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Abstract 

Objective. Patients with the photovoltaic subretinal implant PRIMA demonstrated letter acuity by ~0.1 logMAR worse 

than the sampling limit for 100μm pixels (1.3 logMAR) and performed slower than healthy subjects, which exceeded 

the sampling limit at equivalently pixelated images by ~0.2 logMAR. To explore the underlying differences between 

the natural and prosthetic vision, we compare the fidelity of the retinal response to visual and subretinal electrical 

stimulation through single-cell modeling and ensemble decoding. 

 

Approach. Responses of the retinal ganglion cells (RGC) to optical or electrical (1mm diameter arrays, 75μm pixels) 

white noise stimulation in healthy and degenerate rat retinas were recorded via MEA. Each RGC was fit with linear-

non-linear (LN) and convolutional neural network (CNN) models. To characterize RGC noise level, we compared 

statistics of the spike-triggered average (STA) in RGCs responding to electrical or visual stimulation of healthy and 

degenerate retinas. At the population level, we constructed a linear decoder to determine the certainty with which 

the ensemble of RGCs can support the N-way discrimination tasks. 

 

Main results. Although LN and CNN models can match the natural visual responses pretty well (correlation ~0.6), 

they fit significantly worse to spike timings elicited by electrical stimulation of the healthy retina (correlation ~0.15). 

In the degenerate retina, response to electrical stimulation is equally bad. The signal-to-noise ratio of electrical STAs 

in degenerate retinas matched that of the natural responses when 78±6.5% of the spikes were replaced with random 

timing. However, the noise in RGC responses contributed minimally to errors in the ensemble decoding. The 

determining factor in accuracy of decoding was the number of responding cells. To compensate for fewer 

responding cells under electrical stimulation than in natural vision, larger number of presentations of the same 

stimulus are required to deliver sufficient information for image decoding. 

 

Significance. Slower than natural pattern identification by patients with the PRIMA implant may be explained by the 

lower number of electrically activated cells than in natural vision, which is compensated by a larger number of the 

stimulus presentations.  

 

Introduction 

 

Age-related macular degeneration (AMD) is a leading cause of untreatable blindness. Geographic atrophy 

(GA), the atrophic form of advanced AMD, affects around 3% of people above the age of 75, and around 25% - 

above 90 (1, 2). Due to gradual loss of photoreceptors in the central macula, GA patients experience severe 

deterioration in high-resolution central vision, compromising their ability to read and recognize faces. Although 

central vision degrades over time, patients retain their low-resolution peripheral vision, and hence typically do not 

lose visual acuity beyond 20/400. 

 In healthy retina, optical information (local light intensity) is converted via phototransduction into decrease 

of the cell potential (hyperpolarization) in photoreceptors. Rods are responsible for monochromatic vision at low 

light intensities, while cones, operating in brighter light, provide color vision at high resolution. Decrease in cell 

potential reduces the rate of release of neurotransmitter glutamate in synapses with the secondary neurons – bipolar 

and horizontal cells. By providing lateral inhibition that forms an antagonistic surround, horizontal cells perform the 

first step in spatial contrast enhancement. OFF bipolar cells receive their input from photoreceptors via sign-

preserving ionotropic synapses and hence respond to light stimuli by hyperpolarization. ON bipolar cells receive 

their input via sign-inverting metabotropic synapses, resulting in depolarization in response to light. Bipolar cells 

electrically integrate inputs from multiple photoreceptors and relay these signals to tertiary retinal neurons – 

amacrine and ganglion cells (RGCs). Amacrine cells regulate the inputs into the RGCs mostly through inhibition. 

Finally, RGCs digitize these signals into bursts of the action potentials (“spikes”), which propagate via optic nerve 

to the brain.  Different types of RGCs encode visual information via various mechanisms and properties: ON and 

OFF pathways, sizes of receptive fields, transient and sustained responses, chromatic sensitivity, etc. Signals from 
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the overlapping mosaics of the various types of RGCs are further processed in the brain before merging into a single 

visual percept.  

 In atrophic AMD, photoreceptors in the central macula slowly degenerate and disappear, while the inner 

retinal neurons remain largely intact, albeit with some rewiring (3-5) . Since horizontal cells connect to the terminals 

of photoreceptors, in geographic atrophy they become detached from the remaining neural network. 

