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ABSTRACT  
Background: Despite marked recent improvements in long-read sequencing technology, the 

assembly of diploid genomes remains a difficult task. A major obstacle is distinguishing between 

alternative contigs that represent highly heterozygous regions. If primary and secondary contigs 

are not properly identified, the primary assembly will overrepresent both the size and complexity 

of the genome, which complicates downstream analysis such as scaffolding.   

 

Results: Here we illustrate a new method, which we call HapSolo, that identifies secondary 

contigs and defines a primary assembly based on multiple pairwise contig alignment metrics. 

HapSolo evaluates candidate primary assemblies using BUSCO scores and then distinguishes 

among candidate assemblies using a cost function. The cost function can be defined by the 

user but by default considers the number of missing, duplicated and single BUSCO genes within 

the assembly. HapSolo performs hill climbing to minimize cost over thousands of candidate 

assemblies. We illustrate the performance of HapSolo on genome data from three species: the 

Chardonnay grape (Vitis vinifera), with a genome of 490Mb, a mosquito (Anopheles funestus; 

200Mb) and the Thorny Skate (Amblyraja radiata; 2,650 Mb).  

 
Conclusions: HapSolo rapidly identified candidate assemblies that yield improvements in 

assembly metrics, including decreased genome size and improved N50 scores. Contig N50 

scores improved by 35%, 9% and 9% for Chardonnay, mosquito and the thorny skate, 

respectively, relative to unreduced primary assemblies. The benefits of HapSolo were amplified 

by down-stream analyses, which we illustrated by scaffolding with Hi-C data. We found, for 

example, that prior to the application of HapSolo, only 52% of the Chardonnay genome was 

captured in the largest 19 scaffolds, corresponding to the number of chromosomes. After the 

application of HapSolo, this value increased to ~84%. The improvements for mosquito 

scaffolding were similar to that of Chardonnay (from 61% to 86%), but even more pronounced 

for thorny skate. We compared the scaffolding results to assemblies that were based on another 

published method for identifying secondary contigs, with generally superior results for HapSolo.  
 
Keywords: Genome, assembly, alternative haplotype, haploid, purge, deduplication, 

scaffolding,  
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BACKGROUND 
Traditionally, reference genomes have been produced from genetic materials that 

simplify assembly; for example, the first two plant species targeted for reference quality 

genomes, Arabidopsis thaliana [1] and rice (Oryza sativa) [2], were chosen in part because they 

naturally self-fertilize and are therefore highly homozygous. Other early genomes, such as those 

from Caenorhabditis elegans and Drosophila melanogaster [3, 4], were also based on inbred, 

highly homozygous materials. Recent sequencing of additional model and non-model species 

have continued to rely on near-homozygous materials, either through inbreeding [5, 6] or by 

focusing on haploid tissue [7, 8].  

The reliance on homozygous materials is fading rapidly, however, for at least three 

reasons. The first is that it has become clear that inbred materials can misrepresent the natural 

state of genomes. A dramatic illustration of this fact is that some lines of maize purged 8% of 

their genome in only six generations of self-fertilization [9]; more generally, inbred genomes 

tend to be smaller than those based on outbreeding species [10, 11]. The second is that many 

species of interest cannot be easily manipulated into a homozygous state. Many animals fall 

into this category, such as mosquitoes [12], as do many perennial crops like grapes, which are 

highly heterozygous [13] and can be selfed but only with substantial fitness costs that limits 

homozygosity [14]. Finally, some important features and phenotypes - such as sex 

determination [15] and other important adaptations - can only be identified by analyzing 

heterozygous samples.  

Fortunately, the resolution of highly heterozygous regions, which often contain large 

structural variants, is now possible due to improvements in sequencing technologies and their 

affordability. In theory, long-read sequencing technologies, like those from Pacific Biosciences 

and Oxford Nanopore, provide the capability to resolve distinct haplotypes in heterozygous 

regions, leading to the assembly of reference-quality diploid genomes [5, 16, 17]. Several 

genomes based on highly heterozygous materials have been published recently [13, 18–22], 

with many additional efforts ongoing.  

Nevertheless, the assembly of heterozygous genomes still presents substantial 

challenges. One challenge is resolving distinct haplotypes in regions of high heterozygosity. 

Programs that assemble long-reads, such as FALCON and Canu [23], can fuse distinct 

haplotypes into the primary assembly. This haplotype-fusion produces genomes that are much 

larger than the expected genome size. When haplotypes are fused, either into the same contig 

or as different contigs into the primary assembly, the increased size and complexity of the 
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assembly complicates down-stream approaches, such as scaffolding by Hi-C or optical 

mapping. In theory, Falcon-unzip [19] solves some problems by identifying alternative (or 

‘secondary’) haplotigs that represent the second allele in a heterozygous region and then 

providing a primary assembly without secondary contigs.  

