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Abstract. Stochastic reaction networks are a popular modeling framework for biochemical
processes that treat the molecular copy numbers within a single cell as a continuous time Markov
chain, whose forward Chapman-Kolmogorov equation is known in biochemistry literature as the
chemical master equation (CME). The solution of the CME contains extremely useful information
that can be compared to experimental data in order to improve the quantitative understanding of
biochemical reaction networks within the cell. However, this solution is costly to compute as it
requires integrating an enormous system of differential equations that grows exponentially with the
number of chemical species. To address this issue, we introduce a novel multiple-sinks Finite State
Projection algorithm that approximates the CME with an adaptive sequence of reduced-order models
with an effecient parallelization based on MPI. The implementation is tested on models of sizable
state spaces using a high-performance computing node on Amazon Web Services, showing favorable
scalability.

1. Introduction. The basic building blocks of living things are single cells, in
which important biochemical processes occur and are regulated. There is increasing
evidence that these chemical processes can lead to diverse outcomes, even in a popu-
lation of cells with the same genetic makeup [19]. An important factor contributing
to this variability is intrinsic noise due to random occurences of biochemical reactions.
Such noise is usually modelled using a class of continuous time Markov chain mod-
els called stochastic reaction networks (SRNs) which treat molecular copy numbers
of chemical species as random integers. These SRNs have been applied in various
quantitative studies of real biological systems [45, 43], and can potentially be used for
guiding optimal design of new experiments [20].

Many popular methods for the numerical study of SRNs are based on draw-
ing sample paths from the underlying Markov process. The earliest example of the
trajectorial approach is Gillespie’s algorithm [26], which remains the most popular
simulation method for SRNs. There are also works on more effecient variants of Gille-
spie’s algorithm [25], as well as approximate sampling approaches such as tau-leaping
algorithms [27, 47, 10, 9, 3]. A major drawback of such Monte Carlo simulations is
that convergence rate scales only as O(n−1/2), where n is the number of samples.
As a consequence, the ease and low cost of simulating single paths may be offset by
the need to draw a large number of samples to compute reliable estimates for quan-
tities of interest such as moments and event probabilities. Furthermore, the accuracy
of these estimates can only be assessed in terms of confidence intervals. There are
goal-oriented approaches that reduce the variance and cost of Monte Carlo estimates
such as multilevel sampling approaches [4, 36]. On the other hand, various numerical
techniques aim instead at computing summary statistics of the probability distribu-
tion function, such as the mean and variance of molecular copy numbers at specific
times. When the reaction networks consist of only monomolecular reactions with
mass action kinetics, the moments of the copy numbers could be captured exactly
by a finite system of ordinary differential equations (ODEs). In general, however,
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the lower-order moments depend on higher-order moments and an infinite number of
moment equations is required to capture just the mean dynamics. There has been
much work on moment closure techniques to approximate these inifinite systems by
a finite sets of equations corresponding to low-order moments [33, 2, 35, 39, 49, 48].
While these methods can work effeciently and accurately for some SRN models, the
error induced by the truncation technique is generally unknown. To circumvent this
issue, there are recent works on computing bounds for the transient and stationary
moments using semidefinite programming instead of closure [34, 17, 16].

This paper concerns a different approach that seeks to compute directly the time-
dependent probability distribution of the process by solving the chemical master equa-
tion (CME). The finite state projection (FSP) [42] is a well-known representative of
these approaches. In a nutshell, this method consists of truncating the infinite state
space of the underlying Markov chain into a finite subset of states, effectively reduc-
ing the infinite-dimensional system of ODEs into a finite problem that is amenable
to numerical integrators. In contrast to simulation and moment approaches, the FSP
provides guarantee of accuracy with a deterministic error bound that can be eas-
ily computed from the solution of the truncated system [42]. The major drawback
of the FSP is that the cost of solving the truncated system could grow prohibitive
when there are many species or when the probability landscape is spread out over
large number of states. Much has been done on improving algorithimc aspects of
the FSP such as the selection of the state space [41, 7, 56, 8] and alternative tensor
formulations [32, 53]. However, most of these algorithms were only implemented in
serial, which limited the complexity of the models that could be solved with the FSP
approach. There have only been very few works that discuss how to scale up the
FSP on modern high performance computing platforms such as multiple-core cluster
nodes [58, 52] or graphic processing units [38]. These early studies did not address
the problem of exploring and updating the large state space of the CME in parallel,
and the resulting implementations were only tested on truncated problems of at most
a few million states.

In this paper, we introduce a novel adaptive parallel implementation of the FSP
with particular focus on parallel exploration of the state space and the dynamic load-
balance of the computations. We extend and parallelize a variant of the FSP described
in [44], which makes use of an economical projection of the full CME state space that
only expands when needed, using the proven error bound in [42] as the adaptation
threshold. Most importantly, we parallelize the time-consuming task of managing the
states of the FSP by distributing the storage, exploration, and migration of the states
over all processors. This is a major contrast to earlier MPI-based implementations of
the FSP, which either computed the state space offline in serial [58], or communicat-
ing the states in a all-to-one fashion [52]. We parallelize the numerical linear algebra
computations involved in the FSP algorithm based on objects and routines from the
library PETSc [5, 6], while intefacing with load-balancing approaches provided by
Zoltan and ParMetis [14, 31]. Our solver can tackle CMEs with both time-invariant
and time-varying propensity functions. In particular, we provide for the first time
a parallel implementation of the Krylov-based Incomplete Orthogonalization Proce-
dure [55, 24] for solving models with time-invariant propensities. We also provide
interfaces into the high performance ODEs solution library SUNDIALS [30] for the
solution of the general CMEs with time-varying propensities.

The paper is organized as follows. In section 2 we review the stochastic reaction
networks modeling approach that gives rise to the CME, and the basic principles of
the FSP algorithm. In section 3 we describe a novel adaptive FSP method and review
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approaches for solving the resulting reduced systems. In section 4, we discuss the
parallel implementation of this adaptive FSP. Numerical experiments are discussed
in section 5, where with 36 cores of an Amazon Web Services computing node we
solve in a few minutes a demanding problem with 23 million states that would have
taken hours to solve with a single CPU. Section 6 summarizes the paper’s findings
and discusses future work.

