effectiveness of the prevalent class subsampling. This random forest model 

was then used to compute relative feature ranking using a permutation strategy. 

 

The permutation feature importance reflects the decrease in a model performance when a single 

feature value is randomly shuffled43. This breaks the relationship between the feature and the 

outcome, while being model agnostic and can be calculated many times with different 

permutations of the feature. We computed permutation importance on a held-out set on each 

cross-validation cycle, highlighting which features contribute the most to the generalization power 
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of the trained model. As Figure 2e shows, bounding cylinder volume and average mean curvature 

were the most important features for day 3, followed by minimum axis length, compactness and 

volume. That indicates the relevance of both size and shape features for discriminating treated 

and untreated nuclear morphologies as early as 48 hours after treatment. On day 5, maximum 

axis length, average mean curvature, and solidity were the top-3 important descriptors. Bounding 

box volume was once again the most important measure on day 7, followed by minimum axis 

length, average mean curvature, solidity, and extent. Overall, the feature ranking profiles for days 

3 and 7 were more alike comparing to that for day 5. 

 

2.2 VPA induced increased nuclear size 

The majority of both volumetric and surface-derived morphometric features were those that 

measured nuclear size. Previously published studies reported increased 2D cellular and nuclear 

area and diameter under VPA treatment16,37. Our findings confirmed and extended those results, 

as the most apparent change in morphometric measures over time for the control (NHA) and 

treatment (VPA) cell conditions was the larger nuclear size for the latter. As Figure 3 shows, 

univariate statistical analysis on each recorded day of treatment demonstrated a trend for the size 

increase over the course of treatment as characterized by S11 measures. Bounding box volume 

was not selected as a part of S11 feature set, but is reported here for the reference. We reported 

each relative difference as the percentage change from the control group, along with a p-value 

obtained using two-sided Mann-Whitney U test with Holm–Šidák multiple testing correction 

(a=0.05), along with the difference of means (DoM), and the common language effect size statistic 

that in the case of Mann-Whitney U test is equivalent to the Area under the Receiving Operator 

Characteristic curve (AUC)46. 

 

Before comparing linear size measures of NHA and VPA-treated cell nuclei, we should note that 

between days 3 and 5 controls exhibited increase in both major and minor nuclear axes by 10.8% 
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and 11.9% respectively (p=2.06×10-10, DoM=1.96 µm, AUC=0.70 for major axis; p=5.20×10-11, 

DoM=1.65 µm, AUC=0.71 for median axis). Major axis length of VPA-treated cell nuclei also 

followed the increasing trend over time, but the difference was even greater than in NHA cells by 

9.4%, 11.8%, and 12.8% on days 3, 5, and 7, respectively (p=1.53×10-7, DoM=1.72 µm, 

AUC=0.68 for day 3; p=9.95×10-7, DoM=2.38 µm, AUC=0.72 for day 5; p=9.95×10-7, DoM=2.67 

µm, AUC=0.73 for day 7). The difference in median axis length of treated vs. untreated nuclei was 

not as drastic on days 3 and 5 (+4.6%, p=8.23×10-3, DoM=0.64 µm, AUC=0.59 for day 3; +2.9%, 

p=6.56×10-1, DoM=0.46 µm, AUC=0.52 for day 5), but increased to 14% on day 7 (p=6.55×10-6, 

DoM=2.23 µm, AUC=0.71). Nuclei in the VPA-treated group exhibited shorter minor axes for days 

3 and 5 (-4.3%, p=1.98×10-3, DoM=0.29 µm, AUC=0.61 for day 3; -3.3%, p=6.69×10-3, DoM=0.21 

µm, AUC=0.62 for day 5), but showed an increase over the untreated group by 4.5% on day 7 

(p=3.79×10-3, DoM=0.29 µm, AUC=0.63). Simultaneous increase in major and median axis 

lengths and shortening of the minor axis were characteristic for both NHA and VPA groups 

between days 3 and 5, which indicated elongation and flattening of nuclei. By day 7, nuclei of 

valproate-treated cell nuclei were significantly larger their control counterparts in all three axes. 