It remains a difficult problem to identify and remove alternative contigs during assembly, 

but there are some suggested solutions. For example, Redundans identifies secondary contigs 

via similarities between contigs [24] and removes the shorter of two contigs that share some 

pre-defined level of similarity. Another approach, PurgeHaplotigs uses sequence coverage as a 

criterion to identify regions with two haplotypes [25]. The reasoning behind PurgeHaplotigs is 

that alternative alleles in a heterozygous region should have only half the raw sequence 

coverage of homozygous regions. Accordingly, the algorithm proceeds by first remapping raw 

reads to contigs, then flagging contigs with lower than expected read depth, and finally re-

mapping and removing low-coverage contigs from the primary haplotype-fused assembly. A 

more recent approach, implemented in the purge_dups tool [26], builds on the coverage-based 

approach of PurgeHaplotigs. Purge_dups has been compared to PurgeHaplotigs and is superior 

based on a few exemplar assemblies [26].  

Here we report another strategy, which we call HapSolo, to identify and remove potential 

secondary haplotigs. Our approach is similar to Redundans, in that it begins with an all-by-all 

pairwise alignment among contigs and uses features of sequence alignment as a basis to 

identify potential alternative haplotigs. However, HapSolo is unique in exploring the parameter 

space of alignment properties to optimize the primary assembly, using features of BUSCO 

scores as the optimization target. Here we detail the approach and implementation of HapSolo, 

demonstrate that it efficiently identifies primary vs. secondary haplotigs and show that it 

improves HiC-based scaffolding outcomes relative to purge_dups. HapSolo has been 

implemented in python and is freely available (https://github.com/esolares/HapSolo).  

 

APPROACH and IMPLEMENTATION     

Pre-processing: Our method begins with the set of contigs from genome assembly. In 

theory, HapSolo will work for any set of contigs from any assembler and from any sequencing 

type (i.e., short-read, long-read or merged assemblies). Given the set of contigs, the first steps 

are to size sort the contigs and then to perform an all-by-all pairwise alignment among all 

contigs (Figure 1, steps 1 and 2), using each contig as both a reference and a query. In theory, 

pre-processing alignments can be performed with any algorithm, with the HapSolo 

implementation supporting either BLAT [27, 28] or minimap2 [29].  
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Steps within HapSolo: HapSolo imports alignment results into a PANDAS 

(https://pandas.pydata.org/) dataframe to form a table with rows representing pairs of aligned 

contigs and columns containing descriptive statistics for each pairwise comparison (Figure 1, 
step 3). Columns include the percent nucleotide identity between contigs (ID), a metric similar 

to those used in previous haplotig reduction programs; the proportion of the query contig length 

that aligns to the reference contig (Q), which is included to recognize that alignments can be 

clipped; and the ratio of the proportion of the query aligned to the reference relative to the 

proportion of the reference aligned to the query (QR). QR is considered because it reflects 

properties of aligned length and potential structural variant differences between contigs. A 

downside of QR is that it can reach values > 1.0, as longer variants may exist in either the query 

or the reference, and it is also non-symmetric. To compensate for this we include a symmetric 

value, which we define as QR’ = ( ) . The four parameters - ID, Q, QR and QR’ - are the 

basis for filtering query contigs from the table and defining them as putative secondary contigs. 

For simplicity, however, we will emphasize QR, because QR’ is dependent on QR. 

In addition to the alignment table, HapSolo generates a table of BUSCO properties [30] 

for each contig. This BUSCO analysis is performed on each contig of the assembly prior to 

running HapSolo’s reduction algorithm. To perform these analyses, contigs are split into 

individual FAStA files and then BUSCO v3.0.2 is run on each contig separately so that they can 

be evaluated in parallel. Ultimately, the BUSCO table generated by HapSolo contains a list of 

complete (C) and fragmented (F) BUSCO genes for each contig. This table is integral for rapidly 

evaluating potential candidate assemblies.  

Given the alignment table and the BUSCO table, HapSolo begins by assigning threshold 

values for ID, Q and QR, which we denote as IDT, QT and QRT. The threshold values can be 

assigned randomly, with set default values or with values defined by the user. The threshold 

values are applied to the alignment table to identify query contigs for purging. To be removed, a 

query contig must be in a pairwise alignment that satisfies three conditions: 1) an ID IDT; 

2) e a Q QT ; and 3) a QR value that falls within the range min(QRT,QR’T) and 

max(QRT,QR'T). After purging query contigs, HapSolo calculates the number of Fragmented (F), 

Missing (M), Duplicated (D) and Single-Copy (S) BUSCO genes across all of primary contigs 

that remain in the candidate assembly, based on values in the BUSCO table. It then calculates 

the Cost of the candidate assembly as:  

 

Cost = (θ1M+θ2D+θ3F)/ θ4S 
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where θ1, θ2, θ3, and θ4 are weights that can vary between 0.0 and 1.0. Weights can be assigned 

by users; for all of our analyses below, we employ weights of 0.0 for F and 1.0 for M, D and S.  

