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Abstract5

Recent modeling studies interested in runs of homozygosity (ROH) and identity by descent (IBD) have6

sought to connect these properties of genomic sharing to pairwise coalescence times. Here, we examine a7

variety of features of pairwise coalescence times in models that consider consanguinity. In particular, we8

extend a recent diploid analysis of mean coalescence times for lineage pairs within and between individuals9

in a consanguineous population to derive the variance of coalescence times, studying its dependence on the10

frequency of consanguinity and the kinship coefficient of consanguineous relationships. We also introduce11

a separation-of-time-scales approach that treats consanguinity models analogously to mathematically12

similar phenomena such as partial selfing, using this approach to obtain coalescence-time distributions.13

This approach shows that the consanguinity model behaves similarly to a standard coalescent, scaling14

population size by a factor 1 − 3c, where c represents the kinship coefficient of a randomly chosen15

mating pair. It provides the explanation for an earlier result describing mean coalescence time in the16

consanguinity model in terms of c. The results extend the potential to make predictions about ROH and17

IBD in relation to demographic parameters of diploid populations.18

1 Introduction19

Previously (Severson et al., 2019), we devised a coalescent model of a consanguineous diploid population20

in order to jointly study runs of homozygosity (ROH) and identity-by-descent (IBD) sharing. We used the21

fact that the time to the most recent common ancestor at a locus for a pair of genomes is inversely related22

to the length of the shared segment around the locus (Palamara et al., 2012; Carmi et al., 2014). To23

distinguish within-individual from between-individual pairwise coalescence times, which describe levels of24

ROH and IBD sharing, respectively, we modeled a diploid biparental population.25

We developed our model by extending the diploid sib mating model of Campbell (2015) to allow nth26

cousin mating and a superposition of multiple degrees of cousin mating. To derive mean pairwise coalescence27

times in our models, we performed a first-step analysis of a Markov chain to condition on the state of two28

alleles in prior generations. We found that owing to the possibility of extremely recent coalescence from29

consanguinity, the effect of consanguinity reduced mean pairwise coalescence times within an individual as30

well as between separate individuals. The reduction of the mean coalescence time was proportional to the31

kinship coefficient of a randomly chosen mating pair, with a greater reduction for two alleles within an32

individual versus between individuals.33

Although mean coalescence times are useful for summarizing the effect of consanguinity under the model,34

and they reveal that both within- and between-individual coalescence times depend on population size and35

consanguinity, the mean describes only one aspect of the distribution. Distributions of pairwise coalescence36

times within and between individuals are needed to more fully understand the effect of consanguinity on the37

length of shared segments within and between individuals (Palamara et al., 2012; Carmi et al., 2014).38

Coalescent-based population-genetic models typically approximate a two-sex diploid population of size39

N individuals with a haploid population of size 2N . In a diploid model, two alleles can be either within an40
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Figure 1: Diploid model of sib mating. (A) In each generation, a fraction c0 = 0.4 of N = 5 mating pairs are

sib mating pairs. (B) Sib mating pairs are each assigned a parental pair from the previous generation. (C) Non-

consanguineous pairs are each assigned two distinct parental pairs, representing the two sets of parents for the two

individuals in the non-consanguineous pair.

individual or in separate individuals, whereas in a haploid model, all alleles are exchangeable. Despite this41

distinction, with a sufficiently large population size and equal numbers of males and females, the ancestral42

process of a diploid population converges to that of a haploid population of twice the size, supporting the43

approximation (Wakeley, 2009, Chapter 6.1). Intuitively, the convergence occurs when the probability of44

rapid coalescence of the two alleles in a diploid individual is negligible.45

A variety of techniques have been used to analyze coalescent models, in which, like in consanguinity46

models, rapid coalescence cannot be ignored. Wakeley et al. (2012) examined the effect of a fixed diploid47

population pedigree on coalescence times, finding that the probability of recent coalescence events is slightly48

increased compared to a corresponding haploid model. Models of partial selfing (Nordborg and Donnelly,49

1997; Möhle, 1998b) have examined the effect of a selfing rate that gives the probability of immediate50

coalescence of pairs of alleles in a diploid individual. This work has used the separation-of-time-scales51

approach (Möhle, 1998b), which describes the concurrent effect of a “fast” coalescent process (coalescence52

of two alleles from an individual due to selfing) and a “slow” process (coalescence of pairs of alleles in the53

population at large).54

Here, we continue our earlier work to further interrogate the distributions of coalescence times for pairs of55

alleles within and between individuals in a diploid coalescent model with consanguinity. First, we derive the56

variance of coalescence times under sib mating and extend the calculation to the superposition case. Next,57

we use a separation-of-time-scales approach to derive the distributions of pairwise coalescence times within58

and between individuals in the limit of large population size. We compare the mean and variance of these59

limiting distributions to the exact solutions. We also compare the full limiting distribution to numerical60

solutions in the sib mating case, and also to the results of simulations from the exact Markov chains. We61

find that the limiting distributions closely approximate the exact distributions.62

2 Model63

We extend the model of Severson et al. (2019), which itself extended the model of Campbell (2015). The64

model considers a constant-sized diploid population with discrete generations. Each generation has N ≥ 265

monogamous mating pairs, 2N diploid individuals, and 4N alleles at each locus. A constant fraction of the66

mating pairs are consanguineous unions, and the other pairs are non-consanguineous. The fraction of mating67

pairs each generation that are related as nth cousins is denoted cn (Figure 1A).68

To illustrate the model, we consider a simple case, a population with sib mating, viewing sibs as 0th69

cousins. Backward in time, the c0N sib mating pairs—each of whose two individuals necessarily share a70

single set of parents—each randomly choose one parental mating pair from the previous generation (Fig-71

ure 1B). Next, the (1− c0)N random-mating pairs each randomly choose two distinct parental mating pairs72

(Figure 1C). Note that two individuals in a random-mating pair cannot share the same parental mating pair,73

so that chance sib mating is forbidden. Because parental mating pairs are chosen at random, two individuals74

in separate mating pairs will be siblings with probability 1
N .75

In this model, two alleles at a locus can be in three possible states, denoted 1, 2, and 3. State 1 corresponds76

to two alleles within an individual, state 2 is for two alleles in two distinct individuals in a mating pair, and77

state 3 is two alleles in two distinct individuals in separate mating pairs. We use the random variables T ,78

U , and V to denote the coalescence times for two alleles in states 1, 2, and 3, respectively.79
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3 Variance of coalescence times80

3.1 Sib mating81

We begin with a sib mating population. In each generation, a constant fraction c0 of the N mating pairs
are siblings, and chance sib mating is forbidden. Previously, we derived the means for T , U , and V as
(Severson et al., 2019, eqs. 4-6)

E[T ] = 4N(1− c0) + 6 (1)

E[U ] = 4N(1− c0) + 5 (2)

E[V ] = 4N

(
1− 3

4
c0

)
+ 4. (3)

Here we derive the variances for T , U , and V . First, two alleles that within an individual (state 1) are82

always in two individuals in a mating pair in the previous generation (state 2), so T = U + 1 and83

Var[T ] = Var[U ]. (4)

Next we derive Var[U ] using the law of total variance. For convenience, we define the random variable84

Z to be the state of two alleles in the previous generation. We add state 0 to represent coalescence,85

so Z takes values from {0, 1, 2, 3}. Applying the law of total variance and conditioning on Z, Var[U ] =86

E[Var[U |Z]] + Var[E[U |Z]].87

Beginning with E[Var[U |Z]], if two alleles are in a mating pair (state 2), then the previous generation88

has four possible states, encoded in values of Z. First, with probability c0, the mating pair is a sib mating89

pair. In this case, with probability 1
4 , the alleles coalesce in the previous generation (Z = 0) and the alleles90

have coalescence time 1. Similarly, if the mating pair is consanguineous, then with probability 1
4 , the alleles91

were inherited from the same individual (Z = 1), and they have coalescence time T + 1. Lastly if the mating92

pair is a sib mating pair, then with probability 1
2 , the two alleles were inherited from separate parents in the93

previous generation (Z = 2), and the two alleles have coalescence time U + 1. With probability 1− c0, the94

two alleles are in a random-mating pair, in the previous generation they were in two individuals in separate95

mating pairs (Z = 3), and they have coalescence time V + 1. Combining these cases gives96

E[Var[U |Z]] =
c0
4

Var[1] +
c0
4

Var[T + 1] +
c0
2

Var[U + 1] + (1− c0)Var[V + 1]. (5)

For the next term, Var[E[U |Z]], we rewrite it using the definition of variance, Var[E[U |Z]] = E[E[U |Z]2]−
E[E[U |Z]]2 = E[E[U |Z]2]−E[U ]2. Because E[U ]2 is known (eq. 2), we only need E[E[U |Z]2], which we derive
by again conditioning on Z. With probability c0/4, the alleles coalesce in 1 generation (Z = 0). With
probability c0/4, the alleles were inherited from the same individual (Z = 1), and E[U |Z = 1]2 = E[T + 1]2.
With probability c0/2, the alleles were inherited from separate individuals in the same mating pair (Z = 2),
and E[U |Z = 2]2 = E[U +1]2. Lastly, with probability 1− c0, the alleles are in a non-consanguineous mating
pair and they were inherited from two individuals in separate mating pairs (Z = 3), giving E[U |Z = 3]2 =
E[V + 1]2. Combining these cases gives

E[E[U |Z]2] =
c0
4

(1)2 +
c0
4

(E[T ] + 1)2 +
c0
2

(E[U ] + 1)2 + (1− c0)(E[V ] + 1)2.

