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Abstract 26 

 27 

The gut microbiome has been implicated in a variety of physiological states. 28 

Controversy over causality, however, has always haunted microbiome studies. Here, 29 

we utilized the bidirectional Mendelian randomization (MR) approach to address 30 

questions that are not yet mature for more costly randomized interventions. From a 31 

total of 3,432 Chinese individuals with shotgun sequencing data for whole genome 32 

and whole metagenome, as well as anthropometric and blood metabolic traits, we 33 

identified 58 causal relationships between the gut microbiome and blood metabolites, 34 

and replicated 43 out of the 58. Gut microbiome could determine features in the blood. 35 

For example, increased fecal relative abundances of Oscillibacter and Alistipes were 36 

causally linked to decreased triglyceride concentration, and fecal microbial module 37 

pectin degradation might increase serum uric acid. On the other hand, blood features 38 

may determine gut microbial features, e.g. glutamic acid appeared to decrease 39 

Oxalobacter, and a few members of Proteobacteria were unidirectionally influenced 40 

by cardiometabolically important metabolites such as 5-methyltetrahydrofolic acid, 41 

alanine, as well as selenium. This study illustrates the value of human genetic 42 

information to help prioritize gut microbial features for mechanistic and clinical studies. 43 

The results are consistent with whole-body cross-talks of the microbiome and the 44 

circulating molecules. 45 

  46 
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Introduction 47 

 48 

Metagenome-wide association studies (MWAS) using human stool samples, as well 49 

as animal models especially the germ-free mice, have pointed to a potential role of the 50 

gut microbiome in diseases such as cardiometabolic, autoimmune, neuropsychiatric 51 

diseases and cancer, with mechanistic investigations for diseases such as obesity, 52 

colorectal cancer and schizophrenia1-4. Twin-based heritability estimation and more 53 

recent metagenome-genome-wide association studies (M-GWAS) have questioned 54 

the traditional view of the gut microbiota as a purely environmental factor5-9, although 55 

the extent of the genetic influence remained controversial7,10. Yet, all these published 56 

cohorts, except for human sequences in the metagenomic data of HMP (Human 57 

Microbiome Project), utilized array data for human genetics, and most of them had 58 

16S rRNA gene amplicon sequencing for the fecal microbiota5-10. 59 

 60 

For metabolic traits, a large number of GWAS analyses have been reported11-15. Yet, 61 

most of them focused on imputed genotyping array data for the discovery of common 62 

variants influencing the human blood metabolome, except for two recent studies14,15 63 

which leveraged whole genome or exome sequencing to discover metabolic quanti-64 

tative trait loci (mQTL). These studies consistently indicated high heritability of blood 65 

metabolites. 66 

 67 

As the gut microbiome is considered to be highly dynamic, causality has always been 68 

an unresolved issue on any reported difference. Mendelian randomization (MR)16 69 

offers an opportunity to distinguish between causal and non-causal effects from 70 

cross-sectional data, without animal studies or randomized controlled trials. An early 71 

study used MR to look at the gut microbiota and ischemic heart disease17. Recently, a 72 

study used MR to confirm that increased relative abundance of bacteria producing the 73 

fecal volatile short-chain fatty acid (SCFA) butyrate was causally linked to improved 74 

insulin response to oral glucose challenge; in contrast, another fecal SCFA, 75 

propionate, were causally related to an increased risk of T2D18. However, both studies 76 

used genotype data, and it was not clear to what extent the genetic factors explained 77 

the microbial feature of interest. 78 

 79 

In this study, we presented the first large-scale M-GWAS using whole genome and 80 

fecal microbiome, and bidirectional MR for the fecal microbiome and anthropometric 81 

features as well as blood metabolites. In a two-stage design from different cities in 82 

China, 58 causal links were identified from MR in the 4D-SZ discovery cohort of 2,002 83 

individuals with high-depth whole-genome sequencing data (1,539 individuals with 84 

microbiome data for one-sample MR). 43 of the 58 causal effects were replicated in 85 

the low-depth whole-genome sequencing data of another 1,430 individuals (1,006 86 

individuals with microbiome data for one-sample MR). In general, unidirectional 87 

causal effects could be found both from the gut to the blood and from the blood to the 88 

gut, but bidirectional effects were rarely detected. A few of the M-GWAS associations 89 

with gut microbial functional modules, e.g. module for lactose/galactose degradation 90 
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and the ABO loci, reached study-wise significance, illustrating the power of shotgun 91 

metagenomic data together with whole genome. The MR findings were corroborated 92 

and extended by summary statistics from the Japan Biobank study, e.g. causal effect 93 

of Proteobacteria on T2D (Type 2 diabetes mellitus), congestive heart disease and 94 

colorectal cancer, underscoring the significance of human genetic data to help guide 95 

microbiome intervention studies. 96 

 97 

 98 

Results 99 

Fecal microbiome associated with human genetics 100 

We set out to identify human genetic variants to be included as the randomizing layer 101 

of MR (Fig. 1). The 4D-SZ (multi-omics, with more time points to come, from 102 

Shenzhen, China) discovery cohort consisted of high-depth whole-genome 103 

sequencing data from 2,002 blood samples (mean depth of 42×, ranged from 21× to 104 

87×, Supplementary Table 1, Supplementary Fig. 1a), out of which 1,539 105 

individuals had metagenomic shotgun sequencing data from stool samples (8.56 ± 106 

2.28 GB, Supplementary Fig. 1b). Fecal M-GWAS was performed using 10 million 107 

common and low-frequency variants (minor allele frequency (MAF) ≥ 0.5%) and 500 108 

unique microbial features (120 from the initial 620 microbial taxonomic or functional 109 

features was omitted due to strong association with other microbial features, 110 

Spearman’s correlation > 0.99). The M-GWAS was adjusted for age, gender, BMI, 111 

defecation frequency, stool form, self-reported diet, lifestyle factors, and the first four 112 

principal components from the genomic data to account for population stratification.  113 

 114 

With this so-far the largest cohort of whole genome and whole metagenome data, we 115 

performed M-GWAS analysis and identified a total of 625 associations involving 548 116 

independent loci for one or more of the 500 microbial features at genome-wide 117 

significance (P < 5 × 10-8). With a more conservative Bonferroni-corrected study-wide 118 

significant P value of 1.0 × 10-10 (= 5 × 10−8 / 500), we identified 28 associations with 119 

fecal microbial features involving 27 genomic loci, of which 5 correlated with gut 120 

bacteria and the other 22 associated with gut metabolic pathways (Supplementary 121 

