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Summary 

Cell fate acquisition is a fundamental developmental process in all multicellular organisms. Yet, 

much is unknown regarding how a cell traverses the pathway from stem cell to terminal 

differentiation. Advances in single cell genomics1 hold promise for unraveling developmental 
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mechanisms2-3 in tissues4, organs5-6, and organisms7-8. However, lineage tracing can be challenging 

for some tissues9 and integration of high-quality datasets is often necessary to detect rare cell 

populations and developmental states10,11. Here, we harmonized single cell mRNA sequencing 

data from over 110,000 cells to construct a comprehensive atlas for a stereotypically developing 

organ with indeterminate growth, the Arabidopsis root. To test the utility of the atlas to interpret 

new datasets, we profiled mutants for two key transcriptional regulators at single cell resolution, 

shortroot and scarecrow. Although both transcription factors are required for early specification 

of cell identity12, our results suggest the existence of an alternative pathway acting in mature cells 

to specify endodermal identity, for which SHORTROOT is required. Uncovering the architecture 

of this pathway will provide insight into specification and stabilization of the endodermis, a tissue 

analogous to the mammalian epithelium. Thus, the atlas is a pivotal advance for unraveling the 

transcriptional programs that specify and maintain cell identity to regulate organ development in 

space and time. 

 

Main text  

Precisely controlled transcriptional networks specify cell identity, relate positional information, 

and regulate maturation12. Defining how these networks orchestrate organ development and 

function requires detailed knowledge of spatiotemporal gene expression patterns for each cell type 

and developmental state. Here, we present the first large-scale Arabidopsis root gene expression 

atlas at single cell resolution. Using a general-purpose data pre-processing pipeline and an 

iterative, integrative strategy for annotation, we show that the atlas provides enhanced resolution 

to identify gene expression dynamics underlying the differentiation of each cell type and tissue in 

wild type and in cell-identity mutants.   
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The cellular organization of the Arabidopsis thaliana root simplifies the study of its spatiotemporal 

development13 (Fig 1a). Cell types are arranged in concentric layers around a central vasculature. 

Cell lineages are ordered longitudinally along a temporal developmental axis, with the oldest cells 

closest to the shoot and the youngest cells adjacent to the stem cell niche at the root tip. With each 

new cell division at the root tip, older cells are displaced shootward from the stem cell niche. Thus, 

the root enables interrogation of the full trajectory from stem cell to differentiated tissue14,15.  

 

The Arabidopsis root is a tractable model organ with established markers for most cell types as 

well as expression profiles for morphologically defined developmental stages16-18. Several groups 

have used the root to demonstrate the applicability of droplet-based single cell RNA sequencing 

(scRNA-seq) to plants19-23. However, a comprehensive root atlas encompassing all major cell types 

and developmental states is required to define the spatiotemporal transcriptional dynamics 

underlying organ development. 

 

Integration of 110,000 cells produces an organ-scale atlas 

To build a harmonized atlas at single cell resolution, we used the 10X Genomics scRNA-seq 

platform to profile over 96,000 cells from 13 biological replicates of whole, WT roots ranging in 

age from five to seven days post-germination (Supplementary Dataset 1). Gene expression 

matrices calculated by kallisto24 and bustools25 served as input to Cell preprOcessing PIpeline 

kaLlistO busTools (COPILOT), our pre-processing software, which incorporates detection and 

removal of low-quality cells and doublet cells (Supplementary Dataset 2; Methods).  
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Based on quality assessment by COPILOT, we additionally selected three published root scRNA-

seq datasets19,21 to augment datasets we generated and to demonstrate the feasibility of integrating 

Arabidopsis data produced by different groups (Supplementary Dataset 1). After excluding 

mitochondrial and chloroplast genes, as well as genes affected by protoplasting (the process of 

dissociating plant cells from their cell walls19), we used the multi-dataset integration pipeline in 

Seurat10,26 (Methods) to harmonize the cells into an organ-scale atlas (Extended Data Fig. 1; 

Supplementary Dataset 1).  

 

Cell annotation places tissues in known developmental contexts  

We assigned each cell to one of twelve root cell types (Fig 1b) and to each of the three 

developmental stages (Fig 1c) by combining information from three approaches for cell type 

annotation (Supplementary Datasets 1 and 3; Methods). In the first approach, we calculated the 

correlation coefficient of each cell’s expression profile to published gene expression profiles of 

root cell types isolated with fluorescent reporters17,18. Secondly, we used an information-theoretic 

approach to compute Index of Cell Identity (ICI) scores for each cell27,28 (Extended Data Fig. 2; 

Supplementary Datasets 4 and 5). The ICI score is quantitative and represents the relative 

contribution of cell identities as determined from a reference expression profile dataset. Third, we 

examined the expression of known cell type-specific marker genes in each cell (Supplementary 

Dataset 1). To assign developmental stage annotation labels, we compared each cell with published 

bulk gene expression profiles of manually dissected root tissue segments17,18.  