Subtracting E[U ]2, we have97

Var[E[U |Z]] =
c0
4

(1)2 +
c0
4

(E[T ] + 1)2 +
c0
2

(E[U ] + 1)2 + (1− c0)(E[V ] + 1)2 − E[U ]2. (6)

Summing eqs. 5 and 6, applying eq. 4 and E[T ] = E[U ] + 1, and simplifying gives98

Var[U ] =

(
4− 4c0
4− 3c0

)[
Var[V ] + (E[V ] + 1)2

]
− E[U ]2 +

8c0
4− 3c0

E[U ] +
7c0

4− 3c0
. (7)

Next, for Var[V], we again use the law of total variance and condition on Z. For the first term E[Var[V |Z]],99

recall that if two alleles are in two separate mating pairs, then because parents are chosen randomly with100
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replacement, the two individuals are siblings with probability 1
N . Then the probability that the two alleles101

are in two individuals who are siblings and that those alleles coalesce in the previous generation (Z = 0)102

is 1
4N . Similarly, the probability that the siblings inherit distinct alleles from the same parent (Z = 1) is103

1
4N , giving a coalescence time of T + 1. If the alleles are inherited from separate parents (Z = 2), an event104

with probability 1
2N , then the coalescence time is U + 1. Lastly, with probability 1− 1

N , the individuals are105

not siblings, so the alleles were inherited from separate individuals in separate mating pairs (Z = 3), giving106

coalescence time V + 1. These four cases give107

E[Var[V |Z]] =
1

4N
Var[1] +

1

4N
Var[T + 1] +

1

2N
Var[U + 1] +

(
1− 1

N

)
Var[V + 1]. (8)

For Var[E[V |Z]] = E[E[V |Z]2] − E[E[V |Z]]2, we have E[E[V |Z]] = E[V ] as before. For E[E[V |Z]2], if108

two alleles are in two individuals in separate mating pairs, then with probability 1
N , the individuals are109

siblings. If Z = 0, then the alleles coalesce in the previous generation with probability 1
4N . If Z = 1, then110

the two alleles were inherited from the same individual in the previous generation. This event occurs with111

probability 1
4N , and E[V |Z = 1]2 = E[T + 1]2. With probability 1

2N , Z = 2, and the alleles were inherited112

from two individuals in a mating pair, giving E[V |Z = 2]2 = E[U + 1]2. Lastly, with probability 1− 1
N , the113

two individuals are not siblings, so the alleles were inherited from two individuals in separate mating pairs114

(Z = 3), and E[V |Z = 3]2 = E[V + 1]2. Combining cases and subtracting E[V ]2 gives the second term115

Var[E[V |Z]] =
1

4N
(1)2 +

1

4N
(E[T ] + 1)2 +

1

2N
(E[U ] + 1)2 +

(
1− 1

N

)
(E[V ] + 1)2 − E[V ]2. (9)

Summing eqs. 8 and 9, applying eq. 4 and E[T ] = E[U ] + 1, and simplifying gives the form116

Var[V ] =
3

4

[
Var[U ] + E[U ]2 + 1

]
+ 2E[U ]− E[V ]2 + 2(N − 1)E[V ] +N. (10)

Eqs. 4, 7, and 10 form a linear system in Var[T ], Var[U ], and Var[V ], which we solve, applying eqs. 1-3:

Var[T ] = Var[U ] = 16N2(1− c0)

(
1− 1

2
c0

)
+ 28N(1− c0) + 22 (11)

Var[V ] = 16N2

(
1− 3

4
c0

)2

+ 28N

(
1− 29

28
c0

)
+ 22. (12)

Eqs. 11 and 12 give the desired variances. We can immediately make a number of observations.117

First, considering all possible consanguinity levels c0, both eqs. 11 and 12 are maximized when c0 = 0,118

and they decrease with increasing c0. Thus, consanguinity decreases variance for all three coalescence times.119

Next, the difference Var[V ]− Var[T ] equals N2c20 −Nc0, which is positive for c0 >
1
N , so that Var[V ] >120

Var[T ]. Thus, with a nontrivial consanguinity level, the variance of the coalescence time for two alleles in121

separate mating pairs exceeds that for two alleles in the same individual.122

Third, taking N →∞, eqs. 11 and 12 give

Var[T ]

16N2
=

Var[U ]

16N2
= (1− c0)

(
1− 1

2
c0

)
Var[V ]

16N2
=

(
1− 3

4
c0

)2

.

Thus, for sufficiently large N , the variances are dominated by the product of 16N2, the variance of coalescence123

time for a haploid population of size 4N , and a reduction factor, (1− c0)(1− 1
2c0) in eq. 11 and (1− 3

4c0)2124

in eq. 12.125

Using eqs. 3 and 12, note that in the limit of large N , Var[V ]/E[V ]2 → 1. Recall that an exponentially126

distributed random variable with mean λ has variance λ2, so the variance is the square of the mean. Although127

this relationship is not unique to the exponential distribution, the fact that Var[V ]/E[V ]2 → 1 is consistent128

with V being exponentially distributed in the limit as N → ∞. On the other hand, Var[T ]/E[T ]2 →129

(2− c0)/(2− 2c0), so T is not exponentially distributed in the N →∞ limit for c0 > 0.130

Eqs. 11 and 12 normalized by 16N2 are plotted in Figure 2 as a function of the number of mating pairs N131

and fraction of sib mating pairs c0. As population size increases, the normalized variances quickly approach132

the reduction factors, (1− c0)(1− 1
2c0) in eq. 11 and (1− 3

4c0)2 in eq. 12.133
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Figure 2: Normalized variance of pairwise coalescence times as a function of the number of mating pairs N and the

fraction of sib mating pairs c0. (A) Var[T ]/(16N2), eq. 11. (B) Var[V ]/(16N2), eq. 12.

3.2 Superposition of multiple mating levels134

In this section, we generalize the variance under sib mating to a superposition of multiple levels of cousin135

mating. Under the superposition, ith cousin mating is permitted for all i from 0 to n, where n is the degree136

of the most distant permissible cousin relationship. The case of i = 0 corresponds to sib mating. For each i,137

let ci be the fraction of ith cousin mating pairs in each generation. For each i ≤ n, chance ith cousin mating138

is prohibited. We assume individuals in a consanguineous mating pair share only one line of descent—that139

is, for example, they cannot be both first and third cousins.140

Under this model, we derived the means for T , U , and V as (Severson et al., 2019, eqs. 17-19)

E[T ] = 4N(1− 4c) + 4n(1− 4c) + 16d+ 6 (13)

E[U ] = 4N(1− 4c) + 4n(1− 4c) + 16d+ 5 (14)

E[V ] = 4N(1− 3c) + 3n(1− 4c) + 12d+ 4, (15)

where c, the kinship coefficient for two individuals in a mating pair, is defined as141

c =

n∑
i=0

ci
4i+1

, (16)

and for convenience, we define d as142

d =

n∑
i=0

ici
4i+1

. (17)

First for Var[T ], as before, two alleles present within an individual are in two individuals in a mating143

pair in the previous generation, so T = U + 1 and eq. 4 continues to hold.144

To derive Var[U ], we again use the law of total variance and condition on Z. Before, if two individuals in145

a mating pair were siblings, then the alleles could transition to one of four states in the previous generation.146

Under the superposition, there are instead 3(n+ 1) + 1 possible transitions. For each i, 0 ≤ i ≤ n, if the two147

individuals in the mating pair are ith cousins, then i+ 1 generations in the past, the two alleles are inherited148

from the shared ancestral mating pair with probability 1/4i. If the alleles are inherited from the shared149

ancestral mating pair, then i + 1 generations ago they can transition to states 0, 1, or 2, giving 3(n + 1)150

possible transitions when considering all i from 0 to n. If the two individuals in the mating pair are not151

related, then because chance nth cousin mating is forbidden, n+ 1 generations ago the alleles are in state 3,152

accounting for the last of the 3(n+ 1) + 1 transitions.153

For the first term in the law of total variance, E[Var[U |Z]], we consider ith cousin mating for each i. With154

probability ci/4
i, the individuals are ith cousins and the two alleles were inherited from the shared ancestral155

mating pair i + 1 generations ago. If the alleles are inherited from this mating pair, then with probability156