 One approach to restoration of sight in retinal degeneration is to replace the missing photoreceptors with 

photodiodes (6, 7), which convert the incident light into electric current flowing through the retina, and thus convey 

visual information to the secondary neurons by electrical stimulation. Massive amplification mechanisms in 

photoreceptors enable their operation in a very broad (about 10 orders of magnitude) range of light intensity. 

Photodiodes require much brighter illumination (about 1 mW/mm2) in order to provide sufficient current for retinal 

stimulation. Therefore, photovoltaic system for restoration of sight includes augmented-reality glasses, where 

images captured by the camera are projected into the eye using more intense light. To avoid perception of this 

intense light by the remaining photoreceptors, near-infrared wavelength (880nm) is used. To provide charge-

balanced electrical stimulation, the light is pulsed, and to enable stable visual percepts, pulse repetition rate should 

exceed the frequency of flicker fusion (around 30 Hz).  

 Ex-vivo and in-vivo animal studies with this system demonstrated preservation of multiple features of the 

natural retinal signal processing: sizes of the RGC receptive fields, with antagonistic surround (8) and non-linear 

summation of subunits (6), flicker fusion (9) and adaptation to static images (10), and spatial resolution matching 

the pixel pitch (55 and 75 m) (9). Interestingly, both, ex-vivo and in-vivo studies demonstrated OFF responses. This 

may be explained by stimulation of rod bipolar cells, which feed into the ON and OFF cone pathways via amacrine 

cells. Contrast sensitivity of prosthetic vision in rats appears to be about 5 times lower than natural (11), which could 

be partially compensated by image processing prior to projection into the eye. Clinical trial demonstrated that 

patients correctly perceive various patterns of lines and letters, demonstrating monochromatic shaped vision with 

resolution closely matching the pixel size (100 m in the first trial) (7). They also report flicker fusion at frequencies 

exceeding 30 Hz.  

 One of the features of such prosthetic vision, however, appears to be the lower than normal speed of the 

pattern and letter recognition. In the first trial, it took about 4 seconds for letter identification by patients with PRIMA 

implants (7), while it takes less than half a second in normal subjects, when font sizes exceed the acuity limit (12). 

Here we investigate the potential retinal underpinnings of this phenomenon by comparing RGC responses to visual 

and electrical stimulation in healthy and degenerate rat retina recorded on a multi-electrode array (MEA). In 

particular, we assess the amount of noise in various cellular responses, as well as the strategies for image 

recognition based on ensemble encoding by a population of cells. 

 

Methods 

Photovoltaic implants 

Photovoltaic arrays (1mm diameter, 30 μm in thickness, with 75 μm pixels) (Fig. 1a) were manufactured 

from crystalline silicon, as described earlier (13), to produce anodic-first pulses. Active electrode was 20 μm in 

diameter, and each pixel was surrounded by a return electrode, connected into a mesh common to all pixels. Both 

electrodes were coated with SIROF film of about 300 nm in thickness (9). 

Retinal recording 

We used Long-Evans (LE, n=4) and Royal College of Surgeons (RCS, n=4) rats for healthy and degenerate 

retinal models, respectively. Eyes were enucleated from euthanized (390mg/kg pentobarbital sodium, 50mg/mL 

phenytoin sodium) rats. A section of the retina (~3mm x 3mm) was dissected and placed ganglion cells side facing 

a 512-electrode multielectrode array (MEA) (Fig. 1b) (14). The retina was constantly perfused with Ames’ medium 

at 29.4 oC and bubbled with a mixture of 95% O2 and 5% CO2. For electrical stimulation, an implant was placed onto 

the subretinal side of the tissue (Fig. 1c, d). A nylon mesh (~100μm cell size) was used to press the implant and 

retina onto the MEA for better contact (10). Voltage waveforms from each of the 512 electrodes on the MEA were 
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sampled at 20 kHz frequency, amplified and digitized using custom-made readout electronics and data acquisition 

system (14).  

 

 

Figure 1. Photovoltaic subretinal implant and stimulation scheme. (a) Top: implant of 1mm in width with 70m pixels. 