 

Volume descriptors exhibited similar intra-group changes. Specifically, NHA nuclear volumes 

increased significantly between days 3 and 5 by 22.0% (p=1.49×10-21, DoM=205.57µm3, 

AUC=0.81), although this change was less prominent after day 5 (+6%, p=5.04×10-3, DoM=76.84 

µm3, AUC=0.61). This increase in size of normal controls made differences between treated and 

untreated nuclear volumes smaller on days 3 and 5 (+5.6%, p=3.57×10-3, DoM=53.27 µm3, 

AUC=0.60 for day 3; +8.7%, p=1.89×10-1, DoM=99.63 µm3, AUC=0.56 for day 5). However, 

nuclear volumes in VPA group were larger than those of NHA by 22.5% on day 7 (p=1.10×10-8, 

DoM=275.75 µm3, AUC=0.76). Bounding cylinder volume showed even more substantial 

difference, with VPA-treated nuclei reporting 17.7% and 21.4% larger average values on days 3 
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and 5 relative to the control group (p=3.56×10-9, DoM=351.77 µm3, AUC=0.70 for day 3; 

p=1.71×10-4, DoM=495.72 µm3, AUC=0.67 for day 5). Finally, the largest relative percentage 

change and effect size were reported on day 7 when comparing nuclear bounding cylinder 

volumes of treated cells and untreated nuclei with the former being greater by 40.1% (p=1.52×10-

12, DoM=951.78 µm3, AUC=0.82). These measurements of nuclear volumes and corresponding 

bounding primitives demonstrated congruent results suggesting that nuclei of VPA-treated cells 

were increasing in size more dramatically over time, compared those of untreated astrocytes. The 

difference between the increase in bounding primitive volume and in the nuclear volume itself can 

indicate the change in the object shape, which is explored in detail in the next subsection. 

 

Examples of an NHA and a VPA-treated astrocyte nuclear surfaces is shown in Figure 3b, with 

valproate-treated nucleus having larger major axis length and volume. These results confirm and 

extend previously reported findings that suggested nuclear enlargement as one of indications of 

the chromatin structure relaxation induced by valproate. Our findings also highlight a transition 

point between two phases of morphological changes. First, the size of VPA treated nuclei 

demonstrated an increase in size in the first 48 hours compared to the control population (days 0 

to 3). However, by day 5, NHA nuclei also increased in size, which led to smaller difference as 

measured by the most size features. However, NHA nuclear size did not change as much after 

day 5, while descriptors of VPA-treated nuclear size showed biggest relative increase and effect 

sizes on the last day of treatment. 

 

2.2 VPA induced nuclear shape irregularity 

Among the selected shape features (Figure 4a), we first looked at those that can be directly 

derived from the size measured discussed above. Sphericity can be expressed either via volume 

and surface area or computed using principal axes (see Methods). It assesses the compactness 
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of the 3D object, i.e. it measures how closely the global object shape resembles that of a perfect 

sphere. Accordingly, we found that nuclear compactness was decreasing over time for both NHA 

and VPA cells, but sphericity of treated nuclei was lower by 3.8%, 4.1% and 3.2% for days 3, 5, 

and 7, respectively (p=2.83×10-7, DoM=0.033, AUC=0.68 for day 3; p=2.37×10-4, DoM=0.034, 

AUC=0.67 for day 5; p=1.10×10-3, DoM=0.026, AUC=0.65 for day 7). These results are showing 

that VPA-induced large increase in major and median axes manifested in nuclear shapes that are 

more elongated up to day 5 and overall larger and less spherical on day 7, compared to NHA 

cells. 