Table 2).   122 

 123 

For MR, it was important for the genetic variants used to be representative of the 124 

microbiome features (Supplementary Fig. 2), so a more suggestive P value of lower 125 

than 1 × 10−5 was used (Supplementary Table 2), as in previous MR studies18,19. 126 

Each microbial feature had an average of 44 genetic variants (range: 4-262; sd: 38; 127 

Fig. 2a, Supplementary Table 3). The corresponding genetic variants explained 128 

microbial features to a median value of 24.9%, e.g. 45.5% of the microbial metabolic 129 

pathway for succinate consumption and 44.6% of Phascolarctobacterium 130 

succinatutens (an asaccharolytic, succinate-utilizing bacterium), while only 6.8% of 131 

genus Edwardsiella (Supplementary Table 3). The phenotypic (relative abundance) 132 

variance of five genera Bilophila, Oscillibacter, Faecalibacterium, Megasphaera and 133 
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Bacteroides could be explained over 35% by their corresponding independent genetic 134 

variants (Fig. 2b), and the same is true for species Bilophila wadsworthia, 135 

Eubacterium siraeum and Faecalibacterium prausnitzii (a butyrate-producing 136 

bacterium that was relatively depleted in metabolic and immune diseases). Thus, 137 

although human genetic associations (array data) have been reported to explain only 138 

10% or 1.9% of the gut microbiota7,10, the suggestive associations from the current 139 

M-GWAS study could be highly predictive of certain gut taxa and functions. 140 

 141 

For better confidence in these suggestive associations, we sequenced a replication 142 

cohort of 1,430 individuals from multiple cities in China (also shotgun metagenomic 143 

sequencing for stool samples to an average of 8.65 ± 2.42 GB (Supplementary Fig. 144 

1d), but about 8× whole-genome sequencing for human genome, ranged from 6× to 145 

16× (Supplementary Fig. 1c)). Among the 22,293 independent associations 146 

identified in the discovery cohort with P < 10-5, 4,876 variants were not available in the 147 

low-depth replication dataset and 87.6% of them were not common variants (MAF < 148 

0.05), which was understandable given the relatively low detection rate of rare genetic 149 

variants from 8× sequencing data. For the remaining 17,417 independent 150 

associations covered by the low-depth replication dataset, we were able to replicate 151 

2,324 in the same effect direction of minor allele (P < 0.05, Supplementary Table 2), 152 

indicating that the associations were not random false positives. The fraction of 153 

associations replicated in the same direction (P < 0.05) using the suggestive cut-off of 154 

P < 10-5 (2,324/17,417) was not lower than the more stringent cut-offs (54/625 of the P 155 

< 5x10-8, and 2/28 of the P < 10-10). Two well replicated signals from the study-wide 156 

threshold were chr9:133276163 in the ABO blood group associated with module 157 

MF0007: lactose and galactose degradation (Pdiscovery = 2.10 ×10-12 and Preplication = 158 

1.09 ×10-10; Supplementary Fig. 3a,b) and rs142693490 near the LCORL gene 159 

(implicated in spermatogenesis, body frame and height) associated with MF0034: 160 

alanine degradation II (Pdiscovery = 1.28 ×10-12 and Preplication = 0.014; Supplementary 161 

Fig. 3c,d). Chr9:133276163 is in strong linkage disequilibrium (LD, r2 = 0.99) with 162 

multiple SNPs (rs507666, rs532436, rs651007, rs579459 and rs579459 ) in the ABO 163 

gene. These SNPs located in a block were found to be associated with metabolites 164 

levels in both this study and previous studies, especially for serum alkaline 165 

phosphatase levels (Supplementary Table 4). Other fecal microbiome associations 166 

confirmed by the low-depth genomes included: AMIGO1 associated with 167 

MF0067:glycolysis (preparatory phase); RAD51B associated with MF0019: rhamnose 168 

degradation; IPO8 associated with MF0014: arabinose degradation; LINC00648 169 

associated with Streptococcus oralis; PLEKHF2 associated with MF0050: threonine 170 

degradation II; IPO8 associated with MF0037: leucine degradation; RTRAF 171 

associated with Bacteroides xylanisolvens; GNB1 associated with Megasphaera 172 

elsdenii; DOCK8 associated with Actinomyces etc. (Supplementary Table 2). 173 

 174 

Besides, 175 loci have been previously6-10 reported to associate with specific taxa. We 175 

were able to replicate 4 of them at nominal significance, including rs147600757 176 

associated with Rikenellaceae and rs62273067 associated with Acidaminococcus 177 
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reported by Turpin et al.8, rs10115898 associated with Streptococcus mutans and 178 

rs78859629 associated with Lactobacillus acidophilus reported by Rothschild et al.10. 179 

To accommodate the differences in taxonomic resolution between amplicon data and 180 

our shotgun data, we obtained a minimal P value for each SNP across all taxa, and 181 

replicated 8 of them at the phylum level (P < 0.05/134 = 3.7 × 10-4, with 134 of the 175 182 

loci available in this study; Supplementary Table 5), especially for rs12354611 and 183 

Bacteroides stercoris (P = 8.64 ×10-6). 184 

 185 

Blood metabolic traits associated with human genetics 186 

On the other hand, plasma metabolites are also called on to associate with host 187 

genetics (Fig. 1). We thus performed whole genome-wide association tests with an 188 

additive model on 10 million common and low-frequency variants (MAF ≥ 0.5%) for 189 

each of the 112 metabolites, with log-transformed relative abundance. We identified a 190 

total of 174 associations involving 158 loci that independently associated with one or 191 

more of the 112 metabolites at genome-wide significance (P < 5 × 10-8). With a more 192 

conservative Bonferroni-corrected study-wide significant P value of 4.5 × 10-10 (= 5 × 193 

10−8/112 metabolites), we identified 39 associations with metabolites involving 28 194 

genomic loci (Supplementary Table 6). These included previously well-established  195 

associations such as the UGT1A family associated with serum total bilirubin11,20 and 196 