Bottom left: a single photovoltaic pixel. Bottom right: circuit diagram of a pixel. (b) Visual stimulation of the healthy 

rat retina placed on top of a transparent MEA. (c) Electrical stimulation of the healthy retina by an implant placed on 

top of photoreceptors. (d) Electrical stimulation of the degenerate retina by an implant placed on top of the inner 

nuclear layer (INL). 

 

Stimulation protocol 

For electrical stimulation, an 880nm diode laser coupled via a 400μm multimode fiber was used for 

illumination. The beam exiting from the fiber was collimated and homogenized using a 2o divergence microlens 

array. In the same optical path, we placed a yellow LED (591nm) for visual stimulation. Both light sources were used 

as backlighting for an LCD screen (Holoeye HEO-0017) to generate images (6, 10). The 8-bit LCD panel had a 60Hz 

native frame rate, 1024x768 resolution, and a white-to-black intensity ratio of 10000:1 at 591nm and 200:1 at 880 

nm. Projected onto the retina, each screen pixel formed a 6 x 6 μm2 square. 

To characterize spatiotemporal properties of RGCs, a spatiotemporal binary white noise stimulus was used, 

where each pixel in each frame had a 50% chance of being bright or dark (15). The white noise for visual stimulation 

was shown at 30Hz frame rate, and made up of pixels of 60μm in width on the retina. The white noise for electrical 

stimulation was displayed at 20Hz frame rate, with the backlight laser pulsing at 4ms, and consisted of pixels of 70 

μm in width on the retina. Each white noise stimulus lasted for 30 minutes.  

Spike sorting 

Electrical stimulation generated artifacts by saturating the recording amplifiers, so part of the recorded 

waveforms had to either be discarded or adjusted. The recording of the first 8.25ms after the laser pulse was 

replaced with a randomly generated noise (“blanking”) that matched the noise level of the electrode. All action 

potentials during this period were lost, which may lead to underestimation of the cell responsiveness. Afterwards, 

to remove any lingering capacitive decay outside of the blanked period, we fitted the trace with a 7th-order 

polynomial, and then subtracted it out from the original trace. 
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Figure 2.  MEA recording of the RGC responses to stimulation. (a) Mosaic of the natural receptive fields (RF) in LE 

retina. The 1mm x 2mm rectangle marks the boundary of the MEA, and the 1 mm circle indicates the edge of the 

implant. Red ellipses correspond to cells responding to both visual and electrical stimulation, and green ellipses 

correspond to cells responding only to visual stimulation. Only the red cells were included in our subsequent 

analyses. (b) Mosaic of receptive fields in RCS retina upon electrical stimulation. (c) RF and the time course (STA) 

of a cell in the LE retina responding to visual white noise. (d) Same cell responding to electrical stimulation. (e) RF 

and the time course of a cell in the RCS retina responding to electrical stimulation. 

 

The artifact-subtracted raw data were then used to find and sort the action potentials (“spikes”). A negative 

voltage deflection exceeding three times the root-mean-squared noise on each electrode was considered a spike. 

Custom-made software was used to perform spike sorting, as described previously (6, 14, 16).  We applied 

dimensionality reduction to the detected spike waveforms using a principle component analysis, followed by 

expectation-maximization clustering (14). For each putative neuron, we calculated its electrophysiological image 

(EI), which is the average electrical signal measured on the whole MEA when the neuron produced a spike. An EI 

typically shows the soma location and axonal trajectory of the RGC (17) (18). For our analysis, we only included 

cells that responded to electrical stimulation, and have their somas completely or partially under the implant. Figures 

2a and b illustrate examples of the populations of included cells for healthy and degenerate retinas, respectively. 
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Figures 2c-e show example receptive fields and time courses (spike-triggered average, STA) for natural visual 

response, electrical stimulation of the healthy retina, and electrical stimulation of RCS retina, respectively. 

Electrically stimulated cells generally have faster, but weaker STAs, similar to previous observations (8, 11). 

Modeling the RGC responses 

Experimental data for each cell was fitted to a linear-nonlinear (LN) model (15) and a convolutional neural 

network (CNN) model (19), as illustrated in Fig. 3. Due to drifting in recording data, we used a train-test-discard split 

of 20/20/60 (see Supp. Materials). When comparing the model predictions to experimental data, we applied 

Gaussian broadening to each spike with 𝜎 = 2 white noise frames for smoothening (Fig. 5a). We then computed the 

Pearson correlation coefficient for the resulting traces. In addition, all model fits were 5-fold cross-validated, where 

we equally sized the sections dividing the entire recorded data. Neither model over-fitted to any particular segment 

of the data.  

