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Abstract

Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression
by silencing the translation of target mRNAs. SgrS is an sRNA that relieves
glucose-phosphate stress, or “sugar shock” in E. coli. The power of single cell
measurements is their ability to obtain population level statistics that illustrate
cell-to-cell variation. Here, we utilize single molecule super-resolution microscopy in
single E. coli cells coupled with stochastic modeling to analyze glucose-phosphate stress
regulation by SgrS. We present a kinetic model that captures the combined effects of
transcriptional regulation, gene replication and chaperone mediated RNA silencing in
the SgrS regulatory network. This more complete kinetic description, simulated
stochastically, recapitulates experimentally observed cellular heterogeneity and
characterizes the binding of SgrS to the chaperone protein Hfq as a slow process that
not only stabilizes SgrS but also may be critical in restructuring the sRNA to facilitate
association with its target ptsG mRNA.

1/25

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.06.30.178566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.178566


Introduction 1

The ability of living cells to modulate their gene expression in response to changing 2

environmental conditions is critical to their growth and continued development. Many 3

bacteria use the phosphoenolpyruvate phosphotransferase (PTS) system to transport 4

and phosphorylate incoming sugars to prepare them for subsequent glycolytic 5

metabolism. The uptake of phosphosugars must be balanced with their breakdown in 6

order to prevent metabolic stress. In E. coli, a stress response induced by unbalanced 7

glucose-phosphate transport and metabolism or “sugar shock”, is referred to as 8

glucose-phosphate stress response. A primary activity of this stress response is RNA 9

silencing of ptsG, a gene coding for the glucose transport protein of the same name (also 10

known as EIICBGlc in E. coli), by the small RNA (sRNA) SgrS. Small RNAs are 11

usually non–coding RNA molecules that act by base pairing with target messengers to 12

regulate translation or mRNA stability and have been observed across all domains of 13

life [3]. sgrS is upregulated by a transcriptional activator (SgrR) when the cell is under 14

a state of glucose-phosphate stress. SgrS regulates ptsG post-transcriptionally by a 15

mechanism where SgrS binds to ptsG messenger RNA (mRNA) and prevents its 16

translation to protein by blocking access of the ribosome to the mRNA [24,41]. This 17

also enhances the co-degradation of ptsG mRNA and SgrS via enzymes responsible for 18

the removal of bulk RNA such as ribonuclease E (RNase E) [20,24]. This 19

co-degradation reduces the number of PtsG sugar transporter proteins that are 20

produced and thus reduces the impact of glucose-phosphate stress, since fewer transport 21

proteins are available to bring sugar into the cell. 22

SgrS and ptsG mRNA associate via complementary base pairing that occludes the 23

ribosome binding site on the mRNA. Recently, this mechanism has been analyzed in 24

conjunction with binding of the Sm-like chaperone protein Hfq to SgrS, which has been 25

proposed to stabilize the sRNA, and facilitate the interaction between the sRNA and its 26

mRNA target [18]. Hfq also promotes SgrS–dependent regulation of other targets 27

involved in sugar shock such as manXYZ, and yigL in E. coli. In this study, we focus 28

only on the primary regulatory target ptsG mRNA and do not consider the other 29

targets of SgrS regulon, which are described in [6]. 30

Previous experimental and theoretical work [19,32] has demonstrated the necessity 31

of accounting for gene replication over the course of the cell cycle in order to capture 32

the population variation observed in messenger RNA abundance. The additional noise 33

emanating from transcription at multiple gene loci manifests itself in the broad mRNA 34

copy number distributions observed in a population of cells. The aforementioned work 35

also demonstrated that including the effect of gene regulation by transcription factors 36

can be critical in order to appropriately describe stochastic dynamics. The effect of 37

transcriptional regulation is apparent in the SgrS–ptsG mRNA system, where the 38

expression of SgrS is maintained by the regulator SgrR, which activates sgrS and 39

autorepresses its own expression during glucose-phosphate stress conditions [41,42]. 40

Recently, Fei et al. [13] presented a deterministic kinetic model of the SgrS mediated 41

regulation of ptsG mRNA in E. coli. Using single-molecule fluorescence experiments 42

(smFISH and STORM), SgrS and ptsG mRNA copy numbers in cells were measured, 43

which produced distributions of RNA at various time points after the induction of sugar 44

stress across a population of fast-growing E. coli. However, it is important to note that 45

both the ptsG mRNA and the SgrS regulating it are present in low copy number (a few 46

to tens of particles) and therefore exhibit intrinsically noisy behavior in both their gene 47

expression and regulatory behaviors. For this reason it is most appropriate to treat the 48

regulatory network via stochastic simulation in order to quantify the variation that is 49

observed across a population of cells, which has been demonstrated 50

previously [11,12,34]. 51

Here, we have developed a stochastic model, to our knowledge the first of its kind for 52
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Figure 1. Schematic of the kinetic model as described in the text. The RNA species
are transcribed from a sampled genome state with sgrS capable of switching between an
“ON” and “OFF” state. Explicitly represented Hfq can bind and unbind with SgrS, and
then the Hfq–SgrS complex binds (and potentially unbinds) with ptsG mRNA. All RNA
degradation events are carried out by the enzyme RNase E. See Figure 4 for the kinetic
equations described above.

an RNA silencing network, that captures the mRNA and sRNA distributions 53

experimentally observed in a population of hundreds of E. coli cells. The stochastic 54

model additionally incorporates the following features that extend the platform given 55

by Fei et al [13]: (1) accounting for gene replication, (2) transcriptional gene regulation 56

of sgrS by its activator SgrR and (3) explicit representation of the SgrS stabilization via 57

the Hfq chaperone protein. This model robustly describes experimentally observed RNA 58

distributions, closely matching regulatory dynamics from immediately after induction 59

until a steady state is reached 20 minutes later. We also utilize this model to analyze 60

the effects of the size of the pool of Hfq chaperone protein available to SgrS, to decouple 61

the rate of Hfq stabilization of SgrS and its subsequent activity in enhancing association 62

to the target, ptsG mRNA, and to study the effect of an sgrS point mutation in the 63