 

After annotation, a striking feature of the cell atlas ordination, visible on a Uniform Manifold 

Approximation and Projection (UMAP) plot, is the presence of four major branches corresponding 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.178863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178863
http://creativecommons.org/licenses/by-nc/4.0/


 5 

to four root tissues13 (Fig 1b). Lateral root cap (LRC) and columella cells comprise the root cap 

and form a single branch on the atlas UMAP (Fig 1b). Trichoblast (hair) and atrichoblast (non-

hair) cells constitute the epidermis and form a second major branch. Cortex and endodermis cells, 

which together make up the ground tissue, form a third branch. Finally, the phloem, xylem, 

procambium, and pericycle cell types are present in the stele tissue and form a fourth branch. The 

branches originate from a collection of cells within a putative stem cell niche (Fig 1b). Young, 

dividing meristematic cells are at the base of each branch followed by elongating and finally 

mature, differentiated cells at the tips (Fig 1c). The branching pattern indicates that distinct cell 

lineages are transcriptionally distinguishable very early after stem cell division. Overall, the atlas 

ordination spatially recapitulates what is known about root development and suggests that the 

combined transcriptome data will be useful in describing relationships between and within 

individual cell types. 

 

To test the quality of the atlas annotation, we used Seurat to perform differential gene expression 

analyses and asked if expected markers are enriched in each of the twelve cell type groups 

produced with our method as compared to the atlas as a whole. We observed enrichment of known 

cell type markers in their expected cell type groups12 (Fig 1d) and also identified many new genes 

that are enriched in a cell type or developmental stage (Supplementary Dataset 6). We 

subsequently asked if genes with cell-type specific expression patterns also show localized 

expression along the developmental gradient. In agreement with previous bulk expression data, we 

observed that gene expression is rarely specific to both a cell type and developmental stage (Fig 

1d).  
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Differentiation states and trajectories can be inferred across tissue types 

The stereotypic development of the root, coupled with data from existing expression maps, 

facilitates reconstruction of cell lineages from whole root scRNA-seq data. In addition to improved 

classification of cells into cell types, the resulting atlas provides enhanced resolution to identify 

gene expression dynamics underlying the differentiation of each cell and tissue type14,15. To infer 

developmental trajectories, we quantified cell state progression using two tools, CytoTRACE29 

and scVelo30. CytoTRACE predicts the differentiation state of each cell based on the diversity of 

expressed genes. scVelo is a likelihood-based dynamical model that infers gene-specific rates of 

transcription, splicing, and degradation for each cell. Using only transcriptional dynamics, scVelo 

predicts latent time, a representation of the actual time experienced by the cell during 

differentiation. The inferred latent time has been shown to successfully reconstruct timelines of 

cellular fate30. 

 

When applied to the entire atlas, both packages produce trajectories that are not consistent with 

previously reported data associating developmental stage with specific gene expression 

profiles12,31 (Extended Data Fig. 3). This result may reflect different maturation rates among 

tissues/lineages, which could be specific to plant development, or indicate issues with 

implementing trajectory inference analyses across complex organs. We thus subdivided the atlas 

into four tissue/lineage groups13: stele (consisting of pericycle, procambium, xylem, and, phloem 

cells), ground tissue (consisting of cortex and endodermis cells), epidermis/lateral root cap 

(consisting of trichoblast, atrichoblast, and lateral root cap cells), and columella root cap 

(consisting of columella cells). Unlike the four major branches that are evident on the atlas UMAP 

ordination (Fig 1b), the four groups isolated here for trajectory inference are based on shared stem 
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cell origin13. For example, although LRC and columella cells together comprise the root cap, the 

columella is patterned by unique stem cells. The LRC, by contrast, is patterned by divisions of the 

same stem cells that pattern the epidermis. Given the difficulty of distinguishing distinct stem cell 

types from the atlas (Methods), we incorporated all quiescent center (QC) and stem cell niche 

(SCN) cells into each group to ensure inclusion of stem cells that pattern each cell type.   

 

As CytoTRACE and scVelo trajectories are strongly correlated (Supplementary Dataset 7), we 

calculated a ‘consensus’ trajectory for each tissue/lineage group (Extended Data Fig. 4), which 

represents an averaged developmental progression (Methods). The consensus trajectories agree 

with developmental stage annotations and reflect existing biological knowledge. For example, in 

the stele, the procambium and pericycle differentiate more slowly than the xylem and phloem32,33. 

 

For closer examination of a predicted trajectory, we focused on the ground tissue (Fig 2), the 

development of which is well characterized12. The direction of the consensus trajectory (Fig 2d) 

for ground tissue cells within the atlas is consistent with the developmental stage annotation (Fig 

2c) and with expected expression profiles of known endodermis and cortex markers, including 

SCARECROW (SCR), MYB36, and CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN 1-4 

(Fig 2e,f). However, unlike the morphologically determined developmental zones, the consensus 

trajectory permits examination of gene expression dynamics at a fine resolution. For example, in 

consensus time group T1 at the beginning of the trajectory, 601 genes are enriched in cortex while 

493 genes are enriched in endodermis (Supplementary Dataset 8; Fig 2e). Given that cortex and 

endodermis are patterned by asymmetric divisions of the same stem cell, genes uniquely expressed 

early in development for each cell type may include new regulators of cell specification. Together, 
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the inferred trajectories lend credence to the utility of the atlas for downstream analyses of all 

tissue types, including the identification of gene regulatory networks underlying differentiation.  

 

scRNA-seq reveals differentiation pathways of cell identity mutants 

In addition to identifying new transcriptional regulators, scRNA-seq allows us to ask how known 

regulators control tissue and organ development. In the root, the transcription factors 

SHORTROOT (SHR) and SCARECROW (SCR) function in a transcriptional regulatory complex 

and are essential for stem cell niche maintenance and tissue patterning34-37. Using the atlas to 

inform interpretation of new datasets, we asked how the loss of SHR or SCR function affects tissue 

composition as well as cell identity and differentiation. We first transferred cell type and 

developmental stage annotation labels10 from the atlas to two biological replicates each of 

shortroot-2 (shr-2) and scarecrow-4 (scr-4) mutant roots and to five WT biological replicates 

profiled alongside the mutants (Supplementary Dataset 1). We performed reference-based 

integration with Seurat to harmonize these datasets (Methods).  