ASPG associated with asparaginate11. 197 

 198 

According to the suggestive threshold of P < 10−5, we identified 6,541 mQTLs, of 199 

which 361 were associated with two or more metabolites. Summary statistics for all 200 

independent genetic variants associated with metabolic traits with a P value lower 201 

than 1 × 10−5 are included in Supplementary Table 6. The average number of 202 

genetic variants was 58 for each metabolic trait (range: 14-240; sd: 36, Fig. 3a; 203 

Supplementary Table 7). The percentage of variance explained by the 204 

corresponding genetic variants ranged from 13.3% (red blood cell distribution) to as 205 

high as 48.3% (blood mercury concentration) and 45.9% (blood alpha-fetoprotein 206 

value), with a median value of 28.6% (Fig. 3b). Among these, 268 variants or their 207 

proxy variants (r2 > 0.6; distance < 1MB) have been reported in the GWAS catalog21 208 

(Supplementary Table 8). Some variants were associated with diseases in the 209 

GWAS catalog such as chronic kidney disease, Alzheimer's disease, coronary artery 210 

disease, Crohn's disease, ovarian cancer, breast cancer and gastric cancer. 211 

 212 

Among the 6,541 suggestive mQTLs identified in the 4D-SZ discovery cohort with P 213 

<10-5, 5,088 variants were covered by the replication dataset. 717 and 31 were 214 

replicated at nominal (P < 0.05) and suggestive significance (P < 10-5), respectively, in 215 

the same effect direction of minor allele (Supplementary Table 6). Especially for the 216 

174 genome-wide and 39 study-wide significant associations, we could replicate 51 217 

and 29 associations in the same direction (P < 0.05), respectively. The top 218 

associations confirmed by the low-depth genomes (P < 4.5 × 10-10 both in discovery 219 

and replication cohorts) included: FECH associated with manganese; UGT1A family 220 
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associated with serum total bilirubin as well as direct and indirect (unconjugated) 221 

bilirubin; ASPG associated with asparagine; CPS1 associated with glycine; APOE 222 

associated with low density lipoprotein; LUC7L associated with mean corpuscular 223 

hemoglobin concentration; ALAD associated with lead; GADL1 associated with 224 

beta-alanine; PRODH associated with proline; NPRL3 associated with red blood cell 225 

distribution. The association results of the top five traits were shown in 226 

Supplementary Fig. 4. Overall, the accurate identification of genetic determinants 227 

and the high variance explained for both microbial features and blood metabolites are 228 

optimal for MR analysis to investigate causality. 229 

 230 

From observational correlation to Mendelian randomization 231 

As a prerequisite for strong causality, we investigated the correlation between relative 232 

abundances of 500 unique fecal microbial features (taxa and functional modules) and 233 

112 host metabolic traits using multivariate linear regression. After adjustment for 234 

gender and age, we observed 457 significant associations (false discovery rate (FDR) 235 

corrected P < 0.05, Supplemental Table 9, online methods). Three metabolites, 236 

glutamic acid, 5-methyltetrahydrofolic acid (5-methyl THF, active form of folic acid) 237 

and selenium, were associated with the largest number of microbial features (58, 40 238 

and 38, respectively, Supplementary Fig. 5). These three metabolites were all 239 

associated with the phylum Proteobacteria and its constituents, including the family 240 

Enterobacteriaceae, genera Escherichia, Methylobacillus and Achromobacter, 241 

species Escherichia coli, Pseudomonas stutzeri, Achromobacter piechaudii, 242 

Burkholderia multivorans and Methylobacillus flagellates. Glutamic acid was positively 243 

correlated with Proteobacteria, whereas 5-methyltetrahydrofolic acid and selenium 244 

showed negative correlations with Proteobacteria, reminiscent of diverging 245 

associations of these metabolites with cardiometabolic diseases and inflammation. In 246 

addition to these top three metabolites, Proteobacteria also showed the strongest 247 

association among gut microbial taxa with another 5 traits (the amino acids 248 

hydroxyproline, aspartic acid, cystine, the metal strontium and the hormone 249 

aldosterone), suggesting that Proteobacteria is an important taxon for this Asian 250 

cohort. These associations extend findings from various studies, and suggest 251 

quantitative relationships between gut microbial taxa/functions and plasma 252 

metabolites. 253 

 254 

To reveal the potential causal effects of the fecal microbial features on blood 255 

metabolites or the other way around, we conducted bidirectional Mendelian 256 

randomization analysis for the 457 observationally significant associations (FDR 257 

corrected P < 0.05 between metabolites and microbial features, Supplemental Table 258 

9). For each trait, we selected independent genetic variants associated with the 259 

respective features as instruments (r2 < 0.1 and P < 1 × 10−5). Consistent with 260 

previous studies18,19, the threshold of P < 1 × 10−5 was used to include more variants 261 

and maximize the strength of genetic instruments. This threshold ensured that the 262 

genetic instruments were not too weak for the low-depth replication cohort (Methods, 263 
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Supplementary Fig. 6 and Supplemental Table 10). The average F statistic, a 264 

measure of the strength of these genetic instruments, was 51.4 (standard deviation 265 

(SD): 35.8) for the replication cohort, while an F statistic >10 is considered sufficiently 266 

informative for MR analyses22. The average microbial variance explained by the 267 

genetic instruments was 22.6% for the discovery cohort and 5.09% for the replication 268 

cohort (Supplementary Fig. 2). These exceeded the commonly reported 1.9%-5% in 269 

certain phenotypes due to missing heritability23. 270 

 271 

As we were fortunate to have all the data in the same cohort, we first performed 272 

one-sample MR analysis to identify causal relationships for the 457 observational 273 

correlations in the discovery cohort consisting of 1,539 individuals with both metabolic 274 

and microbiome traits. We found 58 significant causal effects, of which 17 showed 275 

causal effects for gut microbial features on blood metabolic traits and the other 41 276 

showed causal effects for blood metabolic traits on gut microbial features (P < 1.09 × 277 

10-4 = 0.05/457; Fig. 4, Supplementary Table 11). Only 4 of these were bidirectional. 278 

By applying one-sample MR analyses to the replication dataset of 1,006 low-depth 279 

genomes as well as metabolic and microbiome traits from individuals in different cities, 280 

we could replicate 43 of the 58 causal relationships (in the same direction and P < 281 