 

The difference between the increase in bounding primitive volumes and in the nuclear volume 

itself hinted at the shape change that can be captured by ratios of these measures. Extent (ratio 

of the object volume to the bounding box volume) and solidity (ratio of the object volume to the 

convex hull volume) of nuclear surfaces in both groups demonstrated significant decrease on day 

7 by 8.3% and 2.1%, correspondingly (p=7.95×10-7, DoM=0.049, AUC=0.73 for extent; 

p=1.90×10-3, DoM=0.020, AUC=0.64 for solidity). Before that, extent of VPA-treated nuclei was 

also 3.6% lower than NHA on day 3 (p=7.06×10-3, DoM=0.020, AUC=0.60), which corresponds 

to increase in bounding box volume and major axis length, see Figure 3c. Unlike sphericity, these 

size-derived shape descriptors do not quantify roundness of an object, instead they are useful for 

quantification of the amount and size of concavities (or protrusions) in an object boundary. Thus, 

our results indicated that by day 7 VPA-treated cells on average had more globally irregularly-

shaped nuclei, for instance, as shown by representative kidney-shaped examples in Figure 4c-d. 

Besides, Figure 4d also shows nuclei with small abnormal deformations termed "blebs" that are 

also argued to be indicative of chromatin decompaction3,11. These shape distortions can also be 

reflected in size and shape measures, for example, by increasing bounding primitive volumes and 

by resulting in lower extent values for valproate-treated nuclei. 
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Mean curvature is an extrinsic measure of shape that comes from differential geometry and that 

locally describes the curvature, which is then averaged across the object surface47. The obtained 

results showed that VPA-treated nuclei exhibited robust 3.0%, 3.1%, and 3.2% increase in 

average curvature corresponding to more shape irregularity at each corresponding time point 

(p=1.15×10-10, DoM=0.003, AUC=0.72 for day 3; p=6.5×10-7, DoM=0.003, AUC=0.73 for day 5; 

p=9.03×10-9, DoM=0.003, AUC=0.76 for day 7). Notably, there were no significant intra-group 

differences between mean curvature values for both NHA and VPA cells (p>0.05 for days 3 vs. 5 

and 5 vs. 7) suggesting that the VPA-induced increase in mean curvature occurred before imaging 

on day 3 and remained for the rest of the treatment course. These results were also supported 

by the high relative importance of mean curvature at each timepoint, as reported by the 

classification model (Figure 2f). 

 

Gaussian curvature and fractal dimension are the other two features that were selected, but only 

demonstrated significant differences between treated and untreated morphologies on day 7. 

Gaussian curvature is an intrinsic (size-invariant) measure of curvature, depending only on 

distances that are measured on the surface. It has been decreasing in both NHA and VPA groups 

between days 3 and 5, but on day 7 valproate-treated cells had nuclei with more concave areas 

on the surface that resulted in 2.5% decrease in average Gaussian curvature compared to 

untreated counterparts (p=7.31×10-4, DoM=5.0×10-5, AUC=0.66). Fractal dimension is the 

measure of the object border complexity and our observations suggested a 0.13% decrease in 

this feature of VPA-treated cells on day 7 (p=4.40e-02, DoM= 0.003, AUC=0.61), which 

corresponds to less intensively folded and wrinkled nuclear surface. 

 

Overall, shape measures indicated that initially nuclear elongation was occurring in VPA-treated 

cells up to day 5. Towards day 7, these nuclei demonstrated more prominent deformations 

including global shape irregularities characterized by lower sphericity, blebbing and kidney-like 
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forms, along with higher local curvature with the presence of surface concavities, bumps, and 

lower border complexity. Together, these descriptors provided a detailed profile of 4D nuclear 

morphology changes reflective of VPA-induced altered histone modifications and chromatin 

decompaction3,11. 

 

3 Discussion 

In this study, we assessed VPA-induced changes in 4D spacetime nuclear morphology of primary 

human astrocytes. The known ability of VPA to promote pluripotency via HDAC inhibition24 

suggests that valproate-induced chromatin modifications play key role in the process of astrocyte-

to-neuron reprogramming. Results of our experiment show that the increase in decompact 

euchromatin in VPA-treated astrocytes is reflected in quantifiable time-dependent changes in 3D 

nuclear size and shape. We demonstrated the ability to accurately differentiate between nuclear 

morphological profiles of normal and valproate-treated human astrocytes using surface-based 

descriptors and provided detailed characterization of the temporal dynamics of these features 

over 7 days of treatment. 