We then employ hill climbing to minimize Cost (Figure 1). Once Cost is calculated with 

random starting values, IDT, QT and QRT are modified at each iteration by a randomized step 

size in the positive direction, which in turn defines a new set of primary contigs for a new cost 

evaluation. The steps consist of a fixed increment, which can be set by the user but is set to 

0.0001 by default, multiplied by a random value sampled from U(0,1). As such, HapSolo utilizes 

a randomized forward walking agent to traverse the search space. If Cost does not change with 

new parameter values for a specified number of steps or if parameters increase past their 

maximum limits of IDT = QT = 1.00, then HapSolo assigns new random values of IDT, QT and 

QRT. The process is repeated for n total iterations, and the iteration(s) with the smallest Cost 

are used to define the final set of primary contigs. When there are multiple solutions that 

minimize Cost, we retain all unique solutions; these additional solutions can be exported by the 

user for post-processing steps and evaluation. The values that determine the behavior of this 

minimization - e.g., the threshold for the number of consecutive cost plateaus, the number of x 

unique best candidate assemblies retained, the increase in step size by a fixed value, and the 

total number of iterations - can be set by the user.  

To retain candidate assemblies with the smallest Cost, we implemented a  

unique priority queue (UPQ). The UPQ maintains a maximum number of x best assemblies, 

where x can be set by the user. The UPQ initially takes a list of one set of values, the score, 

primary contigs and other assembly information. The UPQ then takes the number of primary 

contigs for each of the candidate assemblies and sorts them by size. It then compares only the 

candidate assemblies of the same size, because assemblies of unequal size cannot be the 

same assembly. Therefore our algorithm, in order to reduce the number of contig set 

comparisons, only compares contig sets of the same size. Once it is established that the 

candidate assemblies of the same number of contigs are equal, only the candidate assembly 

with the lowest score is saved. The list is then sorted by score and returned. This allows 

retention of the max score of the best x number of assemblies by looking at the score of the last 

candidate assembly in the list, giving O(1) access to this value. Sorting takes O(x log(x)), where 

x is the best number of candidate assemblies to return, giving our UPQ a time complexity of O(x 

log(x)). Since we can instantaneously access the worst of the x candidate assemblies, we then 

perform an integer comparison of the score of our current candidate assembly with the worst 

score of our best x number of assemblies, reducing our computational time complexity. Only 
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assemblies with the same or lower scores than the worst candidate assembly are then added to 

our UPQ. This reduces our total time complexity to O(i x log(x)) where i is the number of 

iterations which produce scores lower than our max of x, and x is the number of best candidate 

assemblies to keep.  

Post-processing: Once HapSolo converges on a set (or x sets) of primary contigs that 

minimize Cost, the contig set is employed for post-processing steps to evaluate the candidate 

assembly. Specifically, we run QUAST v4.5 [31] and BUSCO 3.0.2 on the set of primary contigs 

that represent the best (or set of x best) candidate assemblies. QUAST measures basic 

genome assembly statistics, such as, N50, total assembly length, L50 and the largest contig 

size. Although not part of the HapSolo method, we provide scripts that run QUAST and BUSCO 

to output their results into a single score file.  

Implementation and requirements: HapSolo has been implemented and optimized for 

Python 2.7, but it is also supported under Python 3. However, we recommend using Python 2.7, 

for faster run times. HapSolo requires the input of a contig assembly (as a FAStA file), the 

location of a directory for individual contig BUSCO results, and the input of pairwise alignments. 

It currently supports either BLAT or minimap2 alignment output files (PSL or PAF or 

compressed PSL.gz or PAF.gz file).  
 

RESULTS & DISCUSSION 

Primary Assemblies: We illustrate the application and results of HapSolo on three 

diploid genome data sets. The three - including the Chardonnay grape (Vitis vinifera), the 

Anopheles mosquito (A. funestus) and the Thorny Skate (Amblyraja radiata) - represent a range 

of expected genome sizes, at 490Mb [32], 200Mb [20] and 2,560Mb 

(https://vgp.github.io/genomeark/Amblyraja_radiata/), respectively.  The three datasets also 

represent a range of raw sequence coverage (at 58x, 240x, and 128x, respectively), and two 

different assembly methods - i.e., a hybrid assembly for Chardonnay [13] and Falcon_Unzip for 

both mosquito [20] and thorny skate [33]. The sequencing data are based on the Pacific 

Biosciences (PacBio) sequencing platform, but HapSolo should be applicable to any contig 

assembly drafted from any long-read assembler.  

For pre-processing, we utilized pairwise alignments with BLAT and minimap2 for the 

Chardonnay and mosquito data. To limit run time, we applied BLAT to the Chardonnay and 

mosquito data without long contigs (> 10Mb) as queries, because we reasoned that >10Mb 

contigs are unlikely to represent alternative haplotigs (see Methods). These long contigs were 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.06.29.178848doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178848
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

included as references, however, so that they are represented in pairwise alignments. We used 

only minimap2 for the larger skate genome, due to prohibitively long run times with BLAT. 

For each species, we applied HapSolo with and without hill climbing and compared the 

outcomes to the original unreduced assembly. Table 1 provides assembly statistics, and it 

illustrates improvements from the unreduced assembly, to the assembly without hill climbing (-

HC) based on default values, and finally to the assembly with hill climbing (+HC), which is 

based on random starting values and 50,000 iterations. Focusing on Chardonnay, for example, 

the primary contig genome size declined 13% from the unreduced assembly to the -HC 

assembly and another 5% from the -HC assembly to the +HC assembly. Not surprisingly, as 

genome size decreased, so did the number of contigs included in the assembly, which fell from 

2,072 to 1,369 (-HC) to 1,155 (+HC). However, contig N50 increased by 35% from 1.066 Mb to 

1.441 Mb. Similar results were achieved after applying HapSolo to contigs from mosquito and 

thorny skate (Table 1). For both assemblies, the number of contigs, L50 and genome size 

decreased, while the contig N50 improved by 9% for both mosquito and the thorny skate. We 

note, however, that hill climbing did not increase N50 for the mosquito assembly much beyond 

that achieved by applying HapSolo for one iteration with its default values, suggesting that the 

default values performed well by this measure with this dataset.  