The default notational convention is as follows. For a vector v, we denote its
i-th entry by either the subscripted notation [v]i or the MATLAB-like notation v(i).
Similarly, an entry of a matrix A could be denoted as either [A]i,j or A(i, j). We
denote by nnz (v) and nnz (A) the numbers of nonzero entries in respectively v and
A. We use the boldface notation p to denote the probability distribution obtained
from solving the CME. The notation nproc is reserved for the number of processors.
For a set S, we denote by |S| the number of elements in S.

2. Background.

2.1. Stochastic reaction network models of gene expression. Consider
a chemical reaction network with N molecular species with M reaction channels.
The state of the chemical network is the vector x ∈ NN of copy numbers of differ-
ent molecular species. Each reaction event, such as transcription of a new mRNA
molecule, incurs a change in the state that is captured by a stoichiometric vector
νk ∈ NN . Given the current state x, the process can transit only to states of the form
x + νk, k = 1, . . . ,M . The time-dependent state vector is modeled as a continuous-
time Markov chain {X(t)}t≥0 with transition rates given by the propensity functions
ak(t,x). From a current state x, the chain can make jumps to M neighboring states
x+ νk with the infinitesimal probability ak(t,x).

The chemical master equation (CME) describes the dynamic of the probability
distribution of the state X(t). In particular, given the initial state X(0) with known
distribution, let p(t,x) be the probability of the event [X(t) = x|X0], then the CME
has the form

(2.1)
d

dt
p(t,x) =

M∑
k=1

ak(t,x− νk)p(t,x− νk)− ak(t,x)p(t,x), x ∈ S,

where S is the set of all reachable states.
We restrict our attention to models where the propensity functions are separable

in the form

(2.2) ak(t,x) = ck(t)αk(x).

This assumption is valid for any systems with time-invariant propensities, and for
systems with time-varying propensities that follow mass-action kinetics.

Since the state space S is discrete, we can treat the probability distribution of
X(t) as a probability vector p(t). Define the transition rate matrix A(t) with entries
enumerated by the states as

(2.3) [A]i,j =


ar(t,xj), xi = xj + νr,

−
∑M
r=1 ar(t,xj), i = j,

0 otherwise

.

Equation (2.1) could then be equivalently formulated as an initial value problem that
takes the form

(2.4)
d

dt
p(t) = A(t)p(t), p(0) = p0.
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Next, we discuss how the CME could be solved numerically using the finite state
projection.

2.2. The Finite State Projection algorithm. The finite state projection
(FSP) [42] is a systematic approach to approximate the solution of the CME using
a vector with finite support. In its simplest formulation, the FSP consists of the
truncation of the infinite state space S into a finite set Ω =

{
xi1 , . . . ,xi|J|

}
. Let

J =
{
i1, . . . , i|J|

}
be the corresponding set of indexes. For simplicity and without loss

of generality, let us assume that J = {1, 2, . . . , |J |}.
The FSP first solves a finite system of the form

(2.5)
d

dt
pΩ(t) = AΩ(t)pΩ(t),

where

(2.6) AΩ = A(J, J),

and

(2.7) pΩ(0) = p0(J).

The solution of the finite system (2.5) provides the approximation to the true
CME solution on Ω, that is,

p(t) ≈ p̃(t) ≡
[
pΩ(t)

0

]
.

The FSP could be viewed as an aggregation method that turns all transitions
to outside of Ω into an absorbing state (Fig. 1). The probability of this sink state
provides the exact approximation error [42, Theorem 2.2] in terms of the one-norm,

(2.8) ‖p(t)− p̃Ω(t)‖1 = 1− 1TpΩ(t).

For all models encountered in practice, the error bound g(t) decreases monotoni-
cally as Ω expands [42]. Under some regularity conditions on the propensity functions,
it could be shown that ‖p(t)− p̃Ω(t)‖1 → 0 as Ω→ S [22].

A B

Fig. 1. Schematic of the Finite State Projection algorithm. (A): The original state space of
the CME, which could have infinitely many states. (B): The truncated state space, where the states
outside a finite subset (Ω) are lumped into a single absorbing state (ε). The probability of ε is found
simply by subtracting to one the sum of probabilities of the remaining states (eq.(2.8)).
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3. Numerical schemes.

3.1. Adaptive Finite State Projection with multiple sink states. We use
finite state sets Ω that consist of reachable states that satisfy a set of constraints [44]

(3.1) C : fj(x) ≤ bj , j = 1, . . . , nconstr.

where bj are the upper bounds that are changed in an adaptive way as the FSP
integration progresses. Let V(x; C, b) denote the set of constraints determined by
(C, b) that is violated by a state x ∈ Ω, and let Aj(b) denote the set of states that
satisfy the j-th constraint. Furthermore, let R(x0) denote the set of states that can
be reached from the initial state x0. The finite state set for the FSP is thus

Ω = ∩nconstr
j=1 Aj(b) ∩R(x0).

We then approximate the Markov process of the CME with a finite Markov
process with the augmented state space Ω ∪ {G1, . . . , Gnconstr

}, where each G` (` =
1, . . . , nconstr) is a sink state that absorbs transitions from Ω into states that violate
the `-th constraint. Fig. 2 presents an example of the truncated state space based on
a set of three constraints.