 

Both shr-2 and scr-4 mutants lack the asymmetric cell division that patterns the ground tissue, 

resulting in a single mutant tissue layer instead of the cortex and endodermis cell layers. Previous 

detection of tissue-specific markers and morphologies revealed that the mutant layer has cortex-

like attributes in shr-234 but a mixture of cortex and endodermis characteristics in scr-436. These 

phenotypes are clearly reflected in the scRNA-seq data given the significant reduction of cells 

expressing endodermal markers in both shr-2 and scr-4 (Fig 3a, c). A second striking observation 

is the decrease in shr-2 xylem, phloem, and pericycle cell abundance relative to WT (Fig 3 a,c). 

Similar changes are also detected for scr-4 (Fig 3c). These results are consistent with reports of 
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shr-2 and scr-4 defects in stele development38-42 but were not discernible in earlier shr-2 scRNA-

seq data19. Taken together, the resolution of the atlas annotation enables confident detection of 

major and subtle cell type changes in mutants. 

 

We next asked how individual cells contribute to the reported mixed identity of the scr-4 mutant 

layer36. One hypothesis is that cells acquire an endodermis or cortex identity early in development 

and the mutant layer is a heterogeneous mixture of the two cell types along the entire cell file. 

Alternatively, each cell may have a mixture of cortex and endodermis attributes. A third hypothesis 

is that cells acquire one identity early in development and subsequently change their fate.  

 

To distinguish among these possibilities, we integrated the scr-4 biological replicates and extracted 

only cortex and endodermis-annotated cells, which should constitute the mutant layer36. We asked: 

i) how confident is each scr-4 cell type annotation based on label transfer from the atlas10 and ii) 

if the proportion of cells with each cell type annotation changes according to developmental zone. 

Using Seurat, the annotation of each scr-4 cell was assigned using a weighted vote classifier based 

on reference cell labels from the atlas. This approach gives a quantitative ‘classification score’ for 

each predicted label10. Most meristematic and elongating scr-4 cells are confidently classified as 

cortex (Fig 3d). However, differentiating scr-4 cells are annotated as either cortex or endodermis, 

though some cells seem to have attributes of both. This result suggests that scr-4 mutant layer cells 

are cortex-like in the early stages of development but change their fate to acquire endodermal 

identity in the maturation zone. A similar analysis for shr-2 indicates that, unlike scr-4, nearly all 

presumed mutant layer cells are confidently annotated as cortex (Fig 3d).  
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To explore this possibility that some scr-4 mutant layer cells acquire cortex identity early in 

development and subsequently change their fate, we quantified mutant layer developmental 

progression to infer a trajectory (Fig 4). We first extracted endodermis, cortex, SCN, and QC cells 

from the two scr-4 biological replicates. Subsequently, we transferred consensus time labels from 

the WT ground tissue trajectory (Fig 4g) to the extracted scr-4 cells (Fig 4 b,e,h). Transferred 

annotation labels and associated classification scores (Extended Data Fig. 5) indicate that the 

youngest cells of the scr-4 mutant layer are confidently cortex-like while endodermis identity is 

evident only in older cells. By contrast, in a similar trajectory inferred for shr-2, cortex identity is 

predominant in all developmental states after T0 (Fig 4 c,f,i). 

 

Given these results, we asked how gene expression dynamics along the scr-4 and shr-2 mutant 

layer trajectories compare to the WT ground tissue trajectory. Genes differentially expressed along 

the WT cortex trajectory have similar dynamics in scr-4 and shr-2 (Fig 4j). However, only genes 

expressed at the end of the WT endodermis trajectory, including the CASPs, are similarly 

expressed along the scr-4 trajectory (group T9; Fig 4j). Conversely, WT endodermis-expressed 

genes are generally not expressed along the shr-2 trajectory (Fig 4j). Taken together, our work 

suggests that scr-4 mutant layer cells first acquire cortex identity but trans-differentiate in the late 

stages of development to acquire endodermal identity.  

 

Although the scr-4 root phenotype was characterized over 20 years ago, we report the first 

examination of how individual cells at all developmental stages contribute to the mixed identity of 

the mutant layer. Our results suggest that early specification of endodermis requires both SHR and 

SCR. However, in the absence of SCR, there exists an alternative pathway able to specify 
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endodermal identity in more mature cells, for which SHR is required. Given that root cell lineages 

are normally transcriptionally distinguishable very early in development (Fig 1b,c), uncovering 

the architecture of this new pathway could provide insight into novel mechanisms underlying 

specification and stabilization of the endodermis, an important tissue analogous to the mammalian 

epithelium43.  