SgrS-Hfq binding region on regulatory dynamics. 64

Materials and Methods 65

Model and Computational Methods 66

The previous kinetic model for SgrS regulation of ptsG mRNA [13] utilized simple 67

mass-action kinetics to describe the target search process and modeled gene expression 68

as a constitutive process, with RNA species originating from a single gene copy. Despite 69

its simplicity, this model captures average regulatory network behavior and also gives 70

insight into many of the parameters required for the more descriptive stochastic model 71

that is the focus of this work. For example, since an overall binding rate for SgrS 72

to ptsG mRNA was established in Fei et al. [13] we are now able to complexify the 73

model by the addition of the chaperone protein Hfq, which allowed us to predict (by 74

fitting to the experimental data) the size of the pool of Hfq available to stabilize SgrS 75

and the rate at which it binds the sRNA (separate from its association to ptsG mRNA). 76

The kinetic model was implemented and solved stochastically as a well-mixed 77

Chemical Master Equation (CME) in the Lattice Microbes (LM) simulation software 78

suite [15,16,33,35]. The corresponding rate constants (Table 1) were adapted from the 79

kinetic model described in Figure 1. One important feature added to the model is the 80

explicit presence of the chaperone protein Hfq, which has been shown to both stabilize 81

SgrS (substantially increasing its half-life) and to facilitate the association of SgrS 82
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to ptsG mRNA [17,36,41,43]. In order to capture the cell-to-cell heterogeneity due to 83

the small number of particles (e.g., gene copies) involved in transcription, it is critical to 84

account for transcriptional regulation of the genes involved in the glucose-phosphate 85

stress response. For this reason, we include the transcriptional activation of sgrS by the 86

transcription factor SgrR, which has been shown to upregulate sgrS expression in the 87

presence of αMG (the unmetabolizable inducer used in place of glucose for our 88

experiments) [41,42]. Regulation of ptsG by the transcriptional repressor Mlc was not 89

included in the model since repression is relieved in the presence of glucoside sugars. 90

With αMG present, Mlc is sequestered at the membrane by binding the EIIB subunit of 91

the PtsG transporter protein complex [22,30,37], relieving repression and resulting in 92

high levels of ptsG transcriptional activity [4]. Since the decay time of PtsG proteins is 93

expected to be approximately on the order of eight hours [23], much longer than the 94

timescale of mRNA decay, Mlc repressors are likely still sequestered by the transporters 95

at the membrane 20 minutes post-induction and have little effect on the SgrS regulatory 96

process. Rates for the association of the Hfq-SgrS complex to ptsG mRNA (kon) and 97

the dissociation of the Hfq-SgrS-ptsG mRNA complex (koff ) were obtained from [13], 98

which did not include Hfq explicitly but provides the corresponding association and 99

dissociation reaction rates. The value for the co-degradation rate of SgrS and ptsG 100

mRNA from the Hfq-SgrS-ptsG mRNA complex by RNase E (kcat) is also obtained 101

from Fei et al. [13] (see Section “Experimental Methods and Materials” for confirmation 102

of kon, koff , and kcat values). 103

Calculation of Gene Copy Number 104

Finally, and critically, in order to appropriately capture regulatory effects on gene 105

expression of SgrS and ptsG mRNA, it is important to account for gene duplication, as 106

we have previously shown [32]. As illustrated by Jones et al. [19] since the time to 107

replicate the E. coli genome (approximately 40 minutes [9]) is longer than the 108

fast-growing E. coli cell division time of 20 minutes (or the 35 minutes observed in our 109

experiments), the cell has nested replication forks that are already replicating the 110

genomes of daughter and granddaughter cells prior to cell division. In particular, genes 111

close to the origin of replication are likely to have multiple copies present over much of 112

the cell cycle. This phenomenon has been shown previously for genes near the origin 113

in E. coli by both isotopic labeling of nucleotides and imaging of fluorescent 114

chromosome markers [9,48]. Due to the position of sgrS (only 6◦ away along the circular 115

chromosome) very near to the origin of replication, it is likely that multiple gene copies 116

are accessible for transcription over the course of the cell cycle. About half-way between 117

the origin and terminus of replication (at approximately 90◦) ptsG is also likely to have 118

multiple gene copies present at some point over the course of the cell cycle, although at 119

lower copy number than sgrS. Figure 2 depicts the two genes and their location along 120

the circular E. coli genome. The experimentally measured cells were unsynchronized 121

and should have multiple replication forks present over the course of the 20 minutes 122

post-induction, our measurement window. To account for gene duplication effects in a 123

population of unsynchronized cells, we sample the percentage of the cellular population 124

in either a low or high gene state, which corresponds to the expected distribution of the 125

number of genes present over the course of the cell cycle after induction. In this way, we 126

effectively flip a coin to decide whether a simulation replicate corresponding to an 127

individual experimentally imaged E. coli cell has 2 copies (low gene state) or 4 copies 128

(high gene state) of sgrS and similarly 1 or 2 copies of ptsG. This allows us to account 129

for the effect of gene duplication in generating mRNA noise over the heterogeneous 130

population of hundreds of E. coli cells that were observed experimentally. We assume 131

that all gene copies are transcribed independently from one another and at the same 132

rate, a notion that [46] has recently examined in E. coli under various growth conditions. 133
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Figure 2. The gene location for SgrS and ptsG mRNA relative to the origin of replication
(oriC ) are shown on the circular genome of the E. coli cells used for this study. As it is
closer to the origin of replication sgrS (cyan) is likely to be present in higher gene copy
number than ptsG (orange), which is farther away from the oriC.