1
4 , they coalesce in time i + 1; with probability 1

4 , the alleles are inherited from the same individual in the157

mating pair, with coalescence time T + i+ 1; and with probability 1
2 , the alleles are inherited from separate158
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individuals in the shared ancestral mating pair and have coalescence time U+ i+1. If for all i, 0 ≤ i ≤ n, the159

two individuals are not ith cousins, or if they are ith cousins for some i but the alleles are not inherited from160

the shared ancestral mating pair, then they are in two individuals in separate mating pairs n+ 1 generations161

ago; this event has probability 1−
∑n

i=0 ci/4
i, and the alleles have coalescence time V + i+ 1. Summing the162

probabilities of the cases for 0 ≤ i ≤ n,163

E[Var[U |Z]] =
n∑

i=0

ci
4i

[
Var[i+ 1]

4
+

Var[T + i+ 1]

4
+

Var[U + i+ 1]

2

]
+

(
1−

n∑
i=0

ci
4i

)
Var[V + n+ 1]. (18)

For the second term Var[E[U |Z]], we derive E[E[U |Z]2]. Again if the two individuals in the mating pair164

are ith cousins, then with probability ci/4
i, the alleles were inherited from the shared ancestral mating pair165

i+1 generations ago. If the alleles were inherited from the ancestral mating pair, then there are three possible166

transitions: with probability 1
4 , they coalesce with time i+ 1; with probability 1

4 , they were inherited from167

the same individual, giving mean E[T + i+1]2; with probability 1
2 , they were inherited from the two separate168

individuals, with mean E[U + i + 1]2. With probability 1 −
∑n

i=0 ci/4
i, the alleles were not inherited from169

the shared ancestral mating pair for any i, 0 ≤ i ≤ n, and the alleles are not in a consanguineous mating170

pair, and then n+ 1 generations ago they are in separate mating pairs, giving mean E[V +n+ 1]2. Summing171

these cases over all i and subtracting E[U ]2 (eq. 14) gives the second term172

Var[E[U |Z]] =
n∑

i=0

ci
4i

[
E[i+ 1]2

4
+

E[T + i+ 1]2

4
+

E[U + i+ 1]2

2

]
+

(
1−

n∑
i=0

ci
4i

)
E[V +n+1]2−E[U ]2. (19)

For Var[V ], because parental mating pairs are chosen randomly with replacement, eq. 10 continues to
hold. Hence, the sum of eqs. 18 and 19 gives Var[U ], which together with eqs. 4 and 10 forms a linear system
of equations. Applying eqs. 13-15, the solution is

Var[T ] = Var[U ] = 16N2(1− 4c)(1− 2c) + 4N(1− 4c)(6n− 16cn+ 16d+ 7)

+ 4n(1− 4c)(3n− 8cn+ 16d+ 8) + (128d2 + 128d+ 16b+ 22) (20)

Var[V ] = 16N2(1− 3c)2 + 4N [(1− 4c)(6n− 18cn+ 18d+ 7)− c]
+ 4n(1− 4c)(3n− 9cn+ 18d+ 8) + (144d2 + 128d+ 12b+ 22), (21)

where173

b =

n∑
i=0

i2ci
4i+1

.

We can quickly observe that if c = ci/4
i+1 for any i, then eqs. 20 and 21 reduce to the equations for174

Var[T ] = Var[U ] and Var[V ] for ith cousin mating. In particular, if c = c0/4, then d = 0 and b = 0, and175

eqs. 20 and 21 reduce to eqs. 11 and 12, respectively.176

Taking N →∞, eqs. 20 and 21 give

Var[T ]

16N2
=

Var[U ]

16N2
= (1− 4c)(1− 2c)

Var[V ]

16N2
= (1− 3c)2.

For large population size, the variances approach the product of 16N2, the variance of coalescence time in a177

haploid population of size 4N , and reduction factors (1− 4c)(1− 2c) in eq. 20 and (1− 3c)2 in eq. 21. For178

large N , Var[V ]−Var[T ] ≈ 16N2c2, a quantity that increases with consanguinity c.179

Note that because
∑n

i=0 ci ≤ 1, the maximum of c over all possible vectors (c0, c1, . . . , cn) is found by180

setting c0 = 1. The maxima for d and b set c1 = 1, because the i = 0 terms are 0 for d and b. Then c ≤ 1
4 ,181

d ≤ 1
16 , and b ≤ 1

16 . Assuming n � N , terms with constants c, d, b, and n contribute little to eqs. 20 and182

21, which, as N increases, are dominated by products of 16N2 and reduction factors due to consanguinity.183

Recall that an exponentially distributed random variable with mean λ has variance λ2. Taking the ratio184

of eq. 21 and the square of eq. 15, as N → ∞, Var[V ]/E[V ]2 → 1. This relationship suggests V might be185

exponentially distributed in the N → ∞ limit. Considering eqs. 20 and 13, we find Var[T ]/E[T ]2 → 1−2c
1−4c ,186

so for c > 0, T is not exponentially distributed in the limit.187
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4 Limiting distribution of coalescence times188

With the exact variance established, we now examine the full distribution of coalescence times under the189

model, in the limit of large N . As a model in which two alleles can either coalesce rapidly due to consanguinity190

or reenter the ancestral process, the model has two time scales on which coalescence can take place. It is191

therefore suited to use of the separation-of-time-scales approach of Möhle (1998b). We next review this192

approach as background to analysis of coalescence times in our consanguinity models.193

4.1 Separation-of-time-scales approach194

In the separation-of-time-scales approach, we can describe the ancestral process by a single-generation tran-195

sition matrix ΠN , for transitions between states permissible for a pair of alleles. Möhle (1998b) derived the196

limiting distribution of coalescence times in cases where the transition matrix can be written as197

ΠN = A +
1

N
B. (22)

This approach splits the matrix ΠN into “fast” transitions in A that occur with rate O(1) and “slow”198

transitions in B
N that occur with rate O( 1

N ). In other words, matrix A describes the rapid coalescent events199

that occur due to the part of the process that occurs on a relatively fast time scale, and matrix B includes200

the slower events that occur on a time scale proportional to N .201

Möhle showed that as N →∞, in comparison to the slow time scale of B, the fast process of A appears
instantaneous and is characterized by the equilibrium

P = lim
r→∞

Ar.

With time t scaled in units of N generations, ΠN converges weakly to a continuous-time process, such that202

Π(t) = lim
N→∞

ΠNt
N = PetG, (23)

where the rate matrix is G=PBP.203

In the following sections, we apply Möhle’s results to our models. We write the transition matrix ΠN for204

our population with consanguinity and decompose ΠN into A and B. Next we find the equilibrium P, and205

we use P and B to compute rate matrix G. Finally, we derive the exponential (eq. 23) to find the limiting206

distribution of coalescence times.207

4.2 Sib mating208

Recall that our sib mating model has N mating pairs, a fraction c0 of which are siblings. In this model, two209

alleles can be in four states: state 0, coalescence; state 1, within an individual; state 2, in two individuals210

in a mating pair; and state 3, in two individuals in separate mating pairs. If two alleles are in state 0, then211

they remain coalesced with probability 1. If two alleles are in an individual (state 1) then in the previous212

generation they are in two individuals in a mating pair with probability 1 (state 2). If the two alleles are213

in state 2, then with probability c0, the mating pair is a sib mating pair, and in the previous generation,214

the alleles transition to states 0, 1, and 2 with probabilities c0/4, c0/4, and c0/2, respectively. If the two215

alleles are not in a sib mating pair, then they transition to state 3 in the previous generation. Similarly, if216

two alleles are in state 3, then with probability 1
N the individuals are siblings, and the alleles can transition217

to states 0, 1, and 2 with probabilities 1
4N , 1

4N , and 1
2N , respectively. With probability 1 − 1

N , the two218

individuals are not siblings, and the alleles remain in state 3. These cases give the transition matrix219

ΠN =


0 1 2 3

0 1 0 0 0
1 0 0 1 0
2 c0

4
c0
4

c0
2 1− c0

3 1
4N

1
4N

1
2N 1− 1

N

. (24)
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Decomposing ΠN (eq. 24) into fast and slow transitions as in eq. 22, we can write matrices A and B as220

A =


1 0 0 0
0 0 1 0
c0
4

c0
4

c0
2 1− c0

0 0 0 1

 , B =


0 0 0 0
0 0 0 0
0 0 0 0
1
4

1
4

1
2 −1

 . (25)

To find Π(t) we first derive the limit of matrix A. This computation, performed in Appendix A, gives221

P = lim
r→∞

Ar =


1 0 0 0
c0

4−3c0 0 0 4−4c0
4−3c0

c0
4−3c0 0 0 4−4c0

4−3c0
0 0 0 1

 . (26)

Next, we compute the rate matrix G by taking the product

G = PBP =


0 0 0 0

4−4c0
(4−3c0)2 0 0 − 4−4c0

(4−3c0)2
4−4c0

(4−3c0)2 0 0 − 4−4c0
(4−3c0)2

1
4−3c0 0 0 − 1

4−3c0

 .

Finally, we apply eq. 23, computing the matrix exponential PetG. Converting t back to units of genera-
tions, we evaluate P

∑∞
i=0(t/N)iGi/i!,

Π(t) =


1 0 0 0

1− 4−4c0
4−3c0 e

−t
N(4−3c0) 0 0 4−4c0

4−3c0 e
−t

N(4−3c0)

1− 4−4c0
4−3c0 e

−t
N(4−3c0) 0 0 4−4c0

4−3c0 e
−t

N(4−3c0)

1− e
−t

N(4−3c0) 0 0 e
−t

N(4−3c0)

 .

