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Abstract- There are now many environments in which humans need to monitor moving displays and 10 

only rarely act, such as train control and driving autonomous vehicles; lapses of attention in these 11 

circumstances can have tragic consequences. Problematically, we know that it is difficult to sustain 12 

attention under these monitoring or vigilance conditions and performance drops: when target 13 

events are rare, we tend to miss them, or are slower to respond. This ‘rare target’ effect becomes 14 

more marked with longer tasks, known as a vigilance decrement. Despite the importance, we still 15 

have limited understanding of how the brain processes information during monitoring, particularly 16 

with dynamic stimuli, and how this processing changes when attention lapses. Here, we designed a 17 

multiple-object monitoring (MOM) paradigm that required sustained attention to dynamic stimuli, 18 

and used multivariate analyses of magnetoencephalography (MEG) data to examine how the neural 19 

representation of the information in the display varied with target frequency and time on the task. 20 

Behavioural performance decreased over time for the rare target (monitoring) condition, but not for 21 

the frequent target (active) condition. This change was mirrored in the neural results: under 22 

monitoring conditions, there was weaker coding of the critical distance between objects during time 23 

periods when vigilance decrements in performance occurred. There was also weaker informational 24 

connectivity between peri-occipital and peri-frontal brain areas in rare versus frequent target 25 

conditions. We developed a new analysis which used the strength of information decoding to predict 26 

whether the participant was going to miss the target on a given trial. We could predict behavioural 27 

errors more than a second before they occurred. This provides a first step in developing methods to 28 
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predict and pre-empt behavioural errors due to lapses in attention and provides new insight into 29 

how vigilance decrements are reflected in information coding in the brain. 30 

Introduction 31 

When people monitor displays for rare targets, they are slower to respond and more likely to miss 32 

those targets relative to frequent target conditions (Wolfe et al., 2005; Warm et al., 2008; Rich et al., 33 

2008). This effect is more pronounced as the time doing the task increases, which is often called a 34 

‘vigilance decrement’. Theoretical accounts of vigilance decrements fall into two main categories. 35 

‘Cognitive depletion’ theories suggest performance drops as cognitive resources are ‘used up’ by the 36 

difficulty of sustaining attention under vigilance conditions (Helton et al., 2008; Helton et al., 2011; 37 

Warm et al., 2008). In contrast, ‘mind wandering’ theories suggest that the boredom of the task 38 

tends to result in insufficient involvement of cognitive resources, which in turn leads to performance 39 

decrements (Manly et al., 1999; Smallwood et al., 2006; Young et al., 2002). Either way, there are 40 

many real-life situations where such a decrease in performance over time can lead to tragic 41 

consequences, such as the Paddington railway disaster (UK, 1999), in which a slow response time to 42 

a stop signal resulted in a train moving another 600 meters past the signal into the path of an 43 

oncoming train. With the move towards automated and semi-automated systems in many high-risk 44 

domains (e.g., power-generation and trains), humans now commonly need to monitor systems for 45 

infrequent computer failures or errors. These modern environments challenge our attentional 46 

systems and make it urgent to understand the way in which monitoring conditions change the way 47 

important information about the task is encoded in the human brain.  48 

 49 

To date, most vigilance and rare target studies have used simple displays with static stimuli. 50 

Traditional vigilance tasks, inspired by radar operators in WWII (Mackworth, 1948), require 51 

participants to respond to infrequent visual events on otherwise blank screens (Temple et al., 2000).  52 
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Contemporary vigilance tasks, like the Sustained Attention to Response Task (SART), require 53 

participants to respond frequently to a rapid stream of static displays and occasionally withhold a 54 

response (Rosvold et al., 1956; Rosenberg et al., 2013). However, modern environments (e.g., rail 55 

and air traffic control) have additional challenges not encapsulated by these measures. This includes 56 

multiple moving objects, potentially appearing at different times, and moving simultaneously in 57 

different directions. When an object moves in the space, its neural representation has to be 58 

continuously updated so we can perceive the object as having the same identity. Tracking moving 59 

objects also requires considerable neural computation: in addition to spatial remapping, for 60 

example, we need to predict direction, speed, and the distance of the object to a particular 61 

destination. These features cannot be studied using static stimuli; they require objects that shift 62 

across space over time. In addition, operators have complex displays requiring selection of some 63 

items while ignoring others. We therefore need new approaches to study vigilance decrements in 64 

situations that more closely resemble the real-life environments in which humans are now 65 

operating. Developing these methods will provide a new perspective on fundamental questions of 66 

how the brain implements sustained attention in moving displays, and the way in which monitoring 67 

compared with active task involvement changes the encoding of task information. These new 68 

methods may also provide avenues to optimise performance in high-risk monitoring environments. 69 

 70 

The brain regions involved in maintaining attention over time has been studied using functional 71 

Magnetic Resonance Imaging (fMRI), which measures changes in cerebral blood flow (Adler et al., 72 

2001; Benedict et al., 2002; Coull et al., 1996; Gilbert et al., 2006; Johannsen et al., 1997; Ortunoe t 73 

al., 2002; Perin et al., 2010; Scnell et al., 2007; Sturm et al., 1999; Tana et al., 2010; Thakral et al., 74 

2009; Wingen et al., 2008). These studies compared brain activation in task vs. resting baseline or 75 

sensorimotor control (which involved no action) conditions and used univariate analyses to identify 76 

regions with higher activation under task conditions. This has the limitation that there are many 77 
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features that differ between the contrasted (subtracted) conditions, not just the matter of sustained 78 

attention. Specifically, this comparison cannot distinguish whether the activation during sustained 79 

attention is caused by the differences in the task, stimuli, responses or a combination of these 80 

factors. As it is challenging to get sufficient data from monitoring (vigilance) tasks in the scanner, 81 

many previous studies used tasks with relatively frequent targets, in which vigilance decrements 82 

usually do not occur. However, despite these challenges, Langner et al. (2013) reviewed vigilance 83 

neuroimaging studies and identified a network of right-lateralized brain regions including 84 

dorsomedial, mid- and ventrolateral prefrontal cortex, anterior insula, parietal and a few subcortical 85 

areas that they argue form the core network subserving vigilant attention in humans. The areas 86 

identified by Langner et al. (2013) show considerable overlap with a network previously identified as 87 

being recruited by many cognitively challenging tasks, the ‘multiple demand’ (MD) regions, which 88 

include the right inferior frontal gyrus, anterior insula and intra parietal sulcus (Duncan & Owen, 89 

2000; Duncan, 2010; Fedorenko et al., 2013; Woolgar et al., 2011; Woolgar et al., 2015a; Woolgar et 90 

al., 2015b).  91 

 92 

Other fMRI studies of vigilance have focused on the default mode network, composed of discrete 93 

areas in the lateral and medial parietal, medial prefrontal, and medial and lateral temporal cortices 94 

such as posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), which is 95 

thought to be active during ‘resting state’ and less active during tasks (Greicius et al., 2003; Greicius 96 

et al., 2009; Raichle et al., 2015). Eichele et al., (2008) suggested that lapses in attention can be 97 

predicted by decrease of deactivation of this default mode network. In contrast, Weissman et al. 98 

(2006) identified deactivation in the anterior cingulate and right prefrontal regions in pre-stimulus 99 

time windows when targets were missed. More recently, Sadaghiani et al. (2015) showed that the 100 

functional connectivity between sensory and ‘vigilance-related’ (Cingulo-Opercular) brain areas 101 

decreased prior to behavioural misses in an auditory task while the connectivity increased between 102 
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the same sensory area and the default-mode network. These suggest that modulation of 103 

interactions between sensory and vigilance-related brain areas might be responsible for behavioural 104 

misses in monitoring tasks. 105 

 106 

Detecting changes in brain activation that correlate with lapses of attention can be particularly 107 

challenging with fMRI, given that it has poor temporal resolution. Electroencephalography (EEG), 108 

which records electrical activity at the scalp, has much better temporal resolution, and has been the 109 

other major approach for examining changes in brain activity during sustained attention tasks. 110 