 

Although most studies to the date performed morphometric quantification of changes in cells and 

nuclei in 2D, there is evidence that 3D representations are more informative and allow for better 

characterization of cell morphological phenotypes39,48,49. However, there are multiple ways to 

measure cell nuclear shapes in 3D depending on their extracted representations50. Probably, the 

most common approach to compute shape features is to apply morphometric measures to the 

raw 3D geometric objects represented as voxel volumes51. The main drawback of voxels-based 

shape representations is that they can be noisy and may lose fine geometric details or even 

misrepresent the object’s topological structure. On the other hand, accurate shape modeling for 

3D objects’ surface reconstructions requires an extra step that may be more computationally 

expensive. 
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Both voxel and surface-based morphometry representations were able to capture the temporal 

dynamics of 3D nuclear morphological variability over the course of valproate treatment. In terms 

of discrimination between NHA and VPA conditions, voxel and surface features produced similar 

results, with their combination achieving the best average performance. However, we then were 

able to reduce the full feature set to just 11 surface-based measures without sacrificing accuracy. 

Tree-based ensemble classifiers, such as random forest and extremely randomized trees, 

demonstrated the most robust classification performance, which may be attributed to their ability 

to resists overfitting when dealing with smaller sample sizes43. 

 

As characterized by the set of 11 selected features, VPA-treated astrocytes exhibited nuclear 

morphologies that were different from NHA group as early as day 3 and then diverged further 

from controls towards that end of the treatment course. Low-dimensional non-linear projections 

showed prominent clusters formed in feature space on day 7 (Figure 2c). These results are further 

confirmed by reported classification performance using random forest, reaching the highest AUC 

of 85% on the last day. This machine learning model was also used to compute relevant feature 

importance. Top selected features included few size measures such as major axis length and 

bounding box volume and a number of shape characteristics, including average mean curvature, 

demonstrating how a combination of different measures can aid in improving classification. 

 

Using univariate statistical analysis, we then assessed the difference between treatment and 

control groups as measured by selected interpretable size and shape descriptors. Under 

valproate treatment, astrocytes tend to have larger nuclei starting from the first timepoint (day 3) 

as measured by the principal axes, the volume of the nucleus itself and its bounding primitives 

(box, cylinder, sphere). Although control cell population also increased in nuclear size between 

days 3 and 5, VPA-treated nuclei were elongated in the major axis and tended had a greater 
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bounding cylinder volume. By day 7, all size descriptors reported significant increase in size of 

VPA-treated nuclei on day 7 (p<5.0×10-3). These results expand prior reports on nuclear 

enlargement under VPA treatment16,37,38,52, providing detailed characterization of how 

decondensed or dilated state of chromatin is manifested in corresponding changes in 3D 

geometric measures. 

 

Another finding that extended results from previous 2D studies was statistically significant 

difference in shape3,11 and fractal dimension53,54. Our results indicated both higher local shape 

curvature and overall less spherical form in VPA-treated nuclei at each time point. While lower 

sphericity can be attributed to the major axis elongation up to day 5, by day 7 we observed the 

variety of shape changes identified by lower extent (ratio of the object volume to the bounding 

box volume) and solidity (ratio of the object volume to the convex hull volume). These results 

were confirmed qualitatively as kidney-shaped and blebbed nuclei were observed more often in 

VPA-treated cells. At the same time, decrease in Gaussian curvature and fractal dimension on 

day 7 showed that treated nuclei had surface with more concavities and lower border complexity 

that has also been suggested to be indicative of chromatin decompaction, reduced tumorigenesis, 

and neuroprotection54. For example, one prior study reported consistently reduced fractal 

dimension in HT-29 cells upon treatment with VPA at various concentrations53 that is in agreement 

with our result on day 7, although we did not observe significant differences for the images taken 

on days 3 and 5. These results described the dynamics of VPA-treated nuclear morphological 

profiles characterized by the increase in size and progressively more irregular, complex shapes. 