From the bottom three rows of the first column of Π(t), corresponding to states 1, 2, and 3, respectively, we
extract the limiting cumulative distribution functions for T , U , and V :

FT (t) = FU (t) = 1− 4− 4c0
4− 3c0

e
− t

4N

(
1− 3

4
c0

)
(27)

FV (t) = 1− e
− t

4N

(
1− 3

4
c0

)
. (28)

We immediately observe in eq. 28 that V is exponentially distributed with mean 4N(1 − 3
4c0), so that the222

coalescence time of two alleles in two individuals in separate mating pairs is distributed identically to that223

of two alleles in a haploid population of size 4N(1 − 3
4c0). With no consanguinity, c0 → 0 as N → ∞,224

FT (t) = FV (t), and T , U , and V are all distributed identically to the coalescence time for two alleles in a225

haploid population of size 4N .226

For c0 > 0, T and U are not exponentially distributed. We have FT (t)−FV (t) = [c0/(4−3c0)]e−t/[4N(1− 3
4 c0)],227

so FT (t) > FV (t) and the probability that two alleles in an individual coalesce by t generations ago exceeds228

the corresponding probability for two alleles in separate mating pairs. As c0 increases to 1 at fixed N and t,229

FT (t)− FV (t) increases; for fixed N and c0, the difference is largest at t = 0, decreasing to 0 as t increases.230

From eqs. 27 and 28, noting that for a random variable X ≥ 0 with cumulative distribution function
FX(x), E[X] =

∫∞
x=0

[1 − FX(x)] dx and E[X2] =
∫∞
x=0

2x[1 − FX(x)] dx, we can compute the mean and
variance of the limiting distributions of T and V as

E[Tlim] = 4N(1− c0) (29)

E[Vlim] = 4N

(
1− 3

4
c0

)
(30)

Var[Tlim] = 16N2(1− c0)

(
1− 1

2
c0

)
(31)

Var[Vlim] = 16N2

(
1− 3

4
c0

)2

. (32)
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Figure 3: The cumulative distributions of coalescence times within (T ) and between (V ) individuals as functions of

generations t and the fraction c0 of sib mating pairs. (A) P(T ≤ t), eq. 27. (B) P(V ≤ t), eq. 28.

The differences between the large-N limiting values and the exact solutions in eqs. 1, 3, 11, and 12 are

E[T ]− E[Tlim] = 6 (33)

E[V ]− E[Vlim] = 4 (34)

Var[T ]−Var[Tlim] = 28N(1− c0) + 22 (35)

Var[V ]−Var[Vlim] = 28N

(
1− 29

28
c0

)
+ 22. (36)

For large N , the differences in eqs. 33-36 are negligible in comparison to the exact means and variances.231

Eqs. 27 and 28 are plotted in Figure 3. In Figure 3A, we observe that as c0 increases, the probability of232

instantaneous coalescence increases. This probability is maximized for c0 = 1, where FT (t) = 1, implying233

that all pairs of alleles coalesce quickly due to consanguinity. For V , we observe in Figure 3B that increased234

consanguinity decreases mean coalescence time 4N(1 − 3
4c0), and the distribution behaves like a random-235

mating population with a reduced size. Compared to a haploid population of size 4N , for both T and V , as236

consanguinity increases, probability density is shifted towards zero, away from ancient coalescence times to237

more recent coalescence times.238

4.3 Superposition of multiple mating levels239

We now generalize the separation-of-time-scales approach to allow a superposition of mating levels. Recall240

that under the superposition, ith-cousin mating is permitted for each i from 0 to n, where n is the degree of241

the most distant permissible cousin relationship. For each i, let ci be the fraction of ith-cousin mating pairs242

each generation, with
∑n

i=0 ci ≤ 1. As before, we assume that ith-cousin mating pairs are distinct sets for243

distinct i, such that two individuals in a mating pair cannot, for example, be both first and third cousins.244

We derive the single-generation transition matrix ΠN . We have states 0, 1, and 3 as before, and transitions245

from these states are the same as under sib mating. For state 2, if two alleles are in two individuals in a246

mating pair in the current generation, then for each i, 0 ≤ i ≤ n, with probability ci/4
i, the two individuals247

are ith cousins and the alleles were inherited from the shared ancestral mating pair i+ 1 generations in the248

past. For each i, 0 ≤ i ≤ n, there exists a state, which we call 2i, that is visited i generations back in time249

from the current generation. For example, the state that we termed state 2 under sib mating we now call250

20, because with probability c0, the two individuals in the mating pair are 0th cousins (sibs) who share an251

ancestral mating pair 1 generation in the past. If two alleles have reached state 2i, then they have not yet252

coalesced, and the two individuals in the current generation are not more closely related than ith cousins. If253

ci > 0, then the individuals might be ith cousins and two alleles in state 2i can be inherited from the shared254

ancestral mating pair in the next generation back in time from state 2i (Figure 4).255

For convenience, for each i, 0 ≤ i ≤ n, we define ki as the probability that two alleles in two individuals
in a mating pair coalesce due to consanguinity in at most i + 1 generations, so that the individuals are ith
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i

2i

Figure 4: New states in the superposition model. Two alleles in two individuals who are in an ith cousin mating pair

and have no closer relationship, i generations ago, are in separate mating pairs. We term their state i generations

ago 2i. In the next generation back, the alleles might be in the shared ancestral mating pair, as shown. Here, i = 2.

cousins or more closely related,

ki =
i∑

j=0

cj
4j+1

. (37)

We denote k−1 = 0. The probability that the alleles in two individuals in a mating pair reach a shared256

ancestral pair in at most i+ 1 generations is 4ki; the conditional probability that they coalesce in that pair257

given that they have reached it is 1
4 . Then 1 − 4ki is the probability that two alleles in two individuals in258

a mating pair are in a pair with relationship more distant than ith cousins; it is the probability that the259

individuals have no shared ancestor up to and including i+ 1 generations back from the present.260

We next define xi for 0 ≤ i ≤ n as the conditional probability that two alleles in a mating pair are in an261

ith-cousin mating pair and that they coalesce in the shared ancestral pair i+ 1 generations back, given that262

they have no shared ancestor i generations back or more recent. The probability that two alleles in a mating263

pair are in an ith-cousin pair is ci, the probability that they coalesce in the shared ancestral pair is 1/4i+1,264

and the probability that they have no shared ancestor i generations back or more recent is 1−4ki−1. Hence,265

xi =
ci

4i+1(1− 4ki−1)
. (38)

If two alleles are in state 2i, then they are in lineages ancestral to two individuals who are not more closely266

related than ith cousins, and they have not coalesced. Two alleles in state 2i have four possible transitions:267

with probability xi, they coalesce (state 0); with probability xi, they are inherited from the same individual268

in the ancestral mating pair but do not coalesce (state 1); with probability 2xi, they are inherited from269

two individuals in the ancestral mating pair (state 20). With probability 1 − 4xi, the two alleles were not270

inherited from a shared ancestor i+ 1 generations ago, so the individuals in the current generation are not271

more closely related than (i+ 1)th cousins, and the alleles transition to state 2i+1. If the alleles are in state272

2n, then they transition to states 0, 1, and 20, as seen for states 2i, i < n, but the fourth transition is to two273

individuals in separate mating pairs (state 3), with probability 1− 4xn.274

Combining these cases gives the transition matrix ΠN over states 0, 1, 3, and 2i for 0 ≤ i ≤ n:275

ΠN =



0 1 20 3 21 · · · 2i+1 · · · 2n
0 1 0 0 0 0 · · · 0 · · · 0
1 0 0 1 0 0 · · · 0 · · · 0
20 x0 x0 2x0 0 1− 4x0 · · · 0 · · · 0
3 1

4N
1

4N
1

2N 1− 1
N 0 · · · 0 · · · 0

...
...

...
...

...
...

...
...

2i xi xi 2xi 0 0 · · · 1− 4xi · · · 0
...

...
...

...
...

...
...

...
2n−1 xn−1 xn−1 2xn−1 0 0 · · · 0 · · · 1− 4xn−1
2n xn xn 2xn 1− 4xn 0 · · · 0 · · · 0


. (39)
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ΠN decomposes into the O(1) transitions in matrix A,276

A =



0 1 20 3 21 · · · 2i+1 · · · 2n
0 1 0 0 0 0 · · · 0 · · · 0
1 0 0 1 0 0 · · · 0 · · · 0
20 x0 x0 2x0 0 1− 4x0 · · · 0 · · · 0
3 0 0 0 1 0 · · · 0 · · · 0
...

...
...

...
...

...
...

...
2i xi xi 2xi 0 0 · · · 1− 4xi · · · 0
...

...
...

...
...

...
...