 

Conclusion 

The Arabidopsis root is a powerful model to investigate the full developmental trajectory from 

stem cell to differentiated tissue using scRNA-seq. In plants, cell identity is primarily determined 

by spatial location44. The root atlas will facilitate interrogation of how neighboring cell types affect 

development and what aspects of differentiation are unique or shared between cell types. In 

addition to mutants, the atlas will guide interpretation of scRNA-seq data from plants treated with 

hormones or subjected to stress, as well as data from valuable crop species for which 

comprehensive cell-type markers are unavailable.  
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Figure 1.  110,000 cell root atlas representing all major cell types. Given the simple structure 

of the Arabidopsis root (a; Illustration adapted from the Plant Illustrations repository45) the atlas 

UMAP provides an intuitive visualization with cell types (b) and developmental stages (c) 

separated on the X and Y axes, respectively. Although lateral root cap and columella cells are 
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present only at the root tip, meristematic, elongation, and maturation developmental stage labels 

in (b) are consistent with other cell types for simplicity. The crossing over or apparent mixture 

between some cell types (b) is a result of 2D projection and absent in 3D (Supplementary Movie 

1). d) Expression patterns of marker genes for each developmental stage/cell type combination 

(identified by Receiver Operating Characteristic (ROC) analysis). Black boxes denote markers 

from each cell type. Colors of side annotations indicate cell type and developmental stage.  
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Figure 2. Inferred trajectories reflect the dynamics of cell type and tissue differentiation.  

Prior to trajectory inference, the atlas was subdivided into four tissues/lineages, one of which is 

the ground tissue (a-c). The consensus time annotation for the ground tissue (d) corresponds with 

the developmental stage annotation (c) and with expression of known endodermis and cortex 

markers (e, f). Differential expression analyses between ten subgroups (T0 to T9; generated by 

partitioning the trajectory into ten groups, each with equal numbers of cells) along the ground 

tissue trajectory identify genes dynamically expressed during cortex and endodermis 

differentiation (e).  
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Figure 3. Atlas informs cell type abundance and identity changes in shr-2 and scr-4 mutants. 

a and b) UMAP projection of WT integrated with shr-2 and scr-4 with cell type (a) and 

developmental stage (b) annotations. Data from each genotype was down-sampled to 10,000 cells 

to facilitate UMAP comparison. c) Differential abundance analysis using full integrated dataset 

reports significant changes in per-label cell type abundance between mutants and WT. *** False 

Discovery Rate (FDR) < 0.001; ** FDR < 0.01; * FDR < 0.05. d) Difference between cortex and 

endodermis cell type classification scores for each cell plotted by developmental stage. 

Classification scores calculated by Seurat during label transfer range from zero (lowest 

confidence) to one (highest confidence).  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.178863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178863
http://creativecommons.org/licenses/by-nc/4.0/


 16 

 

Figure 4. Consensus time trajectory inference suggests trans-differentiation of scr-4 mutant 

layer. Cortex, endodermis, QC, and SCN cells were extracted from scr-4 (b,e) and shr-2 (c,f). 

Consensus time annotation labels were transferred from the WT ground tissue to scr-4 (h) and shr-

2 (i). Plots for WT ground tissue are shown for comparison (a,d,g). Scaled expression of genes 

differentially expressed between ten subgroups (T0-T9) along the WT ground tissue trajectory are 

also shown for scr-4 and shr-2 mutant layer trajectories (j).  
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Methods  

Plant material and growth conditions 

Seeds from wild type Arabidopsis thaliana ecotype Columbia (Col-0), shortroot-2 (Col-0; ABRC 

stock number CS2972), and scarecrow-4 (Landsberg background; ABRC stock number CS6505; 

we backcrossed to Col-0 > 5 times) were surface sterilized with a 50% (v/v) bleach, 0.05% (v/v) 

Tween-20 solution for 10 minutes and subsequently stratified for 48 hours at 4°C. Seeds were 

sown at a density of ~150-300 seeds/row on 1X Linsmaier and Skoog (LSP03-1LT, Caisson Labs; 

pH 5.7), 1% sucrose media covered by 100 µm nylon mesh. Plates were placed vertically in a 

Percival chamber programmed to 16h light, 8h dark conditions at 22°C.  

 

Protoplast Isolation and scRNA-seq 

Five days after sowing, 1,000-3,500 primary roots/sample were cut ~0.5 cm from the root tip and 

placed in a 35 mm-diameter dish containing a 70 µm cell strainer and 4.5 mL enzyme solution 

(1.25% [w/v] cellulase [ONOZUKA R-10, Yakult], 0.1% Pectolyase [P-3026, Sigma], 0.4 M 

mannitol, 20 mM MES (pH 5.7), 20 mM KCl, 10 mM CaCl2, 0.1% bovine serum albumin, and 

0.000194% (v/v) ß-mercaptoethanol). After digestion at 25°C for 1 hour at 85 rpm on an orbital 

shaker with occasional stirring, the cell solution was filtered twice through 40 µm cell strainers 

and centrifuged for 5 minutes at 500 x g in a swinging bucket centrifuge. Subsequently, the pellet 
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was resuspended with 1 mL washing solution (0.4 M mannitol, 20 mM MES (pH 5.7), 20 mM 

KCl, 10 mM CaCl2, 0.1% bovine serum albumin, and 0.000194% (v/v) ß-mercaptoethanol) and 

centrifuged for 3 minutes at 500 x g. The pellet was resuspended in washing solution to a final 

concentration of ~1000 cells/ µL. The protoplast suspension was then loaded onto microfluidic 

chips (10X Genomics) with v3 chemistry to capture either 5,000 or 10,000 cells/ sample. Cells 

were barcoded with a Chromium Controller (10X Genomics). mRNA was reverse transcribed and 

Illumina libraries were constructed for sequencing with reagents from a Gene Expression v3 kit 

(10X Genomics) according to the manufacturer’s instructions. cDNA and final library quality were 

assessed with a Bioanalyzer High Sensitivity DNA Chip (Agilent). Sequencing was performed 

with a NovaSeq 6000 (Illumina).  