 

These observations are the first step to studying time-dependent morphological effects of 

chromatin reorganization in the astrocyte-to-neuron reprogramming process and relating them to 

underlying molecular mechanisms. In future studies, this approach can be extended to label 

additional sub-nuclear components or organelles, such as nucleoli, chromosome territories, 
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Topologically Associated Domains (TADs), and other compartments using, for example, Cell 

Painting assay for high-content morphological profiling55. While tracking the overall cellular 

phenotype, this extension will allow us to include many other features in the models and assess 

their variability, association with cellular and nuclear shape morphology, disease state, and 

treatment conditions. All of this will set the stage to evaluate the effects of VPA and other small 

molecules measured with different concentrations and temporal sampling. Correlating these 

phenotypical cell and nuclear profiles with data from other assays, such as Chromatin 

Conformation Capture (Hi-C)56, will likely provide useful insights into how altered functional 

properties of the genome are correlated with TAD structure, nuclear and cellular morphology, and 

can it be used for training modern machine learning models to more accurately predict treatment 

response in model systems and in humans57. 

 

4 Methods 

Sample preparation and image acquisition 

Primary human astrocyte cells were purchased from ScienCell (Human Astrocytes-hippocampal, 

Catalog #1830).  
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Day 0: 

• collect 8 Day 0 samples: 

- fix samples in 4\% PFA for 10mins 

- rinse 3 x 5mins in PBS 

- store samples in PBS at 4deg 

• replace media with 50% growth media and 50% N2 media (DMEM/F12 + 1X pen/strep, 

1X N2 supplements). 

 

Day 1: 

• control samples: for 30ml of N2 media add 36ul DMSO 

• VPA-treated (1.5mM VPA): for 30ml of N2 media add 450ul VPA 

 

Day 3: 

• collect 6 Day 3 control samples and 6 Day 3 VPA samples: 

- fix samples in 4\% PFA for 10mins 

- rinse 3 x 5mins in PBS 

- store samples in PBS at 4deg 

• control samples: for 30ml of N2 media add 187.5ul DMSO. 

• VPA-treated (1.5mM VPA): for 30ml of N2 media add 450ul VPA 

 

Day 5: 

• Collect 6 Day 5 control samples and 6 Day 5 VPA samples: 

- fix samples in 4\% PFA for 10mins 

- rinse 3 x 5mins in PBS 

• control samples: For 30ml of N2 media add 37.5ul DMSO 
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• VPA-treated (1.5mM VPA): For 30ml of N2 media add 450ul VPA 

 

Cells in both collections were labeled with DAPI (4',6-diamidino-2-phenylindole), a common stain 

for nuclear DNA. 3D imaging employed Zeiss LSM 710 laser scanning confocal microscope with 

a 63x PLAN/Apochromat 1.4NA DIC objective. Each 3D volume was then re-sliced into a 1,024 

×1,024×Z lattice (Z={30,50}), where regional sub-volumes facilitate the alignment with the native 

tile size of the microscope. For every sub-volume, accompanying vendor meta-data was extracted 

from the original data. 

 

Segmentation 

We performed the automatic 3D segmentation of nuclei using Nuclear Segmentation algorithm 

from the Farsight toolkit39,41. This tool was created specifically to segment DAPI-stained nuclei in 

2D or 3D, it does not require a labeled training set, has a convenient command line interface, and 

demonstrated stable results on these data. The algorithm implements multiple steps which include 

a graph-cut algorithm to binarize the sub-volumes, a multi-scale Laplacian of Gaussian filter to 

convert the nuclei to blob masks, fast clustering to delineate the nuclei, and nuclear contour 

refinement using graph-cuts with alpha-expansions41. 

 

After segmentation of the DAPI channel sub-volumes, data were converted to 16-bit 3D TIFF files, 

each segmented nucleus was represented as a binary mask, and given a unique index value. 