 

Figure 3. Computational models for individual RGCs. (a) Linear-nonlinear model. (b) Convolutional neural network. 

Each convolutional layer consists of a sequence of linear filters (weights), parametric rectifying linear unit (pReLU), 

batch renormalization (scaling), and a dropout layer.  

 

LN model. Mathematically, the LN model (Fig. 3a) is set as follows: 

 𝑅(𝑠) = 𝑁(𝑤 ⋅ 𝑠) (1) 

 where  𝑅 = response 

  𝑠 = stimulus 

  𝑤 = linear weights/filter 

  𝑁 = static nonlinearity 

The linear filter 𝑤 can be computed through STA response to the white noise stimulus. The static nonlinearity can 

be extracted by mapping the empirical cell activity to stimulus convoluted with the linear weights (𝑤 ⋅ 𝑠) (15).  

CNN model. An implementation of a CNN model has been proven useful for modeling the healthy salamander retina 

(19), and here we used a similar architecture (Fig. 3b) with two convolution blocks followed by a dense layer. Each 

convolution block consisted of a two-dimensional convolution (weights), a parametric rectifier linear unit (pReLU), 
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batch normalization (norm), and a dropout layer. These last two components sped up the training while also 

regularizing the network to prevent over-fitting. The number of filters and their dimensions for each convolution 

block are listed in Table 1. The output of the second conv layer was flattened into a one-dimensional vector before 

being fed into the final dense linear layer, which had a number of units matching the number of recruited RGCs in 

the retina. 

 

 Stimulation 

Visual Electrical 

L
a
y
e
r Convolution block 1 8 filters, 13 x 13 each 16 filters, 5 x 5 each 

Convolution block 2 16 filters, 9 x 9 each 32 filters, 5 x 5 each 

 

Table 1. Number of filters and their dimensions for each convolution block and for each stimulation type. 

 

The network was trained using the gradient-descent ADAM optimizer (20) and a Poisson log-likelihood. L2 

weight regularization was employed on the convolution and linear layers, while L1 regularization was used on the 

output of the network. Especially for cells with lower firing rates, L1 can efficiently zero-out many weights. The 

complete loss function was defined as follows: 

 
ℒ =

1

𝑁
∑ 𝑅𝑖 − 𝑅𝑖̂ log 𝑅𝑖

𝑁

𝑖=1

+
𝛼

2
∑|𝑊𝑗|

𝐹

2
𝑀

𝑗=1

+
𝛽

𝑁
∑|𝑅𝑖|

𝑁

𝑖=1

 (2) 

 where  𝑅𝑖 = model response i 

𝑅̂𝑖 = target response i 

  |𝑊𝑗|𝐹   = Frobenius norm of the j-th convolution or linear layer weight matrix 

  𝑁 = total number of training samples 

  𝑀 = total number of weight matrices 

  𝛼, 𝛽 = L2 and L1 regularization coefficients, respectively. 

The input stimulus was similar to that used in computing STAs, while the response now included all activity 

and inactivity. For visual stimulation, 20 consecutive movie frames (spanning 600ms) were considered one stimulus, 

and the spike rate during 33ms following the stimulus was taken as the target response. Similarly, for electrical 

stimulation, 5 movie frames (250ms) and the following 50ms of activity was considered a stimulus-response pair. To 

improve precision of spike timing while increasing the training sample count, the electrical stimulus was up-sampled 

with linear interpolation to 250Hz, and the corresponding RGC spiking activity was binned to match the stimulus 

frame rate. During validation, the predicted activations were down-sampled back to the original frame rate before 

the correlation was computed. 

The CNN is parameterized by 13 different hyperparameters, including filter count, size, stride, and 

nonlinearity for each of the two convolution blocks. In addition, we also explored different values for the learning 

rate, L1 and L2 coefficients, batch size, and dropout probability. We performed 100 trials for each dataset with 

randomized values for all parameters using the SHERPA hyperparameter optimization library (21). Networks were 

trained for 50 epochs on electrical datasets and 50 epochs on visual datasets. The total training time on a single 

Nvidia Titan X GPU was 30 minutes and 2 hours, respectively. 