Under similar growth conditions to ours (MOPS glucose-based medium with a doubling 134

time of 35 minutes, (see Section “Experimental Methods and Materials”)), the data 135

from [46] suggest that transcription does appear to be independent and uncorrelated 136

between copies of the same gene. Figure 3 illustrates the reasoning for the specific 137

choices of high and low state gene copy numbers for ptsG and sgrS in an E. coli cell 138

growing faster than the expected time necessary for replication (approximately 40 139

minutes, compared to an experimentally observed generation time of approximately 35 140

minutes) [9, 48]. Stochastic simulations were performed by sampling the CME for the 141

model given in Figure 1 with the widely used Gillespie Direct Method of the Stochastic 142

Simulation Algorithm (SSA), which is implemented in the publicly available Lattice 143

Microbes (LM) software suite (version 2.3 was used) and its python interface 144

pyLM [15,16,33,35]. We ran 2000 replicate simulations for 25 minutes after αMG 145

induction of glucose-phosphate stress in order to match the corresponding 20-minute 146

smFISH-STORM experiments. Initial conditions for basal SgrS (1-3 copies) and ptsG 147

mRNA (30-40 copies) copy number were sampled from the experimentally measured 148

distributions and rounded to the nearest integer particle number (a necessity for 149

stochastic representation). Simulations were computed on a local cluster containing 150

AMD Opteron Interlagos cores. 151

SgrS Regulatory Network Kinetic Model 152

The kinetic model describing the reactions characterizing the E. coli glucose-phosphate 153

response network by the small RNA SgrS is given in Figure 4. Simulation files are 154

available in Jupyter Notebook format to be simulated via the Lattice Microbes (LM) 155

Software Package at Add link to jupyter notebook. 156
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Figure 3. A simplified depiction of possible cellular states throughout a single DNA
replication cycle. Each cell shows a snapshot of the gene state of a cell given its
progression through the DNA replication and cell division cycle. Due to the difference
in lengths of the cell division cycle (∼35 mins) and DNA replication cycle (∼40 mins),
DNA replication and cell division are not completely in sync. Multiple replication forks
(red dots) can form on the genome in order to ensure DNA is duplicated properly in
these fast-growing cells. As a result, genes closer to the origin such as sgrS (blue) are
duplicated in the same timeframe that replication is initiated (resulting in 2 or 4 gene
copies), while genes closer to the terminus such as ptsG (orange) are replicated in the
C period, the period when a majority of DNA is duplicated (resulting in 1 or 2 gene
copies). The black arrows denote the start of a cycle.
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Experimental Methods and Materials 157

Wild type E. coli cells (DJ480) were grown overnight at 37 ◦C, 250 rpm in LB Broth. 158

The SgrS U224G mutant was grown in LB Broth with 50 µg/ml spectinomycin (Spec) 159

(Sigma-Aldrich). The next day, overnight cultures were diluted 100-fold into MOPS EZ 160

rich defined medium with 0.2% glucose and the cells were grown until OD600 reached 161

0.15–0.25. α-methyl D-glucopyranoside (αMG) (Sigma Aldrich) was then added to 162

provoke glucose-phosphate stress and induce SgrS expression response. Specific volumes 163

of liquid were removed from the culture at 0, 2, 4, 6, 8, 10, 15, and 20 minutes after 164

induction and mixed with formaldehyde (Fisher Scientific) to a final concentration of 165

4% for cell fixation prior to single molecule experiments. Following fixation, the cells 166

were incubated and washed, before being permeabilized with 70% ethanol, to allow for 167

fluorescence in situ hybridization (FISH). Stellaris Probe Designer was used to design 168

the smFISH oligonucleotide probes that were ordered from Biosearch Technologies 169

(https://www.biosearchtech.com/). Each sRNA was labeled with 9 Alexa Fluor 647 170

probes while each ptsG mRNA was labeled with 28 CF 568 probes. The labeled RNA 171

molecules were then imaged via the super-resolution technique STORM (Stochastic 172

Optical Reconstruction Microscopy). A density-based clustering analysis algorithm 173

(DBSCAN) [10] was utilized to calculate RNA copy numbers. The algorithm used was 174

the same as previously published [13], but the Nps and Eps values were updated for the 175

SgrS and ptsG mRNA images, since CF 568 was used instead of Alexa Fluor 568 and a 176

405 nm laser was used to reactivate the dyes. The SgrS (9 probes labeled with 177

AlexaFluor 647) images were clustered using Nps = 3 and Eps = 15 and the ptsG 178

Figure 4. Kinetic Equations of the SgrS regulatory network. Don,p1,2
refers to the gene

(or DNA) for ptsG in 1 (low state) or 2 (high state) copies and Don,s2,4 corresponds to
the gene for sgrS in 2 (low state) or 4 (high state) copies. Don,s corresponds to sgrS when
it is in the “ON” state due to activated or solute bound transcriptional activator SgrR
being bound [42]. kds corresponds to the experimentally measured degradation rate of
SgrS when cellular Hfq is not present and kunbind corresponds to the experimentally
measured degradation of SgrS when Hfq was present.
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Table 1. The list of parameters used for the kinetic model. The % in each gene state
refers to percentage of the cellular population with the gene being in a low or high gene
copy state as described in subsection . a) kbind is given as a Pseudo first order rate
accounting for the average expected pool size of Hfq participating in SgrS stabilization
and enhancement (250). When converted to the corresponding bulk second order rate
with 250 Hfq present kbind agrees well with the range of Hfq binding rates measured for
other sRNA reviewed in [36] and discussed further in Section “Results”

Parameter Value Unit Source
kt,p 0.12 s−1 Experimentally Measured
βp 3.7× 10−3 s−1 Experimentally Measured

kon,Ds
3.0× 10−2 s−1 fit

koff,Ds
9.5× 10−3 s−1 fit

kt,s 0.33 s−1 fit
kds 0.022 s−1 ∆hfq decay rate of SgrS
kbind 0.063a s−1 fit
kunbind 0.0018 s−1 SgrS decay rate
kon 3.1× 10−4 molec−1s−1 [13]
koff 0.22 s−1 [13]
kcat 0.3 s−1 [13]

% high, low gene state sgrS 25, 75 % fit
% high, low gene state ptsG 46, 54 % fit

Hfq pool size (available to SgrS Regulon) 250 molec fit

mRNA (28 probes labeled with CF 568) images were clustered using Nps = 10 and 179