...
2n−1 xn−1 xn−1 2xn−1 0 0 · · · 0 · · · 1− 4xn−1
2n xn xn 2xn 1− 4xn 0 · · · 0 · · · 0


, (40)

and the O( 1
N ) transitions in matrix B,277

B =



0 1 20 3 21 · · · 2i+1 · · · 2n
0 0 0 0 0 0 · · · 0 · · · 0
1 0 0 0 0 0 · · · 0 · · · 0
20 0 0 0 0 0 · · · 0 · · · 0
3 1

4
1
4

1
2 −1 0 · · · 0 · · · 0

...
...

...
...

...
...

...
...

2i 0 0 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
...

...
2n−1 0 0 0 0 0 · · · 0 · · · 0
2n 0 0 0 0 0 · · · 0 · · · 0


. (41)

We derive the equilibrium of A in Appendix B. We obtain278

P = lim
n→∞

An =



0 1 20 3 · · · 2i

0 1 0 0 0 · · · 0
1 c

1−3c 0 0 1−4c
1−3c · · · 0

20
c

1−3c 0 0 1−4c
1−3c · · · 0

3 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

2i
Fn−i

1−3c 0 0 (1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

· · · 0


, (42)

where Fn−i is described in Appendix B (P has the same dimension as A and B, but for convenience we do279

not expand down to rows 2n−1 and 2n in P, as they follow the form of row 2i). Because A is an absorbing280

matrix with absorbing states 0 and 3, the only nonzero entries in P are in columns 0 and 3. Note that at281

equilibrium, P20,0 = c
1−3c = c

c+1−4c . The numerator of this fraction is the probability that two alleles in a282

mating pair coalesce rapidly due to consanguinity, c, and the denominator is the sum of this quantity and283

the probability the two alleles are not inherited through the consanguineous pedigree, 1− 4c. Note that for284

the sib mating case, c = c0/4, and c/(1− 3c) becomes c0/(4− 3c0), as seen in eq. 26.285

Next we take the product PBP (Appendix B) to find matrix G:286

G = PBP =



0 1 20 3 · · · 2i
0 0 0 0 0 · · · 0
1 1−4c

4(1−3c)2 0 0 −(1−4c)
4(1−3c)2 · · · 0

20
1−4c

4(1−3c)2 0 0 −(1−4c)
4(1−3c)2 · · · 0

3 1
4(1−3c) 0 0 −1

4(1−3c) · · · 0

...
...

...
...

...
. . .

...
2i

(1−4c)(1−3ki−1)
4(1−3c)2(1−4ki−1)

0 0 −(1−4c)(1−3ki−1)
4(1−3c)2(1−4ki−1)

· · · 0


. (43)
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Lastly, to derive Π(t), we compute the exponential etG (Appendix B) and take the product PetG. With t
measured in units of generations, we obtain

Π(t) = PetG

=



0 1 20 3 · · · 2i

0 1 0 0 0 · · · 0

1 1− 1−4c
1−3ce

−t
4N(1−3c) 0 0 1−4c

1−3ce
−t

4N(1−3c) · · · 0

20 1− 1−4c
1−3ce

−t
4N(1−3c) 0 0 1−4c

1−3ce
−t

4N(1−3c) · · · 0

3 1− e
−t

4N(1−3c) 0 0 e
−t

4N(1−3c) · · · 0
...

...
...

...
...

. . .
...

2i 1− (1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

e
−t

4N(1−3c) 0 0 (1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

e
−t

4N(1−3c) · · · 0


. (44)

As we observed for P, the only nonzero entries of Π(t) are in columns 0 and 3.287

From column 0 of Π(t), examining the rows for states 1, 20, and 3, respectively, we have the limiting
cumulative distributions for coalescence times T , U , and V :

FT (t) = FU (t) = 1− 1− 4c

1− 3c
e−

t
4N(1−3c) , (45)

FV (t) = 1− e−
t

4N(1−3c) . (46)

We immediately observe that for the sib mating case of c = c0/4, eqs. 45 and 46 reduce to eqs. 27 and288

28, respectively. In the limit, T and U are identically distributed but not exponential. The limiting V is289

exponentially distributed with mean 4N(1 − 3c); the coalescence time of two alleles in two individuals in290

separate mating pairs is therefore identically distributed with that of two alleles in a haploid population291

of size 4N(1 − 3c). Consanguinity reduces effective population size compared to random mating, with the292

reduction dependent on the kinship coefficient c of a randomly chosen mating pair.293

The means and variances of the limiting distributions are

E[Tlim] = 4N(1− 4c) (47)

E[Vlim] = 4N(1− 3c) (48)

Var[Tlim] = 16N2(1− 4c)(1− 2c) (49)

Var[Vlim] = 16N2(1− 3c)2. (50)

Considering eqs. 13 and 15, the differences between the exact and limiting means of T and V are

E[T ]− E[Tlim] = 4n(1− 4c) + 16d+ 6 (51)

E[V ]− E[Vlim] = 3n(1− 4c) + 12d+ 4. (52)

The exact means exceed the limiting means for c > 0. Recall from Section 3.2 that c ≤ 1
4 , d ≤ 1

16 , and294

b ≤ 1
16 . Then for n� N , eqs. 51 and 52 contribute little to E[T ] and E[V ].295

For the differences between the variances, we have

Var[T ]−Var[Tlim] = 4N(1− 4c)(6n− 16cn+ 16d+ 7)

+ 4n(1− 4c)(3n− 8cn+ 16d+ 8) + (128d2 + 128d+ 16b+ 22) (53)

Var[V ]−Var[Vlim] = 4N [(1− 4c)(6n− 18cn+ 18d+ 7)− c]
+ 4n(1− 4c)(3n− 9cn+ 18d+ 8) + (144d2 + 128d+ 12b+ 22). (54)

For large N , because Var[T ] and Var[V ] are O(N2), the differences contribute relatively little in relation to296

the magnitudes of the variances. Finally recall that if c = c0/4, then d = 0, b = 0, and n = 0, and the297

quantities in eqs. 47-54 reduce to those for sib mating, eqs. 29-36.298
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For c = 0, there is no consanguinity, FT (t) = FV (t), and T and V are both exponentially distributed.299

For c > 0, the difference FT (t)−FV (t) = c
1−3ce

−t/[4N(1−3c)] is positive, and FT (t) > FV (t). The probability300

that two alleles within an individual have coalesced by time t is greater than or equal to the probability for301

two alleles in separate individuals. As c increases to 1
4 , the difference increases; for fixed c, as t increases,302

the difference approaches zero, so that it is greatest for recent coalescence times.303

5 Simulated distributions from the Markov chain304

5.1 Simulation method305

To examine the extent to which the limiting distributions of T and V accord with the exact distributions, we306

simulate pairwise coalescence times from the exact Markov chain (eq. 39). For both T and V , we consider307

a range of values of the number of mating pairs, N = 10, 20, 50, 100, 200, 500, 1000; the degree of cousin308

relationship, n = 0, 1, 2, 3, 4, 5; and the consanguinity rate, cn = 0, 0.1, 0.2, 0.5, 0.75. For simplicity, we309

consider only one type of cousin relationship at a time. For each of the two random variables, T and V , and310

each set of parameter values {N,n, cn}, we simulated 106 pairwise coalescence times.311

To compare limiting distributions of coalescence times (eqs. 45 and 46) and simulated exact distributions,312

we compute a chi-square test statistic. We divide the limiting cumulative distribution functions into intervals313

and count occurrences of simulated coalescence times within those intervals. For V , we divide the limiting314

function into 50 intervals of equal probability 0.02. The limiting function for T is nonzero at t = 0; if the315

probability at 0 is 0.02 or greater, then the first interval is assigned size fT (0), and the remaining probability316

is divided into q = b(1− fT (0))/0.02c intervals, each with size (1− fT (0))/q ≥ 0.02.317

5.2 Simulation results318

The chi-square test statistics appear in Figure 5. Within each panel, we see that as N increases, the statistic319

generally decreases and then levels off, suggesting that increased population size improves the agreement320

between the exact and limiting distributions. This result accords with the fact that the limiting distribution321

is a large-N approximation, expected to more closely approximate the exact distribution as N increases.322

Considering the panels from left to right, as n increases past n = 1, the agreement is similar at different323

levels of consanguinity cn. Thus, for relationships at the level of second or more distant cousins, the number324

of mating pairs N is the most important determinant of the agreement of the limiting and exact distributions.325

Examining the bottom row of Figure 5, for the random variable V , although for fixed N , the agreement is326

somewhat reduced at greater cn, a key role for N is also observed for n = 0 and n = 1.327

In the top row of Figure 5, for random variable T , we see that for n = 0 and n = 1, at high cn, agreement328

between the limiting and exact distributions is relatively poor. In these cases, the probability of immediate329

coalescence in time 0 is larger in the limiting distribution. In the limiting distribution, with c = cn/4
n+1,330

this probability is c/(1 − 3c) for fT (0), and in the exact distribution, coalescence due to consanguinity has331

probability c. For large c, as occurs for large c0 or c1, c/(1− 3c) 6≈ c.332

In Figure 6, we more closely examine the effect of population size on the agreement between the limiting333

and simulated exact distributions. Over a range of population sizes, with n = 1 and a first-cousin relationship334

c1 = 0.2, we plot the cumulative distribution functions of T and V for the first 4N generations. Considering335

plots from left to right, for both T and V , as N increases, the limiting distribution more closely matches the336

simulated exact distribution. In the small-N plots with N = 10, we can observe that the limiting distribution337

begins at t = 0 with a higher cumulative probability, and that this excess persists as t increases.338