 

Read alignment, generation of digital gene expression matrices, and pre-processing 

FASTQ files were generated from Illumina BCL files with Cell Ranger (v3.1.0) mkfastq (10X 

Genomics). Subsequently, gene-by-cell raw count matrices of spliced and un-spliced transcripts 

were generated using kallisto24 (v0.46.2) and bustools25 (v0.40.0) as well as R packages 

BUSpaRse46 (v1.1.3) and BSgenome (v1.54.0)47. The pipeline is summarized on our scKB GitHub 

repository (github.com/Hsu-Che-Wei/scKB). Reads were aligned to the Arabidopsis genome 

BSgenome object (“BSgenome.Athaliana.TAIR.TAIR9”) with TAIR10 gene annotation file. 

Samples sc_9 and sc_10 (Supplementary Dataset 1) contained a mixture of Arabidopsis and rice 

(Oryza sativa X. Kitaake) root protoplasts. Since only the Arabidopsis cells were of interest for 

this study, we mapped the reads to a concatenated version of the Arabidopsis TAIR10 and rice 

MSU7 genomes and retained only the reads which specifically mapped to the Arabidopsis genome. 
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The matrices of spliced and un-spliced counts were combined into a total count matrix. Genes with 

no counts in any cell were removed. Cells were filtered based on the following rationale and 

procedure. First, putative dying cells were identified based on the enrichment of mitochondrial 

gene expression (> 5% of the total UMI counts) and the mode of the putative dying cells’ count 

distribution was treated as the initial boundary to separate cells into two groups representing low 

and high-quality cells. Second, expression profile references were built for both low and high-

quality cells by taking the average of normalized counts. Third, the whole distribution of low-

quality cells was recovered by comparing the Pearson correlation coefficient of each high-quality 

cell to the two references. In other words, if cells in the high-quality group have higher correlation 

to the low-quality cell profile than the high-quality cell profile, then those cells would be re-

annotated as low quality. Finally, the low-quality cells and cells enriched in mitochondrial 

expression were removed along with the top 1% of high-quality cells in order to address any issues 

associated with outliers. Putative doublets were removed using DoubletFinder48 with default 

parameters according to the estimated doublet rate (10X Genomics Chromium Single Cell 3' 

Reagent Kits User Guide (v3 Chemistry)). This pre-processing pipeline is available as an R 

package, COPILOT (github.com/Hsu-Che-Wei/COPILOT), with a jupyter notebook tutorial. Prior 

to downstream analyses, protoplasting-induced genes19 as well as mitochondrial and chloroplast 

genes were removed. 

 

Data normalization and clustering 

Using Seurat version 3.1.5, data were normalized using the SCTransform method49 followed by 

principal component analysis (PCA), non-linear dimensionality reduction using UMAP, and 

clustering. Fifty principal components were calculated using RunPCA function with parameters 
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“approx” set to FALSE. UMAP embedding was generated by RunUMAP function using all 50 

principal components with parameters n_neighbors = 30, min_dist = 0.3, umap.method = “umap-

learn”, metric = “correlation”. Clustering was done using FindClusters function with parameters 

res = 0.5, algorithm = 4. Protoplasting-induced genes19, mitochondrial genes, and chloroplast 

genes were excluded during PCA, UMAP dimensionality reduction, and clustering. All steps are 

incorporated into the COPILOT R package and a jupyter notebook demonstrating the analysis is 

provided (github.com/Hsu-Che-Wei/COPILOT).  

 

Integration of Seurat objects 

Data were integrated following the Seurat reference-based integration pipeline10,26. The sample 

with the highest median UMI/gene per cell and number of genes detected was chosen as the 

reference (sample name: sc_12; Supplementary Dataset 1). Overall, 16 WT biological replicates 

were used to build the atlas, including three previously published samples (Supplementary Dataset 

1). A jupyter notebook demonstrating the integration process is available on Github 

(github.com/Hsu-Che-Wei/COPILOT). 

 

Atlas cell type and developmental stage annotation 

The atlas annotation is based on comparison to published whole-transcriptome profiles17,18 of root 

cells isolated from reporter lines as well as known markers (Supplementary Dataset 1) that have 

been previously validated and show specific local expression on the atlas UMAP. We combined 

three annotation methods, described below.   

 

Correlation-based annotation 
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Prior to scRNA-seq sample integration, Pearson correlation coefficient was calculated between 

each cell and whole-transcriptome reference expression profiles for cell types and developmental 

zones. We used bulk RNA-seq data17 previously generated for 14 cell types isolated with FACS: 

phloem and companion cells (cells isolated with a fluorescent reporter for APL), developing cortex 

(CO2), hair cells (COBL9), mature cortex (CORTEX), mature endodermis (E30), non-hair cells 