0.05; Supplementary Table 11), indicating that the effects were not random false 282 

positives.  283 

 284 

Moreover, we also used six different two-sample MR methods, which are more 285 

commonly performed when only summary statistics are available from two different 286 

cohorts, to analyze our data both in the discovery cohort (summary data for 2,002 287 

samples with metabolic traits and 1,539 samples with microbial features) and the 288 

replication cohort (summary data for 1,430 samples with metabolic traits and 1,006 289 

samples with microbial features). The one-sample MR and the two-sample MR 290 

analyses showed highly consistent results, and the Spearman’s correlation for beta 291 

coefficients between one-sample and two-sample MR reached 0.767 for the discovery 292 

cohort (P < 2.2 × 10-16). The 58 causal associations identified by one-sample MR were 293 

also significant in the two-sample MR analyses. An additional 14 causal associations 294 

were identified by the two-sample MR analyses (Supplementary Table 12), possibly 295 

due to the larger cohort size. We also examined the presence of horizontal pleiotropy 296 

by using the MR-PRESSO Global test24. Only one causal association (the negative 297 

effect of selenium on the abundance of Methylobacillus flagellates, PMR-PRESSOGlobaltest = 298 

0.01; Supplementary Table 9) showed pleiotropy, while all the other 71 causal 299 

relationships showed no evidence of pleiotropy (P > 0.05). Thus, our MR analyses 300 

identified robust causal relationships between blood metabolic traits and specific 301 

features of the gut microbiome. 302 

 303 

Effects of the gut microbiome on blood metabolic traits 304 

As some of the MR-identified relationships appeared linked, hierarchical clustering 305 

was performed for the 12 microbial features and 8 blood metabolites involved in the 306 
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17 causal relationships from the gut microbiome to blood metabolites, which formed 307 

two clusters. One cluster involved decreasing the plasma levels of triglyceride and 308 

alanine by gut microbial taxa or functional modules; and the other involved decreasing 309 

the levels of 5-methyltetrahydrofolic acid or progesterone, but increasing serum uric 310 

acid or plasma glutamic acid by gut microbial features (Fig. 4a). Reassuringly, the 311 

species Mobiluncus curtisii was clustered next to its corresponding genus Mobiluncus, 312 

and modules including serine degradation and threonine degradation, sucrose 313 

degradation and pectin degradation, were likewise next to one another.  314 

 315 

The most significant causal effect of Oscillibacter on decreasing blood triglyceride 316 

concentration (Fig. 5a-c), and to a lesser extent on lowering body-mass index (BMI) 317 

and waist-hip ratio (WHR), whereas the effect with plasma alanine was bidirectional. 318 

Using 134 genetic variants to construct a polygenic risk score (PRS) (134 genetic 319 

variants and the constructed PRS explained 39.3% and 49.6% of the phenotypic 320 

variance, respectively, Fig. 3b and Supplementary Table 11) for one-sample MR 321 

analysis in the discovery cohort, we estimated that each 1-s.d. increase in the 322 

abundance of Oscillibacter would generate a 0.261 mmol/L decrement in triglyceride 323 

concentration (P = 2.53 × 10-10), a 0.161 kg/m2 decrement in BMI (P = 1.33 × 10-4) 324 

and 0.126 ratio decrement in WHR (P = 2.73 × 10-3). This causal relationship was 325 

robust when four two-sample MR tests were performed (PGCTA-GSMR = 4.34 × 10-11, 326 

PInverse_variance_weighted = 2.45 × 10-15, Pweighted-median = 1.22 × 10-7 and PMR-Egger = 1.35 ×  327 

10-5) (Fig. 5c), and there was no evidence of horizontal pleiotropy (PMR-PRESSOGlobaltest = 328 

0.18; Supplementary Table 12). The reverse MR analysis (testing the effect of 329 

genetic predictors of triglyceride on Oscillibacter abundance) was significant but did 330 

not reach the multiple test corrected significance (10-4 < P < 0.05). Oscilibacter is a 331 

Gram-negative Clostridial bacteria, phylogenetically close to Oscillospira25 which 332 

could produce valerate or butyrate. In addition, higher relative abundance of Alistipes 333 

was also associated with decreased blood triglyceride concentration (P = 8.31 × 10-8, 334 

Fig. 5d). At the species level, both A. shahii (P = 1.37 × 10-6) and unclassified 335 

Alistipes sp. HGB5 (P = 3.36 × 10-5) showed negative effects on blood triglyceride. 336 

The effect of both Oscilibacter and Alistipes for lowering blood triglyceride 337 

concentration were confirmed in the replication cohort (P = 3.39 × 10-4 and P = 2.88 × 338 

10-4, respectively; Supplementary Table 11 and 12). These findings support the 339 

decrease in relative abundances of Oscillibacter and Alistipes in obese individuals 340 

compared to individuals with normal BMI reported in previous studies26-28, suggesting 341 

that these bacteria as promising supplementation agents for individuals of a suitable 342 

genetic background.  343 

 344 

The gut microbiome potential for pectin degradation II (42.6% of the variance 345 

explained by GRS) showed a handful of significant MR hits with blood traits (Fig. 4a), 346 

including positive effects on alanine (P = 8.57 × 10-5) and serum uric acid (P = 1.34 × 347 

10-6), whereas negative effects on progesterone (P = 6.68 × 10-7). Bacteroidetes and 348 

Fusobacteria were the only two phyla that positively correlated with the abundance of 349 

pectin degradation II (Spearman rank correlation, ρ = 0.48 and 0.15, respectively), 350 
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which included the two previously reported pectin-degrading species Bacteroides 351 

thetaiotaomicron and Fusobacterium varium29,30. In the 4D-SZ cohort, F. varium 352 

correlated with pectin degradation II (Spearman’s correlation, ρ = 0.12) and increased 353 

the blood alanine (P = 0.02) and serum uric acid (P = 0.04); B. thetaiotaomicron 354 

correlated with pectin degradation II (Spearman’s correlation, ρ = 0.21) but showed no 355 

detectable effect on alanine or uric acid (P > 0.05; Supplementary Fig. 7a,b,d). 356 

Instead, B. dorei, the bacterial species most strongly correlated with pectin 357 

degradation II (Spearman rank correlation, ρ = 0.32, Supplementary Fig. 7c), 358 

positively contributed to alanine (P = 0.05) and serum uric acid levels (P = 3.40 × 10-4; 359 