Frequency band analyses have shown that low-frequency alpha (8 to 10.9 Hz) oscillations predict 111 

task workload and performance during monitoring of simulated air traffic (static) displays with rare 112 

targets, while frontal theta band (4 to 7.9 Hz) activity predicts task workload only in later stages of 113 

the experiment (Kamzanova et al., 2014). Other studies find that increases in occipital alpha 114 

oscillations can predict upcoming error responses (Mazaheri et al., 2009) and misses (O'Connell et 115 

al., 2009) in go/no-go visual tasks with target frequencies of 11% and 9%, respectively. These 116 

changes in signal power that correlate with the task workload or behavioural outcome of trials are 117 

useful, but provide relatively coarse-level information about what changes in the brain during 118 

vigilance decrements. 119 

 120 

Understanding the neural basis of decreases in performance over time under vigilance conditions is 121 

not just theoretically important, it also has potential real-world applications. In particular, if we 122 

could identify a reliable neural signature of attentional lapses, then we could potentially intervene 123 

prior to any overt error. For example, with the development of autonomous vehicles, being able to 124 

detect when a driver is not engaged, combined with information about a potential threat, could 125 

allow emergency braking procedures to be initiated. Previous studies have used physiological 126 

measures such as pupil size (Yoss, et al., 1970), body temperature (Molina et al., 2019), skin 127 
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conductance, blood pressure, etc. (Lohani et al., 2019) to indicate the level of human arousal or 128 

alertness, but these lack the fine-grained information necessary to distinguish transient dips from 129 

problematic levels of inattention in which task-related information is lost. In particular, we lack 130 

detail on how information processing changes in the brain during vigilance decrements. This 131 

knowledge is crucial to develop a greater theoretical and practical understanding of how humans 132 

sustain vigilance.  133 

 134 

In this study, we developed a new task, multiple object monitoring (MOM), which includes key 135 

features of real-life situations confronting human operators in high-risk environments. These 136 

features include moving objects, varying levels of target frequency, and a requirement to detect and 137 

avoid collisions. We recorded neural data using the highly-sensitive method of 138 

magnetoencephalography (Baillet, 2017) and used multivariate pattern analyses (MVPA) to detect 139 

changes in information encoded in the brain. We used these new approaches to better understand 140 

the way in which changes between active and monitoring tasks affects neural processing, including 141 

functional connectivity. We then examined the potential for using these neural measures to predict 142 

forthcoming behavioural misses based on brain activity.  143 

 144 

Methods 145 

Participants: 146 

We tested twenty-one right-handed participants (10 male, 11 female, mean age = 23.4 years (SD = 147 

4.7 years), all Macquarie University students) with normal or corrected to normal vision. The Human 148 

Research Ethics Committee of Macquarie University approved the experimental protocols and the 149 

participants gave informed consent before participating in the experiment. We reimbursed each 150 
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participant AU$40 for their time completing the MEG experiment, which lasted for about 2 hours 151 

including setup.  152 

 153 

 154 

Apparatus: 155 

We recorded neural activity using a whole-head MEG system (KIT, Kanazawa, Japan) with 160 coaxial 156 

first-order gradiometers, at a sampling rate of 1000 Hz. We projected the visual stimuli onto a mirror 157 

at a distance of 113 cm above participants’ heads while they were in the MEG. An InFocus IN5108 158 

LCD back projection system (InFocus, Portland, Oregon, USA), located outside the magnetically 159 

shielded room, presented the dynamically moving stimuli, controlled by a desktop computer 160 

(Windows 10; Core i5 CPU; 16 GB RAM; NVIDIA GeForce GTX 1060 6GB Graphics Card) using 161 

MATLAB with Psychtoolbox 3.0 extension (Brainard, 1997; Kleiner et al., 2007). We set the refresh 162 

rate of the projector at 60 Hz and used parallel port triggers and a photodiode to mark the beginning 163 

(dot appearing on the screen) and end (dot disappearing off the screen) of each trial. We recorded 164 

participant’s head shape using a pen digitizer (Polhemus Fastrack, Colchester, VT) and placed five 165 

marker coils on the head which allowed the location of the head in the MEG helmet to be monitored 166 

during the recording- we checked head location at the beginning, half way through and the end of 167 

recording. We used a fibre optic response pad (fORP, Current Designs, Philadelphia, PA, USA) to 168 

collect responses and an EyeLink 1000 MEG-compatible remote eye-tracking system (SR Research, 169 

1000 Hz monocular sampling rate) to record eye position. We focused the eye-tracker on the right 170 

eye of the participant and calibrated the eye-tracker immediately before the start of MEG data 171 

recording.  172 

 173 
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Task and Stimuli: 174 

Task summary: The task was to avoid collisions of relevant moving dots with the central object by 175 

pressing the space bar if the dot passed a deflection point in a visible predicted trajectory without 176 

changing direction to avoid the central object (see Figure 1A; a demo can be found here 177 

https://osf.io/c6hy9/). A text cue at the start of each block indicated which colour of dot was 178 

relevant for that block. The participant only needed to respond to targets in this colour; dots in the 179 

other colour formed distractors. Pressing the button deflected the dot in one of two possible 180 

directions (counterbalanced) to avoid collision.  181 

 182 

Stimuli: The stimuli were moving dots in one of two colours that followed visible trajectories and 183 

covered a visual area of 3.8 × 5 degrees of visual angle (dva; Figure 1A). We presented the stimuli in 184 

blocks of 110 s duration, with at least one dot moving on the screen at all times during the 110s 185 

block. The trajectories directed the moving dots from two corners of the screen (top left and bottom 186 

right) straight towards a centrally presented static “object” (a white dot of 0.25 dva) and then 187 

deflected away (either towards the top right or bottom left of the screen; in pathways orthogonal to 188 

their direction of approach) from the static object at a set distance (the deflection point).  189 

 190 

Target dots deviated from the visible trajectory at the deflection point and continued moving 191 

towards the central object. The participant had to push the space bar to prevent a ‘collision’. If the 192 

response was made before the dot reached the centre of the object, the dot deflected, and this was 193 

counted as a ‘hit’. If the response came after this point, the dot continued straight, and this was 194 

counted as a ‘miss’, even if they pressed the button before the dot totally passed through central 195 

object.  196 

 197 
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 198 

The time from dot onset in the periphery to the point of deflection was 1226±10 (Mean ± SD) 199 

milliseconds. Target (and distractor event) dots took 410±10 (Mean ± SD) milliseconds to cross from 200 

the deflection point to the collision point. In total, each dot moved across the display for 2005±12 201 

(Mean ± SD) milliseconds before starting to fade away after either deflection or travel through the 202 

object. The time delay between the onsets of different dots (ISI) was 1660±890 (Mean ± SD) 203 

 

Figure 1. The Multiple Object Monitoring (MOM) task and types of information decoded. (A) At the start of a block, 
the relevant colour is cued (here, green; distractors in red). Over the on-task period (~30 mins per task condition), 
multiple dots entered from either direction, each moving along a visible individual trajectory towards the middle 
object. Only attended dots that failed to deflect along the trajectories at the deflection point required a response 
(Target: bottom right display). Participants did not need to press the button for the unattended dot (Distractor: top 
right display) and the dots that kept moving on the trajectories (Event: middle right panel). Each dot took ~1226 
ms from appearance to deflection. (B) Direction of approach information (left display: left vs. right as indicated by 
dashed and solid lines, respectively) and distance information (right display). Note the blue dashed lines and 
orange arrows were not present in the actual display. A demo of the task can be found here 
[https://osf.io/c6hy9/]. 
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milliseconds. There were 1920 dots presented in the whole experiment (~56 mins). Each 110 second 204 

block contained 64 dots, 32 (50%) in red and 32 (50%) in green, while the central static object and 205 

trajectories were presented in white on a black background. 206 

 207 

Conditions: There were two target frequency conditions. In ‘Monitoring’ blocks, target dots were 208 

~6.2% of cued-colour dots (2 out of 32 dots). In ‘Active’ blocks, target dots were 50% of cued-colour 209 

dots (16 out of 32 dots). The same proportion of dots in the non-cued colour failed to deflect; these 210 

were distractors (see Figure 1A, top right panel). Participants completed two practice blocks of the 211 

Active condition and then completed 30 blocks in the main experiment (15 Active followed by 15 212 

Monitoring or vice versa, counterbalanced across participants). 213 

 214 

The time between the appearance of target dots varied unpredictably, with distractors and 215 

correctly-deflecting dots (events) intervening. In Monitoring blocks, there was an average time 216 

between targets of 57.88 (±36.03 SD) seconds. In Active blocks, there was an average time between 217 

targets of 7.20 (±6.36 SD) seconds.  218 

 219 

Feedback: On target trials, if the participant pressed the space bar in time, this ‘hit’ was indicated by 220 

a specific tone and deflection of the target dot. There were three types of potential false alarm, all 221 

indicated by an error tone and no change in the trajectory of the dot. These were if the participant 222 

responded: (1) too early, while the dot was still on the trajectory; (2) when the dot was not a target 223 

and had been deflected automatically (‘event’ in Figure 1A, middle right); or (3) when the dot was in 224 

the non-cued colour (‘distractor’ in Figure 1A, top right) in any situation. Participants had only one 225 

chance to respond per dot; any additional responses resulted in ‘error’ tones. As multiple dots could 226 
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be on the screen, we always associated the button press to the dot which was closest to the central 227 

object. 228 

 229 

Pre-processing: 230 

MEG data were filtered online using band-pass filters in the range of 0.03 to 200 Hz and notch-231 

filtered at 50 Hz. We did not perform eye-blink artefact removal because it has been shown that 232 

blink artefacts are successfully ignored by multivariate classifiers as long as they are not 233 

systematically different between decoded conditions (Grootswagers et al., 2017). We then imported 234 

the data into Matlab and epoched them from -100 to 3000 ms relative to the trial onset time. Finally, 235 

we down-sampled the data to 200 Hz for the decoding of our two key measures: direction of 236 

approach and distance to object (see below). 237 

 238 

Multivariate pattern analyses (MVPA): 239 

We measured the information contained in the multivariate (multi-sensor) patterns of MEG data by 240 

training a linear discriminant analysis (LDA) classifier using a set of training trials from two categories 241 