(GL2), columella (PET111), phloem pole pericycle (S17), mature xylem pole (S18), protophloem 

and metaphloem (S32), developing xylem (S4), endodermis and QC cells (SCR), LRC & non-hair 

cells (WER), and QC cells (WOX5). We also compared each cell to bulk RNA-seq profiles 

previously generated for hand-dissected tissue segments corresponding to three morphologically 

defined developmental zones: meristem, elongation, and maturation17. Further, we compared each 

cell in the atlas to ATH1 microarray data generated for thirteen cell types18: QC cells (AGL42), 

hair cells (COBL9), cortex cells (CORTEX), non-hair cells (GL2), xylem pole pericycle (JO121), 

lateral root cap (J3411), columella (PET111), phloem pole pericycle (S17), mature xylem (S18), 

meristematic xylem (S4), phloem (S32), endodermis (SCR5), and phloem (SUC2). Lastly, we 

compared each cell in the atlas to ATH1 microarray data generated for thirteen hand-dissected 

tissue segments: columella, meristem-1 (meri-1), meri-2, meri-3, meri-4, meri-5, meri-6, elong-7, 

elong-8, mat-9, mat-10, mat-11, and mat-12. Each expression profile was built by first aligning 

the quality-filtered FASTQ reads, which are processed by Trimmomatic50 (v.0.39) with default 

parameters and quality-checked by FastQC51 (v.0.11.8), to the TAIR10 genome using STAR52 

(v.2.7.1a) with default parameters. Then, count normalization was carried out with DESeq and vst 

function in R package DESeq253 (v1.24.0) with default parameters. 181 genes that are highly 

variable across cell types in both RNA-seq and microarray data were kept, while 500 highly 

variable genes across 3 developmental zones and 809 highly variable genes across 13 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.178863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178863
http://creativecommons.org/licenses/by-nc/4.0/


 26 

developmental sections were selected, respectively. The SCTranform-normalized counts in each 

cell and DEseq2 normalized counts in each expression profile were used to calculate Pearson 

correlation coefficient. Each cell was labeled with the cell type and developmental zone with which 

it had the highest correlation coefficient.  

 

Index of Cell Identity (ICI) calculation 

Another method to infer cell identity was an Index of Cell Identity (ICI)-based classification 

approach28. We identified 13 datasets16-18,54-61 consisting of cell-type specific gene expression 

profiles (RNA-seq or ATH1 Microarray) for the 18 cell types considered for this atlas (Extended 

Data Fig. 2; Supplementary Datasets 4 and 5). RNA-seq data was preprocessed by adapter- and 

quality-trimming raw FASTAQ reads using the BBDuk tool (BBTools suite62; 

sourceforge.net/projects/bbmap/), using adapter sequences found in the adapters.fa resource within 

bbtools, and parameters, k=23, mink=11, hdist=1, ktrim=r, and qtrim=10. Trimmed reads were 

mapped with the STAR63 utility (v. 2.7.2b) using default parameters with counts per gene 

quantified using the quantMode GeneCounts parameter. Read counts were normalized using the 

DESeq2 R package53 (v1.26.0), using a design matrix that treats datasets generated with the same 

marker:GFP construct as replicates, by running the estimateSizeFactors, estimateDispersions, and 

the vst functions to normalize and model gene expression. Microarray expression datasets were 

normalized using the gcrma64 R package (v2.58.0). RNA-seq and microarray expression datasets 

were then normalized together using the FSQN65 R package (v0.0.1) to model the RNA-seq gene 

expression distributions using the microarray data as a reference. Normalized data from both the 

combined ATH1 and RNASeq datasets, as well as the RNASeq datasets alone, were then used to 

build two ICI specificity score (spec) tables (using the same methodology as described by Efroni 
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and colleagues28, binning expression of each gene into 10 bins, with a minimum background bin 

set to 3. Markers were identified from this spec table, using a total information level of 50, and 

normalized, scaled expression of all identified markers was examined in all original datasets. 

Based on how well correlated each dataset was with its associated datasets of the same cell type, 

some datasets were filtered out. After dataset filtering, the final spec tables were re-calculated with 

the same parameters. The spec tables were then used (with an information level of 50) to compute 

ICI scores, p-values (using the permutation procedure described previously28) for all 18 cell types 

for cells in the atlas, using the log-normalized data values in the SCT slot of each individual 

dataset’s Seurat object. For each cell, the highest-scoring cell type (from either the combined 

ATH1/RNASeq or RNASeq only spec tables) was assigned as the ICI-derived annotation. 

 

Marker-based annotation 

The enrichment scores of known cell type-specific markers (Supplementary Dataset 1) were 

calculated for each cell in the atlas using escoring (github.com/ohlerlab/escoring). Briefly, 

escoring uses cluster/reference-free, rank based statistics to calculate the significance of local 

enrichment of gene expression based on the distance between cells. Distance among cells in 

UMAP space was estimated with radial function over the Euclidean distance (RBF kernel) metric 

and the size of cell neighborhood was determined by setting the parameter “gamma” to 0.8. A gene 

is considered significantly enriched with respect to a cell if its enrichment score is more than 5 

standard deviations away from the mean of the permutation null distribution. This permutation 

null distribution is obtained by applying enrichment scoring to 100 times permuted expression 

vectors. Cells were then annotated with a cell type label according to which significantly enriched 

marker had the highest enrichment score.  
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In addition to evaluating known markers, we used escoring to identify new in silico markers for 

regions of the atlas that were annotated with low confidence with the correlation-based and ICI 

annotation methods. We define a low confidence annotation as correlation coefficient < 0.6 for all 

known markers and ICI adjusted p-value > 0.01. New markers identified with escoring represent 

the most enriched genes in the regions/clusters/neighborhood of a specific cell. 

 

Combination of annotation methods 

Final cell type annotations were assigned by combining information from the three annotation 

approaches. First, considering all confidently annotated cells, if a cell had the same label from at 

least two annotation methods, then it was annotated as such. Otherwise the cell was treated as not 

annotated. Labels of some cell types were merged due to lack of consistency among different 

annotation approaches (e.g. xylem pole pericycle and phloem pole pericycle were merged as 

pericycle while phloem, companion cells and sieve elements were merged as phloem). 