Assuming the augmented state space is enumerated so that the sink state G` has
index |Ω| + `, the time-varying transition rate matrix ĀΩ(t) of this Markov process
could be decomposed into

(3.2) ĀΩ,C(t) =

[
AΩ 0
CΩ 0

]
where AΩ captures the transitions between states in Ω and CΩ ∈ Rnconstr×|Ω| captures
the transitions into the absorbing states. Here, if a transition x→ x+νr violates more
than one constraints then we divide the rate ar(t,x) equally into the corresponding
absorbing states. The nonzero entries of AΩ and CΩ are given by

(3.3) [AΩ(t)]i,j =


ar(t,xj), for i, j < |Ωk| and xi = xj + νr,

−
∑M
r=1 ar(t,xj), for i = j < |Ωk|,

0 otherwise

,

and

(3.4) [CΩ(t)]`,j =

M∑
r=1

ar(xj) ·
χA`(b)(xj + νr)

|V(xj + νr)|
for ` = 1, . . . , nconstr, j = 1, . . . , |Ω|.

The FSP approximation becomes

(3.5)
d

dt
p̄Ω(t) = ĀΩ(t)p̄Ω(t), p̄Ω(0) = [p0(Ω), 0, . . . , 0]T ,

where the probability vector p̄Ω is partitioned into

(3.6) p̄Ω(t) =


pΩ(t)
g1(t)

...
gnconstr

(t)

 ∈ R|Ω|+nconstr ,
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with the last nconstr entries of p̄Ω tracking the probabilities of the absorbing states.
The advantage of the multi-sink formulaion (3.6) to the original one-sink FSP is

that we know which sink state attracts the most probability and we can selectively
relax only their corresponding constraints for the next iteration. As a consequent, the
finite state set Ω only needs to expand on the directions where the probability mass
leaks the most, allowing for a more flexible and economical truncation.

Fig. 2. Example of the finite state projection with multiple sink states. We consider a simple
two-dimensional model with four reactions ∅ → X, X → ∅, ∅ → Y , Y → ∅. The sink states
correspond to three constraints: (ε0): [X] ≤ 4, (ε1): [Y ] ≤ 4, (ε2): [X][Y ] ≤ 5. The arrows
represent transitions from each state. Transitions leading to states that violate the j-th constraint
will be directed to εj . Note that a reaction may bring one state into violating different constraints
simultaneously (state (1, 4) in the graphics), in which case the transition rate is divided equally
among the receiving absorbing states.

Taking this one step further, we divide the whole time interval [0, tf ] into subinter-
vals with timesteps 0 := t0 < t1 < . . . < tK := tf , and devise a multiple-time-interval
formulation [7, 56]. At each subinterval [tk, tk+1) we solve a finite system of the form

(3.7)
d

dt
p̄Ωk

(t) = ĀΩk
(t)p̄Ωk

(t) t ∈ [tk, tk+1)

Each solution vector p̄Ωk
has the partitioning (3.6), with the absorbing state

probabilities gj(t), j = 1, . . . , nconstr tracking the accumulated probability mass that
are loss by various FSP approximations. Let g(t) =

∑nconstr

j=1 gj(t), then g(t) is an
upper bound on the accumulated approximation error. We require that the maximum
error acummulated at the absorbing state satisfies

(3.8) max
j=1,...,nconstr

gj(t) ≤ (nconstr)
−1εFSP

t

tf
.
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Given the current time step tk, we let the ODE integrator advance the solution until
either reaching final time tf or an itermediate timepoint tk+1 where the inequality(3.8)
starts to change direction.

If the integration halts at an intermediate timepoint due to the error control (3.8),
we enlarge the FSP constraint bounds bj ← (1+δ)bj , j = 1, . . . , nconstr, giving rise to
a new set of relaxed constraints Ck+1. We then expand from Ωk into states that satisfy
these more relaxed constraints, giving rise to the expanded set Ωk+1 that constitutes
the FSP approximation of the next time interval. The recommended scaling factor in
our code is δ := 0.2, though this could be changed by the user.

The pseudocode in Algorithm 3.1 describes the prototype of the adaptive Finite
State Projection algorithm we just discussed. From there, we see that an imple-
mentation of the algorithm breaks down to three major groups of tasks: the dynamic
management of the finite state subset Ωk, the generation of the time-dependent matrix
ĀΩk

(t) and the matrix-vector multplications at each time step, and the advancement
of the resulting finite system of ODEs.

Algorithm 3.1 Multiple-sink-state Finite State Projection

Input: Initial vector of FSP bounds b0; Stoichiometry matrix S; FSP tolerance
εFSP ; Propensity functions stored as time-dependent factors ci(t), i = 1, . . . ,M and
state-dependent factors αi(x), i = 1, . . . ,M . Initial state x0.

1: t← 0, b← b0;
2: Generate an initial projection space Ω0 given by

Ω0 = {x0} ∪
{
x ∈ Ω | f(x) ≤ b0

}
3: Set initial condition for the FSP approximation p0.
4: k ← 0.
5: while t < tf do
6: Advance the finite ODEs system (3.5) up to the time ttmp where either final

time is reached or the FSP error condtion (3.8) fails.
7: if ttmp < tf then
8: for j = 1, . . . , nconstr do
9: if gj(ttmp) ≥ 1

nconstr

ttmp

tf
εFSP then

10: b
(k+1)
j := (1 + δ)b

(k)
j

11: else
12: b

(k+1)
j := b

(k)
j .

13: end if
14: end for
15: Ωk+1 := Expand(Ωk, Ck+1).
16: Generate the time-dependent matrix ĀΩk+1

(t) based on Ωk+1 and Ck+1.
17: Generate p̄k+1 and scatter entries of p̄k into p̄k+1.
18: end if
19: k := k + 1.
20: tk := ttmp.
21: end while

Output: The subset Ωk and the corresponding approximation pk(tf ) of the CME
solution at final time tf .
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3.2. Adaptive Krylov integrator with event detection for the time-
invariant propensities. When all propensities are time-invariant, solving the finite
systems (3.7) amounts to computing the action of the matrix exponential,

(3.9) p̄Ωk
(tk+1) = exp((tk+1 − tk)ĀΩk

)p̄Ωk
(t), .

A popular approach for evaluating these expressions that are particularly well-suited
for large-sparse matrices arising from the FSP are Krylov subspace techniques [50],
which have been incorporated in many serial CME solvers [7, 51, 8].