(e.g., for the direction of approach measure, this was dots approaching from left vs. right, see 242 

below).  We then tested to see whether the classifier could predict the category of an independent 243 

(left-out) set of testing data from the same participant. We used a 10-fold cross-validation approach, 244 

splitting the data into training and testing subsets. Specifically, we trained the LDA classifier on 90% 245 

of the trials and tested it on the left-out 10% of the trials. This procedure was repeated 10 times 246 

each time leaving out a different 10% subset of the data for testing (i.e., 10-fold cross validation). 247 

  248 

We decoded two major task features from the neural data: (1) the direction of approach (left vs. 249 

right); and (2) the distance of each moving dot from the centrally fixed object (distance to object), 250 
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which correspond to visual (retinal) information changing over time. Our interest was in the effect of 251 

selective attention (attended vs. unattended) and Target Frequency conditions (Active vs. 252 

Monitoring) on the neural representation of this information, and how the representation of 253 

information changed on trials when participants missed the target.  254 

 255 

We decoded left vs. right directions of approach (as indicated by yellow arrows in Figure 1B) every 5 256 

ms starting from 100 ms before the appearance of the dot on the screen to 3000 ms later. Please 257 

note that as each moving dot is considered a trial, trial time windows (epochs) overlapped for 62.2% 258 

of trials. In Monitoring blocks, 1.2% of target trials overlapped (two targets were on the screen 259 

simultaneously but lagged relative to one another). In Active blocks, 17.1% of target trials 260 

overlapped. 261 

 262 

For the decoding of distance to object, we split the trials into the time windows corresponding to 15 263 

equally spaced distances of the moving dot relative to the central object (as indicated by blue lines in 264 

Figure 1B), with distance 1 being closest to the object, and 15 being furthest away (the dot having 265 

just appeared on the screen). Next, we collapsed (concatenated) the MEG signals from identical 266 

distances (splits) across both sides of the screen (left and right), so that every distance included data 267 

from dots approaching from both left and right side of the screen. This concatenation ensures that 268 

distance information decoding is not affected by the direction of approach. Finally, we trained and 269 

tested a classifier to distinguish between the MEG signals (a vector comprising data from all MEG 270 

sensors, concatenated over all time points in the relevant time window), pertaining to each pair of 271 

distances (e.g., 1 vs. 2) using a leave-one-out cross-validation procedure. We obtained classification 272 

accuracy for all possible pairs of distances (105 combinations of 15 distances). To obtain a single 273 

decoding value per distance, we averaged the 14 classification values that corresponded to that 274 

distance against other 14 distances. For example, the final decoding accuracy for distance 15 was an 275 
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average of 15 vs. 14, 15 vs. 13, 15 vs. 12 and so on until 15 vs. 1. We repeated this procedure for our 276 

main Target Frequency conditions (Active vs. Monitoring), Attention conditions (attended vs. 277 

unattended) and Time on Task (first and last five blocks of each task condition, which are called early 278 

and late blocks here, respectively). This was done separately for correct and miss trials and for each 279 

participant separately. 280 

 281 

Informational connectivity analysis: 282 

To evaluate possible modulations of brain connectivity between the attentional networks of the 283 

frontal brain and the occipital visual areas, we used a simplified version of our recently developed 284 

RSA-based connectivity analysis (Goddard et al., 2016; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani 285 

et al., 2019). Specifically, we evaluated the informational connectivity, which measures the similarity 286 

of distance information between areas, across our main Target Frequency conditions (Active vs. 287 

Monitoring), Attention conditions (attended vs. unattended) and Time on Task (first and last five 288 

blocks of each task condition, which are called early and late blocks here, respectively). This was 289 

separately done for correct and miss trials, using representational dissimilarity matrices (RDM; 290 

Kriegeskorte et al., 2008). To construct the RDMs, we decoded all possible combinations of distances 291 

from each other yielding a 15 by 15 cross-condition classification matrix, for each condition 292 

separately. We obtained these matrices from peri-occipital and peri-frontal areas to see how the 293 

manipulation of Attention, Target Frequency and Time on Task modulated the correlation of 294 

information (RDMs) between those areas on correct and miss trials. We quantified connectivity using 295 

Spearman’s rank correlation of the matrices obtained from those areas, only including the lower 296 

triangle of the RDMs (105 decoding values). To avoid bias when comparing the connectivity on 297 

correct vs. miss trials, the number of trials were equalized by subsampling the correct trials to the 298 

number of miss trials and repeating the subsampling 100 times before finally averaging them for 299 

comparison with miss trials. 300 
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Error data analysis: 301 

Next, we asked what information was coded in the brain when participants missed targets. To study 302 

information coding in the brain on miss trials, where the participants failed to press the button when 303 

targets failed to automatically deflect, we used our recently-developed method of error data 304 

analysis (Woolgar et al., 2019). Essentially, this analysis asks whether the brain represents the 305 

information similarly on correct and miss trials. For that purpose, we trained a classifier using the 306 

neural data from a proportion of correct trials (i.e., when the target dot was detected and manually 307 

deflected punctually) and tested on both the left-out portion of the correct trials (i.e., cross-308 

validation) and on the miss trials. If decoding accuracy is equal between the correct and miss trials, 309 

we can conclude that information coding is maintained on miss trials as it is on correct trials. 310 

However, if decoding accuracy is lower on miss trials than on correct trials, we can infer that 311 

information coding differs on miss trials, consistent with the change in behaviour.  Since correct and 312 

miss trials were visually different after the deflection point, we only used data from before the 313 

deflection point.  314 

 315 

For these error data analyses, the number of folds for cross-validation were determined based on 316 

the proportion of miss to correct trials (number of folds = number of miss trials/number of correct 317 

trials). This allowed us to test the trained classifiers with equal numbers of miss and correct trials to 318 

avoid bias in the comparison. 319 

 320 

Predicting behavioural performance from neural data: 321 

We developed a new method to predict, based on the most task-relevant information in the neural 322 

signal, whether or not a participant would press the button for a target dot in time to deflect it on a 323 

particular trial. This method includes three steps, with the third step being slightly different for the 324 
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left-out testing participant vs. the other 20 participants. First, for every participant, we trained 105 325 

classifiers using ~80% of correct trials to discriminate the 15 distances. Second, we tested those 326 

classifiers using half of the left-out portion (~10%) of the correct trials, which we called validation 327 

trials, by simultaneously accumulating (i.e., including in averaging) the accuracies of the classifiers at 328 

each distance and further distances as the validation dot approached the central object. The 329 

validation set allowed us to determine a decision threshold for predicting the outcome of each 330 

testing trial: whether it was a correct or miss trial. Third, we performed a second-level classification 331 

on testing trials which were the other half (~10%) of the left-out portion of the correct trials and the 332 

miss trials, using each dot’s accumulated accuracy calculated as in the previous step. Accordingly, if 333 

the testing dot’s accumulated accuracy was higher than the decision threshold, it was predicted as 334 

correct, otherwise miss. For all participants, except for the left-out testing one, the decision 335 

threshold was chosen from a range of multiples (0.1 to 4 in steps of 0.1) of the standard deviation 336 

below the accumulated accuracy obtained for the validation set on the second step. For determining 337 

the optimal threshold for the testing participant, however, instead of a range of multiples, we used 338 

the average of the best performing multiples (i.e., the one which predicted the behavioural outcome 339 

of the trial more accurately) obtained from the other 20 participants. This avoided circularity in the 340 

analysis.  341 

 342 

To give more detail on the second and third steps, when the validation/testing dots were at distance 343 