In Wakeley et al. (2012), the disagreement between coalescence time distributions for two models, a339

pedigree model with N individuals and the Kingman coalescent, was greatest in the most recent log2(N)340

generations. As our consanguinity models are similar to the pedigree model in that consanguinity influences341

the probability of rapid coalescence, we next examined the agreement of the limiting and simulated exact342

coalescent time distributions in the most recent generations. With the same parameter values as in Figure 6,343

Figure 7 focuses on the first 25 generations. For T , in Figure 7A-D, a difference occurs between the limiting344

and simulated exact distributions during the most recent generations, as the limiting distribution has a point345

mass at t = 0. For V , in Figure 7E-H, the limiting distribution does not have a point mass at t = 0, and the346

distributions differ by an amount that is approximately constant over the first 25 generations.347
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Figure 5: Values of the chi-square test statistic comparing the limiting distributions for T and V , eqs. 45 and 46,

and the simulated exact distributions. The plots consider a range of values for the number of mating pairs (N), the

consanguinity rate (cn), and the degree of cousin relationship (n).
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Figure 6: Limiting cumulative distribution functions for T and V , eqs. 45 and 46, and simulated exact cumulative

distributions, for 4N generations. The plots consider a range of values for the number of mating pairs (N), fixing

the degree of cousin relationship at n = 1 and the consanguinity rate at c1 = 0.2. (A) T , N = 10. (B) T , N = 100.

(C) T , N = 1000. (D) T , N = 10000. (E) V , N = 10. (F) V , N = 100. (G) V , N = 1000. (H) V , N = 10000.

6 Discussion348

Building on a study of mean coalescence times under consanguinity in a diploid model with N mating pairs,349

we have expanded the analysis to examine full coalescence time distributions. Under sib mating, we calculated350

the exact variance of coalescence times for two alleles within an individual and two alleles in separate351

individuals (eqs. 11 and 12), and we generalized the result to a superposition of multiple levels of cousin352

mating (eqs. 20 and 21). Using separation of time scales to examine “fast” coalescence by consanguinity353

and “slow” coalescence in the general population, we derived the large-N limiting distribution of pairwise354

coalescence times for two alleles within an individual and two alleles in separate individuals, in both the sib355

mating (eqs. 27 and 28) and superposition models (eqs. 45 and 46). As N increases, distributions simulated356

from the exact Markov chain approach the limiting distributions (Figures 5-7).357

Previously (Severson et al., 2019), we showed that increased consanguinity reduces mean pairwise358

coalescence times both within and between individuals, with a stronger effect for two alleles within an359

individual. In each of several models, we found that the reduction factor could be written in terms of the360

kinship coefficient c of a randomly chosen mating pair. Here, by deriving limiting distributions of coalescence361

times, we can further explain the earlier result. In particular, for two alleles in separate individuals, limiting362

coalescence times are distributed with pairwise coalescence times as in a haploid population of size 4N(1−363
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Figure 7: Limiting cumulative distribution functions for T and V , eqs. 45 and 46, and simulated exact cumulative

distributions, for 25 generations. The plots consider a range of values for the number of mating pairs (N), fixing the

degree of cousin relationship at n = 1 and the consanguinity rate at c1 = 0.2. (A) T , N = 10. (B) T , N = 100. (C)

T , N = 1000. (D) T , N = 10000. (E) V , N = 10. (F) V , N = 100. (G) V , N = 1000. (H) V , N = 10000.

3c). For two alleles within an individual, the distribution is a mixture of this effective size reduction and364

instantaneous coalescence with probability c
1−3c . Increasing consanguinity reduces the coalescent effective365

size (Sjödin et al., 2005) of the “slow” process; in the large-N limit, if rapid coalescence due to consanguinity366

does not occur, then coalescence follows the standard haploid model with the reduced population size.367

The view of our model as having rapid coalescence due to consanguinity followed by coalescence mimicking368

a standard haploid population aligns with similar results for other phenomena that permit the separation-of-369

time-scales approach (Wakeley, 2009, chapter 6). Related models consider partial selfing (Nordborg and370

Donnelly, 1997; Möhle, 1998b; Nordborg and Krone, 2002), two sexes (Möhle, 1998a; Nordborg371

and Krone, 2002), stage structure (Nordborg and Krone, 2002), many-demes migration (Wakeley,372

2001, 2004; Eldon and Wakeley, 2009), and combinations of factors, as in an analysis of two sexes, sex373

chromosomes, and migration (Ramachandran et al., 2008).374

The parallel is most natural for partial selfing. Following Nordborg and Krone (2002), consider a375

diploid population of 2N individuals, in which the probability that two alleles within an individual coalesce in376

the previous generation is s
2 , where s is the selfing rate—the fraction of individuals for whom the same parent377

provides both of their genomic copies. In the selfing model, s
2 is the probability of immediate coalescence378

in one generation, and 1 − s is the probability that a pair of alleles “escapes” from the rapid time scale of379

coalescence by selfing. In the large-N limit, the probability of rapid coalescence is ( s
2 )/( s

2 +1−s) = s
2−s . This380

result has a similar structure to our large-N result that the probability of rapid coalescence by consanguinity381

for two alleles in a mating pair is c
c+1−4c = c

1−3c , where c is the probability of coalescence by consanguinity382

during the first n generations and 1− 4c is the probability of escape into the slow process. In both cases, a383

probability exists that the alleles return to the initial configuration— s
2 for the selfing model and 3c for the384

consanguinity model—with the chance to either coalesce in the fast process or escape to the slow one.385

Our interest in studying coalescence time in a consanguinity model has been motivated by the link386

between coalescence times and lengths of genomic segments shared identically by descent, with the random387

variable T connecting to ROH within individuals, and V connecting to IBD tracts between genomes in388

separate individuals chosen at random in a population (Severson et al., 2019). For a pair of genomes, the389

random length of the segment shared identically by descent around a locus is inversely related to the random390

pairwise coalescence time at the focal locus, with recombination acting to shorten the shared fragment. In our391

previous work (Severson et al., 2019), we used the inverse relationship between the mean coalescence time392

and shared fragment length to provide qualitative results on trends in ROH and IBD sharing in relation to393

consanguinity. Under a recombination model, the distribution of the shared fragment length can be obtained394

from the full distribution of pairwise coalescence times (Palamara et al., 2012; Carmi et al., 2013, 2014).395

As we have now obtained the limiting distributions of pairwise coalescence times, both within and between396

individuals, it will now be possible to deepen empirical analyses of the effect of consanguinity on patterns in397

shared genomic segments.398
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Möhle, M., 1998b A convergence theorem for Markov chains arising in population genetics and the coales-413

cent with selfing. Advances in Applied Probability 30: 493–512.414

Nordborg, M., and P. Donnelly, 1997 The coalescent process with selfing. Genetics 146: 1185–1195.415

Nordborg, M., and S. M. Krone, 2002 Separation of time scales and convergence to the coalescent416

in structured populations. In M. Slatkin and M. Veuille, editors, Modern Developments in Theoretical417

Population Genetics, chapter 12. Oxford University Press, Oxford, 194–232.418

Palamara, P. F., T. Lencz, A. Darvasi, and I. Pe’er, 2012 Length distributions of identity by descent419

reveal fine-scale demographic history. American Journal of Human Genetics 91: 809–822.420

Ramachandran, S., N. A. Rosenberg, M. W. Feldman, and J. Wakeley, 2008 Population differ-421

entiation and migration: coalescence times in a two-sex island model for autosomal and X-linked loci.422

Theoretical Population Biology 74: 291–301.423

Severson, A. L., S. Carmi, and N. A. Rosenberg, 2019 The effect of consanguinity on between-individual424

identity-by-descent sharing. Genetics 212: 305–316.425
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Appendix A. Sib mating434

For sib mating, this appendix provides details of the computation of matrix P, the r →∞ limit of Ar. The
matrix A appears in eq. 25. To find the desired limit, note that A is an absorbing matrix with absorbing
states 0 and 3. Recall that for an absorbing matrix D with form

D =

(
I 0
R Q

)
,

and with fundamental matrix N = (I−Q)−1, the limit of Dr is given by435

lim
r→∞

Dr =

(
I 0

NR 0

)
. (55)

We rearrange A to match the form of D by permuting rows and columns to obtain permuted matrix A∗:

A∗ =


0 3 1 2

0 1 0 0 0
3 0 1 0 0
1 0 0 0 1
2 c0

4 1− c0 c0
4

c0
2

.
Now we can read R and Q as

R =

(
0 0
c0
4 1− c0

)
, Q =

(
0 1
c0
4

c0
2

)
.

Next we compute the fundamental matrix N:

N = (I−Q)−1 =

( 4−2c0
4−3c0

4
4−3c0

c0
4−3c0

4
4−3c0

)
.