Supplementary Fig. 7d).  360 

 361 

Effects of blood metabolites on gut microbial features 362 

For the 41 causal relationships from blood metabolic traits to gut microbial features 363 

(one-sample MR, Supplementary Table 11), hierarchical clustering revealed two 364 

clusters, one mostly involved decreasing abundance of bacteria by plasma alanine or 365 

glutamic acid, the other involved decreasing abundance of bacteria by selenium or 366 

5-methyltetrahydrofolic acid (Fig. 4b). F. prausnitzii showed a negative effect on 367 

plasma selenium (Fig. 4a), while plasma selenium showed negative effects on gut 368 

Proteobacteria such as Enterobacteriaceae (e.g. Escherichia coli, P = 3.79 × 10-5), 369 

Pseudomonas stutzeri (P = 1.06 × 10-6), and modules such as arginine degradation II 370 

(P = 2.65 × 10-6), succinate conversion to propionate (P = 3.55 × 10-5), and anaerobic 371 

fatty acid beta oxidation (P = 9.71 × 10-5) (Fig. 4b). 372 

 373 

Bacteria from the phylum Proteobacteria were negatively affected by not only 374 

selenium, but also 5-methyltetrahydrofolic acid (Fig. 4b). We directly verified the 375 

effect of 5-methyltetrahydrofolic acid on Escherichia in vitro. Supplementing 376 

5-methyltetrahydrofolic acid in growth media indeed slowed down the growth of a 377 

strain of Escherichia coli AM17-9 compared to lower concentrations or absence of 378 

5-methyltetrahydrofolic acid (Supplementary Fig. 8).  379 

 380 

A handful of bacteria were also affected by glutamic acid. The negative influence of 381 

glutamic acid (48 variants with suggestive associations and the constructed PRS 382 

explained 24.9% and 25.4% of the phenotypic variance, respectively) on the genus 383 

Oxalobacter (P = 1.56 × 10-6) may help explain the lower prevalence of Oxalobacter in 384 

developed countries, besides the lower intake of oxalate and antibiotic use31. Whether 385 

limiting glutamic acid could raise Oxalobacter and prevent kidney stones remains to 386 

be tested. Glutamic acid negatively affected melibiose degradation (to glucose, 387 

galactose, P = 2.05 × 10-5 from two-sample MR), but showed positive effects on 388 

alanine degradation I (P = 5.46 × 10-5), anaerobic fatty acid beta-oxidation (P = 9.36 × 389 

10-5), and bidirectional positive effect on serine degradation (P = 6.85 × 10-7 for serine 390 

degradation to glutamic acid and P = 9.90 × 10-6 for glutamic acid to serine 391 

degradation, respectively). 392 

 393 
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Causal relationships with the gut microbiome in the context of diseases 394 

We further investigated the effects of the 72 significant causal relationships 395 

(Supplementary Table 12) involving 40 microbial features and 12 metabolic traits on 396 

diseases, by performing two-sample MR analysis using gut microbiome GWAS 397 

summary data in this 4D-SZ cohort, together with blood quantitative traits and 398 

diseases GWAS summary statistics from Japan Biobank32 (Fig. 1; Supplementary 399 

Table 13), given that Japanese people have a genetic architecture similar to Chinese. 400 

Only routine blood parameters but no amino acids, hormones and microelements 401 

were included in the Japan Biobank study. Thus, only five of the 72 causal 402 

associations, involving triglyceride and serum uric acid were available for further 403 

investigation in the Japan Biobank data. The relationship between unclassified 404 

Lachnospiraceae bacterium 9_1_43BFAA and uric acid was reciprocal in the 4D-SZ 405 

cohort and we could replicate the causal effect of uric acid on increased unclassified 406 

Lachnospiraceae bacterium 9_1_43BFAA abundance in the Japanese cohort, 407 

whereas the reciprocal effect, i.e. potential effect of unclassified Lachnospiraceae 408 

bacterium 9_1_43BFAA on uric acid was not replicated, possibly due to lack of 409 

variants in the genotyped Japanese cohort (15 instead of 67, Supplementary Table 410 

14). The other three associations were not replicated maybe due to the same reason. 411 

For example, genus Oscillibacter had 135 variants with P < 10-5 in our summary data 412 

but only 15 were available in the Japan Biobank summary data.  413 

 414 

MR inference using our gut microbiome M-GWAS summary data and diseases GWAS 415 

summary statistics from Japan Biobank found that Alistipes that showed negative 416 

effects on blood triglyceride in the 4D-SZ cohort, lowered the risks of cerebral 417 

aneurysm (Supplementary Table 15, P = 4.61 × 10-4) and hepatocellular carcinoma 418 

(P = 0.045) in the Japan Biobank cohort. According to the genetic associations we 419 

identified for Proteobacteria, we were able to see in Japan Biobank disease data that 420 

Proteobacteria increased the risk of T2D (Fig. 6a; P = 7.61 × 10-4, two-sample MR), 421 

congestive heart failure (P = 0.003) and colorectal cancer (P = 0.047). This is 422 

consistent with MWAS findings mainly for Enterobacteriaceae1, and suggest that the 423 

metabolites identified above (5-methyltetrahydrofolic acid, selenium) might help 424 

prevent the diseases. Folic acid is indeed recommended for heart diseases33. In 425 

addition, Escherichia coli increased the risk of urolithiasis (Fig. 6b; P = 0.009) and 426 

hepatocellular carcinoma (P = 0.04) while decreased the interstitial lung disease risk 427 

(P = 0.007). Similarly, Salmonella enterica increased prostate cancer risk but 428 

decreased interstitial lung disease risk. The Pseudomonadales order was the only 429 

microbial feature showing a positive effect on pulmonary tuberculosis. The denitrifying 430 

bacteria Achromobacter increased the risk of atopic dermatitis (P = 0.005), gastric 431 

cancer (P = 0.008), esophageal cancer (P = 0.027) and biliary tract cancer (P = 0.034). 432 