Although N50 did not decline for the mosquito data, our implementation of hill climbing 

reduced Cost, as we expected, with the expected effects on BUSCO scores. Figure 2 illustrates 

a sorted representation of Cost, showing that lower Costs were identified. The behavior of hill 

climbing is dependent on the assembly, starting values for the three parameters (IDT, QT and 

QRT), and the number of local minima in the Cost function. Nonetheless, substantial 

improvements occurred within the first 1,000 iterations for all three datasets (Supplementary 
Figure 1), with only minor improvements thereafter. Overall, the improvement in Cost suggests 

value in applying hill climbing to new data sets, especially given that the computational costs are 

minor (see below).  

Table 2 complements information about Cost by reporting BUSCO scores. HapSolo 

achieved its principal goal, which is to generally increase the representation of single copy (S) 

BUSCO genes and decrease duplicated (D) genes in reduced compared to unreduced 

assemblies. Note the differences between the -HC and +HC assemblies, because in some 

cases the -HC assembly had more single copy genes but at the cost of also having more 

duplicated genes. Thus, the +HC option can produce assemblies with lower Cost but with fewer 

BUSCO genes. 
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Figure 3 plots the cumulative contig assembly length for the three assemblies for each 

of the three species, and it illustrates two important points. First, HapSolo reduced the total 

assembly length primarily by removing numerous contigs of small size. Second, differences 

between the -HC and +HC reduced assemblies were more evident for some species (e.g., 

thorny skate) than for others (e.g., Chardonnay). Nonetheless, when there were differences, hill 

climbing decreased both assembly size (Table 1) and Cost (Table 2).  

Hi-C Scaffolding Results: HapSolo focuses on the improvement of primary assemblies, 

but there are potential advantages for removing haplotigs for downstream operations like 

scaffolding. Failing to remove duplicate haplotigs can cause false joins between duplicate 

haplotigs or lead to non-parsimonious joins between duplicate haplotigs and adjacent single 

copy regions. Here we illustrate the advantage of running HapSolo on primary assemblies prior 

to Hi-C scaffolding. For these analyses, the unreduced assembly and both reduced assemblies 

(i.e., -HC and +HC) were scaffolded using the 3D-DNA pipeline [34], resulting in more 

contiguous assemblies overall. We compared the improvements of the two scaffolded HapSolo 

assemblies against the unreduced scaffolded assembly (Table 3). Gains in improvements to the 

largest scaffold were clear across all assemblies relative to the unreduced assembly. For 

example, the largest scaffold increased by 1.71x (-HC) and 1.91x (+HC) for Chardonnay and by 

1.22x (-HC) and 2.18x (+HC) for mosquito (Table 3).  

Figure 4 illustrates the distribution of scaffolds for each of the three species under 

various HapSolo implementations. For each scaffold we measured the proportion of the genome 

that was contained in the k largest scaffolds, where k is the haploid number of chromosomes for 

each species. For example, Chardonnay has 19 chromosomes, and the 19 largest scaffolds 

based on the unreduced assembly represented 52% of the genome size. Following HapSolo 

haplotig reduction, the largest 19 scaffolds encompassed up to 93% of the total expected 

genome size of 490Mb. Similar improvements were identified for the two other species, with 

mosquito improving from 61.9% to 85.7% and thorny skate from 31.5% to 106.3%.  The 

observation of 106.3% of the thorny skate being contained in the largest k scaffolds indicates 

that the expected genome size is incorrect or that there is a need for additional purging of 

haplotigs.   

HapSolo scaffolded assemblies were always demonstrably superior to the unreduced 

scaffolded assemblies for all three species, but the additional value of hill climbing varied among 

datasets.The value of hill climbing was clear for the mosquito, where the first 3 scaffolds 

(representing k=3 chromosomes) represented ~68% of genome with scaffolded -HC assembly 

versus 86% for the +HC reduced assembly. In contrast, hill climbing produced a disadvantage 
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for Chardonnay (k=19, 92.6% -HC vs. 88.0% +HC) and only a small improvement for thorny 

skate (k=49, 104.7% -HC vs. 106.3% +HC). This being said, our metric based on the proportion 

of the genome in the k largest scaffolds is imperfect. For example, something as simple as a 

single split chromosome representing two metacentric arms could have a large effect on the 

metric. We therefore also examined other metrics, like the percentage of the genome 

encompassed in > 10Mb scaffolds and the longest scaffold. The largest differences were again 

due to application of HapSolo, with relatively minor differences associated with hill climbing 

(Table 3).  