Eps = 25 and these numbers were empirically chosen. A MATLAB code was used for 180

cluster analysis. The raw data was acquired using the Python-based acquisition 181

software and it was analyzed using a data analysis algorithm which was based on work 182

previously published by [2]. The peak identification and fitting were performed using 183

the method described previously [13]. The z-stabilization was done by the CRISP 184

system and the horizontal drift was calculated using Fast Fourier Transformation (FFT) 185

on the reconstructed images of subsets of the super-resolution image, comparing the 186

center of the transformed images and corrected using linear interpolation. The ptsG 187

mRNA degradation rates were calculated via a rifampicin-chase experiment. The wild 188

type (DJ480) E. coli cells and ∆hfq mutant strain SA1816 189

[DJ480, laclg, tetR, spec, ∆hfq::kan] cells were grown in LB Broth with the respective 190

antibiotics at 37 ◦C, 250 rpm overnight. They were used to calculate the RNA 191

degradation rates. The ∆hfq::kan allele was moved to create strain SA1816 constructed 192

by P1 transduction [27]. When the OD600 reached 0.15–0.25, rifampicin (Sigma-Aldrich) 193

was added to cultures to a final concentration of 500 µg/ml. The cells were labeled by 194

smFISH probes and analyzed by the same process described above, taking the time of 195

rifampicin addition or αMG removal as the 0 time point. Aliquots were taken after 0, 2, 196

4, 6, 8, 10, 15, and 20 minutes (0, 2, 4, 6, and 8 minutes for ∆Hfq strains). For the 197

purpose of background subtraction, ∆SgrS and ∆ptsG mRNA strains were grown, 198

labeled with probes and imaged in the same manner to be used for the measurement of 199

the background signal due to the non-specific binding of Alexa Fluor 647 and CF 568. 200

The natural logs of the RNA copy numbers were plotted against time and the slope of 201

the linear fitting was used to calculate the RNA lifetime and then the degradation rates. 202

SgrS degradation rates were obtained from [13], where they were measured by stopping 203

the transcription of sgrS by removing αMG from the media and then were imaged and 204

analyzed to calculate the degradation rates in the same manner as was described 205

8/25

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.06.30.178566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.178566


for ptsG mRNA. The values for kcat, kon, and koff for WT cells were confirmed to be 206

within the errors reported for the values given in [13] by fitting to the experimentally 207

measured RNA counts with the simplified model given in that work. The transcription 208

rate of ptsG was determined using kt.p = βp × [p]0, (as described in [13]), where [p]0 was 209

the average initial level of ptsG mRNA before stress induction. The transcription rate 210

obtained was unchanged between the wild-type and the U224G mutant cells. 211

Results 212

Figure 5 demonstrates the ability of our newly developed kinetic model to capture the 213

average cellular copy number of SgrS and ptsG mRNA over the course of the 20 minute 214

period post-induction. The overlap of the interquartile range (IQR) of both the 215

experimental and simulated cellular populations demonstrates the agreement over a 216

variety of cells (at different gene states (i.e high/low copy number), and RNA 217

expression levels). 218

The ability of our improved kinetic model to capture population-level statistics of 219

single cell copy number distributions of SgrS and ptsG mRNA is demonstrated in 220

Figure 6. Kernel Density Estimates (KDE), which are used to estimate the probability 221

densities of distributions of approximately 100–200 experimentally measured cells and 222

2000 simulated cells are displayed, along with dashed vertical lines giving the average 223

RNA copy numbers observed. KDEs were utilized to provide a reasonable comparison 224

to the experimental values despite the fact that there were a relatively low number of 225

cells measured at each time point (approximately 100–200) compared to the number of 226

replicates required for appropriate stochastic simulation (2000) (Histograms of 227

experimental RNA counts measured before KDE imposition are given in Supplemental 228

File 1–Figure 15,Figure 14). The distributions obtained from both experiment and 229

the kinetic model show strong agreement (especially in the case of ptsG mRNA), which 230

can be seen quantitatively by the starred line showing the Kulback–Leibler Divergence 231

(KL Divergence) in Figure 7. The KL Divergence (Equation 2), which was minimized to 232

fit to experimental RNA distributions over all time points, is a statistical measure used 233

to characterize the difference between a probability distribution (the KDE of simulated 234

cells) and a reference distribution (the KDE of experimentally measured cells). 235

The parameters obtained from the fitting process give some insight into the role of 236

stabilization by Hfq in the SgrS-ptsG mRNA target search process and the role of 237

transcriptional regulation by SgrR in the regulatory network. The pseudo first order 238

rate of Hfq binding to SgrS (kbind) is 0.063 s−1, while the degradation rate of SgrS 239

(kds), obtained from ∆hfq strain experiments (described in Section “Experimental 240

Methods and Materials”), is 0.022 s−1. The available Hfq pool size of 250 predicted by 241

fitting to the kinetic model seems reasonable in that average proteomics values have 242

been found to be on the order 1500 [36,40] and unique sRNAs have been shown to be 243

bound to 10 to 1000 copies of Hfq in E. coli [26] (Supplemental File 1–Section 1). 244

Additionally, the aforementioned SgrS-Hfq binding rate kbind corresponds well to 245

experimentally measured in vitro values for sRNA-Hfq binding for sRNA of its 246

approximate size [14,17,36]. If the pseudo first order rate for kbind reported 247

in Table 1 is converted to a bulk second order rate by incorporating the Hfq 248

concentration at the predicted available pool size of 250, we obtain a binding rate of 249

1.5× 105 M−1 s−1. This value agrees better with the reported value of 250

approximately [36] 106 M−1 s−1 for long RNAs binding to 251

Hfq [14,21] than 108 M−1 s−1 reported for short, unstructured RNAs binding to 252

Hfq [17]). Since SgrS is a relatively long sRNA (sRNA have typically been found to be 253

between 37–300 nt [44]) with a length of 227 nucleotides, the slow sRNA-Hfq binding 254

rate obtained by fitting seems appropriate. This type of slow sRNA association process 255
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Figure 5. Average time trace and interquartile range (IQR) of (A) labeled
SgrS and (B) ptsG mRNA from both 85–169 cells from smFISH experiments (red)
and 2000 replicates from kinetic model simulations (blue). The kinetic model shows
strong agreement, especially at long times (10-20 minutes) after induction and captures
overall response behavior. An available pool of 250 Hfq and the kinetic parameters given
in Table 1 were utilized. Results considering both lower and higher available Hfq pools
are discussed in Supplemental File 1–Figure 9.