#15, we averaged the accuracies of the 14 classifiers trained to classify dots at distance #15 from all 344 

other distances. Accordingly, when the dot reached distance #14, we also included and averaged 345 

accuracies from classifiers which were trained to classify distance #14 from all other distances 346 

leading to 27 classifier accuracies. Therefore, by the time the dot reached distance #1, we had 105 347 

classifier accuracies to average and predict the behavioural outcome of the trial. Every classifier’s 348 

accuracies were either 1 or 0 corresponding to correct or incorrect classification of dot’s distance, 349 
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respectively. Note that accumulation of classifiers’ accuracies, as compared to using classifier 350 

accuracy on every distance independently, provides a more robust and smoother classification 351 

measure for deciding on the label of the trials. The validation set, which was different from the 352 

testing set, allowed us to set the decision threshold based on the validation data within each subject 353 

and from the 20 participants and finally test our prediction classifiers on a separate testing set from 354 

the 21st individual participant, iteratively. The optimal threshold was 1.54 (± 0.2) times the SD below 355 

the decoding accuracy on the validation set across participants. 356 

 357 

Eye-tracking data analysis: 358 

To see if we could use a less complicated physiological measure to obtain information about the 359 

processing of visual information, and to check that the decoding we observed was not just due to 360 

eye movements, we repeated the above decoding analyses using the eye-tracking data. Specifically, 361 

instead of the MEG sensor data, we decoded the information about the direction of approach and 362 

distance to object using x-y coordinates of the right eye fixation provided by the eye-tracker. All 363 

other aspects of the analysis were identical to the ‘error data analysis’ section. If we observe a 364 

similar decoding of information using the eye-tracking data, it would mean that we could use eye-365 

tracking, which is a less expensive and more feasible approach for prediction of errors, instead of 366 

MEG. If the prediction from the MEG decoding was stronger than that of the eye tracking, it would 367 

mean that there was information in the neural signal over and above any artefact associated with 368 

eye movement.  369 

 370 

Statistical analyses: 371 

To determine the evidence for the null and the alternative hypotheses, we used Bayes analyses as 372 

implemented by Krekelberg (https://klabhub.github.io/bayesFactor/) based on Rouder et al. (2012). 373 
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We used standard rules for interpreting levels of evidence (Lee and Wagenmakers, 2014; Dienes, 374 

2014): Bayes factors of >10 and <1/10 were interpreted as strong evidence for the alternative and 375 

null hypotheses, respectively, and >3 and <1/3 were interpreted as moderate evidence for the 376 

alternative and null hypotheses, respectively. We interpreted the Bayes factors which fell between 3 377 

and 1/3 as reflecting insufficient evidence either way. 378 

 379 

Specifically, for the behavioural data, we asked whether there was a difference between Active and 380 

Monitoring conditions in terms of miss rates and reaction times. Accordingly, we calculated the 381 

Bayes factor as the probability of the data under alternative (i.e., difference) relative to the null (i.e., 382 

no difference) hypothesis in each block separately. In the decoding, we repeated the same 383 

procedure to evaluate the evidence for the alternative hypothesis of a difference between decoding 384 

accuracies across conditions (e.g. Active vs. Monitoring and Attended vs. Unattended) vs. the null 385 

hypothesis of no difference between them, at every time point/distance. To evaluate evidence for 386 

the alternative of above-chance decoding accuracy vs. the null hypothesis of no difference from 387 

chance, we calculated the Bayes factor between the distribution of actual accuracies obtained and a 388 

set of 1000 random accuracies obtained by randomising the class labels across the same pair of 389 

conditions (null distribution) at every time point/distance.  390 

 391 

To evaluate the evidence for the alternative of main effects of different factors (Attention, Target 392 

Frequency and Time on Task) in decoding, we used Bayes factor ANOVA (Rouder et al., 2012). This 393 

analysis evaluates the evidence for the null and alternative hypothesis as the ratio of the Bayes 394 

factor for the full model ANOVA (i.e., including all three factors of Target Frequency, Attention and 395 

the Time on Task) relative to the restricted model (i.e., including the two other factors while 396 

excluding the factor being evaluated). For example, for evaluating the main effect of Time on Task, 397 
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the restricted model included Attention and Target Frequency factors but excluded the factor of 398 

Time on Task.  399 

 400 

The priors for all Bayes factor analyses were determined based on Jeffrey-Zellner-Siow priors 401 

(Jeffreys, 1961; Zellner and Siow, 1980) which are from the Cauchy distribution based on the effect 402 

size that is initially calculated in the algorithm using a t-test (Rouder et al., 2012). The priors are 403 

data-driven and have been shown to be invariant with respect to linear transformations of 404 

measurement units (Rouder et al., 2012), which reduces the chance of being biased towards the null 405 

or alternative hypotheses. 406 

 407 

Results 408 

Behavioural data: The MOM task evokes a reliable vigilance decrement  409 

In the first 110 second experimental block of trials (i.e., excluding the two practice blocks), 410 

participants missed 29% of targets in the Active condition and 40% of targets in the Monitoring 411 

condition. However, the number of targets in any single block is necessarily very low for monitoring 412 

conditions (for a single block, there are 16 targets for Active but only 2 targets for Monitoring). The 413 

pattern does become more robust over blocks, and Figure 2A shows the miss rates changed over 414 

time in different directions for the Active vs. Monitoring conditions. For Active blocks, miss rates 415 

decreased over the first five blocks and then plateaued at ~17%. For Monitoring, however, miss 416 

rates increased throughout the experiment: by the final block, these miss rates were up to 76% (but 417 

again, the low number of targets in Monitoring mean that we should use caution in interpreting the 418 

results of any single block alone). There was evidence that miss rates were higher in the Monitoring 419 

than Active conditions from the 4th block onwards (BF > 3; Figure 2A). Participants’ reaction times 420 

(RTs) on correct trials also showed evidence of vigilance decrements, increasing over time under 421 
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Monitoring but decreasing under Active task conditions (Figure 2B). There was evidence that 422 

reaction times were slower for Monitoring compared with Active from the sixth block onwards (BF > 423 

3, except for Block #11). The characteristic pattern of increasing miss rates and slower RTs over time 424 

in the Monitoring relative to the Active condition validates the MOM task as effectively evoking 425 

vigilance decrements.  426 

 427 

Neural data: Decoding different aspects of task-related information  428 

With so much going on in the display at one time, we first needed to verify that we can successfully 429 

decode the major aspects of the moving stimuli, relative to chance. The full data figures and details 430 

are presented in Supplementary Materials: We were able to decode both direction of approach and 431 

distance to object relative to chance from MEG signals (see Supplementary Figure 1). Thus, we can 432 

turn to our main question about how these representations were affected by the Target Frequency, 433 

Attention and Time on Task. 434 

Figure 2. Behavioural performance on the MOM task. The percentage of miss trials (A), and correct reaction times 
(B), as a function of block. Thick lines show the average across participants (shading 95% confidence intervals) for 
Active (blue) and Monitoring (red) conditions. Each block lasted for 110 seconds and had either 16 (Active) or 2 
(Monitoring) targets out of 32 cued-colour and 32 non-cued colour dots. Bayes Factors are shown in the bottom 
section of each graph: Filled circles show moderate/strong evidence for either hypothesis and empty circles 
indicate insufficient evidence when evaluating the contrast between Active and Monitoring conditions. 
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 435 

The neural correlates of the vigilance decrement 436 

As the behavioural results showed (Figure 2), the difference between Active and Monitoring 437 

conditions increased over time, showing the greatest difference during the final blocks of the 438 

experiment. To explore the neural correlates of these vigilance decrements, we evaluated 439 

information processing in the brain during the first five and last five blocks of each task (called early 440 

and late blocks, respectively) and the interactions between the Target Frequency, Attention and the 441 

Time on Task using a 3-way Bayes factor ANOVA as explained in Methods. 442 

 443 

Effects of Target Frequency on direction of approach information 444 

Direction of approach information is a very clear visual signal (‘from the left’ vs ‘from the right’) and 445 

therefore is unlikely to be strongly modulated by other factors, except perhaps whether the dot was 446 

in the cued colour (Attended) or the distractor colour (could be ignored: Unattended).  There was 447 

strong evidence for a main effect of Attention (Figure 3A; BF > 10, Bayes factor ANOVA, cyan dots) 448 

starting from 265ms and lasting until dots faded. This is consistent with maintenance of information 449 

about the attended dots and attenuation of the information about unattended dots (Supplementary 450 

Figure 1A). The large difference in coding attributable to attention remained for as long as the dots 451 

were visible. 452 

 453 

In contrast, there was no sustained main effect of Target Frequency on the same direction of 454 

approach coding (0.1 < BF < 0.3; Bayes factor ANOVA, Figure 3A, pink dots). For the majority of the 455 

epoch there was moderate evidence for the null hypothesis (BF < 1/3). The sporadic time points with 456 

a main effect of Target Frequency, observed a few times before the deflection (3 < BF < 10), likely 457 

reflect noise in the data as there is no clustering. Recall that we only focus on timepoints prior to 458 
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deflection, as after this point there are visual differences between Active and Monitoring, with more 459 

dots deflecting in the Monitoring condition. 460 

 461 

There was also no sustained main effect of the Time on Task on information about the direction of 462 

approach (0.1 < BF < 0.3; Bayes factor ANOVA, green dots; Figure 3A). There were no sustained 2-463 

way or 3-way interactions between Attention, Target Frequency and Time on Task (BF < 1; Bayes 464 