Post-segmentation processing of nuclear masks followed the protocol proposed by Kalinin et al.39 

and included 3D hole filling and a filtering step that removed the objects if they span the edge of 

a tile, are connected to other objects, or their compactness or voxel count values were outside of 

the empirically estimated interval. This quality control protocol allowed to remove most of the 

artifacts, as confirmed by visual inspection. 
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3D morphometry 

3D binary nuclear masks were then used for voxel-based feature extraction using scikit-image58 

Python library, obtaining feature set V. For each nuclear mask we measured volume, bounding 

box and convex hull volumes, extent, solidity, lengths of principal axes, and inertia tensor principal 

components. In addition to these measures, we measured mask sphericity, which can be 

computed as a the ratio of the surface area of a sphere (with the same volume as the given object) 

to the surface area of the object59. We first fitted a 3D ellipsoid to the binary voxel mask using 

linear least squares60 and then computed the ellipsoidal sphericity Y as following: 

Ψ =
𝜋
$
%(6𝑉))+/%

𝑆𝐴)
≈

(𝑎 ∗ 𝑏 ∗ 𝑐)+/%

413 ∗ ((𝑎 ∗ 𝑏)
) + (𝑎 ∗ 𝑐)) + (𝑐 ∗ 𝑏)))8

$/) 

where Vp is the volume of an ellipsoid and SAp is the surface area, computed by the approximate 

formula using 𝑝	 ≈ 1.6075  that yields a relative error of at most 1.061%61. 

 

For surface-based morphometry, we first modeled boundaries of nuclear 3D masks extracted 

from the microscopic images as genus zero two-dimensional manifolds that are embedded as 

triangulated surfaces in ℝ3 40. 3D surface modeling process employed an iterative Laplace-

Beltrami eigen-projection and a topology-preserving boundary deformation algorithm42. This 

algorithm performs robust reconstruction of the objects’ surfaces from their segmented masks 

using an iterative mask filtering process. We applied the surface reconstruction method42 that 

uses the Laplace-Beltrami (LB) spectrum for outlier removal without shrinkage. The LB spectrum 

can be viewed as a generalization of the Fourier basis onto general surfaces. Building upon this 

intuitive understanding, the mesh reconstruction method42 iteratively projects the mask boundary 

onto a subspace of low frequency LB eigenfunctions and removes outliers with large changes 

during the projection process. Surface reconstruction was done using Mask2Mesh from the 

MOCA framework42 and was followed by mesh simplification and subdivision to 40,000 triangles. 
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This followed by the extraction of size and shape measures as features quantifying geometric 

characteristics of the 3D surfaces of nuclear masks, including mesh volume, surface area, 

curvedness, shape index, and fractal dimension implemented as the shape analysis protocol40 in 

LONI Pipeline40,62. Another set of surface based features, including mean curvature,  bounding 

oriented box, convex hull, cylinder, and sphere volumes, convex hull surface area, inertia tensor 

eigenvalues, principal axes lengths were computed using trimesh library63. Surface-based extent 

and solidity were computed from trimesh-derived features as the ratio of the object volume to the 

bounding box volume and the ratio of the object volume to the convex hull volume, 

correspondingly. All these descriptors were combined into surface-based feature set S. 

 

Both volumetric and surface features we merged by inner join on the per-nucleus basis, filtering 

out those individual cells, for which feature extraction failed or volume measure exceeded the 

empirically estimated threshold. Nuclei were also considered outliers and removed if any feature 

value was out of the [0.05;0.95] percentile range. 

 

Feature and model selection, and analysis 

In order to handle multicollinear features, we performed hierarchical clustering on the Spearman 

rank-order correlations between all features and then used averaged random forest model 

classification performance to select a threshold for defining feature clusters. From each cluster, 

we selected one interpretable feature, obtaining the final set S11 that consisted of 11 surface-

based features that included major, median, and minor principal axis lengths, nuclear and 

bounding cylinder volumes, sphericity, extent, solidity, mean and Gaussian curvatures, and fractal 

dimension. 