Subsequently, we built new reference expression profiles for each cell type by taking the average 

of the expression values for annotated cells. All cells were then re-annotated using the correlation-

based approach by comparison to the newly built references. Finally, at the base of the UMAP, we 

identified cells from the quiescent center (QC). We labelled cells with support from multiple 

annotation approaches as “Putative Quiescent Center” in our Seurat objects. For simplicity, we 

refer to these cells as ‘QC’ here. We also found cells at the base of the UMAP for which a QC 

annotation was supported by only the escoring marker annotation method. We labelled these cells 

as “Stem Cell Niche.” In addition, for regions of the UMAP that could not be confidently annotated 

with correlation-based and ICI methods (e.g., columella and lateral root cap, for which known 

markers are scarce), the annotation was based solely on the escoring marker annotation method. 
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We found that putative markers for specific Arabidopsis root stem cells55 are not specifically 

expressed on the UMAP and, in general, are highly transcriptionally correlated with the putative 

QC cells. Thus, we were unable to distinguish specific types of stem cells and chose to use a single 

annotation label. 

 

To assign a developmental stage annotation to each cell, we used an approach similar to that 

described for cell type annotation. We built new references for three developmental zones 

(Meristem, Elongation and Maturation) based on cells that are confidently annotated with the same 

label according to correlation with RNA-seq17 and microarray-based18 whole-transcriptome 

profiles. In addition, we also leveraged information from CytoTRACE (see section “Trajectory 

inference”) to divide cells into finer groups, which were used to build reference expression profiles. 

We performed this step separately for each cell type. Finally, all cells were re-annotated using the 

correlation-based approach by comparing to the newly built references. 

 

In practice, cell type and developmental stage annotations were performed simultaneously, 

meaning that the newly built references described in previous sections refer to the combination of 

developmental stage and cell type. A jupyter notebook demonstrating the annotation process is 

available from Github (github.com/Hsu-Che-Wei/COPILOT). 

 

Identification of cell-type and developmental stage-specific markers 

To identify genes enriched in each radial cell type, we used the FindMarkers function implemented 

in Seurat. We first prefiltered features using a log2 fold-change threshold of 2 and a minimum 

percentage difference in expression of 0.25. We then performed differential expression testing 
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using the ROC method that implements a standard AUC classifier. Each cell identity of interest 

was down-sampled to a maximum of 10,000 cells to speed computation. Classification power 

(AUC) in this analysis ranges from 0 (random) to 1 (perfect). Only markers with an AUC greater 

than 0.75 were retained for downstream analysis. We rank ordered markers based on AUC, 

percentage difference and fold-change. A similar analysis was carried out to identify cell type and 

developmental stage specific markers. The top 20 markers from each cell type and developmental 

stage combination were manually examined and one marker for each category was plotted using 

Seurat’s DotPlot function. Additional plot decorations were constructed using ggplot2. 

 

Trajectory inference 

Trajectories were inferred with R package CytoTRACE29 (v0.1.0) and Python-based scVelo30 

(v.0.1.25), both of which are able to identify the root of the trajectory in an unsupervised manner 

and are not affected by UMAP embeddings. The batch-corrected (‘integrated’ assay in Seurat 

object) expression value was manually made non-negative before being fed to CytoTRACE and 

scVelo. The ratio of spliced and un-spliced transcripts of each gene and cell was calculated using 

raw counts. The ratio was then multiplied by the batch-corrected non-negative expression count 

matrix to generate the corresponding spliced and unspliced count matrices, which serve as input 

for scVelo. Latent time was then estimated by running pp.moments function with parameter, n_pcs 

= 50, n_neighbors = 100 and tl.velocity function with mode set to “dynamical” in scVelo, while 

CytoTRACE was implemented with default parameters. A consensus trajectory was derived by 

taking the average of CytoTRACE and scVelo-inferred latent time. Consensus time was estimated 

for each tissue/lineage independently to address differences in maturation rates. The consensus 

time for QC and SCN were then averaged and all the cells in the trajectory were divided into 10 
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evenly sized groups, each containing the same number of cells. The groups were labeled T0 to T9 

based on consensus time order. A jupyter notebook demonstrating how results from the two tools 

were combined is provided under the GitHub repository for COPILOT (github.com/Hsu-Che-

Wei/COPILOT). 

 

Identification of differentially expressed genes along ground tissue trajectory 

We also applied the approach described under ‘Identification of Marker Genes’ to identify genes 

that vary along the developmental progression of the cortex and endodermis within WT ground 

tissue. We used the combination of cell type (cortex or endodermis) and consensus time group (10 

groups ranging from T0 to T9) as identity of interest among which differential expression analysis 

was performed. Spearman’s correlation of each marker with consensus time was considered as an 

additional metric to aid in selecting genes that vary along the gradient of differentiation. Ten genes 

were selected for each cell type and consensus time group combination resulting in a total of 91 

and 92 non-redundant genes to plot for cortex and endodermis, respectively. Genes were arranged 

according to their highest rank along consensus time. Pseudo-bulk expression profiles within each 

consensus time group were calculated for each gene and row normalized expression values were 

then displayed using ComplexHeatmap66 in R. 