 

 

Figure 3. Impact of different conditions and their interactions on information processing on correct trials (all trials except those 
in which a target was missed or there was a false alarm). (A) Decoding of direction of approach information (less task-relevant). 
The horizontal dashed line refers to theoretical chance-level decoding (50%). Upper graph: Attended dot; Lower graph: 
Unattended (‘distractor’) dot. (B) Decoding of distance to object information (most task-relevant) and their Bayesian evidence 
for main effects and interactions. Thick lines show the average across participants (shading 95% confidence intervals). Vertical 
dashed lines indicate critical times in the trial. Bayes Factors are shown in the bottom section of each graph: Filled circles show 
moderate/strong evidence for either hypothesis and empty circles indicate insufficient evidence. Main effects and interactions 
of conditions calculated using Bayes factor ANOVA analysis. Cyan, pink, green and red dots indicate the main effects of 
Attention, Target frequency, Time on Task and the interaction between Target frequency and Time on Task, respectively. The 
results of Bayes factor analysis (i.e. the main effects of the three conditions and their interactions) are from the same 3-way 
ANOVA analysis and therefore identical for attended and unattended panels. Early = data from the first 5 blocks (~10 minutes). 
Late = data from the last 5 blocks (~10 minutes). 
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factor ANOVA). Note that the number of trials used in the training and testing of the classifiers were 465 

equalized across the 8 conditions and equalled the minimum available number of trials across those 466 

conditions shown in Figure 3. Therefore, the observed effects cannot be attributed to a difference in 467 

the number of trials across conditions. 468 

 469 

Effects of Target Frequency on critical distance to object information 470 

The same analysis for the representation of the task-relevant distance to object information showed 471 

strong evidence for a main effect of Attention (BF > 10; Bayes factor ANOVA) at all 15 distances, 472 

moderate or strong evidence for a main effect of Time on Task (BF > 3; Bayes factor ANOVA) at eight 473 

of the earlier distances, and an interaction between Time on Task and Target Frequency at two of 474 

these distances (Figure 3B). There was more decoding for attended than unattended dots (compare 475 

top and bottom panels of Figure 3B). The main effect of Time on Task reflected decreased decoding 476 

in later blocks (compare dashed lines to solid lines in Figure 3B). Finally, the interaction between 477 

Target Frequency and Time on Task can be seen when comparing the solid to the dashed lines in 478 

blue and red colours, separately, and suggests a bigger decline in decoding in Monitoring compared 479 

to Active conditions. Note that as there was moderate evidence for no interaction between 480 

Attention and Target Frequency or between Attention and Time on Task (0.1 < BF < 0.3, 2-way Bayes 481 

factor ANOVA) or simultaneously between the three factors (BF < 0.1, 3-way Bayes factor ANOVA), 482 

we do not show those statistical results in the figure. 483 

 484 

Together, these results suggest that while vigilance conditions had little or no impact on coding of 485 

the direction of approach, they did impact the critically task-relevant information about the distance 486 

of the dot from the object. Coding of this information declined as the time on the task increased and 487 

this effect was more pronounced when the target events happened infrequently. 488 
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 489 

Is brain connectivity modulated by Attention, Target Frequency and the Time on Task? 490 

Using graph-theory-based univariate connectivity analysis, it has been recently shown that the 491 

connectivity between relevant sensory areas and “vigilance-related” cognitive areas changes prior to 492 

lapses in attention (behavioural misses; Sadaghiani et al., 2015). Therefore, we asked whether 493 

vigilance decrements across the time course of our task corresponded to changes in multi-variate 494 

connectivity, which tracks information transfer, between frontal attentional networks and sensory 495 

visual areas. Specifically, we asked whether there were changes in information exchange between 496 

these conditions. We used a simplified version of our method of RSA-based informational 497 

connectivity to evaluate the (Spearman’s rank) correlation between distance information RDMs 498 

across the peri-frontal and peri-occipital electrodes (see Methods; Goddard et al., 2016; Figure 4A).  499 

 500 

Results showed strong evidence (Bayes factor ANOVA, BF = 6.3e21) for higher informational 501 

connectivity for Attended compared to Unattended trials, and moderate evidence for higher 502 

connectivity in Active compared to Monitoring conditions (Bayes factor ANOVA, BF = 3.4; Figure 4B). 503 

There was insufficient evidence to determine whether there was a main effect of Time on Task 504 

(Bayes factor ANOVA, BF = 0.83). There was moderate evidence for no 2-way and 3-way interactions 505 

between the three factors (Bayes factor ANOVA, 2-way Time on Task-Target Frequency: BF = 0.17; 506 

Time on Task-Attention: BF = 0.16; Target Frequency-Attention: BF = 0.15; their 3-way interactions 507 

BF = 0.12). These results suggest that Monitoring conditions and trials in which the dots are in the 508 

distractor (unattended) colour, in which the attentional load is low, result in less informational 509 

connectivity between occipital and frontal brain areas compared to Active conditions and attended 510 

trials, respectively. This is consistent with a previous study (Alnaes et al., 2015), which suggested 511 

that large-scale functional brain connectivity depends on the attentional load, and might underpin or 512 

accompany the decrease in information decoding across the brain in these conditions (Figure 3B). 513 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.178970doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178970
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 514 

We also compared the connectivity for the correct vs. miss trials (Figure 4C). This analysis was 515 

performed only for attended condition as there are no miss trials for unattended condition, by 516 

definition. There was strong evidence for less (almost half) connectivity on miss compared to correct 517 

trials (Bayes factor ANOVA, BF = 3e63). There was insufficient evidence to determine the effects of 518 

the Time on Task or Target Frequency (Bayes factor ANOVA, BF = 0.33 and BF = 0.35, respectively) 519 

and moderate evidence for a lack of 2-way and 3-way interactions between the three factors (Bayes 520 

 

Figure 4. Relationship between informational connectivity and Attention, Target Frequency, Time on Task and the behavioural 
outcome of the trial (i.e., correct vs. miss). (A) Calculation of connectivity using Spearman’s rank correlation between RDMs 
obtained from the peri-frontal and peri-occipital sensors as indicated by colored boxes, respectively. RDMs include decoding 
accuracies obtained from testing the 105 classifiers trained to discriminate different distance to object categories. (B) 
Connectivity values for the eight different conditions of the task and the results of three-way Bayes factor ANOVA with factors 
Time on Task (early, late), Attention (attended, unattended) and Target Frequency (active, monitoring), using only correct 
trials. (C) Connectivity values for the Active and Monitoring, Early and Late blocks of each task for correct and miss trials 
(attended condition only) and the result of Bayes factor ANOVA with factors Target Frequency (Active, Monitoring), Time on 
Task (early, late) and behavioural outcome (correct, miss) as inputs. Number of trials are equalized across conditions in B and C 
separately. Bars show the average across participants (error bars 95% confidence intervals). Bold fonts indicate moderate or 
strong evidence for either the effect or the null hypothesis. 
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factor ANOVA, Behaviour-Target Frequency: BF = 0.17; Behaviour-Time on Task: BF = 0.18; Target 521 

Frequency-Time on Task: BF = 0.16; their 3-way interactions BF = 0.11). Weaker connectivity 522 

between occipital and frontal areas could have led to the behavioural misses observed in this study 523 

(Figure 1) as was previously reported in an auditory monitoring task using univariate graph-theoretic 524 

connectivity analyses (Sadaghiani et al., 2015), although, of course, these are correlational data and 525 

so we cannot make any strong causal inferences. These results cannot be explained by the number 526 

of trials as they are equalized across the 8 conditions in each of the analyses separately. 527 

 528 

Can we use the neural data to predict behavioural errors before they occur? 529 

Is neural information processing different on miss trials? 530 

The results presented in Figure 3, which used only correct trials, showed changes due to target 531 

frequency to the representation of task-relevant information when the task was performed 532 

successfully. We next move on to our second question, which is whether these neural 533 

representations change when overt behaviour is affected, and therefore, whether we can use the 534 

neural activity as measured by MEG to predict behavioural errors before they occur. We used our 535 

method of error data analysis (Woolgar et al., 2019) to examine whether the patterns of information 536 

coding on miss trials differed from correct trials (see Methods). For these analyses we used only 537 

attended dots, as unattended dots do not have behavioural responses, and we matched the total 538 

number of trials in our implementation of correct and miss classification.  539 

 540 

First, we evaluated the processing of the less relevant information - the direction of approach 541 

measure (Figure 5A). The results for correct trials provided information dynamics very similar to the 542 

attended condition in Figure 3A, except for higher overall decoding, which is explained by the 543 
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inclusion of the data from the whole experiment (15 blocks) rather than just the five early and late 544 

blocks (note the number of trials is still matched to miss trials).  545 

 546 

 