 

Following sets of features were used to compare volumetric and surface-based shape 

representations: V, S, Vsub, Ssub, V+S, S11, where Vsub and Ssub were subsets of equivalent voxel 
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and surface feature sets correspondingly and included nuclear, convex hull and bounding box 

volumes, extent, solidity, inertia eigenvalues, major axis length and sphericity. We assessed 

classification performance of 8 different classifiers with default hyper-parameters from with scikit-

learn64 Python library, including Gaussian naïve Bayes, k-nearest neighbors, logistic regression, 

linear support vector machine, random forest, extremely randomized trees, AdaBoost and 

gradient boosting machine. They were evaluated at each time point using the Area under the 

Receiving Operator Characteristic curve averaged from 10 repetitions of the internal statistical 5-

fold stratified cross-validation. We averaged the performance of each model over time and all 

feature sets. To compare feature sets, we averaged the AUCs over all models and days. Random 

subsampling of the prevalent class by the total number of per-fold training samples from an 

underrepresented class at each iteration of the cross-validation procedure was used to combat 

class imbalance. Permutation feature importance was computed using feature_importances_ 

property of the trained random forest model at each time point. 

 

Univariate statistical analysis of individual features was performed using SciPy package66 with 

multiple testing correction using statsmodels67. We reported each relative difference as the 

percentage change from the control group, along with a p-value obtained using two-sided Mann-

Whitney U test with Holm–Šidák multiple testing correction (a=0.05), along with the difference of 

means (DoM), and the common language effect size statistic that in the case of Mann-Whitney U 

test is equivalent to the Area under the Receiving Operator Characteristic curve (AUC)46. 

 

For all analysis tasks we used Python 3.7.4 from the Anaconda distribution68, with numpy69, 

scipy66, pandas70, and iPython71 packages. Visualizations and charts were built with matplotlib72, 

seaborn73, and SOCRAT74 libraries. 

 

Availability of Materials and Data 
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The documentation supporting the conclusions of this article together with the derived data, 

pipeline workflows, and underlying source code will be made publicly available online upon 

publication of the paper on the project webpage: SOCR 3D Cell Morphometry Project, 

http://socr.umich.edu/projects/3d-cell-morphometry. 
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Figure 1. A schematic overview of our approach: (a) sample preparation, treatment, and imaging; 

(b) 3D nuclear segmentation, shape modeling, and feature extraction; (c) feature selection, 

univariate statistical and machine learning analysis. 
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Figure 2. Classifier and feature set selection, and classification performance: (a) mean AUCs 

(with 95% bootstrapped confidence intervals) over days 3, 5, 7 for different classifiers (GNB–

Gaussian naïve Bayes; KNC–k nearest neighbors; LR–logistic regression; SVC–support vector 

machine; RFC–random forest; ETC–extra-randomized trees; ABC–AdaBoost; GBC–gradient 

boosting) and feature sets (V–volumetric features; S–surface-based features; Vsub and Ssub–

subsets of 10 common features extracted from voxels and surfaces, correspondingly; S11–the 
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subset of 11 surface-based features selected with hierarchical clustering); (b) hierarchical 

clustering of all voxel and surface features (V+S), showing representative size and shape 

descriptors; (c) 2D t-SNE projection of the S11 feature space showing NHA and VPA-treated 

nuclear morphological clustering over time; (d) ROC curves for the random forest model with S11 

features on days 3, 5, and 7; (e) average normalized confusion matrices for the random forest 

model on the S11 features; (f) permutation importance of S11 features for distinguishing 

morphologies on each day. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.178202doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178202
http://creativecommons.org/licenses/by/4.0/


37 
 

 
Figure 3. Visualization and univariate statistical analysis of size changes under VPA treatment. 

(a) – reconstructed surface of a representative NHA nucleus on day 7. (b) – reconstructed surface 

of a representative VPA nucleus on day 7. (c) – time-dependent changes in morphometric 

measures of nuclear sizes (error bars show standard deviation; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, Holm–Šidák-corrected two-sided Mann-Whitney U test). 
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Figure 4. Visualization and univariate statistical analysis of shape changes under VPA treatment. 

(a) – reconstructed surface of a representative NHA nucleus on day 7. (b) – reconstructed surface 

of a representative VPA nucleus on day 7. (c) – time-dependent changes in morphometric 

measures of nuclear shapes (error bars show standard deviation; *p<0.05, **p<0.01, ***p<0.001, 
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****p<0.0001, Holm–Šidák-corrected two-sided Mann-Whitney U test). (d) – exemplar 2D 

projections of irregular shaped nuclei as a result of VPA treatment on day 7. 
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