To simplify notations, let v := p̄Ωk
and B := ĀΩk

. The Krylov-based approach
starts by generating a pair of matrices Vm+1 ∈ R|Ωk|×(m+1),Hm ∈ Rm×m, such that
the columns of Vm+1 := [v1 v2 . . . vm+1] form a basis for the Krylov subspace

(3.10) Km+1(B,v) := span {v,Bv, . . . ,Bmv} ,

and that the following relation is satisfied,

(3.11) Bv = VmHm + hm+1,mvm+1e
T
m,

where Vm := V (:, 1 : m), hm+1,m := ‖Bvm‖2, and em = [0 . . . 01]T ∈ Rm. Suppos-
ing that these conditions are met, the pair (Vm,Hm) can then be used to form an
approximation for the matrix exponential operator as

(3.12) exp(τB)v ≈ Vm exp (τHm) (‖v‖2e1),

where e1 = [1 0 . . . 0]T ∈ Rm. The exponential of the small dense matrix τHm in the
above expression is usually computed using the diagonal Padé method [50].

There are many ways to generate the matrices Vm+1 and Hm that satisfy the
two conditions described above. The well-known implementation in the package Ex-
pokit [50], for example, uses the full orthogonalization method (FOM), which ensures
that Vm+1 is an orthogonal matrix, making the approximation (3.12) equivalent to
an orthogonal projection onto the corresponding Krylov subspace. The FOM, how-
ever, requires modified Gram-Schmidt sweeps whose cost grows quadratically with the
Krylov dimension m. This becomes prohibitive for large input vectors v. There are
recent works that propose the alternative use of Incomplete Orthogonalization Pro-
cedure (IOP) [55, 24] that trade the cost of full orthogonalization for a slight increase
in matrix-vector multiplications and larger Krylov dimension. This is the approach
that we implement in this paper.

In contrast to the FOM, the IOP requires only that each vector vj be orthogonal
to the preceding q vectors vj−q, . . . ,vj−1, where q ≥ 1 is a user-prescribed orthogo-
nalization length (the case q = m reduces to the classic Arnoldi procedure). When
implemented using an adaptive strategy based on the phipm algorithm of Niesen and
Wright [46], the IOP with q := 2 outperform the traditional Arnoldi procedure on
several numerical benchmark problems drawn from computer and biochemical sys-
tems [55] and shallow water equations [23]. The details of this strategy could be
found in [55]. We discuss here only the aspects that are relevant to the parallel im-
plementation of the IOP, and also note that a parallel implementation for the FOM
with variable Krylov subspace dimension has been previously proposed [37].

Similar to the serial implementations [23, 55], we break down the matrix expo-
nential (3.9) into a step-by-step integration scheme that advances through timesteps
0 := t1 < t2 < tJ := T . The intermediate solutions are given by the Krylov approxi-
mations

(3.13) wj+1 := V (j)
mj

exp
(
τjH

(j)
mj

)
(‖wj‖2e1), w0 := v,
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where, similar to (3.12), V
(j)
mj and H

(j)
mj are generated from the IOP applied to the

matrix B and the vector wj . Note that the stepsize τj := tj+1 − tj and the Krylov
subspace dimension mk are not fixed, but determined adaptively during the integra-
tion. After a successful step at time tj , we either keep the Krylov dimension fixed
while using a new stepsize τnew for the next step, or keep the current stepsize but use
a new value mnew for the Krylov basis size. These stepsize and basis size values are
determined from a criteria that ensures that a posteriori error estimate of the local
truncation error remains below a tolerance (see [55] for details of error estimation and
control). The decision to vary which quantity (τj or mj) is based on a guess of the
future integration cost associated with each choice.

We estimate the local cost per CPU for advancing with a stepsize τ and basis size
m is given by [46, 23, 55]

(3.14) Cloc(τ,m, q) := dT − tj
τ
e
(
mC loc

mat-vec + C loc
orth(m, q) + C loc

expm(m)
)
,

where C loc
mat-vec, C

loc
orth(m, q), C loc

expm(m) are the on-processor costs, measured in terms
of the number of FLOPs, for matrix-vector multplications with B, orthogonalization
cost for basis size m and IOP parameter q, and the evaluation of the small matrix
exponential of size m×m with Pade technique.

These costs are estimated in the same way as in [53], but with the global sizes
of the matrix and vectors involved replaced by their local dimensions. Once these
local costs are computed for each pair (τj ,m

new) and (τnew,mj), we make a call
to MPI_Reduce to get the maximum cost Cglob(τ,m, q) over all processors. We then
choose to change dimension if Cglob(τ

new,m, q) > Cglob(τ,m
new, q) and to change

the stepsize otherwise. We choose to use the maximum over local costs, rather than
the sum as in a previous parallel adaptive Krylov implemention [37], since parallel
computational time depends more on the processor with the heaviest workload than
on the total workloads over all processors.

4. Parallel implementation.

4.1. Parallel management and dymanic expansion of the state space.
The truncated state set Ω is partitioned into Ω(j) ⊂ Ω, each separately owned by
a processor. A state x ∈ Ω(jx) held by processor jx has a local index iloc(x) ∈
{1, . . . , |Ω(j)|}. To manage and retrieve information about the states in a scalable
way, we employ the Distributed Directory (DD) in the Zoltan library [14]. The DD
object is essentially an MPI-based hash table that take multi-dimensional vectors of
integers as keys. The data entry for each key x ∈ S consists of a pair (jx, iloc(x))
that stores the rank of the owning processor and the local index of x. Each call to
the lookup and insertion routines must be done collectively by all processors.

Let Ωk be the state set at timestep k of the Finite State Projection. In order to
expand Ωk into a new set Ωk+1 determined by the constraints Ck+1, we use an iterative
breadth-first search algorithm. Let ∂Ω denote the set of states on the “boundary” of
Ω ⊂ S, that is,

(4.1) ∂Ω = {x ∈ S|x+ νr ∈ S \ Ω for some r = 1, . . . ,M} .