Bacteroides intestinalis which was reported to be relatively depleted in patients of 433 

atherosclerotic cardiovascular disease34 was found here to increase with potassium, 434 

and B. intestinalis showed a negative effect on epilepsy. Streptococcus parasanguinis 435 

had a positive effect on colorectal cancer and posterior wall thickness 436 
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(echocardiography), consistent with MWAS studies1,34,35. These results illustrated the 437 

potential significance of the gut microbiome-blood metabolite relationships in 438 

understanding and preventing cardiometabolic diseases and cancer. 439 

 440 

 441 

Discussion 442 

 443 

In summary, we identified abundant genetic loci to associate with microbial features 444 

and metabolic traits, and found 58 causal relationships between the gut microbiome 445 

and blood metabolites using one-sample bidirectional MR. 43 out of the 58 446 

one-sample MR signals could be replicated in a low-depth genome cohort also from 447 

China. Two-sample MR replicated the 58 causal relationships in the same direction 448 

and identified an additional 14 causal relationships. Two-sample MR using summary 449 

statistics from Japan Biobank identified effects of gut microbial features on diseases, 450 

suggesting potential applications of microbiome intervention in cardiometabolic, 451 

kidney and lung diseases and cancer. While mechanistic investigations using 452 

germ-free mice and reference bacteria strains have been popular, our data-driven 453 

analyses underscore the clinical relevance of gut microbes that have not been 454 

extensively cultured and characterized, e.g. Oscilibacter and Alistipes for lowering 455 

triglyceride concentration and a number of disease risks, which may be particularly 456 

relevant for East Asian regions undergoing rapid changes in lifestyle and disease 457 

profiles.  458 

 459 

By applying this MR analysis to explore causality, our results laid further support for 460 

several previously reported microbiome-metabolites relationships. For example, B. 461 

thetaiotaomicron had been reported to inversely correlate with serum glutamate 462 

concentration and was lower in obese individuals36. Consistently, we confirmed that 463 

species from Bacteroides, including B. thetaiotaomicron, B. intestinalis, B. helcogenes 464 

and B. pectinophilus, reduced plasma glutamic acid concentration (10-4 < P < 0.05). 465 

We also confirmed that B. thetaiotaomicron could lower plasma Alpha-aminoadipic 466 

acid level, weight and WHR (P < 0.05). Besides, we found that cysteine negatively 467 

correlated with abundance of Escherichia coli, which is consistent with previous 468 

finding that cysteine inhibited the growth of Escherichia coli37. 469 

 470 

Although associations between the gut microbiome and blood features such as amino 471 

acids and vitamins have been known for some time, our MR analyses could inspire 472 

more mechanistic and interventional studies. The unique data available from the 473 

4D-SZ cohort allowed appreciation of overlooked features such as selenium. 474 

Selenium compounds were deemed essential for human health and development38. It 475 

is beneficial to an organism only in small amounts, while high concentrations of 476 

selenium become toxic39. We found that higher amount of blood selenium showed 477 

negative effects on some members of the gut microbiome (Fig. 4b). Although 478 

previous studies reported that Escherichia coli had evolved for adaptation to 479 
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selenate40-43, the MR result that blood selenium negatively impacted the relative 480 

abundance of Escherichia coli  suggested that it may still be sensitive to selenium. 481 

Increased selenium level had adverse effects on several other bacteria from 482 

Gammaproteobacteria, including Achromobacter piechaudii, Methylobacillus 483 

flagellatus, Pseudomonas stutzeri, and Burkholderia multivorans. Pseudomonas 484 

stutzeri is a nonfluorescent denitrifying and an opportunistic bacterium44. Burkholderia 485 

multivorans is a prominent B. cepacia complex species causing infection in people 486 

with cystic fibrosis45. Interestingly, F. prausnitzii from the Firmicutes phylum showed a 487 

negative effect on plasma selenium. Further studies on such indirect relationships 488 

between opportunistic pathogens and commensal bacteria would be illuminating, and 489 

could help to better protect individuals who have a genetic risk. 490 

 491 

Nitrogen is a limiting resource for many ecosystems. In the modern human gut 492 

microbiome without high intake of nitrite, proteins are probably the major source of 493 

nitrogen46, and the glutamate-glutamine reservoir is a key buffering mechanism for the 494 

inflammatory potential of excess amines36,47-50. The increase in Proteobacteria and 495 

decrease in Oxalobacteraceae observed in these Chinese individuals no more than 496 

30 years old on average could potentially explain susceptibility to cardiometabolic and 497 

kidney diseases later in life. The bidirectional link between strontium and 498 

Streptococcus parasanguinis implies an interplay between water source and 499 

cardiovascular diseases34,51.  500 

 501 

Metabolism of polysaccharides that cannot be directly digested by the host is an 502 

important function of the colonic microbiome. We found degradation of pectin (or 503 

sucrose) to negatively affect progesterone level. This is an interesting possibility to 504 

provide scientific support for traditional dietary advice for pregnant women to ensure 505 

full-term pregnancy. Hyperuricemia and gout is a growing epidemic in East Asia, and 506 

soft drinks containing fructose is a strong factor that is no less important than beer 507 

and meat52. Gut microbial (Bacteroides, Fusobacterium) pectin degradation module 508 

positively contributed to circulating levels of alanine and uric acid. Further studies on 509 

the trans-kingdom metabolic flux of carbon and nitrogen would be necessary for 510 

personalized management of uric acid and alanine levels. 511 

 512 

For the nascent field of M-GWAS and microbiome MR, there is also a lot of 513 

opportunities for methodological development by statistical experts. Low-frequency 514 

microbes are common in an individual’s gut and could play physiological or 515 

pathological roles1,53. Our MR results for gut microbial species were supported by MR 516 

for higher taxonomic units such as genus or phylum (Fig. 4, Supplementary Table 517 

11). Yet, the P values were sometimes more significant for the larger taxa, suggesting 518 

similar functions contributed by other species. Functional redundancy in the 519 

microbiome has been discussed ever since the beginning of the microbiome field54,55, 520 

and here we identified study-wide significant host genetic associations with gut 521 

microbial functional modules, and causal effects of other gut microbial functional 522 

modules on host levels of circulating metabolites. Distribution of the microbiome 523 
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taxonomic or functional data constitutes another layer of consideration, in addition to 524 

the human allele frequencies. Gathering a more homogenous cohort could enable 525 

identification of signals in a relatively small cohort, while corrections for comparing 526 

different populations might involve host-microbiome interactions. As the gut 527 

microbiome can be influenced by medication56, and heritability for most traits is higher 528 

in younger individuals57, healthy young adults are probably preferable for M-GWAS 529 

studies, while microbiome-drug interactions in older individuals could be an important 530 

direction for MR studies. 531 

 532 

In short, our data-driven approach underscores the great potential of M-GWAS and 533 