 

Mutant analysis 

Annotations were transferred from the atlas to the mutant samples as well as to the wild type 

samples that were grown and processed together with the mutants. Label transfer was performed 

following Seurat’s label transfer pipeline. A jupyter notebook demonstrating label transfer from 

the atlas to mutant samples is available on Github (github.com/Hsu-Che-Wei/COPILOT). 
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Differential abundance of cell identity labels in shr-2 and scr-4 mutants 

We used differential abundance analysis to examine which cell types were enriched or depleted in 

shr-2 or scr-4 compared to WT67. First, we quantified the number of cells assigned to each label 

on a per sample basis. We then used the EdgeR68,69 package to fit a negative binomial generalized 

linear model in which the counts represent cells per label. Normalization was conducted according 

to the number of cells per sample. Separate contrasts were used to compare shr-2 versus WT or 

scr-4 versus WT, each with a blocking factor to account for any potential batch effects between 

different experimental runs. Differences in abundance were tested using the function glmQLFTest. 

P-values were adjusted for multiple testing according to Benjamini and Hochberg70 and cell type 

labels with a false discovery rate less than 0.05 were considered significantly altered. We then 

used ComplexHeatmap66 in R to plot the log2 fold-change estimates (mutant/WT) from EdgeR. 

 

Data Availability 

scRNA-seq data and Seurat objects from this study have been deposited in the National Center for 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) with the accession number 

GSE152766. A web browser for the atlas is soon to be made available on Phytozome.  

 

Code Availability 

All code from this study, as well as detailed tutorials for COPILOT, annotation, and trajectory 

inference, are available on Github (github.com/Hsu-Che-Wei/COPILOT). 
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Extended Data Figure 1. Cells from sixteen WT biological replicates are well mixed in 

integrated atlas. Each cell on the UMAP is colored based on the sample of origin.  
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Extended Data Figure 2. Filtering datasets for ICI computation. Datasets corresponding to 

FACS-sorted root protoplasts using a variety of cell-type specific GFP markers (278) were 

downloaded, normalized together (see Methods), and used to make an ICI specification score 

table28. Top markers were identified from this specification score table (corresponding to an 

information level of 50). a) Expression levels of identified markers for each cell-type specific 

dataset. Dots on the left indicate whether that dataset was subsequently filtered out. b) Expression 

of newly identified markers after filtering, then re-computing the specification table (using both 
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affymetrix-based and RNASeq-based datasets together). A pair of specification tables were then 

generated using either RNASeq-derived data alone, or both RNASeq- and Affymetrix-derived 

datasets together. ICI scores were then computed using both methods, and the top-scoring cell type 

is indicated in c, plotted on the Root Cell Atlas UMAP. d) The same ICI-based cell identities as 

shown in c, but with non-significant (adjusted P < 0.05) cell type assignments removed. 
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Extended Data Figure 3. Trajectories inferred for the full atlas do not reflect existing 

biological knowledge. a) CytoTRACE was used to infer the developmental state of each cell in 

the atlas. Warmer colors denote younger cells while cooler colors denote older cells. b) scVelo 

was used to calculate latent time. Cooler colors denote younger cells while warmer colors denote 

older cells.  
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Extended Data Figure 4. Consensus trajectories inferred for the atlas subdivided into 

tissues/lineages. The direction of trajectories inferred for a) stele (phloem, xylem, procambium, 

and pericycle), b) epidermis (atrichoblast and trichoblast) + lateral root cap, and c) columella root 

cap agree with developmental stage annotations (d-i). Warm colors on consensus time plots 

indicate earlier developmental states while cool colors indicate late developmental states (g-i).  
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Extended Data Figure 5. Late stage scr-4 mutant layer cells are most confidently assigned 

endodermis identity. The scr-4 (a) and shr-2 (b) mutant layer trajectories are shown with 

consensus time group labels. Cortex (c,d) and endodermis (e,f) label classification scores are 

shown for the two mutant layer trajectories. Classification scores were calculated by Seurat for 

each cell type label transferred from the atlas. Classification scores range from zero (lowest 

confidence) to one (highest confidence).  
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SI Guide 

Supplementary Dataset 1:  

Excel file with sample information for each scRNA-seq dataset in the atlas (sheet 1); number of 

cells per cell type and developmental stage label (sheet 2); and curated list of cell type-specific 

marker genes used for annotation (sheet 3). 

Supplementary Dataset 2:  

PDF with COPILOT summaries for the 16 scRNA-seq datasets in the root atlas. 

Supplementary Dataset 3:  

Excel file with metadata for each cell within the atlas, including final developmental stage, cell 

type, and consensus time group labels. 

Supplementary Dataset 4:  

Excel file with RNA-seq counts used to build Index of Cell Identity (ICI) specification table.  

Supplementary Dataset 5:  

Excel file with metadata for ICI-based classification method used to infer cell type identity for 

atlas cells.  

Supplementary Dataset 6:  

Excel file with cell type-specific and developmental stage-specific markers identified from the 

atlas. 

Supplementary Dataset 7:  

Excel file with Pearson correlation coefficient values calculated for CytoTRACE, scVelo latent 

time, and consensus time trajectories for each tissue/lineage. 

Supplementary Dataset 8:  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.178863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178863
http://creativecommons.org/licenses/by-nc/4.0/


 45 

Excel file with genes enriched in cortex and endodermis cells of each consensus time group along 

the WT ground tissue trajectory. 

Supplementary Movie 1: 

Animation showing the 3D atlas UMAP with cell type annotation.  
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