 

Figure 5. Decoding of information on correct vs. miss trials. (A) Decoding of direction of approach information (less task-
relevant). (B) Decoding of distance to object information (most task-relevant). The horizontal dashed lines refer to chance-level 
decoding. Top panels: Decoding using correct trials; Bottom panels: Decoding using miss trials. In both top and bottom panels, 
the classifiers were trained on correct trials and tested on (left out) correct and all miss trials, respectively. Thick lines show the 
average across participants (shading 95% confidence intervals). Vertical dashed lines indicate critical events in the trial. Bayes 
Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the difference of 
the decoding values from chance for Active (blue) and Monitoring (red) conditions separately, the comparison of the two 
conditions (green) and the comparison of correct and miss trials (black). Note that for the comparison of correct and miss trials, 
Active and Monitoring conditions were averaged separately. 
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Active and Monitoring conditions did not show any time windows of sustained difference (BF < 0.3). 547 

However, when the classifiers were tested on miss trials, from onset to deflection, the pattern of 548 

information dynamics were different, even though we had matched the number of trials. 549 

Specifically, while the level of information was comparable to correct trials with spurious instances 550 

(but no sustained time windows) of difference (BF > 3 as indicated by black dots) before 500 ms, 551 

decoding traces were much noisier for miss trials with more variation across trials and between 552 

nearby time points (Figure 5A). Note that after the deflection, the visual signal is different for correct 553 

and miss trials, so the difference between their decoding curves (BF > 3) is not meaningful. These 554 

results suggest a noisier processing of direction of approach information for the missed dots 555 

compared to correctly deflected dots.  556 

 557 

We then repeated the same procedure on the processing of the most task-relevant distance to 558 

object information on correct vs. miss trials (Figure 5B). Although on correct trials, the distance 559 

information for both Active and Monitoring conditions was well above chance (77%; BF > 10), for 560 

miss trials, the corresponding distance information was only just above chance (55%; BF > 10 for all 561 

distances except one). The direct comparison revealed that distance information dropped 562 

considerably on miss trials compared to correct trials (Figure 5; Black dots; BF > 10 across all 563 

distances; Active and Monitoring results were averaged for correct and miss trials separately before 564 

Bayes analyses). This is consistent with less representation of the crucial information about the 565 

distance from the object preceding a behavioural miss. 566 

 567 

Can we predict behavioural errors using neuroimaging? 568 

Finally, we asked whether we could use this information to predict the behavioural outcome of each 569 

trial. To do so, we developed a new method that classified trials based on their behavioural 570 

outcomes (correct vs. miss) by asking how well a set of classifiers, pre-trained on correct trials, 571 
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would classify the distance of the dot from the target (see Methods; Figure 6A). To achieve this, we 572 

used a second-level classifier which labelled a trial as correct or miss based on the average 573 

accumulated accuracies obtained for that dot at every distance from the first-level decoding 574 

classifiers which were trained on correct trials (Figure 6A and 6B; see Methods). If the accumulated 575 

accuracy for the given dot at the given distance was less than the average accuracy obtained from 576 

testing on the validation set minus a specific threshold (based on standard deviation), the testing dot 577 

(trial) was labelled as correct, otherwise miss. As Figure 6B shows, there was strong evidence (BF > 578 

10) that decoding accuracy of distances was higher for correct than miss trials with the inclusion of 579 

more classifier accuracies as the dot approached from the corner of the screen towards the centre 580 

with a multiple of around 1.5 as threshold (Figure 6C). This clear separation of accumulated 581 

accuracies for correct vs. miss trials allowed us to predict with above-chance accuracy the 582 

behavioural outcome of the ongoing trial (Figure 6D). To find the optimal threshold for each 583 

participant, we evaluated the thresholds used for all other participants except for a single testing 584 

participant for whom we used the average of the best thresholds that led to highest prediction 585 

accuracy for other participants. This was ~1.5 standard deviation below the average accuracy on the 586 

other participants’ validation (correct trial) sets (Figure 6C).  587 

 588 

The prediction accuracy of behavioural outcome was above chance level (68% vs. 50%; BF > 10) even 589 

when the dot had only been on the screen for 80ms, which corresponds to our furthest distance #15 590 

(1200ms prior to deflection point; Figure 6D). The accuracy increased to 85% as the dot approached 591 

the centre of the screen, with ~80% accuracy with still 800 ms to go before required response. 592 

Importantly, the prediction algorithm showed generalisable results across participants; the threshold 593 

for decision obtained from the other participants could predict the accuracy of an independent 594 

participant’s behaviour using only their neural data. 595 

 596 
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  597 

       

 

Figure 6. Prediction of behavioural outcome (correct vs. miss) trial-by-trial using decoding of distance to object information. (A) 
Sample classifiers’ accuracies (correct or incorrect classification of current distance as indicated by colors) for a miss (left panel; 
average accuracy ~= 43% when the dot reached the deflection point) and a correct trial (right panel; average accuracy ~=67% at 
the deflection point). The classifiers were trained on the data from correct trials and tested on the data from correct and miss 
trials. For the miss trials, around half the classifiers classified the dot’s distance incorrectly by the time it reached the deflection 
point. (B) Accumulation of classifiers’ accuracies over decreasing dot distances/time to deflection. This shows stronger 
information coding of the crucial distance to object information on the correct trials over miss trials. A variable threshold used in 
(C) is shown as a blue dashed line. (C) Prediction of behavioural outcome as a function of threshold and distance using a second-
level behavioural outcome classification. Results show highest prediction accuracies on the participant set at around the 
threshold of 1.5 (see Methods), increasing at closer distances. (D) Accuracy of predicting behavioural outcome for the left-out 
participant using the threshold obtained from all the other participants as function of distance/time from the deflection point. 
Results showed successful (~=70%) prediction of behavioural outcome of the trial as early as 80 ms after stimulus appearance. 
Thick lines and shading refer to average and one standard deviation around the mean across participants, respectively. Bayes 
Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence (black dots under B and D). 
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Please note that the results presented so far were from correct and miss trials and we excluded 598 

early, late and wrong-colour false alarms to be more specific about the error type. However, the 599 

false alarm results (collapsed across all three types of false alarms) were very similar (Supplementary 600 

Figure 2) to those of the missed trials (Figure 5): noisy information about the direction of approach 601 

and at-chance information about the distance to object. This may suggest that both miss and false 602 

alarm trials are caused by a similar impaired processing of information, or at least captured similarly 603 

by our decoding methods. The average number of miss trials was 58.17 (±21.63 SD) and false alarm 604 

trials was 65.94 (±21.13 SD; out of 1920 trials). 605 

 606 

Can we decode direction and distance information from eye-tracking data? 607 

To see whether we could decode information about the dot motion using only the eye-tracking data, 608 

we repeated the same error data analysis as above, but this time using the 2-dimensional signals 609 

(i.e., corresponding to the x-y coordinates of the gaze location) provided by the eye-tracker (Görgen 610 

et al., 2018). The decoding of direction of approach from correct trials showed above-chance 611 

information (Supplementary Figure 3A) starting from 455 and 460 ms post-stimulus onset for the 612 

Active and Monitoring conditions (BF > 10), respectively. The information on miss trials was noisier 613 

but showed a similar pattern. The correct and miss trials only showed moderate evidence (3 < BF < 614 

10) for difference in the span from 310 ms to 490 ms. This suggests that participants moved their 615 

eyes differently for the dots approaching from opposite directions, which is not unexpected (and 616 

observed in the eye-tracking fixation points data). Although the dynamics of this decoding over time 617 

is different to the neural decoding, in line with visually evoked information decoding studies 618 

(VanRullen, 2007; Karimi-Rouzbahani et al., 2017), the eye-movement data do hold enough 619 

information to decode the direction of approach.  620 

 621 
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In contrast, for the crucial distance to object measure, although the eye-tracking data showed 622 

above-chance values at a few distances (BF > 10; Supplementary Figure 3B), most were very close to 623 

chance and much lower than those obtained from the neural data (cf. Figure 5B; BF > 10 for the 624 

difference between decoding of neural vs eyetracking data for correct trials; indicated by black dots 625 

in Supplementary Figure 3A). Only for the decoding for miss vs. correct trials was there any evidence 626 

(moderate) for similarity between neural and eyetracking data (0.1 < BF < 0.3; black dots; 627 