MR for a full picture of the microbiome, which can be mechanistically illuminating and 534 

are poised to help focus intervention efforts to mitigate inflammation and prevent or 535 

alleviate complex diseases. 536 

  537 
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Methods 538 

 539 

Study subjects 540 

All the adult Chinese individuals were recruited for a multi-omic study, with some 541 

volunteers having samples from as early as 2015, which would constitute the time 542 

dimension in ‘4D’. The discovery cohort was recruited during a physical examination 543 

from March to May in 2017 in the city of Shenzhen, including 2,002 individuals with 544 

blood samples and of which 1,539 had fecal samples. All these individuals were 545 

enlisted for high-depth whole genome and whole metagenomic sequencing. As for 546 

replication, blood samples were collected from 1,430 individuals, out of which 1,006 547 

had fecal samples. The replication cohort was designed in the same manner but 548 

organized at smaller scales in multiple cities (Wuhan, Qingdao, etc.) in China. The 549 

protocols for blood and stool collection, as well as the whole genome and 550 

metagenomic sequencing were similar to our previous literature5,48. For blood sample, 551 

buffy coat was isolated and DNA was extracted using HiPure Blood DNA Mini Kit 552 

(Magen, Cat. no. D3111) according to the manufacturer’s protocol. Feces were 553 

collected with MGIEasy kit and stool DNA was extracted in accordance with the 554 

MetaHIT protocol as described previously58. The DNA concentrations from blood and 555 

stool samples were estimated by Qubit (Invitrogen). 200 ng of input DNA from blood 556 

and stool samples were used for library preparation and then processed for 557 

paired-end 100bp and single-end 100bp sequencing, respectively, using BGISEQ-500 558 

platform59. 559 

The study was approved by the Institutional Review Boards (IRB) at BGI-Shenzhen, 560 

and all participants provided written informed consent at enrolment.  561 

 562 

High-depth whole genome sequence for discovery cohort 563 

2,002 individuals in discovery cohort were sequenced to a mean of 42x for whole 564 

genome. The reads were aligned to the latest reference human genome 565 

GRCh38/hg38 with BWA60 (version 0.7.15) with default parameters. The reads 566 

consisting of base quality <5 or containing adaptor sequences were filtered out. The 567 

alignments were indexed in the BAM format using Samtools61 (version 0.1.18) and 568 

PCR duplicates were marked for downstream filtering using Picardtools (version 1.62). 569 

The Genome Analysis Toolkit’s (GATK62, version 3.8) BaseRecalibrator created 570 

recalibration tables to screen known SNPs and INDELs in the BAM files from dbSNP 571 

(version 150). GATKlite (v2.2.15) was used for subsequent base quality recalibration 572 

and removal of read pairs with improperly aligned segments as determined by Stampy. 573 

GATK’s HaplotypeCaller were used for variant discovery. GVCFs containing SNVs 574 

and INDELs from GATK HaplotypeCaller were combined (CombineGVCFs), 575 

genotyped (GenotypeGVCFs), variant score recalibrated (VariantRecalibrator) and 576 

filtered (ApplyRecalibration). During the GATK VariantRecalibrator process, we took 577 

our variants as inputs and used four standard SNP sets to train the model: (1) 578 

HapMap3.3 SNPs; (2) dbSNP build 150 SNPs; (3) 1000 Genomes Project SNPs from 579 

Omni 2.5 chip; and (4) 1000G phase1 high confidence SNPs. The sensitivity 580 

threshold of 99.9% to SNPs and 99% to INDELs were applied for variant selection 581 
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after optimizing for Transition to Transversion (TiTv) ratios using the GATK 582 

ApplyRecalibration command. After applying the recalibration, there were 60,978,451 583 

raw variants left, including 55 million SNPs, and 6 million INDELs. 584 

We applied a conservative inclusion threshold for variants: (i) mean depth >8×; (ii) 585 

Hardy-Weinberg equilibrium (HWE) P > 10-5; and (iii) genotype calling rate > 98%. We 586 

demanded samples to meet these criteria: (i) mean sequencing depth > 20×; (ii) 587 

variant calling rate > 98%; (iii) no population stratification by performing principal 588 

components analysis (PCA) analysis implemented in PLINK63 (version 1.07) and (iv) 589 

excluding related individuals by calculating pairwise identity by descent (IBD, Pi-hat 590 

threshold of 0.1875) in PLINK. Only 10 samples were removed in quality control 591 

filtering. After variant and sample quality control, 1,992 individuals with 6.12 million 592 

common (MAF ≥ 5%) and 3.90 million low-frequency (0.5% ≤ MAF < 5%) variants 593 

from discovery cohort were left for subsequent analyses. 594 

 595 

Low-depth whole genome sequence for replicate cohort 596 

1,430 individuals in replication cohort were sequenced to a mean of 8x for whole 597 

genome. We used BWA to align the whole genome reads to GRCh38/hg38 and used 598 

GATK to perform variants calling by applying the same pipelines as for the high-depth 599 

WGS data. After completing the joint calling process with CombineGVCFs and 600 

GenotypeGVCFs options, we obtained 43,402,368 raw variants. A more stringent 601 

process in the GATK VariantRecalibrator stage compared with the high-depth WGS 602 

was then used, the sensitivity threshold of 98.0% to both SNPs and INDELs was 603 

applied for variant selection after optimizing for Transition to Transversion (TiTv) ratios 604 

using the GATK ApplyRecalibration command. Further, we kept variants with less 605 

than 10% missing genotype frequency and minor allele count more than 5. All these 606 

high-quality variants were then imputed using BEAGLE 564 with the 1,992 high-depth 607 

WGS dataset as reference panel. We retained only variants with imputation info. > 0.7 608 

and obtained 10,905,418 imputed variants. We further filtered this dataset to keep 609 

variants with Hardy-Weinberg equilibrium P > 10-5 and genotype calling rate > 90%. 610 