Finally, we focused on results based on comparing the two pre-processing alignment 

algorithms, BLAT and minimap2. We applied both algorithms to Chardonnay and mosquito. For 

mosquito, the results were similar with either aligner, but the BLAT results were markedly 

superior for Chardonnay (Figures 3 & 4). We do not know the cause of the discrepancy with 

Chardonnay, but we note that it is a genome that contains extensive structural variation 

between haplotypes, such that ~15% of genes are estimated to be in a hemizygous state [13]. 

We suspect that minimap2 often failed to extend alignments beyond large insertion and deletion 

events, even though we applied it with low gap and extension penalties substantially (see 

Methods). Minimap2 is, however, highly preferable for run times, and it can be applied easily to 

gigabase-scale genomes like thorny skate.  

Comparing HapSolo to an alternative method: Other algorithms have been devised to 

identify and remove alternative haplotigs [24, 26, 32]. In the publication of purge_dups, Guan et 

al. (2020) compared its performance to PurgeHaplotigs and found it to be generally superior. 

We compared HapSolo to purge_dups [26], focusing on scaffolding results after HiC analysis. 

Figure 4 indicates that HapSolo generally led to better scaffolded assemblies than purge_dups, 

but with some caveats. For example, the HapSolo-based Chardonnay assembly was superior to 

the purge_dups assembly when BLAT was used to perform pre-processing. In this case, the 

percentage of the genome with >10Mb scaffolds was 97.7% for HapSolo versus 67.4% 

purge_dups, with a 32% improvement in largest scaffold (Table 4). However, purge_dups 

performed similarly to HapSolo for Chardonnay when pairwise alignments were based on 

minimap2 (Figure 4). For mosquito, purge_dups performed similarly to HapSolo with either pre-

processing aligner, as long as hill climbing was included in HapSolo analysis. Finally, for the 

larger thorny skate genome, HapSolo with hill climbing outperformed purge_dups (Figure 4), 

resulting in a higher proportion of genomes in k scaffolds, more large (> 10Mb) scaffolds, and a 

26% larger ‘largest scaffold’ (Table 4). Overall, HapSolo performed as well or better than 

purge_dups, based on the three exemplar datasets.  
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Applying HapSolo to a genome with low heterozygosity: HapSolo was designed to 

address a specific problem: the assembly of highly heterozygous genomes with divergent 

haplotigs. We chose our three exemplars to represent the problem. But how does HapSolo 

perform on less heterozygous genomes? We applied HapSolo to the mouse, Peromyscus 

leucopus, a mammalian genome from a single diploid individual with low (0.33%) heterozygosity 

[35].  In samples with low heterozygosity, alternative haplotigs are less likely to exist, and hence 

we expect fewer benefits with the application of HapSolo. Indeed, we found no benefit. 

Comparing results between the reference assembly and the HapSolo assembly (with minimap 2 

and hill climbing), we found similar proportions of the genome encompassed in 10Mb scaffolds 

(96.8% vs. 95.7%) and a substantially smaller proportion of the genome encompassed in k=24 

chromosomes (88.5% vs. 71.1%) (Table S1). The HapSolo assembly was, however, largely 

contiguous with the reference assembly (Figure S2). Interestingly, purge_dups did not find any 

alternative contigs on this assembly and ultimately failed with an error, so we are unable to 

compare its performance.  

In addition to the low heterozygosity, the P. leucopus genome has a low percentage of 

duplicated BUSCOs relative to the complete set of BUSCOs, at 2.1% (Table S1). In contrast, 

Chardonnay, mosquito and thorny skate have 26.0%, 5.5% and 21.0%, respectively (Table 2). 

Perhaps unsurprisingly, given this statistic, mosquito exhibits the least dramatic improvements 

in assembly statistics after application of HapSolo (Table 3). These observations suggest that 

there are lower limits at which HapSolo becomes ineffective and perhaps even detrimental. 

Based on the data we have analyzed, we suggest that ~5% may be a lower limit for the 

proportion of duplicated BUSCOs.  Heterozygosity is likely to define another lower limit.  Given 

that heterozygosity is 0.33% for P. leucopus, we expect that HapSolo will not be useful for the 

assembly of human genomes, because species-wide human heterozygosity is 0.05% [36]. Our 

results nonetheless suggest that HapSolo is likely to be a helpful tool for assemblies with a high 

number of duplicate BUSCOs.   

Execution Time and Memory Efficiency: To measure runtime, HapSolo was run on 

dual CPU Intel E5-2696 V2 nodes containing 512GB of RAM and storage attached via a 40Gbe 

connection. CPU runtime depends on the number of iterations, but it is also dependent on the 

data and parameter values. We measured runtime across the datasets, measuring different 

configurations in terms of the number of cores and the number of iterations per core (Table S2). 

Under the conditions we used for empirical data (i.e., hill climbing on 10 cores with 5000 

iterations per core), the total time was <10 minutes for both Chardonnay and mosquito but 

substantially longer at 13 hours and 45 minutes for the much larger thorny skate. Note that 
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memory usage was dependent on the size of the alignment file and independent of the number 

of iterations, because HapSolo stores alignments in memory for rapid filtering at each step 

during hill climbing. Nonetheless, the memory and speed requirements are such that HapSolo 

can be run on a laptop or desktop computer.  