RGC noise estimation 

We estimated the noise level in RGC firing under electrical stimulation using the algorithm illustrated in Fig. 

4a. First, we passed the white noise stimulus through a LN model for an LE RGC under visual stimulation, generating 

a simulated spike train. We then removed spikes randomly at some predefined noise ratio (NR). Spontaneous spikes 

were added into the spike train to match the original average spike rate via a Poisson process. With the new noise-

injected spike train, we re-computed the STA. The boxed regions in Fig. 4b with dimensions (length, width, time) = 

(3 px, 3 px, 4 frames) were used for the subsequent analyses. 
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Figure 4. Adding noise to STAs. (a) Algorithm used for adding noise to STAs. Spikes were first generated by a 

model of the visual response, and then partially removed and replaced with spikes generated through a Poisson 

process. The resulting simulated response was then used to re-compute the STA. (b) Examples of STAs under 

different stimulation and retina types. With properly chosen noise ratio, the noise-injected visual STA resembles that 

of the LE retina under electrical stimulation. The region bound by the red dash line was used for subsequent analyses. 

 

 

For each cell and its STA, we computed a characteristic correlation curve (CCC) and its corresponding 

area-under-curve (AUC), as shown in Fig. 6a. Let 𝐹(𝑛) be the 24 STA frames preceding the n-th spike, 𝑁 be the 

total number of spikes, and 𝑆𝑇𝐴 (
𝑛

𝑁
) be the STA computed with only a fraction 𝑛/𝑁 of the spike train. We have 

 
𝑆𝑇𝐴 (

𝑛

𝑁
) =

1

𝑛
∑ 𝐹(𝑖)

𝑛

𝑖=1

 (3) 

 

𝐶𝐶𝐶 (
𝑛

𝑁
) = 𝐶𝑜𝑟𝑟 (𝑆𝑇𝐴(1), 𝑆𝑇𝐴 (

𝑛

𝑁
)) =

∑ ((𝑆𝑇𝐴(1) − 𝑆𝑇𝐴(1)) ⋅ (𝑆𝑇𝐴 (
𝑛
𝑁

) − 𝑆𝑇𝐴 (
𝑛
𝑁

)))

√∑ (𝑆𝑇𝐴(1) − 𝑆𝑇𝐴(1))
2

⋅ √∑ (𝑆𝑇𝐴 (
𝑛
𝑁) − 𝑆𝑇𝐴 (

𝑛
𝑁))

2

 (4) 

 
𝐴𝑈𝐶 = ∫ 𝐶𝐶𝐶 (

𝑛

𝑁
) 𝑑 (

𝑛

𝑁
)

1

0

 (5) 

Note that 𝑆𝑇𝐴(1) is when all the spikes are included in computing the STA. 

If a cell responds perfectly only to one single type of stimulus with no spontaneous firing, then 𝑆𝑇𝐴 (
1

𝑁
) =

𝑆𝑇𝐴 (
𝑁

𝑁
), and AUC = 1. Figure 6a shows the CCC’s of three example cells, and Fig. 6b shows the distribution of cell 

count for various levels of AUC. 

Out of all LE retinas, we selected the cell that had the median AUC under visual stimulation as a reference. 

Noise-injection into the STA of this cell yielded a family of CCCs shown in Fig. 6c. To characterize the noise of each 
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cell under electrical stimulation, we matched its CCC to the curve in the family that has the most similar AUC, and 

the resulting matching noise ratio characterizes the cell (Fig. 6d). 