The serial state space expansion scheme starts at the current state set Ωnow := Ωk.
We then compute the set

⋃M
r=1(∂Ωnow + νr) and thin it down to a subset B that

consists only states satisfying Ck+1. We then annex B to Ωnow, and the process
repeats until all reachable states that satisfy Ck+1 have been explored.
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Our parallelization of this scheme is described in algorithm 4.1. On line 3 of
the pseudocode, we partition ∂Ωnow into roughly equal parts that are distributed to
individual processors. This helps improve the load-balance of the exploration step on
line 5-7. The distribution step employs a fast and simple partitioning scheme (called
BLOCK in Zoltan) that distributes roughly equal numbers of states to the processors.
Then, the exploration of new states on line 5-7 is done concurrently on all processors
without the need of inter-processor communication. We then annex the states discov-
ered thus far to the global state set, while making sure to not add redundant states
by checking with the Distributed Directory.

Algorithm 4.1 Parallel expansion of the finite state subset.

Input: Current state set Ωk.
Output: New state set Ωk+1 consisting of states reachable from Ωk that satisfies the
new constraints Ck+1.

1: Ωnow := Ωold.
2: repeat
3: Distribute ∂Ωnow to all processors into partitions A(j) such that ∂Ωnow =
∪nproc

j=1 Aj and |Aj | ≈ |Ak| for j, k = 1, . . . , nproc.
4: for all processors j = 1, . . . , nproc in parallel do

5: B(j) :=
⋃M
r=1{x ∈ A(j) + νr|x satisfies all constraints Ck+1}.

6: end for
7: Parallel union Ωnow := Ωnow

⋃nproc

j=1 B(j).

8: until B(j) = ∅ for all j = 1, . . . , nproc.
9: Ωk+1 := Ωnow.

4.2. Parallel matrix object. Let ĀΩ,C be the time-dependent transition rate
matrix associated with a state set Ω and the constraint set C. Recall that we can
partition ĀΩ,C into AΩ and CΩ,C , defined respectively in eq. (3.3) and eq. (3.4).
Recall separability assumption (2.2) on the propensities, and let V denote the set of
reactions r for which cr(t) varies with the time variable t. These matrices have the
decompositions

AΩ(t) =
∑
r∈V

cr(t)Ar,Ω +A0,Ω,(4.2)

CΩ,C(t) =
∑
r∈V

cr(t)Cr,Ω,C +C0,Ω,(4.3)

where A0,Ω :=
∑
r/∈V crAr,Ω and C0,Ω :=

∑
r/∈V crCr,Ω captures the time-invariant

part of the matrices AΩ and CΩ,C .
As illustrated in fig. 3, each Ar is distributed row-wise into the processors as done

in PETSc’s parallel Mat object [5], while the (very thin) Cr matrices are distributed
column-wise. The column-wise partitioning of Cr means that no off-processor ele-
ments of the input vector is needed for the parallel matrix-vector multiplication with
CΩ,C , while the update of the global output vector requires only O(nconstr) messages.
PETSc offers a handful of different storage schemes for the on-processor portions
of the sparse matrix. We found in our tests that storing the FSP matrix with the
MATMPISELL format [57] yields better performance than the default compressed sparse
row (CSR) format. This is also the matrix format that will be used in the numerical
tests below.
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Fig. 3. Relationship between state partitioning and the partitioning of the FSP-reduced transit
rate matrix ĀΩ,C(t) (eq. (3.5) in the main text). The submatrix corresponding to transitions between
states is distributed row-wise to the processes, while the submatrix corresponding to transitions into
sink states is distributed column-wise.

4.3. Dynamic load-balancing approaches. Since the adaptive FSP adds
states to the projection space after every time step, it is important to redistribute
the states and their associated data after expansion, so that the subsequent com-
putational work loads are evenly distributed among the processors, while keeping
inter-processor communication minimal. In addition, the redistriution scheme must
also take into account the cost of data migration. While the true computation and
communication cost is generally hard to quantify, several approximations and heuris-
tics based on graphs and hypergraphs have been shown to yield good performance in
practice [11, 31, 12]. We specifically interface our state space routines with the Graph-
based adaptive repartitioning algorithm of ParMETIS [31] and the hypergraph-based
PHG algorithm of Zoltan [14, 12], and also to a simple strategy that only seeks to
distribute CME states equally among processors.

4.4. Code availability and Python interface. All the numerical techniques
and algorithms discussed have been implemented as a C++ library 1 that can also be
used in Python using a Cython-based wrapper 2. The features of the C++ program-
ming language allow us to write our codes in an object-oriented way, with an eye on
reusability and extensibility. Specifically, the basic building blocks of the presently
discussed FSP variant (as well as future developments) are the three object classes
StateSetBase, FspMatrixBase, and OdeSolverBase. These objects correspond to
the basic data structures and methods that are common in all FSP methods. In
particular:

1. The StateSetBase class manages the subset of CME states. It provides
basic methods for state lookup and insertion, as well as parallel state par-
titioning and redistribution (via interface to Zoltan [14]). It has a virtual
method Expand to be specified by more specialized classes to implement the
specific state space expansion technique. In particular, we have a child class
StateSetConstrained that implement the nonlinear constraints-based state
expansion technique mentioned in section 4.1. Other methods for expanding

1C++ library available at: https://github.com/voduchuy/pacmensl
2Python wraper available at: https://github.com/voduchuy/pypacmensl
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the state space [51, 56] can also be similarly developed by specifying only the
Expand method.

2. The FspMatrixBase class manages the time-dependent truncated transition
rate matrix of the CME. This class provides the basic method to generate
the state transition rate matrix resulted from FSP truncation as defined in
eq. (3.3) (but not the multi-sink components (3.4), which we leave to a child
class named FspMatrixConstrained, which works with StateSetConstrained

and which generates the additional absorbing state components needed for
the multi-sink FSP solver).