We find the product NR:

NR =

( c0
4−3c0

4−4c0
4−3c0

c0
4−3c0

4−4c0
4−3c0

)
.

Following eq. 55, we have the desired limit,

P∗ = lim
r→∞

(A∗)r =


0 3 1 2

0 1 0 0 0
3 0 1 0 0
1 c0

4−3c0
4−4c0
4−3c0 0 0

2 c0
4−3c0

4−4c0
4−3c0 0 0

.
Permuting the columns and rows again, we obtain eq. 26.436

Appendix B. Superposition of multiple mating levels437

This appendix provides details of the separation-of-time-scales computations in the case of a superposition438

of mating levels. We begin with some lemmas.439

Two lemmas440

We recall ki and xi from eqs. 37 and 38. First, we will need a recursion F , defined by F0 = xn and441

Fm = xn−m + (1− 4xn−m)Fm−1 for m ≥ 1.442
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Lemma 1. For m ≥ 1,

Fm =
kn − kn−m−1
1− 4kn−m−1

.

Proof: First consider the base case m = 0,

F0 = xn =
cn

4n+1(1− 4kn−1)
=
kn − kn−1
1− 4kn−1

.

Next, we assume for induction that Fm−1 = (kn − kn−m)/(1− 4kn−m). Then

Fm = xn−m + (1− 4xn−m)Fm−1

=
cn−m

4n−m+1(1− 4kn−m−1)
+

[
1− 4cn−m

4n−m+1(1− 4kn−m−1)

](
kn − kn−m
1− 4kn−m

)
=
kn−m − kn−m−1

1− 4kn−m−1
+

(
1− 4kn−m

1− 4kn−m−1

)(
kn − kn−m
1− 4kn−m

)
=
kn − kn−m−1
1− 4kn−m−1

.

This completes the proof. �443

Lemma 2. For ` ≥ j ≥ 0, ∏̀
i=j

(1− 4xi) =
1− 4k`

1− 4kj−1
.

Proof: We use ci/4
i+1 = ki − ki−1 from eq. 37:

∏̀
i=j

(1− 4xi) =
∏̀
i=j

[
1− ci

4i(1− 4ki−1)

]
=
∏̀
i=j

(
1− 4ki

1− 4ki−1

)
=

1− 4k`
1− 4kj−1

.�

The limiting matrix P444

We follow the same method as in Appendix A. Again because A has two absorbing states, 0 and 3, we
can derive the equilibrium matrix P with eq. 55. Permuting the columns and rows of A in eq. 40 from
(0, 1, 20, 3, . . . , 2i, . . . , 2n) to (0, 3, 1, 20, . . . , 2i, . . . , 2n), A∗ has form

A∗ =



0 3 1 20 21 · · · 2i+1 · · · 2n
0 1 0 0 0 0 · · · 0 · · · 0
3 0 1 0 0 0 · · · 0 · · · 0
1 0 0 0 1 0 · · · 0 · · · 0
20 x0 0 x0 2x0 1− 4x0 · · · 0 · · · 0
...

...
...

...
...

...
...

...
2i xi 0 xi 2xi 0 · · · 1− 4xi · · · 0
...

...
...

...
...

...
...

...
2n xn 1− 4xn xn 2xn 0 · · · 0 · · · 0


.
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From A∗, we find R and Q as445

R =



0 3

1 0 0
20 x0 0
...

...
...

2i xi 0
...

...
...

2n−1 xn−1 0
2n xn 1− 4xn


, Q =



1 20 21 · · · 2i 2i+1 · · · 2n
1 0 1 0 · · · 0 0 · · · 0
20 x0 2x0 1− 4x0 · · · 0 0 · · · 0
...

...
...

...
. . .

...
...

. . .
...

2i xi 2xi 0 · · · 0 1− 4xi · · · 0
...

...
...

...
. . .

...
...

. . .
...

2n−1 xn−1 2xn−1 0 · · · 0 0 · · · 1− 4xn−1
2n xn 2xn 0 · · · 0 0 · · · 0


.

(56)
First, we find the fundamental matrix N = (I −Q)−1. We proceed by Gaussian elimination, beginning

from the augmented matrix [(I−Q)| I] and proceeding to obtain (I|N). We write M = I−Q:

(M|I) =

1 20 21 · · · 2i 2i+1 · · · 2n 1 20 21 · · · 2i · · · 2n



1 1 −1 0 · · · 0 0 · · · 0 1 0 0 · · · 0 · · · 0
20 −x0 1− 2x0 4x0 − 1 · · · 0 0 · · · 0 0 1 0 · · · 0 · · · 0

...
...

...
. . .

...
...

. . .
...

...
...

...
. . .

...
. . .

...
2i −xi −2xi 0 · · · 1 4xi − 1 · · · 0 0 0 0 · · · 1 · · · 0

...
...

...
. . .

...
...

. . .
...

...
...

...
. . .

...
. . .

...
2n−1 −xn−1 −2xn−1 0 · · · 0 0 · · · 4xn−1 − 1 0 0 0 · · · 0 · · · 0
2n −xn −2xn 0 · · · 0 0 · · · 1 0 0 0 · · · 0 · · · 1

.

For convenience, we refer to rows and columns of M and N by their associated states, and continue to refer446

to the left and right components of the augmented matrix by M and N.447

To begin the elimination, for each row 2i we eliminate −xi in the first column by adding xi times row 1.
As this step leaves a value of 4xn−1 − 1 in column 2n of matrix M, we next add 1− 4xn−1 times row 2n to
row 2n−1, obtaining

M =



1 20 21 · · · 2i 2i+1 · · · 2n−1 2n
1 1 −1 0 · · · 0 0 · · · 0 0
20 0 1− 3x0 4x0 − 1 · · · 0 0 · · · 0 0

...
...

...
. . .

...
...

. . .
...

...
2i 0 −3xi 0 · · · 1 4xi − 1 · · · 0 0

...
...

...
. . .

...
...

. . .
...

...
2n−1 0 −3[xn−1 + xn(1− 4xn−1)] 0 · · · 0 0 · · · 1 0
2n 0 −3xn 0 · · · 0 0 · · · 0 1



N =



1 20 21 · · · 2i 2i+1 · · · 2n−1 2n
1 1 0 0 · · · 0 0 · · · 0 0
20 x0 1 0 · · · 0 0 · · · 0 0

...
...

...
. . .

...
...

. . .
...

...
2i xi 0 0 · · · 1 0 · · · 0 0

...
...

...
. . .

...
...

. . .
...

...
2n−1 xn−1 + xn(1− 4xn−1) 0 0 · · · 0 0 · · · 1 1− 4xn−1
2n xn 0 0 · · · 0 0 · · · 0 1


.

Notice that in M, for each row 2i for i from 0 to n−2, the entry in column 2i+1 satisfies M2i,2i+1 = 4xi−1.
Now that we have eliminated 4xn−1 − 1 in row 2n−1, we repeat the same operation and use row 2n−1 to
eliminate 4xn−2 − 1 in the row above, 2n−2. Specifically, we add (1 − 4xn−2)M2n−1,• to M2n−2,• (where •
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indicates that here we consider row vectors). Decrementing i from n − 2 to 0, for each i, we perform this
operation of adding to row 2i the quantity (1− 4xi)M2i+1,•. Repeatedly performing this operation produces
a recursion in column 20, and we have

M =



1 20 21 · · · 2i 2i+1 · · · 2n
1 1 −1 0 · · · 0 0 · · · 0
20 0 1− 3Fn 0 · · · 0 0 · · · 0

...
...

...
. . .

...
...

. . .
...

2i 0 −3Fn−i 0 · · · 1 0 · · · 0
...

...
...

. . .
...

...
. . .

...
2n 0 −3F0 0 · · · 0 0 · · · 1


.

The operation of successively adding (1 − 4xi)N2i+1,• to N2i,• also produces the recursion F in column 1
of N. This operation creates increasing products of terms 1 − 4xi in the upper right triangle of N. For an
entry N2j ,2` , with ` > j, the entry is given by the product

∏`
i=j(1 − 4xi). After completing this operation

for all rows 2i in N, 0 ≤ i ≤ n− 1, the matrix is

N =



1 20 21 · · · 2i 2i+1 · · · 2n

1 1 0 0 · · · 0 0 · · · 0
20 Fn 1 1− 4x0 · · ·

∏i−1
j=0(1− 4xj)

∏i
j=0(1− 4xj) · · ·

∏n−1
j=0 (1− 4xj)

...
...

...
. . .

...
...

. . .
...

2i Fn−i 0 0 · · · 1 1− 4xi · · ·
∏n−1

j=i (1− 4xj)
...

...
...

. . .
...

...
. . .

...
2n F0 0 0 · · · 0 0 · · · 1


.

We can now simplify matrices M and N using Lemmas 1 and 2. First, by Lemma 1, Fn = (kn − k−1)/(1− 4k−1) =
kn = c, where c, defined in eq. 16, is the kinship coefficient of two individuals in a randomly chosen mating
pair. Then we can rewrite M as

M =



1 20 21 · · · 2i 2i+1 · · · 2n
1 1 −1 0 · · · 0 0 · · · 0
20 0 1− 3c 0 · · · 0 0 · · · 0

...
...