Ensemble encoding 

To evaluate how much information is encoded by the ensemble of cells for the pattern recognition task, we 

simulated projection of pixelated Landolt-C onto a piece of retina (Fig. 7a). Each presentation of the C lasted for 5 

movie frames, and was spatially pixelized into either 70 μm (for electrical stimulus) or 60 μm (for visual stimulus) 

pixels. The brightness of each pixel was then rounded to the nearest one of 8 evenly spaced greyscale levels. The 

resulting simulated stimulus (𝑠̂) had dimensions (length, width, time) = (64, 32, 24 frames) for visual stimuli or (20, 

20, 24 frames) for electrical stimuli. The first 19 frames were all dark, and the remaining frames were bright, where 

the Landolt-C was displayed. The simulated stimulus was then convoluted with the STAs (𝑤) of each cell to produce 

an input strength (𝑤 ⋅ 𝑠̂), similar to Eq. (1). We then inspected the white noise stimulus for blocks of consecutive 

frames (𝑠, same dimensions to 𝑠̂) that share a similar input strength, mathematically defined as 

 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠|𝑤 ⋅ 𝑠 − 𝑤 ⋅ 𝑠̂| (6) 

The 500 blocks that best satisfy the above criterion are chosen, and the average RGC activity 30ms following 

each block was considered a response to the Landolt-C. Afterwards, responses of all cells were concatenated into 

a template with time bins of 5ms. Four different templates were created for four orientations (up, down, left, right) 

of the C using the same procedure. We then simulated 10,000 trials with random orientations. For each trial, the 

number of spikes in each time bin was simulated as a Poisson process with its mean matching the spike rate in the 

bin in the corresponding template. The generated spiking pattern for each trial was correlated to all templates, and 

one with the highest Pearson’s r was considered the decoded orientation. Decoding accuracy was taken as the ratio 

of correctly decoded trials to total. For the 4 LE retinas, the cell counts were 49, 49, 21, and 20; for the 4 RCS retinas, 

the cell counts were 19, 14, 13, and 9. To study the effect of number of cells on decoding accuracy, we fixed the 

size of the C at 14 pixels. To study the effect of C size and number of flashes, we included all cells on each retina 

into the decoder. 

 

Results 

Single-Cell response modeling 

For the natural response of healthy retina, the LN model fitted to levels similar to previous reports in 

salamander and rat retinas (correlation in the range of 0.3) (19, 22). The CNN model fitted much better to the spike 

trains elicited by visual stimulation in ON and OFF cells (correlation of about 0.6, Fig. 5a top), agreeing with earlier 

studies in the salamander retina (23). However, both models predicted retinal responses to electrical stimulation of 

the healthy or degenerate retina significantly worse (Fig. 5a, center and bottom). Across a population of cells and 

multiple retinas (n=4 each), CNN fits to electrical data reached a correlation of only ~0.15, significantly lower than 

0.6 for the LE visual response (Fig. 5b). The LN model fitted distinctly better to electrical OFF cells than ON cells in 

LE retinas (p<10-7, two-sample t-test), while the CNN model fitted with less discrepancy between the two cell types 

(p=0.013). For electrical ON cells, the CNN model fitted significantly better than the LN model (p<10-9), but the same 

cannot be said for electrical OFF cells. In RCS retinas, correlation with the CNN model was similar to the LE retina 

under electrical stimulation (Fig. 5b). However, correlations with the LN model were far worse for RCS OFF cells 

than for LE electrical OFF cell, while that for electrical ON cells remained similar.  
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Figure 5. Single-cell model predictions and its accuracy. (a) Examples of LN and CNN model predictions for a single 

cell, alongside the experimental data. Both models fit well the LE visual responses, but not the electrical stimulation 

of either LE or RCS retinas. (b) Correlation with the test set data, averaged over a population of cells (table). Model 

fit to electrically stimulated cells (~0.15 for CNN with LE and RCS data) is significantly worse than to the visual 

response (~0.6). 

 

Noise estimation in RGC firing 

Figure 6a illustrates the cross-correlation curves (CCC) of three example cells, as well as the CCC for an 

STA generated from randomly sampled white noise frames, which is described by a square root dependence on 

the normalized number of spikes. The CCC for RCS is the closest to the noise curve and has the lowest AUC, 

followed by LE electrical. Distribution of AUCs across the cell population in retinas, shown in Fig. 6b, confirms that 

RCS responses were the noisiest, followed by the LE electrical responses. By replacing spikes in LE visual 

responses with randomly timed spikes (see Methods), we can generate a family of CCCs with various noise ratios 

(Fig. 6c). At a certain noise ratio, the noise-injected visual CCC matches that from electrical responses. Compared 

to the LE visual response with median AUC, the noise ratio was 55.3±22.5% and 78.2±6.5% for LE electrical and 

RCS, respectively (Fig. 6d). All RCS responses were at least 55% noisier than natural. 