Supplementary Figure 3B). Note that distance to object data collapses across identical distances from 628 

the left and right sides of the screen, which avoids the potential confound of eye-movements data 629 

driving the classifier for this crucial distance measure. 630 

 631 

Discussion 632 

This study developed new methods to gain insights into how attention, the frequency of target 633 

events, and the time doing a task affect the representation of task information in the brain. Our new 634 

multiple object monitoring (MOM) task evoked reliable vigilance decrements in both accuracy and 635 

reaction time in a situation that more closely resembles real-life modern tasks than classic vigilance 636 

tasks. By using the sensitive analysis method of MVPA, we were able to test information coding 637 

across task conditions to evaluate the neural correlates of vigilance decrements. We also developed 638 

a novel informational brain connectivity method, which allowed evaluation of the correlation 639 

between information coding across peri-occipital and peri-frontal areas in different task conditions, 640 

to investigate the brain connectivity under different levels of attention, target frequency and the 641 

time on the task. Finally, we utilised our recent error data analysis to predict forthcoming 642 

behavioural misses with high accuracy. In the following sections, we explain each of the four 643 

contributions in detail and compare them with relevant literature. 644 

 645 
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First, the MOM task includes key features of real-world monitoring situations that are not usually 646 

part of other vigilance tasks (e.g., Mackworth, 1948; Temple, 2000; Rosvold et al., 1956; Rosenberg 647 

et al., 2013), and the results show clear evidence of vigilance decrements. Behavioural performance, 648 

measure with both reaction time and accuracy, deteriorated over time in monitoring (infrequent 649 

target) relative to active (frequent target) conditions. These vigilance decrements demonstrate that 650 

the MOM task can be used to explore vigilance in situations more closely resembling modern 651 

environments, namely involving moving stimuli and selection of relevant from irrelevant 652 

information, giving a useful tool for future research. 653 

 654 

Second, the high sensitivity of MVPA to extract information from neural signals allowed us to 655 

investigate the temporal variations in processing as the experiment progressed. The manipulation of 656 

attention showed a strong overall effect with enhanced representation of both the less important 657 

direction of approach and the most task-relevant distance to object information for cued dots, 658 

regardless of how frequent the targets were (Figure 3). The improved representation of information 659 

under attention extends previous findings from us and others (Woolgar et al., 2015b; Goddard et al., 660 

2019; Nastase et al., 2017) to moving displays, in which the participants monitor multiple objects 661 

simultaneously. 662 

 663 

The manipulation of target frequency showed that when participants only had to respond 664 

infrequently, modelling real-life monitoring situations, the neural coding of crucial information about 665 

the task dropped, correlating with the decrease in behavioural performance (i.e., vigilance effects in 666 

both accuracy and RT; Figure 2). This suggests that when people monitor for rare targets, they 667 

process or encode the relevant information less effectively as the time passes relative to conditions 668 

in which they are actively engaged in completing the task. Several previous studies have examined 669 

the neural correlates of vigilance decrements using univariate analyses (for a review see Langner et 670 
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al. (2013)). However, univariate analyses fail to capture widespread but subtle differences of 671 

patterns between conditions across distant brain networks. One recent study utilized the sensitivity 672 

of MVPA to extract task-relevant and task-irrelevant information under sustained attention (Megan 673 

et al., 2015). In this case, however, the aspects of information were similar in identity (i.e. high-level 674 

visual categories of face and scenes) and switched their attentional role (i.e. attended vs. 675 

unattended) across the experiment, which makes it difficult to see whether (if at all) vigilance 676 

decrements would differentially affect encoding of different aspects of information depending on 677 

their relevance to the task. To address this issue, here we not only switched the task-relevance of 678 

information across the experiment to replicate the attentional effect of that study (i.e. cued/un-cued 679 

dots), but we also studied two aspects of the dot motion information that varied in importance for 680 

carrying out the task (i.e., direction of approach and distance to object) with unchanging roles across 681 

the experiment. While switching between dot colours showed the effect of attention, with greater 682 

representation of the cued dots over uncued dots, the relevance of the direction of approach and 683 

the distance to object did not vary. The less relevant direction information was unaffected by target 684 

frequency, whereas the coding of the critical task-relevant distance information correlated with the 685 

decrease in behavioural performance over time. This is relevant to theories of vigilance, by 686 

demonstrating that the task-relevance of information might be a major factor in whether vigilance 687 

decrements occur. 688 

 689 

It is important to note that previous studies have tried other physiological/behavioural measures to 690 

determine participants’ vigilance or alertness, such as pupil size (Yoss et al., 1970), response time 691 

variability (Rosenberg et al., 2013), blood pressure and thermal energy (Lohani et al., 2019) or even 692 

body temperature (Molina et al., 2019). We used highly-sensitive analysis of neuroimaging data so 693 

that we could address two questions that could not be answered using these more general vigilance 694 

measures. Our approach allowed us to test for changes in the way information is processed in the 695 
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brain, particularly testing for differences in the impact of monitoring on the relevance of the 696 

information, rather than whether the participants were vigilant and alert in general. Moreover, we 697 

could also investigate how relevant and less relevant information was affected by the target 698 

frequency and time on the task, which could explain the behavioural vigilance decrement observed 699 

in many previous studies (e.g., Dehais et al., 2019; Wolfe et al., 2005; Wolfe et al., 2007; Kamzanova 700 

et al., 2014; Ishibashi et al., 2012). We tested our methods also on the eye-tracking data and found 701 

that the critical task-relevant information change under monitoring conditions could not be 702 

replicated based on eye-movements, demonstrating the benefit of the neural approach. 703 

 704 

Third, our information-based brain connectivity method showed weaker connectivity between the 705 

peri-frontal attentional network and the peri-occipital visual areas of the brain in the unattended 706 

and monitoring conditions (Figure 4), where participants encountered fewer targets relative to the 707 

other conditions. We also observed less connectivity between the same areas on miss vs. correct 708 

trials, which might explain the behavioural outcome of the trials. Most previous neuroimaging 709 

studies have used univariate brain connectivity analyses, which are prone to missing existing 710 

functional connectivity across areas when encountering low-amplitude activity on individual sensors 711 

(Anzellotti & Coutanche, 2018; Basti et al., 2020). The method we used here evaluated the 712 

correlation between representational dissimilarity matrices, which has provided high-dimensional 713 

information about distance to object, obtained from multiple sensors across the brain areas. This 714 

makes the analysis more sensitive to capturing subtle connectivity and also aligns with a major 715 

recent shift in literature from univariate to multivariate informational connectivity analyses 716 

(Goddard et al., 2016; Goddard et al., 2019; Karimi-Rouzbahani et al., 2019; Karimi-Rouzbahani, 717 

2017; Anzellotti & Coutanche, 2018; Basti et al., 2020). 718 

 719 
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Fourth, building upon our recently-developed method of error analysis (Woolgar et al., 2019), we 720 

were able to predict forthcoming behavioural misses before the response was given. This method 721 

only used correct trials for training, which makes its implementation plausible for real-world 722 

situations since we usually have plenty of correct trials and only few miss trials (i.e., cases when the 723 

railway controller diverts the trains correctly vs. misses and a collision happens). In our study, the 724 

method showed a large decline in the crucial task-relevant (i.e., distance to object) information 725 

decoding on miss vs. correct trials but less decline in the less task-relevant information (i.e., direction 726 

of approach). A complementary analysis allowed the prediction of behaviourally missed trials as 727 

soon as the stimulus appeared on the screen (after ~80 ms), which was ~1200 ms before the time of 728 

response. This method was generalisable across participants, with the decision threshold for trial 729 

classification other participants’ data successful in predicting errors for a left-out participant. A 730 

number of previous studies have shown that behavioural performance could be correlated with 731 

aspects of brain activity even before the stimulus onset (Eichele et al., 2008; Weissman et al., 2006; 732 

Sadaghiani et al., 2015). This can be crucial for many high-risk environments, including semi-733 

autonomous car driving and railway control. Those studies have explained the behavioural errors by 734 

implicit measures such as less deactivation of the default-mode network, reduced stimulus-evoked 735 

sensory activity (Weissman et al., 2006; Eichele et al., 2008) and even the connectivity between 736 

sensory and vigilance-related/default-mode brain areas (Sadaghiani et al., 2015). It would be 737 

informative, however, if they could show how (if at all) the processing of task-relevant information is 738 

disrupted in the brain and how this might lead to behavioural errors. To serve an applied purpose, it 739 

would be ideal if there was a procedure to use those neural signatures to predict behavioural 740 

outcomes. Only two previous studies have approached this goal. Sadaghiani et al. (2015) and Dehais 741 

et al. (2019) reported maximum prediction accuracies of 63% and 72% (with adjusted chance levels 742 

of 55% and 59%, respectively), far lower than what we have obtained here (up to 85% with a chance 743 

level of 50%), suggesting our method accesses more relevant neural signatures of vigilance 744 

decrements, or is more sensitive in discriminating these. The successful prediction of an error from 745 
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neural data more than a second in advance of the impending response provides a promising avenue 746 

for detecting lapses of attention before any consequences occur. 747 

 748 

Current explanations for vigilance effects generally fall into two categories: mind-wandering and 749 

cognitive overload. In the first, the low cognitive demands of monitoring tasks result in mind-750 

wandering and then, when a response is required, there are insufficient resources dedicated to the 751 

task (e.g., malleable attention theory (Manly et al., 1999; Smallwood et al., 2006; Young et al., 752 