...
. . .

...
...

. . .
...

2i 0 −3Fn−i 0 · · · 1 0 · · · 0
...

...
...

. . .
...

...
. . .

...
2n 0 −3F0 0 · · · 0 0 · · · 1


.

Using Lemma 2, we can simplify N:

N =



1 20 21 · · · 2i 2i+1 · · · 2n
1 1 0 0 · · · 0 0 · · · 0
20 c 1 1− 4k0 · · · 1− 4ki−1 1− 4ki · · · 1− 4kn−1

...
...

...
. . .

...
...

. . .
...

2i Fn−i 0 0 · · · 1 1−4ki

1−4ki−1
· · · 1−4kn−1

1−4ki−1

...
...

...
. . .

...
...

. . .
...

2n F0 0 0 · · · 0 0 · · · 1


.

For the last elimination step in column 20 of M, we first divide row 20 of M and N by 1− 3c and then
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add the resulting row 20 to row 1. We obtain:

M =



1 20 21 · · · 2i 2i+1 · · · 2n
1 1 0 0 · · · 0 0 · · · 0
20 0 1 0 · · · 0 0 · · · 0

...
...

...
. . .

...
...

. . .
...

2i 0 −3Fn−i 0 · · · 1 0 · · · 0
...

...
...

. . .
...

...
. . .

...
2n 0 −3F0 0 · · · 0 0 · · · 1



N =



1 20 21 · · · 2i 2i+1 · · · 2n

1 1−2c
1−3c

1
1−3c

1−4k0

1−3c · · · 1−4ki−1

1−3c
1−4ki

1−3c · · · 1−4kn−1

1−3c
20

c
1−3c

1
1−3c

1−4k0

1−3c · · · 1−4ki−1

1−3c
1−4ki

1−3c · · · 1−4kn−1

1−3c
...

...
...

. . .
...

...
. . .

...
2i Fn−i 0 0 · · · 1 1−4ki

1−4ki−1
· · · 1−4kn−1

1−4ki−1

...
...

...
. . .

...
...

. . .
...

2n F0 0 0 · · · 0 0 · · · 1


.

Next, for each remaining row 2i, 1 ≤ i ≤ n, in M, we add 3Fn−i times row 20, which for M gives

M = I =



1 20 21 · · · 2i 2i+1 · · · 2n

1 1 0 0 · · · 0 0 · · · 0
20 0 1 0 · · · 0 0 · · · 0

...
...

...
. . .

...
...

. . .
...

2i 0 0 0 · · · 1 0 · · · 0
...

...
...

. . .
...

...
. . .

...
2n 0 0 0 · · · 0 0 · · · 1


.

For N, this step produces the fundamental matrix N = (I−Q)−1, with form

N1,• =
[
1−2c
1−3c ,

1
1−3c ,

1−4k0

1−3c , . . . ,
1−4kn−1

1−3c
]

N20,• =
[

c
1−3c ,

1
1−3c ,

1−4k0

1−3c , . . . ,
1−4kn−1

1−3c
]

N2i,• = 3Fn−iN20,• +
[
Fn−i, 0, . . . , 1,

1−4ki

1−4ki−1
, . . . , 1−4kn−1

1−4ki−1

]
, 1 ≤ i ≤ n.

Now that we have derived the fundamental matrix N, we next find the product NR. From eq. 56,

R•,0 = [0, x0, . . . , xn]T

R•,3 = [0, . . . , 0, 1− 4xn]T .

Because R1,• = [0, 0] and rows N1,• and N20,• only differ at their first entry, we have dot products N1,• ·
R•,0 = N20,• ·R•,0 and N1,• ·R•,3 = N20,• ·R•,3. Hence, to complete the derivation of NR, it suffices to
compute the dot products of N1,• and N2i,•, 1 ≤ i ≤ n, with R•,0 and R•,3. Using eqs. 37 and 38 and
Lemma 1, these products are

N1,• ·R•,0 =
1

1− 3c

n∑
i=0

xi(1− 4ki−1)

=
1

1− 3c

n∑
i=0

ci(1− 4ki−1)

4i+1(1− 4ki−1)

=
c

1− 3c
.
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N2i,• ·R•,0 =
3cFn−i

1− 3c
+

n∑
j=i

xj(1− 4kj−1)

1− 4ki−1

=
3cFn−i

1− 3c
+

1

1− 4ki−1

n∑
j=i

cj(1− 4kj−1)

4j+1(1− 4kj−1)

=
3cFn−i

1− 3c
+
kn − ki−1
1− 4ki−1

=
Fn−i

1− 3c
.

N1,• ·R•,3 =
1− 4kn−1

1− 3c
(1− 4xn)

=
1− 4kn−1

1− 3c

1− 4kn
1− 4kn−1

=
1− 4c

1− 3c
.

N2i,• ·R•,3 =
3Fn−i(1− 4c)

1− 3c
+

(1− 4kn−1)(1− 4xn)

1− 4ki−1

=
3(kn − ki−1)(1− 4c)

(1− 4ki−1)(1− 3c)
+

(1− 4kn−1)(1− 4kn)

(1− 4ki−1)(1− 4kn−1)

=
(1− 4c)(1− 3ki−1)

(1− 3c)(1− 4ki−1)
.

Combining these cases, we find

NR =



0 3

1 c
1−3c

1−4c
1−3c

2 c
1−3c

1−4c
1−3c

...
...

...
2i

Fn−i

1−3c
(1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

.
We have

P∗ = lim
n→∞

(A∗)n =



0 3 1 20 · · · 2i
0 1 0 0 0 · · · 0
3 0 1 0 0 · · · 0
1 c

1−3c
1−4c
1−3c 0 0 · · · 0

20
c

1−3c
1−4c
1−3c 0 0 · · · 0

...
...

...
...

...
. . .

...
2i

Fn−i

1−3c
(1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

0 0 · · · 0


,

from which we obtain P in eq. 42 by permuting rows and columns.448

The generator matrix G449

Here we derive the generator matrix G=PBP. Recall B from eq. 41. We first compute BP.450

Because B3,• is the only nonzero row of B, the only nonzero row of BP is (BP)3,•. Similarly, because
columns P•,0 and P•,3 are the only nonzero columns of P, the only nonzero columns of BP are (BP)•,0 and
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(BP)•,3. Therefore the only nonzero entries of BP are (BP)3,0 and (BP)3,3:

B3,• ·P•,0 =
1

4
+

3c

4(1− 3c)
=

1

4(1− 3c)

B3,• ·P•,3 =
3(1− 4c)

4(1− 3c)
− 1 =

−1

4(1− 3c)
.

Hence, we have

BP =



0 1 20 3 · · · 2i
0 0 0 0 0 · · · 0
1 0 0 0 0 · · · 0
20 0 0 0 0 · · · 0
3 1

4(1−3c) 0 0 −1
4(1−3c) · · · 0

...
...

...
...

...
. . .

...
2i 0 0 0 0 · · · 0


.

Next, for the product PBP, we note again that because only columns (BP)•,0 and (BP)•,3 are nonzero,
the only nonzero columns of PBP are 0 and 3. Because the only nonzero elements of columns (BP)•,0 and
(BP)•,3 are in row (BP)3,•, the entries in columns (PBP)•,0 and (PBP)•,3 are the products of entries in
column P•,3 and (BP)•,0 or (BP)•,3. In other words, the nonzero columns of PBP are

(PBP)•,0 =
1

4(1− 3c)
P•,3

(PBP)•,3 =
−1

4(1− 3c)
P•,3.

The generating matrix is given by G=PBP as in eq. 43.451

The matrix exponential Π(t)452

To compute the exponential etG, we first note that G2 = −G/[4(1− 3c)]. In general, for n > 0,

Gn =

[
−1

4(1− 3c)

]n−1
G.

We can then derive the matrix exponential etG, converting t to units of generations:

∞∑
i=0

(t/N)iGi

i!
= I− 4(1− 3c)G

∞∑
i=1

[ −t
4N(1−3c)

]i
i!

= I + 4(1− 3c)[1− e
−t

4N(1−3c) ]G

=



0 1 20 3 · · · 2i

0 1 0 0 0 · · · 0

1 1−4c
1−3c [1− e

−t
4N(1−3c) ] 1 0 −(1−4c)

1−3c [1− e
−t

4N(1−3c) ] · · · 0

20
1−4c
1−3c [1− e

−t
4N(1−3c) ] 0 1 −(1−4c)

1−3c [1− e
−t

4N(1−3c) ] · · · 0

3 1− e
−t

4N(1−3c) 0 0 e
−t

4N(1−3c) · · · 0
...

...
...

...
. . .

...

2i
(1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

[1− e
−t

4N(1−3c) ] 0 0 −(1−4c)(1−3ki−1)
(1−3c)(1−4ki−1)

[1− e
−t

4N(1−3c) ] · · · 1


.

We take the product PetG, using eq. 42 for P, to produce Π(t), eq. 44.453
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