Conclusions: We have presented an implementation, HapSolo, that is focused on 

improving primary assemblies by removing alternative haplotigs. In theory, the HapSolo 

package can be applied to any set of contigs from any assembly algorithm. The approach 

implemented in HapSolo is intended to replace laborious manual curation [37], and it follows 

some of the logic of existing programs, like Redundans [24], PurgeHaplotigs [25] and 

purge_dups [26]. However, HapSolo differs from competing programs by at least three features. 

First, it utilizes multiple alignment metrics, so that it is not reliant only on percent identity (ID). 

The goal of these multiple metrics is to better discriminate among some situations that may yield 

high identity scores but nevertheless lead to the retention of different contigs in the primary 

assembly (Figure 1). Second, when the hill climbing option is utilized, HapSolo relies on a 

maximization scheme based on BUSCO values. The underlying assumption is that maximizing 

the number of single-copy BUSCOs establishes more complete and less repetitive genomes. 

We emphasize that this is an assumption common to the genomics community, because most 

new genomes are reported with BUSCO scores to reflect their completeness and quality. Third, 

an important feature of HapSolo is the ability to modify the Cost function, so that the user may 

choose to weigh duplicated BUSCO genes less heavily or perhaps even ignore them altogether. 

This flexibility may prove useful for some applications. For example, it may be useful to ignore 

costs related to duplicated BUSCO genes when assembling polyploid genomes and instead 

focus only on complete and fragmented genes.  

We have illustrated some of the performance features of HapSolo by applying it to data 

from three species that differ in genome size and complexity: Chardonnay grape, a mosquito, 

and the thorny skate. The common feature of these species is that diploid assembly is 

necessary. For all three species, we compared the unreduced primary assembly to two HapSolo 

assemblies, one that used default values (-HC) and one that used hill climbing minimization 

(+HC). Both HapSolo assemblies reduced genome size and markedly improved standard 

statistics like N50 (Table 1 and Figure 3). The +HC contig assembly was generally better than 

the -HC assembly, but not always; the most substantial differences occurred between the 

unreduced assembly and either of the two HapSolo assemblies.  

Our reduced assemblies scaffolded faster than unreduced assemblies and also led to 

more contiguous genomes. For each of our three species, the cumulative genome length 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.06.29.178848doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178848
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

associated with first k scaffolds (where k is the chromosome number) was much larger based 

on reduced vs. unreduced assemblies. The percentage of the genome contained in 

chromosome length scaffolds increased by at least 25% (Table 3). We conclude that in highly 

heterozygous samples that potentially have a large number of alternative haplotigs, some 

reduction step is critical for curating a primary assembly and for downstream scaffolding.  This is 

true even when the primary assemblies are from Falcon_Unzip [19] which has already (in theory 

but perhaps not always in practice) identified secondary haplotigs. We further advocate for the 

use of the hill climbing feature in HapSolo, because the computational cost is relatively small but 

the gains can be large (Figure 3). Finally, we find that BLAT tends to outperform minimap2 as 

the pre-processing aligner and advocate for its use.  However, it can be time prohibitive on large 

genomes, and hence HapSolo includes support for minimap2.  

Based on the data in this paper, HapSolo generally led to similar or better outcomes 

than purge_dups [26], another recently published method to identify and remove haplotigs. That 

is not to say, however, that HapSolo cannot be improved. We can see two obvious areas for 

future growth. The first is to consider coverage statistics, which represents a point of departure 

between our approach and that of both Purge Haplotigs and purge_dups. We predict, but do not 

yet know, that the inclusion of coverage with our existing alignment statistics could lead to more 

accurate inferences. A second area of improvement may be to implement alternative 

maximization algorithms, such as simulated annealing. Finally, it may also be possible to 

include additional features in the calculations of Cost. Our present reliance on BUSCOs has the 

advantages of speed and wide acceptance in the genomics community. However, depending on 

the initial assembly, it is likely that some contigs do not contain a BUSCO gene, are therefore 

not considered in Cost and do not form the approximation of threshold parameters (IDT, QT and 

QRT).  It is not yet clear what additional features could be included in the Cost function, but k-

mer representation is one possibility.  

 

METHODS 
Species and Data: The data for the assemblies for V. vinifera (cultivar Chardonnay) 

[13], A. funestus (mosquito) [20], and A. radiata (thorny skate) [33] were downloaded from 

public databases (see Data Availability). As mentioned, the contig assemblies were based on 

PacBio data. The chromosome number for each species was found in various sources [20, 33, 

38]. The P. leucopus data were published in [35].  

Pre-processing: For each genome, pre-processing prior to application of HapSolo 

consisted of all-by-all pairwise contig alignments, as described above. For this study, we used 
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BLAT v35 [28] and minimap2 [29]. BLAT was run with default options after the reference was 

compressed into 2bit format, and it was run using each contig as a separate query to reduce run 

time. Although not technically a feature of HapSolo, our github release provides a script to run 

Blat v35 [28] using this parallel approach. After running on individual contigs, the resulting PSL 

files were concatenated into a single PSL file for input into HapSolo. Minimap2 was used to 

compare feasibility and results between aligners; it was employed with the options “ -P -k19 -w2 -

A1 -B2 -O1,6 -E2,1 -s200 -z200 -N50 --min-occ-floor=100”.  