2002)). In the second, the demands of sustaining attention depletes cognitive resources over time 753 

leading to insufficient resources and increased errors in later stages of the task (e.g., Helton et al., 754 

2008; Helton et al., 2011; Warm et al., 2008). There are several previous observations of decreased 755 

functional connectivity during mind wandering (Chou et al., 2017; Kucyi et al., 2018; van Son et al., 756 

2019), which our informational connectivity results broadly replicate. For example, Chou et al. 757 

(2017) reported a decrease in functional connectivity between visual and sensorimotor and in turn 758 

to frontal brain areas in later stages of a resting-state mind-wandering fMRI study in which 759 

participants were instructed to draw their mind to specific but broad sets of thoughts. In another 760 

study, using EEG-fMRI, von Son et al.  (2019) found reduced functional connectivity between the 761 

dorsolateral PFC, dorsal anterior cingulate cortex (ACC), and posterior parietal regions, namely the 762 

“executive control network”, when participants counted and reported their number of inhales and 763 

episodes of mind wandering. Our finding of a decrease in higher order cognitive (peri-frontal) and 764 

sensory (peri-occipital) areas in later (compared with early) stages of the experiment is broadly 765 

consistent with these findings, but we are unable to distinguish whether this is due to mind 766 

wandering or the depletion of cognitive resources, as in our task either is a plausible explanation for 767 

the effect. 768 

 769 
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The overall goal of this study was to understand how neural information processing of dynamic 770 

displays were affected by attention and target frequency, and whether reliable changes in behaviour 771 

over time could be predicted on the basis of neural patterns. We observed that the neural 772 

representation of critically relevant information in the brain decreases over time, especially when 773 

targets are infrequent. This neural representation was particularly poor on trials where participants 774 

missed the target. We used this observation to predict behavioural outcome of individual trials, and 775 

showed that we could accurately predict behavioural outcome more than a second before action 776 

was needed. These results provide new insights about how vigilance decrements impact information 777 

coding in the brain and propose an avenue for predicting behavioural errors using novel 778 

neuroimaging analysis techniques. 779 
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Supplementary Material 974 

Supplementary figure 1 shows the same decoding results as presented in Figure 3 but 975 

evaluated against chance-level decoding (50%). 976 

Our first analysis was to verify that our analyses could decode the important aspects of the display, 977 

relative to chance, given the overlapping moving stimuli. Here, we give the detailed results of this 978 

analysis. 979 

 980 

We started with the information about the direction of approach (top left or bottom right of screen) 981 

which is a strong visual signal but not critical to the task decision. From 95 ms post-stimulus onset 982 

onwards, this visual information could be decoded from the MEG signal for all combinations of the 983 

factors: Attended and Unattended dots, both Target Frequency conditions (Active, Monitoring), and 984 

both our Time on Task durations (Early - first 5 blocks; Late - last 5 blocks; all BF > 10, different from 985 

chance).  986 

 987 

All conditions were decodable above chance until at least 385 ms post-stimulus onset (BF > 3; 988 

Supplementary Figure 1A), which was when the dots came closer to the centre, losing their visual 989 

difference. There was a rapid increase in information about the direction of approach between 50 990 

ms to 150 ms post-stimulus onset, consistent with an initial forward sweep of visual information 991 

processing (VanRullen, 2007; Karimi-Rouzbahani et al., 2017; Karimi-Rouzbahani et al., 2019). For 992 

attended dots only (but regardless of the Target Frequency or Time on Task), the information then 993 

increased again before the deflection time, and remained different from chance until 1915 ms post-994 

stimulus onset, which is just before the dot faded (Supplementary Figure 1A). The second rise of 995 

decoding, which was more pronounced for the attended dots, could reflect the increasing relevance 996 

to the task as the dot approached the crucial deflection point, but it could also be due to higher 997 

visual acuity in foveal compared to peripheral areas of the visual field. The decoding peak observed 998 
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after the deflection point for the attended dots, was most probably caused by the large visual 999 

difference between the deflection trajectories for the dots approaching from the left vs. right side of 1000 

the screen (see the deflection trajectories in Figure 1A).  1001 

 1002 

The most task-relevant feature of the motion is the distance between the moving dot and the 1003 

central object, with the deflection point of the trajectories being the key decision point. We 1004 

therefore tested for decoding of distance information (distance to object, see Methods). There was a 1005 

brief increase in decoding of distance to object for attended dots across the other factors (Target 1006 

Frequency and Time on Task) between the 15th and 10th distances and for the unattended dots 1007 

across the other factors between 15th and the 12th distances. This corresponds to the first 400 ms for 1008 

the attended dots and the first 240 ms for the unattended dots after the onset (Supplementary 1009 

Figure 1B). Distance decoding then dropped somewhat before ascending again as the dot 1010 

approached the deflection point. The second rise of decoding, which was more pronounced for the 1011 

attended dots, could reflect the increasing relevance to the task as the dot approached the crucial 1012 

deflection point, but it could also be due to higher visual acuity in foveal compared to peripheral 1013 

areas of the visual field. There was strong evidence that decoding of distance information for all 1014 

conditions was greater than chance (50%, BF > 10) across all 15 distance levels (Supplementary 1015 

Figure 1B). 1016 
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 1017 

 1018 

 1019 

 1020 

 1021 

  

Supplementary Figure 1. Impact of different conditions in the direction of approach (A) and distance to object (B) information 
coding and their Bayesian evidence for difference from chance. (A) Decoding of direction of approach information (less task-
relevant). The horizontal dashed line refers to chance-level decoding. Upper graph: Attended colour dot; Lower graph: 
Unattended (‘distractor’) colour dot. (B) Decoding of distance to object information (most task-relevant). Thick lines show the 
average across participants (shading 95% confidence intervals). Vertical dashed lines indicate critical times in the trial.  Bayes 
Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the difference of the 
decoding values from chance as explained in Methods. Early = data from the first 5 blocks (~10 minutes). Late = data from the 
last 5 blocks (~10 minutes). 
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Supplementary figure 2 shows the data for false alarm trials. 1022 

 1023 

 1024 

 1025 

 1026 

 

Supplementary Figure 2. Decoding of information on correct vs. false alarm trials. (A) Decoding of direction of approach 
information (less task-relevant). (B) Decoding of distance to object information (most task-relevant). The horizontal dashed lines 
refer to chance-level decoding. Top row: Decoding using correct trials; Bottom row: Decoding using false alarm trials. In both top 
and bottom rows, the classifiers were trained on correct trials and tested on correct and false alarm trials, respectively. Thick 
lines show the average across participants (shading 95% confidence intervals). Vertical dashed lines indicate critical events in the 
trial. Bayes Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either 
hypothesis and empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the 
difference of the decoding values from chance for Active (blue) and Monitoring (red) conditions separately, the comparison of 
the two conditions (green) and the comparison of correct and miss trials (black). Note that for the comparison of correct and 
miss trials, Active and Monitoring conditions were averaged separately. 
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Supplementary Figure 3 shows the analysis of eyetracking data using the same 1027 

decoding methods as for the neural data. 1028 

 1029 

 

Supplementary Figure 3. Decoding of information about the dot motion using the eye-tracking data. (A) Decoding of direction of 
approach information (less task-relevant). (B) Decoding of distance to object information (most task-relevant). The horizontal 
dashed lines refer to chance-level decoding. Top panels: Decoding using correct trials; Bottom panels: Decoding using miss trials. 
In both top and bottom panels, the classifiers were trained on correct trials and tested on (left out) correct and all miss trials, 
respectively. Thick lines show the average across participants (shading 95% confidence intervals). Vertical dashed lines indicate 
critical events in the trial. Bayes Factors are shown in the bottom section of each graph: Filled circles show moderate/strong 
evidence for either hypothesis and empty circles indicate insufficient evidence. They show the results of Bayes factor analysis 
when evaluating the difference of the decoding values from chance for Active (blue) and Monitoring (red) conditions separately, 
the comparison of the two conditions (green) and the comparison of correct and miss trials (black). Note that for the comparison 
of correct and miss trials, Active and Monitoring conditions were averaged separately. 
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