Figure 6. Distributions of (A) Wild-Type SgrS (top) and (B) ptsG mRNA (bottom)
at various time points from 0 to 20 minutes post-induction. Data from smFISH-STORM
experiments (red, 100–200 cells per time point) and stochastic simulations (blue, 2000
cells per time point) are shown as kernel density estimates. The effect of number of
cell replicates is studied further in Supplemental File 1–Figure 11. Average copy
number at each time point is are displayed with dashed vertical lines.
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has been suggested to be characterized by RNA restructuring (by which Hfq remodels 256

sRNA regions in order to make its secondary structure more accessible for target mRNA 257

base pairing) [1, 8, 38,39], which has been proposed to occur for SgrS [24]. kbind is also 258

much greater than the Hfq-SgrS unbinding rate (kunbind) of 0.0018 s−1 which was 259

obtained from fitting to the degradation rate of SgrS in a cell where Hfq was expressed 260

(distinct from the ∆hfq rate) by assuming that Hfq-SgrS unbinding is the rate-limiting 261

step in the degradation of free SgrS represented in Figure 4 Reaction 2.2. These results 262

seem reasonable in that SgrS should associate with Hfq at a rate comparable to its 263

degradation as well as that SgrS-Hfq binding should happen at a significantly higher 264

rate than their dissociation for sRNA chaperone stabilization by Hfq to be effective. 265

The kinetic values for transcriptional regulation by the activator SgrR also seem 266

reasonable with a kon,Ds of 3.0× 10−2 s−1 and a koff,Ds of 9.5× 10−3 s−1. The gene 267

switching parameters correspond to sgrS activation via SgrR binding occurring 268

approximately 30 seconds after initiation of induction, with all sgrS genes assumed to 269

start in the “OFF” state (the effect of starting genes in the “OFF” versus the “ON” 270

state is analyzed in Supplemental File 1–Figure 10). This seems reasonable since 271

SgrS sRNA moves from a basal level of a few copies to greater than 40 copies on average 272

in two minutes time (Figure 5). The fact that kon,Ds is 3 times greater than koff,Ds 273

means that activation happens more frequently than deactivation from unbinding of 274

SgrR. This relative behavior is somewhat expected as sugar shock has been induced and 275

SgrR is believed to be transformed to its active conformation as a transcriptional factor 276

for sgrS by binding to a small molecule at its C-terminus [41,42]. While the available 277

evidence suggests that the activity of SgrR due to solute binding rather 278

than sgrR expression affects activation of sgrS, it has been demonstrated that SgrR is 279

negatively autoregulated [42] which may lead to a ceiling on the level of sgrS activation 280

that can occur even after glucose-phosphate stress is fully induced. Thus, we 281

incorporate constant rates of kon,Ds and koff,Ds for sgrS activation in our model, 282

instead of a time variant rate constant for either parameter. 283

Comparison of Goodness of Fit Based on Model Complexity 284

To illustrate the improvement of the kinetic model to describe cellular populations, we 285

compare simulation results sequentially as each level of complexity (i.e., transcriptional 286

regulation by SgrR, gene replication, and stabilization by the chaperone protein Hfq) is 287

added to the original reduced model presented in [13]. Figure 7 demonstrates the 288

improvement in descriptiveness at both an average and population level with 289

progression to a more fine-grained kinetic model. The relative error (Equation 1) of the 290

average copy number of SgrS and ptsG mRNA gives the capability of the model to 291

reproduce experiments on an average level, while the Kulback-Leibler Divergence (KL 292

Divergence) (Equation 2) shows the agreement between the experimentally observed 293

and simulation distributions of RNA copy numbers at a series of times from 0 to 20 294

minutes post induction. 295

The Relative Error used to illustrate the agreement between the experimentally 296

measured average RNA copy number and the theoretical value is given by: 297

η =

∣∣∣∣Expavg − Simavg

Expavg

∣∣∣∣ (1)

The KL Divergence used to compare agreement between experimental and simulated 298

distributions is given by: 299

DKL (P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(2)
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where P(i) is the continuous probability distribution given by the Gaussian KDE of 300

the experimental copy number distribution of RNA (SgrS or ptsG mRNA) and Q(i) is 301

the analogous simulated RNA copy number distribution. 302

It is clear that the decrease in the KL Divergence (Figure 7C,D), describing the 303

ability of the kinetic model to accurately describe cell-to-cell variation, is most 304

substantial in the final model presented in this work (star markers). Accounting for 305

transcriptional regulation by SgrR, ongoing gene replication, and the stabilizing effect of 306

Hfq allows for a more faithful description of the noise observed in a cellular population 307

in the process of sugar shock response. 308

Characterizing the Effects of SgrS Point Mutation on 309

Association to Hfq and ptsG mRNA 310

The stochastic model we have presented can also be utilized to characterize the effects 311

of sgrS point mutations on the regulatory network as a whole. The polyU tail region 312

of sgrS comprising the final 8 residues of the 5’ end (all of which are uridine in the 313

sRNA) has previously been shown to be an important site for Hfq recruitment [31]. 314

When the polyU tail is truncated or similarly disrupted, there is a noticeable decrease in 315

SgrS regulatory efficiency. With this in mind, we used the previously defined kinetic 316

model (See Figure 4) to characterize the effect of a point mutation resulting in a U to G 317

change in SgrS at position 224 (in the polyU tail region, hereafter referred to as U224G) 318

of the sRNA on regulatory kinetics. This point mutation is well downstream of the seed 319

region (nucleotides 168–187) where SgrS-ptsG mRNA base pairing occurs [7, 24] so it 320

should not directly interfere with sRNA-mRNA interactions. It is also important to 321

consider the possible structural effects arising from polyU tail mutation. Through in 322

silico folding with the RNA structure prediction tool mFold [49], we confirmed that the 323

stability of the U224G with a ∆G of −17.60 kcal/mol is unchanged from the predicted 324

wild-type value of −17.60 kcal/mol, and also indicated that sRNA structure is 325

conserved Supplemental File 1–Figure 13) and the measured wild-type ∆Hfq 326

degradation rate (see Section “Experimental Methods and Materials”) is appropriate for 327

use in fitting the U224G mutant data (as a rate for Figure 1, rxn 2.2). 328

We then fit to the experimentally measured SgrS and ptsG mRNA distributions 329

using the previously determined kinetic model. A robust fit describing both average 330

behavior as well as population level variation (Figure 8, Supplemental File 331

1–Figure 12) was achieved primarily by modulating the rates of SgrS to Hfq binding 332

and unbinding and the ptsG mRNA annealing rates kon and koff (which were also free 333

parameters in this treatment) to a much lesser extent, which further demonstrates the 334

role of the polyU tail in Hfq chaperone recruitment. 335

The changes in the kinetic parameters of the model used to fit mutant U224G 336

relative to the wild-type cells (WT) illustrate that the effects of this mutation on 337