3. The OdeSolverBase class provides basic methods to solve the truncated linear
ODE systems (3.7). The main class data is the pointer to an instance of
FspMatrixBase, and a pointer to a function that perform the check for the
FSP criteria (2.8). This means that the ODE solution can halt midway if it
finds the FSP error to exceed the prescribed tolerance, and return to the FSP
solver to request for an expanded state space. The specific ODE solver used
is provided in child classes that provide interfaces to PETSc’s TS module [1]
and SUNDIALS [30], as well as implementing the Krylov-based IOP technique
discussed in section 4.

The multi-sink FSP approach we introduce in this paper is implemented in a class
called FspSolverMultiSinks, which is based on the composition of the objects dis-
cussed above. We note that parallel implementations of other FSP-based algorithms [7,
51, 56, 8, 29] can be similarly benefited from reusing the base classes we mentioned
above.

5. Results. In this section, we present numerical tests of our parallel FSP im-
plementation on three different stochastic chemical kinetics models. The aim of these
tests is to demonstrate how different algorithmic choices affect the runtime and scal-
ability of the solver on specific problems. All tests are run on a c5.18x instance of
Amazon Web Serivces. This node consists of two sockets, each of which houses 18
Intel Xeon Platinum 8124M CPU cores that operate at 3.00GHz per core. We use
PETSc 3.11.3 and Zoltan library that were compiled against OpenMPI 4.0 with the
GNU C/C++ compilers. In addition to default build settings, the PETSc library is
compiled with the option to enable AVX-512 kernels [57], which Intel Xeon processors
support. The execution of the parallel programs are done via a call to mpirun with
the options --bind-to-core and --map-by-socket which binds each process to a
physical core and which spreads the processes as evenly as possible across the NUMA
nodes. Our codes are written in an object-oriented style in C++ and are compiled
using OpenMPI compiler wrapper of GNU.

5.1. Repressilator. We first consider a three-species model inspired by the well-
known repressilator gene circuit [18]. This model consists of three species, TetR, λcI
and LacI, which constitute a negative feedback network (Table 1). We solve the prob-
lem up to time t = 10 (abitrary time unit) using the FSP tolerance of 10−4, starting
from a point mass measure concentrated at x0 = (TetR, λcI,LacI) = (20, 0, 0). We
let the state space grow adaptively and use the Adaptive Repartitioning algorithm of
ParMetis [31] to dynamically re-balance the state space across processors.
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reaction propensity parameters (arbitrary unit)

1. ∅ → TetR k/(1 + a[LacI]b) k = 100, a = 20, b = 6
2. TetR→ ∅ γ[TetR] γ = 1
3. ∅ → λcI k/(1 + a[TetR]b)
4. λcI→ ∅ γ[λcI]
5. ∅ → LacI k/(1 + a[λcI]b)
6. LacI→ ∅ γ[LacI]

Table 1
Reactions and propensities in the repressilator model. ([X] is the number of copies of the species

X.)

We compare the performance of four algorithmic variants based on the choice of
the FSP shape and on whether the FSP grows dynamically or is fixed at the beginning
of the integration. For the choice of FSP shape, we can define the FSP state space is
the customary way of choosing a hyper-rectangle defined by the constraints xi ≤ bi, i =
1, 2, 3. However, the structure of the repressilator network suggests that we can exploit
the negative correlation between species to truncate more states. In particular, we
can add more nonlinear constraints of the form xixi+1 ≤ bi,i+1, x3x1 ≤ b3,1(i = 1, 2)
which stems from the intuition that more copies of a repressing species lead to fewer
copies of the repressed species. This adds up to a total of six constraints as detailed
in Table 2.

constraint function initial bound

1. [TetR] 22
2. [λcI] 2
3. [LacI] 2
4. [TetR] · [λcI] 44
5. [λcI] · [LacI] 4
6. [TetR] · [LacI] 44

Table 2
Constraints on the FSP for the repressilator model.

For the option the explore the FSP states, the adaptive variants choose a small
set of states at the beginning of the integration and explore more states dynamically
as explained in section 3. The static FSP variants solve the truncated FSP systems
with a large set of states fixed for the whole integration time. The constraint bounds
for the static variants is chosen as the final constraints ouput from the respective
adaptive variants.

The marginal distributions computed from the FSP solution at the final time is
given in Fig. 4, with no visible difference in computational outputs between different
FSP options. On the performance side, within the shape choice of shape constraints,
there is no difference between the adaptive and the static variants 6. However, since
an appropriate state space size is generally difficult to know beforehand, it is more
convenient to use adaptive FSP. For the FSP shape constraints, we see that using the
extended set of constraints results in a smaller state space (Fig. 5A), which means
that the truncated ODEs systems to be solved in these variants are smaller. The FSP
variants that use these nonlinear constraints consistently reduce the average workload
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per processor (in terms of FLOPs) across the numbers of processors (Fig. 5B), and
consequently the computational time (Fig. 6). In addition, we also record the ratio
of the maximum vs minimum workload per processor (Fig. 5C). These ratios stay
well below 1.1, indicating that the dynamic load-balancing methods were able to
distribute the computation almost equally among processes. On the other hand,
parallel effeciency degrades as the number of parallel processes increases, with all
variants drop below 50 percent effeciency when executed on 32 processors. This is
because the gain from dividing the problem across the fast Intel Xeon processors has
been offset by the overhead of managing inter-process communication. Nevertheless,
there is additional speedup in all major components of the code (Fig. 7) as we increase
the number of processes. This is a relatively small problem that could be solved on one
core in an order of minutes, so the gains from parallelization is expectedly moderate.
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Fig. 4. Repressilator example. Marginal distribution of TetR, λcI and LacI at time tf = 10
minutes.
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Fig. 7. Time spent in the critical components in the parallel solution of repressilator example.
These critical components include matrix generation (first row), solution of the truncated ODEs
systems (second row), and state space expansion (third row). We compare the computational time,
speedup, and parallel effeciency of four algorithmic variants, based on either using an adaptive of
static FSP, and on using the nonlinear or hyper-rectangular constraints.