Ensemble encoding 

Accuracy of decoding the orientation of Landolt-C rises with increasing number of recruited cells (Fig. 7b). 

Since the cells were ranked by their independent decoding accuracies, the first few cells contributed to the faster 

rise in accuracy. In addition, beyond the first few, recruited cells started carrying redundant information, which 

improved accuracy with diminishing returns. Such trend is generally observed in decoding the ensemble of neural 

signals for applications in brain-machine interfaces (24). Notably, neither presence of photoreceptors nor stimulation 

type affected the decoding accuracy significantly, despite the spiking being much more stochastic under electrical 

stimulation, as discussed previously. Decoding accuracy also rises steeply with increasing C size until it reaches 4-

5 pixels (Fig. 7b), where the accuracy flattens out because the gap in C now exceeds one pixel, and hence it is fully 

resolved.  The asymptotic level of accuracy was determined primarily by the number of recorded cells in the retina. 

For example, retinas with 49 recorded cells can reach 60-80% accuracy, while only 50% can be achieved with 19 

to 21 cells (Fig. 7c).  
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Figure 6.  Noise in retinal responses. (a) Characteristic correlation curves. A cell with little noise would have a curve 

farther away from the pure noise curve. As a corollary, the greater the area-under-curve (AUC), the less noisy is the 

cell. (b) AUC for a population of cells. Almost all LE cells responding to visual stimulus exhibit less noise than all 

RCS cells under electrical stimulation. (c) Example correlation curves for LE visual with different added noise ratios 

(NR). At NR ~ 0.65, the noise-injected correlation curve matches that for LE electrical. (d) Noise ratios over the cell 

population. For LE electrical, the average noise ratio is 55.3±22.5%; for RCS, the noise ratio is 78.2±6.5%. 

 

Increasing the number of stimulus presentations also increased the decoding accuracy (Fig. 7d). Therefore, 

to compensate for fewer cells responding in RCS retinas, more presentations are required to accumulate the same 

amount of information for the image decoding. To achieve 75% accuracy in decoding the orientation of letter C, LE 

retinas required 2-3 flashes of the image, while the RCS retinas needed 13 presentations. 
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Figure 7. Ensemble encoding of the visual information. (a) Algorithm for evaluation of the ensemble encoding 

accuracy. Using the cell activity under a certain projection of a Landolt-C, decoder discerns its orientation. (b) 

Accuracy versus number of cells included in the decoder, with a C size of 14 pixels. Faint lines represent individual 

trials. (c) Accuracy as a function of the letter C size.  (d) Accuracy versus number of presentations (flashes) of the 

letter. Since electrical stimulation activates fewer cells in the RCS retina than visual stimulation in healthy retina, ~5 

times more flashes are required to achieve the same decoding accuracy as natural. (4 LE retinas, N cells = 20, 21, 

49, 49; 4 RCS retinas, N cells = 9, 10, 13, 14) 

 

Discussion 

The fact that predictive retinal models perform worse for RCS under electrical stimulation than LE retina 

under visual stimulation is not surprising and can be explained by increased spontaneous firing rate in the 

degenerate retina (25), likely due to higher uptake of retinoic acid (26). However, the fact that response of the 

healthy retina to electrical stimulation is much noisier than natural requires a different explanation. This might be 

related to the difference in mechanisms of natural and electrical activation of the photoreceptors. In natural vision, 

due to the rather slow phototransduction cascade, a millisecond flash causes photoreceptor hyperpolarization for 

tens of milliseconds (27). Under electrical stimulation, however, membrane potential is affected directly, and 

therefore it closely follows the electrical pulse duration (<10ms), much shorter than the natural response. Another 

factor might be related to the fact that our experiments were performed in the dark. Since the dark-adapted 

photoreceptors are depolarized, further depolarization of the terminals by electric field is quite limited, effectively 

restricting the dynamic range. Both factors likely contribute to the lower than natural signal-to-noise ratio when the 

healthy retina is stimulated electrically. 
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 By construction, under a radially symmetric stimulus, the STA of an RGC is the first-order term in the Wiener 

kernel series expansion of the cell’s response function (28). Therefore, the LN model can be considered a single-