SgrS-Hfq association are much larger, relative to the subsequent annealing of SgrS to its 338

target ptsG mRNA (Table 2) (Futher discussion in Supplemental File 1–Section 4). 339

The 48% decrease in the SgrS-Hfq binding rate kbind and 66% increase in the 340

unbinding rate of the sRNA and chaperone complex kunbind highlight the effects of 341

polyU tail disruption, and support previous conclusions that this is an important site for 342

Hfq stabilization of SgrS [31], and the regulatory efficiency of the network as a whole. 343

The smaller relative changes in the SgrS-ptsG mRNA annealing rates kon and koff by 344

32% and 22% respectively may be due to altered interactions with Hfq that impair 345

Hfq–dependent annealing of SgrS and ptsG mRNA (Supplemental File 1–Section 346

4). In light of the previously discussed slow SgrS–Hfq association process, it is 347

reasonable that RNA restructuring of Hfq may be disrupted by mutation U224G, thus 348

leading to slower and weaker annealing to ptsG mRNA. One possible explanation for 349
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Figure 7. Statistical analysis of the agreement of (A),(B) SgrS sRNA
and (C),(D) ptsG mRNA copy number between experiment and theory on
both (A),(C) an average (Relative Error) and (B),(D) distribution (Kulback–Leibler:
KL Divergence) level. KL Divergence values for the model with no Hfq stabilization
nor Gene Duplication are not shown as the values obtained are at 1.0, corresponding to
significant disagreement in that model variant and experiment. GeneDup refers to a
model with Gene Duplication for both SgrS and ptsG implemented and Reg refers to a
model with transcriptional regulation of SgrS by SgrR in place. The green line (with
star markers) indicates the full kinetic model used for this study, which provides the
best fit to both average and population level data for both SgrS and ptsG mRNA.
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Figure 8. For U224G mutant cells, average time trace and interquartile range (IQR)
of (A) labeled SgrS and (B) ptsG mRNA from both 85-169 cells from smFISH
experiments (red) and 2000 replicates from kinetic model simulations (blue). The kinetic
model shows strong agreement, especially at long times (10-20 minutes) after induction
and captures overall response behavior. An available pool of 250 Hfq and the kinetic
parameters given in Table 1 were utilized, other than changes to SgrS-HFq binding and
unbinding rates and ptsG mRNA annealing and dissociation rates given in Table 2.

the disturbance of regulation in mutant U224G is the disruption of orderly transcription 350

termination (the polyU tail at the 3’ end of sgrS). Such readthrough transcription has 351

previously been ascribed to decrease the efficiency of SgrS binding to Hfq [28,29]. 352

Discussion 353

The construction of a stochastic kinetic model including gene replication, transcriptional 354

regulation, and the role of the Hfq chaperone protein demonstrates the utility of 355

combining single cell experiments with stochastic modeling. The SgrS Regulatory 356

Network is a noisy system characterized by small numbers of sRNA and mRNA, as well 357

as gene copy numbers that vary from cell-to-cell. This leads to the population level 358

heterogeneity that can then be used to parameterize a kinetic model for analysis of the 359

role of specific molecular actors, such as the chaperone Hfq, and the effects of point 360

mutation on sRNA silencing of mRNA. 361

The average number of Hfq hexamers present in an E. coli cell has been reported to 362

be on the order of 1400 to 10000 (2 µM - 15 µM) [25,36,40,45,47]. It is worth noting 363

that an extensive microfluidic-based, single-cell proteomics study that analyzed over 364

4000 individual E. coli cells grown in similar media conditions as our study [40] found a 365

mean Hfq level of 1500. Additional immunoprecipitation and sequencing studies (by 366

RIL-Seq) have shown the number of various individual mRNAs and sRNAs being bound 367

to Hfq to range from 10s to 1000 in E. coli [26]. Thus, our prediction (from fitting) that 368

a pool of approximately 250 Hfq (0.5 µM) are available to bind with SgrS sRNA at any 369

time in the simulation of sugar shock regulation seems reasonable. 370

In addition, our approach allowed us to characterize the rate of Hfq-SgrS association 371

compared to values reported for Hfq stabilization of other regulatory sRNAs. If the 372
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Table 2. The list of kinetic parameters for SgrS-Hfq association (kbind and kunbind) and
annealing with ptsG mRNA (kon and koff ) for wild-type (WT) cells as well as SgrS
mutant U224G (Reactions in Figure 4). The substantial decrease in the values of
kbind and kunbind demonstrate the disruption of Hfq binding that accompanies the
mutation in the polyU tail, which has been observed previously [31]. The smaller
relative changes in the ptsG mRNA annealing rates may be due to disruption of RNA
restructuring [1, 8, 38, 39] of SgrS by Hfq that hampers association to the mRNA target.