5.2. Six-species transcription regulation. We next consider a transcription
regulation model introduced in [28]. In this model, the transcription-translation
process of a protein M (monomer) is activated when a transcription factor D (dimer)
binds to the DNA at a single site, but is repressed when D binds to both sites of the
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DNA’s promoter region. The propensities associated with second-order reactions are
time-varying, due to the change in the cell’s volume (Table 3). This model results in
a time-dependent distribution that spreads out over an increasing number of states
over time, and is usually used as a benchmark problem for direct CME methods [7,
56, 51]. Most of the previous works only attempt at the time-invariant version of this
model. We are only aware of the paper of Dinh and Sidje [15] that makes an attempt
at directly solving the CME with time-varying propensities in serial. Here we revisit
the time-varying version of this model with our novel parallel FSP implementation.

reaction propensity rate constant (s−1)

1. RNA −→ RNA+M c1[RNA] c1 = 0.043
2. M −→ ∅ c2[M ] c2 = 0.0007
3. DNA.D −→ RNA+DNA.D c3[DNA.D] c3 = 0.0715
4. RNA −→ ∅ c4[RNA] c4 = 0.0039
5. DNA+D −→ DNA.D c5(t)[DNA][D] c5(t) = 0.012× 109/A · V (t)
6. DNA.D −→ DNA+D c6[DNA.D] c6 = 0.4791
7. DNA.D +D −→ DNA.2D c7(t)[DNA.D][D] c7(t) = 0.00012× 109/A · V (t)
8. DNA.2D −→ DNA.D +D c8[DNA.2D] c8 = 0.8765× 10−11

9. M +M −→ D c9(t)
2

[M ]([M ]− 1) c9(t) = 0.05× 109/A · V (t)
10. D −→M +M c10[D] c10 = 0.5

Table 3
Reaction channels in the six-species transcription regulation model. The parameter A =

6.0221415 × 1023 is Avogadro’s number, and V = 10−152t/τL is the system volume chosen for
the numerial test. Here, τ is the average cell cycle time, which we set to 35min based on [28] ([X]
is the number of copies of the species X.)

The FSP error tolerance is set to 10−4. We start at the initial state

x0 = ([M ], [D], [DNA], [DNA.D], [DNA.2D], [RNA]) = (2, 6, 0, 2, 0, 0)

and set the final time to tf = 5 minutes. The FSP tolerance was set to 10−4. For
this problem, we use the default hyper-rectangular shape for the FSP-truncated state
space. Similar to the previous example, we compare the adaptive and static FSP
variants, with the latter using the final bounds output by the former. In addition, we
compare the effects of using a simple load-balancing apporach based on distributing
states equally, and a graph-based approach. All variants use the BDF method imple-
mented in SUNDIALS [30] for solving the truncated ODEs systems (c.f., eq. (3.7)).

Fig. 8 shows the marginal distributions at the final time, and Fig. 9A shows
the size of the dynamic state space. Increasing the number of processes consistently
reduce the workload per process (Fig. 9B), and the total workload is distributed
almost equally among processors in all variants (Fig. 9C).

We plot the solver runtime across different number of processors in Fig. 10. In-
terestingly, using the more advanced graph-based techinique did not improve runtime
significantly, with the graph-based partitioning incurring a slight increase in time
spent in state expansion (Fig. 11) due to additional overhead for generating the graph.
On the other hand, using the adaptive FSP is significantly faster than the static ap-
proach (Fig. 11), despite the fact that the adaptive variant has some extra overhead
for dynamically re-distributing the states at the intermediate timesteps.

The single-core performance of our adaptive FSP implementation is comparable, if
not faster, than the previous approach reported in [15]. In particular, the experiment
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reported in [15] solve the same problem in the order of 4 × 104 second, running on
a single Intel Xeon E5-4640 CPU at 2.4GHz, while our single-core variants finish
the problem in the order of 103 second. This suggests that our FSP implementation
could be as effecient as comtemporary methods when running on a single core, and the
speedup from using more cores, a unique advantage of our parallel implementation,
can significantly reduce the time spent in the forward solution of the CME on this
example.
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Fig. 8. Transcription regulation example. Marginal distributions of monomer, dimer and DNA
at time tf = 5 minutes.
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Fig. 9. Workload in the numerical integration of the six-species transcription regulation ex-
ample. (A): Size of the FSP state space over time for the adaptive FSP variants. (B): average
number of floating point operations (FLOPs) per process for four different choices of FSP adaptiv-
ity and load-balancing. (C): The load-imbalance ratio, defined as the ratio between the maximum
and minimum numbers of FLOPs per process, in the four algorithmic variants.
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Fig. 10. Computational time, speedup, and parallel effeciency in the parallel integration of
the transcription regulation example. The four curves correspond to different choices of the FSP
adaptivity (either adaptive or fixed), and the load-balancing model (graph-based or simple). The
straight diagonal line in the middle plot represents the ideal linear speedup.
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Fig. 11. Detail timing for critical components in the parallel solution of transcription regu-
lation example. These critical components include matrix generation (first row), solution of the
truncated ODEs systems (second row), and state space expansion (third row). We compare the com-
putational time, speedup, and parallel effeciency of four algorithmic variants based on the choice of
FSP algorithm, either adaptive or static, and the choice of load-balancing method, either simple or
graph-based.

5.3. A five-species signal-activated gene expression model. The final
model that we consider is an extension of the spatial signal-activated gene expression
model that was previously fit to MAPK-activated gene expression data in yeast [43,
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45]. We consider a single gene with four states that can transcribe two different RNA
species. This could occur, for example, due to overlapping or competing promoter
sites. Each RNA species is transcribed in the nucleus, then transported to the cy-
toplasm where they can be degraded (table 4). Genes only transcribe RNA when in
active states (indexed by 2, 3, 4 in the model). The rate of gene switching to inactive
state is modulated by the time-varying Hog1p signal, modeled by

(5.1) hog1p(t) = Ahog

(
h1(t)

1 + h1(t)/Mhog

)η
,

where h1(t) = (1.0 − exp(−r1 ∗ t)) ∗ exp(−r2 ∗ t) and the remaining parameters are
r1 = 6.9e− 5, r2 = 7.1e− 3, η = 3.1, Ahog = 9.3× 109, Mhog6.4× 10−4.