Assemblies, Hi-C data and Scaffolding: HapSolo was applied to with with default 

parameters of 0.70 for IDT, QT and QRT; hill climbing started with random values of IDT, QT and 

QRT and then minimized Cost using hill climbing over 50,000 iterations. In HapSolo, BUSCO is 

run in geno mode on each contig using the orthoDB9 datasets and the AUGUSTUS species 

option. BUSCO v.3.0.2 relies on BLAST v.2.2.31+, AUGUSTUS v3.3, and BRAKER v1.9.  

We obtained short-read Hi-C data from online public databases for scaffolding [13, 20] 

(see Data Availability). The Hi-C sequencing data were mapped to their respective assemblies 

using BWA [28]. The scaffolding of raw assembly and HapSolo processed assemblies were 

processed with the 3D de novo assembly pipeline v180419 [39], available from 

https://github.com/theaidenlab/3d-dna/. We ran QUAST v4.5 [31] for our post processing 

example and to assess performance during program development. For Figures 2 and S1, the 

normalized value was calculated by first subtracting the minimum observed Cost min(Cost) from 

the observed Cost. The numerator [Cost-min(Cost)] was then divided by [max(Cost)-min(Cost)].  

Computational Resources and Processing: For runtime analyses, HapSolo was run 

on dual CPU Intel E5-2696 V2 Nodes containing 512GB of RAM. The Blat, minimap2 and 

BUSCO pre-processing steps were run on these same nodes, but also one the UC Irvine High 

Performance Computing Cluster, Extreme Science and Engineering Discovery Environment 

(XSEDE) [40], San Diego Supercomputer Center (SDSC) Comet [41] and Pittsburgh 

Supercomputing Center (PSC) Bridges [42] clusters.  
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TABLES:  

Table 1: Contig assembly statistics for three primary assemblies for each of three species.  

Species Chardonnay Mosquito Thorny Skate4 

Assembly Type 
No 

HapSolo1 

HapSolo 
-HC2 

HapSolo 
+HC3 

No 
HapSolo 

HapSolo  
-HC2 

HapSolo 
+HC3 

No 
HapSolo 

HapSolo  
-HC 

HapSolo 
+HC 

# of Contigs 2,072 1,369 1,155 1,073 674 666 16,218 14,494 12,937 

Contig Assembly Size 
(Mb) 655.2 569.3 539.0 212.0 200.4 200.0 3,229.4 3,147.8 3,031.3 

Largest Contig (Mb) 11.6 11.6 11.6 7.6 7.6 7.6 3.4 3.4 3.4 

Contig N50 (Mb) 1.1 1.3 1.4 0.6 0.7 0.7 0.4 0.4 0.5 

Contig L50 141 106 95 86 77 77 2,022 1,928 1,800 

 

1 Results in this column are based on the primary assembly without application of HapSolo 
2 Results in this column are based on application of HapSolo without hill climbing (-HC) and with 

default parameters of ID, Q and QR = 0.70.  
3 Results in this column are based on application of HapSolo with 50,000 cycles of hill climbing 

(+HC).  
4 Results for HapSolo were generated using minimap2. Chardonnay and mosquito statistics are 

based on BLAT.  
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Table 2: Starting and Ending BUSCO values for the three species for primary contig 

assemblies.  

  
No HapSolo 

 
HapSolo (-HC) 

 
HapSolo (+HC) 

Species GS1 BUSCO2 GS BUSCO GS BUSCO 

Chardonnay 655.2 C:1357  

S:1004  

D:353 

569.3 C:1356 

S:1152 

D:204 

539.0 C:1357  

S:1205  

D:152 

Mosquito 212.0 C:2640  

S:2493  

D:147 

200.4 C:2609 

S:2548  

D:61 

200.0 C:2621  

S:2566 

D:55 

Thorny 
Skate 

3,229.

4 

C:2091  

S:1651  

D:440 

3,147.8 C:2087 

S:1675 

D:412 

3,031.3 C:2080  

S:1715  

D:365 

 

1 Genome Size (GS) based on the sum of all contigs for the primary assembly.  
2 Busco based on all contigs prior to the application of HapSolo. The four values represent the 

complete (C), the single (S) and duplicated (D) BUSCO genes.  
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Table 3: Scaffolded assembly statistics after Hi-C analysis on HapSolo assemblies, for three 
primary assemblies for each of three species.  

 

Species Chardonnay Mosquito Thorny Skate6 

Assembly 
Type 

No 
HapSolo1 

HapSolo 
-HC2 

HapSolo 
+HC3 

No 
HapSolo 

HapSolo 
-HC 

HapSolo 
+HC 

No 
HapSolo 

HapSolo 
-HC 

HapSolo 
+HC 

# of Scaffolds 1,332 2,748 2,403 1,211 603 611 14,238 12,269 10,009 
% of Genome 

in k largest 
scaffolds4,5 52.0% 89.0% 84.0% 61.9% 68.3% 85.7% 31.5% 104.7% 106.3% 

% of Genome 
in Scaffolds > 

10Mb5 44.0% 94.0% 94.0% 93.5% 94.7% 94.1% 40.4% 103.3% 105.5% 
Scaffold 

Assembly Size 
(Mb) 656.1 570.4 540.1 212.5 200.8 200.3 3,240 3,158 3,039 

Largest 
Scaffold (Mb) 19.1 32.6 36.5 43.6 53.0 95.0 170.0 208.4 250.5 
Scaffold N50 