filter approximation, while the CNN model can fit better due to inclusion of multiple linear filters and a better 

approximation of nonlinearities (29). Indeed, previous studies have shown that CNN models fit markedly better than 

the LN model in the salamander retina (19), which we also observed here in the healthy rat retina under visual 

stimulation. Surprisingly, there is little difference between the two models fitted to LE retina OFF cells stimulated 

electrically, indicating that the responses were predominantly single-filter (Fig. 4b). An interpretation is that OFF cell 

responses can be described nearly completely using only a single receptive field, which means these cells only 

respond to a limited subspace of stimuli. Consequentially, these RGCs may fail to respond to certain classes of 

spatial patterns that require subunit computation, such as null stimuli (30), where the linear filter of a cell is scaled 

and subtracted away from an otherwise response-inducing white noise stimulus. The disparity between LN and CNN 

models for RCS data suggests that even the degenerate retina retains a high degree of higher-order computation. 

For example, from the response to alternating grating (both ex-vivo and in-vivo), we know that nonlinear summation 

of subunits occurs also in the degenerate retina, but whether the number of computational subunits for each RGC 

matches that of the healthy retina remains unknown. 

In ensemble encoding, we made two important assumptions: First, the input strength (𝑤 ⋅ 𝑠) was calculated 

with linear weights extracted from the binary white noise. Since pixels in the stimulus are spatiotemporally 

independent, the resulting trained weights are generally biased against spatiotemporally correlated stimuli, such as 

long straight edges and bars, drifting objects, and even natural scenes (31). Therefore, the current method leads to 

underestimating the accuracies in the LE retina. It is unknown whether directional sensitivity remains intact in the 

degenerate retina or how many nonlinear subunits exist under electrical stimulation, so the accuracy curves for the 

RCS retina in Fig. 7b may or may not be underestimated. Second, the letter C was placed at the same location over 

the 5 frames it was displayed. Normally with microsaccades, visual pattern can be displaced by ~70μm between the 

frames presented at 20 to 33Hz (32). Since receptive fields form a tightly packed mosaic, we assumed translational 

symmetry in response, i.e. no matter where the stimulus is displayed on the retina, the retinal output will carry 

equivalent amount of information. As a result, the current analysis assumes that the effect of the eye movements on 

amount of information for pattern identification is well-approximated even without moving the letter C. 

Single-cell SNR played little role in ensemble encoding of the visual information. As demonstrated in Fig. 

7b, all retinas had similar accuracies, even though LE RGCs under visual stimulation had far better SNR. A reason 

might be that better SNR as calculated might not limit the amount of information propagating downstream, if the 

encoded visual signals were orthogonal to the major noise eigenmodes (33). Since visual information is distributed 

across the retina, the more cells recruited for decoding, the higher is the accuracy. Unlike natural visual response, 

electrical stimulation affects the bipolar cells stronger if they reside near the electrode surface, and hence fewer 

RGCs were responding than in natural stimulation. To compensate for the reduced amount of visual information 

transmitted, the stimulus needs to be replayed multiple times. This may explain the longer time patients require to 

recognize letters and other patterns in clinical trials.  

As in Sloan font, the gap in a Landolt-C is 1/5 of the letter size (34). For letter sizes smaller than 4 pixels, 

the gap is not fully resolved but encoded in some shade of grey different from the rest of the ring, which led to lower 

accuracy in identification. Once the gap is fully resolved, i.e. letter size greater than 5 pixels, decoding accuracy 

remains relatively stable. This signifies that with the pixel size used in these studies (70 m), the limiting factor in 

resolution is strictly at the implant level (pixel size), but not biological (subunit size). Essentially, prosthetic vision can 

resolve spatial features down to the pixel size with stable accuracy, which matches our previous in vivo 

measurements (6).   

In conclusion, we found that LN and CNN models matched the RGC activity elicited by subretinal electrical 

stimulation less accurately than that for natural responses, likely due to the weaker than natural response and higher 

spontaneous firing in the degenerate retina. Despite the noisier signal, visual information is still encoded across the 

ensemble of cells in the retina, which allows patients to perform visual discrimination tasks, albeit slower due to the 

reduced number of responding RGCs, compared to natural vision. 
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