Parameter Mutant Value % Difference from WT

kbind
U224G 0.033 s−1 −48%

WT 0.063 s−1

kunbind
U224G 0.003 s−1 +66%

WT 0.0018 s−1

kon
U224G 2.1× 10−4 molec−1s−1 −32%

WT 3.1× 10−4 molec−1s−1

koff
U224G 0.27 s−1 +22%

WT 0.22 s−1

pseudo first order Hfq binding rate kbind reported in Table 1 is converted to a bulk 373

second order rate we obtain a binding rate of 1.5× 105 M−1 s−1 which agrees 374

reasonably well with the reported value [36] of approximately 106 M−1 s−1 for long 375

RNAs binding to Hfq [14,21] (compared to the value of to 108 M−1 s−1 for short, 376

unstructured RNAs binding to Hfq [17]). SgrS is a relatively long sRNA with a length 377

of 227 nucleotides (sRNAs have been observed with 37-300 nt [44]), therefore the slow 378

sRNA-Hfq binding process that we describe does seem likely. We suggest that this could 379

be due to RNA restructuring of SgrS [1, 8, 24, 38, 39] by Hfq in order to promote binding 380

with ptsG mRNA. It is thought that cellular sRNA and mRNA are present in large 381

excess over Hfq [43], so nearly all cellular Hfq hexamers are thought to be bound to 382

RNA. Since cellular mRNA in E. coli are thought to be on the order of approximately 383

2000-8000 copies [5] (much greater than the highest measured SgrS sRNA value of 384

200) the available Hfq pool size that we present is representative of the relative 385

competitiveness (and time-dependent cycling) of SgrS for Hfq relative to the other 386

particles that interact with the chaperone. 387

The study of mutant U224G shows the importance of Hfq stabilization in the SgrS 388

regulatory network as a whole and seems to corroborate previous findings [31] that 389

highlight the importance of the polyU tail for Hfq association with SgrS. The 390

substantial decrease of the Hfq-SgrS binding rate and increase in the related unbinding 391

rate relative to the ptsG mRNA annealing rates further down the network obtained 392

from fitting confirms this point (Table 2). The changes in the SgrS-ptsG 393

mRNA annealing rates kon and koff seem to support conclusions from the wild-type 394

cells that Hfq-SgrS binding may result in some restructuring of the sRNA that makes 395

this a slow process. This may explain the lower efficiency in ptsG mRNA association 396

observed in mutant U224G, since Hfq cannot bind SgrS as effectively due to mutation at 397

the polyU tail. Therefore, the predicted restructuring of SgrS by Hfq necessary to 398

facilitate ptsG mRNA association is also hampered, resulting in slower and less stable 399

mRNA binding (a decrease in kon and an increase in koff ). 400

While this work is useful in describing the role of Hfq in the SgrS regulatory network 401

and in capturing the stochastic nature of regulation over a population of replicating 402

cells, it does not consider the various other SgrS mRNA targets that may be present in 403

a living cell under certain growth conditions. In addition, other factors such as sRNA 404

recycling (i.e. SgrS not being co-degraded with its target mRNA) [36,38], which have 405
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been proposed for some sRNA and are now under study for SgrS, were not included, but 406

can be incorporated into the model. 407

In conclusion, by incorporating gene replication, stabilization by the chaperone 408

protein Hfq, and transcriptional gene regulation of sgrS we have developed a kinetic 409

model capable of describing the cellular heterogeneity observed in the E. coli sugar 410

shock response network. Stochastic simulation of the kinetic model allows us to take full 411

advantage of the single-molecule fluorescence data that illustrates cell-to-cell variability 412

in a collection of hundreds of cells. While the post-transcriptional regulation and 413

silencing of ptsG mRNA by the sRNA is the critical feature, accounting for gene 414

replication, transcriptional regulation, and stabilization gives a more robust picture of 415

the regulatory network as a whole. In addition, complexifying the model highlights the 416

importance of stabilization by Hfq and chaperone proteins in general in RNA silencing 417

networks and allowed for a prediction of the rate of association of SgrS and Hfq (as a 418

slow process, characterized by restructuring), the effective available Hfq pool size for the 419

SgrS regulon under sugar stress conditions, as well as an analysis of an SgrS point 420

mutation in one of the presumed Hfq binding modules (the polyU tail). The model 421

presented in this work establishes a framework for models analyzing other sRNA 422

mediated gene regulatory networks, and can be extended to spatially-resolved models 423

describing SgrS target search kinetics. 424
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Supplemental File 1 - Appendix

1 Effects of Varying Available Hfq Pool Size

The available pool of Hfq utilized in the model represents the fraction of cellular Hfq
hexamers bound to SgrS as opposed to other targets and thus the relative binding
strength of SgrS compared to other RNAs stabilized by the chaperone. Previous
work [26] has shown that the typical number of Hfq bound to a given sRNA varies
widely across sRNA species. If an even smaller pool of cellular Hfq is assumed to be
available for SgrS binding under sugar shock conditions the average behavior of SgrS
experimentally observed can be more exactly captured (Figure 9). However, this comes
at a loss of the population level noise observed in the measured RNA distributions
because fewer SgrS can be stabilized and so it decays on a much faster timescale,
resulting in a loss of cell-to-cell variation. When additional Hfq is added to the available
pool such as the 800 available in the simulations shown in Figure 9 the opposite
behavior can be seen. SgrS exhibits greater population level heterogeneity, but with a
less robust fit to the average behavior that is experimentally observed. We propose that
this creates more noise because SgrS is less likely to be present in its free form and
decays more slowly when it is associated with ptsG mRNA and Hfq (kon is small
relative to kds) than it would when it is not stabilized by Hfq (Figure 4, rxn
2.2 versus rxn 4 followed by rxn 5).

Figure 9. (A): Trace and interquartile range (IQR) of SgrS sRNA and ptsG
mRNA mRNA where simulations include a smaller pool of 200 Hfq available (ver-
sus 250 in main text simulations). While averages can be more tightly fit, the population
level variation observed for SgrS is minimized even further from what is observed ex-
perimentally, including at long times post-induction. (B): A similar plot of Trace and
IQR with Hfq available pool size equal to 800. Here the population level variation is
larger (especially at long times post induction), but the initial average traces are less
well captured.