(Mb) 7.2 23.5 20.7 37.9 41.5 41.6 62.1 65.5 69.8 

Scaffold L50 28 11 11 3 3 2 16 35 13 
 
1 Results in this column were based on the primary assembly without application of HapSolo 
2 Results in this column were based on application of HapSolo without hill climbing (-HC) and 

default parameters of ID, Q and QR.  
3 Results in this column were based on application of HapSolo with 50,000 cycles of hill climbing 

(+HC). 
4 Percentage of genome in the largest k scaffolds, where k is equal to the number of 

chromosomes expected for each species. 
5 Percentages normalized using expected genome sizes of 490Mb, 200Mb and 2,560Mb for 

chardonnay, mosquito and thorny skate respectively. 
6 Results for HapSolo were generated using minimap2. 
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Table 4: A comparison of scaffolded assemblies after Hi-C analysis, based on HapSolo and 

purge_dups primary assemblies.   

Species1 Chardonnay Mosquito Thorny Skate 

Assembly Type 
HapSolo 

+HC2 purge_dups 
HapSolo 

+HC purge_dups 
HapSolo 

+HC5 purge_dups 

# of Scaffolds 2,403 294 611 635 10,009 1,534 
% of Genome in 

k largest 
scaffolds3 88.0% 58.5% 85.7% 83.7% 106.3% 86.8% 

% of Genome in 
Scaffolds 

> 10M4 97.7% 67.4% 94.1% 92.7% 105.6% 86.0% 
Scaffold 

Assembly Size 
(Mb) 540.1 470.4 200.4 200.3 3,039.3 2,251.4 

Largest Scaffold 
(Mb) 36.5 24.9 95.0 74.1 250.5 184.1 

Scaffold N50 
(Mb) 20.7 12.7 41.6 51.2 69.8 61.7 

Scaffold L50 11 15 2 2 13 11 
 
1 Data for HapSolo are based on BLAT alignments for Chardonnay and mosquito, and minimap2 

alignments for thorny skate.  
2 Results in the +HC columns are based on application of HapSolo with 50,000 cycles of hill 

climbing (+HC).  
3 Percentage of genome in the largest k scaffolds, where k is equal to the number of 

chromosomes expected for each species. Percentages are normalized using expected genome 

sizes of 490Mb, 200Mb and 2,560Mb for Chardonnay, mosquito and thorny skate respectively. 
4 Percentages normalized using expected genome sizes of 490Mb, 200Mb and 2,560Mb for 

chardonnay, mosquito and thorny skate respectively. 
5 Results for HapSolo were generated using minimap2. 
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FIGURE LEGENDS 

Figure 1: A schematic showing the basic workflow and ideas behind HapSolo. The rectangles 

on the right illustrate the basic steps, including pre-processing (blue rectangles), steps within 

HapSolo (red rectangles) and post-processing (green rectangle). Some of the HapSolo steps 

include iterations to perform hill climbing calculations, as described in the text and shown by the 

arrow. On the left, step 1 shows the contigs from the primary assembly, and step 2 illustrates 

the all-by-all alignment of contigs. Step 3 provides examples of some properties of potential 

alignments. The metrics - ID, Q and QR - were defined to help capture some of the variation 

among these conditions. Step 4 illustrates that new primary assemblies are formed by dropping 

putative secondary contigs.  

Figure 2: A graph of the sorted performance of hill climbing over 5,000 iterations, with 

normalized Cost on the y-axis and the number of iterations on the x-axis. For most of our 

analyses with HC, we performed 5,000 iterations on each of 10 cores; here we are showing 

results from one core. The top right provides a graph with altered scale for better visualization of 

Chardonnay and mosquito results.  

Figure 3: The cumulative assembly size (cdf) based on contigs. For each Chardonnay and 

mosqutio, different reduction strategies are depicted: an unreduced assembly, HapSolo applied 

with default parameter values and no hill climbing (-HC) using BLAT or minima2 (MM2), and 

HapSolo with random starting values and 50,000 iterations of hill climbing (+HC) using BLAT or 

minimap2 (MM2). For thorny skate we only have minimap2 based purging. 

Figure 4: The cumulative assembly size (cdf) based on scaffolds for a different species in each 

row. There are two graphs for each species; the one on the left focuses on the chromosome 

length scaffold portion of the assembly (number of scaffolds), while the one on the right is the 

complete assembly on a log10 (number of scaffolds) scale. Each graph has five lines, 

representing the scaffolded genome based on purge_dups (purge_dups +HiC), the unreduced 

assembly (-HapSolo -HC +HiC), scaffold based on the HapSolo reduced assembly without hill 

climbing (+HapSolo -HC +HiC), and the scaffold based on the HapSolo reduced assembly with 

hill climbing (+HapSolo +HC +HiC), HapSolo reduced assembly with hill climbing using 

minimap2 (+HapSolo +MM2 +HC +HiC. In all graphs, the dotted line indicates the estimated 

number of chromosomes for the species.  
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