We start at

x0 := (Gene, [RNA1,nuc], [RNA2,nuc], [RNA1,cyt], [RNA2,cyt]) = (OFF, 0, 0, 0, 0),

and integrate the CME up to time tf = 180 second. We use the FSP tolerance of
10−4 and an adaptive hyper-rectangular FSP. All variants use the BDF method im-
plemented in SUNDIALS [30] for solving the truncated ODEs systems (c.f., eq. (3.7)).

We compare the runtime of two variants: one using the simple partitioning scheme
and the other the Graph-based partitioning scheme. Interestingly, we found that us-
ing simple partitioning results in shorter overall runtime across different number of
processors, with nearly ideal parallel speedup (Fig. 14). In order to gain more insights
into the performance difference between the two variants, we compare the time each
variant spends in the two major components of the solver: the ODE integrator time
(which includes the cost of matrix-vector multplications), and the state set computa-
tion (including state exploration and partitioning). We see that distributing the states
using the Graph partitioner indeed result in shorter time for the ODE integrator, as
the Graph partitioner seeks to reduce the communication cost of the matrix-vector
multplications (Fig. 15). However, this saving in the ODE component is outweighted
by the higher cost of the more elaborate partitioning method, which inflates the time
spent in the state set component (Fig. 15).

Another interesting observation is that the state set component achieves superlin-
ear speedup when using the simple partitioning scheme. This could be explained by
the fact that the number of states needed for the FSP in this example is very large,
eventually reaching 23, 908, 221 states (Fig. 14), with the marginal distributions of
the RNA having long tails (Fig. 12). This means that the speed of exploring these
states with a single core will be limited by memory bandwidth, whereas distributing
the exploration among many cores allow for better use of computer memory.
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Fig. 12. Signal-activated gene expression example. Marginal distribution of the RNA species
at 3 minutes after signal activation.
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Fig. 13. Computational time, speedup, and parallel effeciency in the parallel integration of the
signal-activated gene expression example. The four curves correspond to different choices of the
FSP adaptivity (either adaptive or fixed), and the load-balancing model (graph-based or simple).
The straight diagonal line in the middle plot represents the ideal linear speedup.
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Fig. 14. Computational time, speedup, and parallel effeciency in the parallel integration of the
signal-activated gene expression example. The four curves correspond to different choices of the
FSP adaptivity (either adaptive or fixed), and the load-balancing model (graph-based or simple).
The straight diagonal line in the middle plot represents the ideal linear speedup.
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Fig. 15. Detail timing for critical components in the parallel solution of signal-activated gene
expression example. These critical components include matrix generation (first row), solution of
the truncated ODEs systems (second row), and state space expansion (third row). We compare the
computational time, speedup, and parallel effeciency of four algorithmic variants based on the choice
of FSP algorithm, either adaptive or static, and the choice of load-balancing method, either simple
or graph-based.

reaction propensity

1. Gi
ki,(i+1)−→ Gi+1 α1 = ki,i+1, i = 1, 2, 3

2. G2
k2,1(t)−→ G1 α2(t) = max(0, 3200.0− 7710.0 ∗ (hog1p(t)))

3. Gi
ki,(i−1)−→ Gi−1 α3 = ki,(i−1)

4. Gi
ri−→ Gi +RNA1,nuc α4 = ri[Gi]

5. Gi
ri−→ Gi +RNA2,nuc α5 = ri[Gi]

6. RNA1,nuc
ktrans−→ RNA1,cyt α8 = ktrans[RNA1,nuc]

7. RNA2,nuc
ktrans−→ RNA2,cyt α9 = ktrans[RNA2,nuc]

8. RNA1,cyt
γcyt−→ ∅ α10 = γ1[RNA1,cyt]

9. RNA2,cyt
γcyt−→ ∅ α11 = γ2[RNA2,cyt]

Table 4
Five-species signal-activated gene expression reactions and propensities. The gene is considered

as one species with 4 different states Gi, i = 0, . . . , 3.
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Parameter Value

k12 1.29
k23 0.0067
k34 0.133
k32 0.027
k43 0.0381
r1 0
r2 0.005
r3 0.45
r4 0.025
ktrans 0.01
γ1 0.001
γ2 0.0049

Table 5
Parameters in the five-species signal-activated gene expression example. We assume that the

time unit is seconds (sec). Hence, the parameters’ units are sec−1.

6. Conclusion. In this paper, we presented a novel parallel implementation for
an adaptive finite state projection for solving the chemical master equation with time-
varying propensities. We test several combinations of FSP state space expansion and
load-balancing techniques on sizable problems that require up to 23 million states.
Our numerical tests suggest that the largest performance gain comes from the ability
of the solver to expand the state space adaptively in parallel, which is a novel feature
of our solver in comparison to previous attempts at parallelizing the FSP [52, 58].

While our present implementation has shown significant speedup on realistically
large CMEs, there is still room for improvement. First, our object-oriented implemen-
tation provides a convenient starting point to parallelize and test alternative strategies
for updating the finite state projection, such as sliding window [56] and simulation-
driven FSP [51, 54], which have been shown to be competitive with the original FSP in
serial settings. Second, recent advances in hybrid MPI-CUDA support in PETSc [40]
could provide additional opportunities for the acceleration of the matrix-vector mul-
tiplication. Likewise, the task of exploring the state space could utilize the massively
parallel GPU cores.

We are exploring the application of our solver to build high performance compu-
tational pipelines for the analysis and design of single-cell experiments. For example,
we can use our parallel solver to compute more quickly the bounds on the likeli-
hood of single-cell data [21], which facilitates model comparison and selection. It is
also possible to make more effecient use of high-performance computing resources for
performing Bayesian inference, as we recently explored in [13].
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