Effects of Initial Gene State

Of interest from a more technical standpoint, is the state of the sgrS genes at
time = 0 minutes in the simulation. While, in principle these genes should be in the
“OFF” state and unable to be transcribed since induction has yet to begin it is
interesting to understand the effects of initial gene state on population level
noise. Consider the following example, when all SgrS genes begin in the “ON” state.
While the average behavior at times from 4 to 10 minutes is poorly captured, the RNA
distributions are well-described at 15 and 20 minutes post-induction (Figure 10). This
example assumes an immediate switch from the “OFF” to the “ON” state of
the sgrS genes due to induction. While unrealistic when taken at face value, it is

20/25

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.06.30.178566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.178566


Figure 10. Distributions of (A) Wild-Type SgrS and (B) ptsG mRNA (bottom) at
various time points from 0 to 20 minutes post-induction. Data from smFISH–STORM
experiments (red, 100-200 cells per time point) and stochastic simulations (blue, 2000
cells per time point) are shown as kernel density estimates. Average copy number at
each time point is displayed with dashed vertical lines.

reasonable to assume the induction occurs on the order of seconds, since the amount of
SgrS increases by a factor of 10 from its basal value by 2 minutes post-induction (Figure
5) and since binding of the SgrR activator for sgrS is mediated by binding to a small
molecule (i.e sugar), which presumably takes some interval of time. The smaller kon,Ds

and koff,Ds values
(2.0× 10−3 s−1 and 6.5× 10−4 s−1 versus 3.0× 10−2 s−1 and 9.5× 10−3 s−1,
respectively) used in Figure 4 Rxn 2.0 relative to those given in Table 1 then lead to a
wider range of population distributions at late times due to longer dwell times (i.e. up
to 5 minutes) for the sgrS gene in the “OFF” state compared to the a typical dwell time
of less than 1 minute in the “OFF” state when the more appropriate regulatory values
(3.0× 10−2 s−1 and 9.5× 10−3 s−1, based on the rapid increase in SgrS copy number
from 0 to 2 minutes) are used for kon,Ds and koff,Ds respectively.

Effects of Increased Cell Replicate Number

The number of E. coli cells that are simulated or have their RNA distributions
experimentally measured is of great importance when considering a process
characterized by stochasticity. A certain number of cells must be observed to accurately
capture both the average behavior and cell-to-cell variability that emanates from a
kinetic regulatory system [12,34,40].

Figure 11 shows the effect of number of cells measured on the average and standard
deviation of the SgrS simulated at 20 minutes post-induction. The bootstrapping
technique presented allows for the selection of an individual E. coli cellular replicate,
with replacement, up to N cells. The vertical dashed line in each figure shows the
expected average and standard deviation values produced from bootstrapping with
N=85, the number of cells experimentally measured at time 20 minutes post-induction.
This highlights the possible error in both mean copy number (5-10 copies) or population
level variation (5-10 copies) that could be accrued due to insufficient sampling.
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Figure 11. Bootstrapping of SgrS sRNA simulated at 20 minutes post sugar shock
induction showing the variation in the (A) population mean and (B) population standard
deviation with number of simulated cells sampled. The x axis gives the number of samples
taken (N) with replacement out of a total 2000 independent simulation trajectories in the
bootstrapping procedure. The vertical dashed line at N=85 shows the number of cells
experimentally imaged at this time point. It takes several hundred to 1000 simulated
cells before the SgrS mean and population level variation noise begin to relax to the
calculated values.

Effects of SgrS Point Mutation On Regulatory
Kinetics

In order to fit to mutant U224G the same parameters as for the wild-type cells were
utilized other than the SgrS-ptsG mRNA binding and unbinding rates kbind and kunbind
and the ptsG mRNA association rates kon and koff . The same gene state (high versus
low gene copy number) percentages for sgrS and ptsG as for the wild-type cells were
arrived at by fitting as well as the same “available” Hfq pool size of 250 hexamers. The
distributions (as kernel density estimates) shown in Figure 12 for both SgrS and ptsG
mRNA were obtained via the same fitting process described in the main text.

In order to focus on a point mutation that primarily showed a disruption in
SgrS-Hfq association we sought a mutant in which SgrS secondary structure would not
be significantly disrupted, leading to a higher free degradation rate of SgrS. In this way,
we can isolate the effects of the point mutation on SgrS association to both the
chaperone Hfq and its target ptsG mRNA individually. Via in silico folding using the
RNA structure prediction tool mFold [49], we confirmed that the stability of the U224G
with a ∆G of −17.60 kcal/mol is unchanged from the predicted wild-type value of
−17.60 kcal/mol. The predicted U224G mutant structure also shows similar two stem
loop structure (with loops of identical size) to that of the wild-type (Figure 13).Thus,
an assumption that the measured wild-type ∆Hfq degradation rate (see Main-text
Section “Materials and Methods”) is appropriate for use as an SgrS-Hfq disassociation
rate in fitting the U224G mutant data is reasonable.

Histograms of Experimentally Determined RNA
Counts

The experimental data and simulated data shown in histogram form, prior to conversion
to Kernel Density Estimates (KDEs) used in the main text and for fitting and analysis.
Scott’s normal reference rule (Equation 3) was used to determine the bin width for the
histograms of SgrS and ptsG mRNA at each time point. It is clear that the imposition
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Figure 12. Distributions of the SgrS polyU tail mutant U224G
for (A) SgrS and (B) ptsG mRNA at various time points from 0 to 20 min-
utes post-induction. Data from smFISH–STORM experiments (red, 100-200 cells per
time point) and stochastic simulations (blue, 2000 cells per time point) are shown as
kernel density estimates. Average copy number at each time point is are displayed with
dashed vertical lines.

Figure 13. Flattened predicted sRNA structures for (A) wild-type (WT) SgrS as well
as (B) the U224G mutant studied in this work obtained via mFold in silico folding. Red:
the SgrS-ptsG mRNA baseparing region, Blue: the polyU tail, with the mutated residue
circled in the U224G structure. The predicted structures show similar conformation
as well as identical free energies (−17.60 kcal/mol), indicating that SgrS secondary
structure is likely not significantly destabilized by the U224G point mutation in the
polyU tail.
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of a kernel density on the experimental data, which was useful in constructing a fitting
optimization scheme, has not fundamentally altered the character of the experimentally
observed population level variation in SgrS or ptsG mRNA counts.

h =
3.49σ

n
1
3

(3)

where h is the bin-width, σ is the sample standard deviation, and n is the number of
samples (RNA copies).

Figure 14. ptsG mRNA histograms, with experimental data in red and simulation
data in blue. Scott’s normal reference rule was utilized to determine histogram bin
widths.
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Figure 15. ptsG mRNA histograms, with experimental data in red and simulation
data in blue. Scott’s normal reference rule was utilized to determine histogram bin
widths.
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