Similar to what we have done for discovery cohort, samples were demanded to have 611 

mean sequencing depth > 6×, variant call rate > 98%, no population stratification and 612 

no kinship. Finally, 1,430 individuals with 5,884,439 high-quality common and 613 

low-frequency variants (MAF ≥ 0.5%) from replication cohort were left for subsequent 614 

analysis.  615 

To assess the data quality, we sequenced 27 samples with both high-depth and 616 

low-depth WGS data and then compared the 5,318,809 variants between them for 617 

each individual. The average genotype concordance was 98.66% (Supplementary 618 

Table 16). 619 

 620 

Metagenomic sequencing and profiling 621 

High-quality whole metagenomic sequencing was performed for 1,539 samples from 622 

discovery cohort and 1,004 samples from replication cohort with fecal samples 623 

available. The reads were aligned to hg38 using SOAP265 (version 2.22; identity ≥ 0.9) 624 

to remove human reads. The gene profiles were generated by aligning high-quality 625 
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sequencing reads to the integrated gene catalog (IGC) by using SOAP2 (identity ≥ 626 

0.95) as previously described53. The relative abundance profiles of phylum, order, 627 

family, class, genera and species were determined from the gene abundances. To 628 

eliminate the influence of sequencing depth in comparative analyses, we downsized 629 

the unique IGC mapped reads to 20 million for each sample. The relative abundance 630 

profiles of gene, phylum, order, family, class, genus and species were determined 631 

accordingly using the downsized mapped reads per sample.   632 

GMMs (gut metabolic modules) reflect bacterial and archaeal metabolism specific to 633 

the human gut, with a focus on anaerobic fermentation processes66. The current set of 634 

GMMs was built through an extensive review of the literature and metabolic 635 

databases, inclusive of MetaCyc67 and KEGG, followed by expert curation and 636 

delineation of modules and alternative pathways. Finally, we identified 620 common 637 

microbial taxa and GMMs present in 50% or more of the samples.  638 

 639 

Metabolic traits profiling 640 

Measurements of metabolic traits (anthropometric characteristics and blood 641 

metabolites) were performed for all the 3,432 individuals during the physical 642 

examination in this study. The clinical tests, including blood tests and urinalysis, were 643 

performed in licensed physical examination organization. The anthropometric 644 

measurements such as height, weight, waistline and hipline were measured by 645 

nurses. Age and gender were self-reported. The metabolites, i.e. vitamins, hormones, 646 

amino acids and trace elements including heavy metals, were chosen from a health 647 

management perspective. Measurements of blood metabolites were performed as 648 

described in detail by Jie et al39, blood amino acids were measured by ultra high 649 

pressure liquid chromatography (UHPLC) coupled to an AB Sciex Qtrap 5500 mass 650 

spectrometry (AB Sciex, US) with the electrospray ionization (ESI) source in positive 651 

ion mode using 40 µl plasma; blood hormones were measured by UHPLC coupled to 652 

an AB Sciex Qtrap 5500 mass spectrometry (AB Sciex, US) with the atmospheric 653 

pressure chemical ionization (APCI) source in positive ion mode using 250 µl plasma; 654 

blood trace elements were measured by an Agilent 7700x ICP-MS (Agilent 655 

Technologies, Tokyo, Japan) equipped with an octupole reaction system (ORS) 656 

collision/reaction cell technology to minimize spectral interferences using 200 µl 657 

whole blood; Water-soluble vitamins were measured by UPLC coupled to a Waters 658 

Xevo TQ-S Triple Quad mass spectrometry (Waters, USA) with the electrospray 659 

ionization (ESI) source in positive ion mode using 200 µl plasma; Fat-soluble vitamins 660 

were measured by UPLC coupled to an AB Sciex Qtrap 4500 mass spectrometry (AB 661 

Sciex, USA) with the atmospheric pressure chemical ionization (APCI) source in 662 

positive ion mode using 250 µl plasma. 663 

 664 

Observational correlation of microbial features with metabolic traits 665 

As many microbial features (taxonomies and pathways) are highly correlated, we first 666 

performed a number of Spearman correlation tests and kept only one member of pairs 667 

of bacteria or GMMs showing >0.99 correlation coefficient. This filtering resulted in a 668 

final set of 500 unique features (99 GMMs and 401 gut taxa) that were used for 669 
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analyses. We correlated these 500 microbial features with 112 measured metabolic 670 

traits, including 9 anthropometric measurements (BMI, WHR, etc.) and 103 blood 671 

metabolites (amino acids, vitamins, microelements, etc.) in the 3,432 individuals. All 672 

metabolic traits and microbial features were transformed using natural logarithmic 673 

function to reduce skewness of distributions. For each phenotype, we excluded outlier 674 

individuals with more than four standard deviations away from the mean. The 675 

metabolite measures were then centered and scaled to mean of 0 and standard 676 

deviation of 1.  677 

The relationship between metabolic traits and microbial features were evaluated by 678 

multivariable linear regression analysis while adjusted for age and gender. After 679 

achieving the raw P value, we used the p.adjust() function in R (v3.2.5)) to perform the 680 

multiple test correction and calculated adjusted P values with the 681 

Benjamini–Hochberg procedure. The results were considered significant when FDR 682 

adjusted P value was <0.05. The correlated microbial features and metabolic traits, 683 

raw P and FDR adjusted P values, were included in the Supplementary Table 9. 684 

 685 

Clustering of microbiome-metabolites associations 686 

To assess the association clusters of 58 identified causal relationships involving the 687 

effects of 12 microbial features on 8 metabolic traits and the effects of 7 metabolic 688 

traits on 33 microbial features, we performed a hierarchical clustering analysis. Beta 689 

coefficients of associations between the microbial features and metabolic traits from 690 

one-sample MR analysis were used to construct distance matrices. Complete-linkage 691 

hierarchical clustering was used to cluster the metabolites and microbiome traits from 692 

the distance matrices using the ‘hclust’ function in R, and the results were visualized 693 

as a heatmap.  694 

 695 

Genome-wide Association analysis for microbial features 696 

We tested the associations between host genetics and gut bacteria using linear or 697 

logistic model based on the abundance of gut bacteria. The abundance of bacteria 698 

with occurrence rate over 95% in the cohort was transformed by the natural logarithm 699 

and the outlier individual who was located away from the mean by more than four 700 

standard deviations was removed, so that the abundance of bacteria could be treated 701 

as a quantitative trait. Otherwise, we dichotomized bacteria into presence/absence 702 

patterns to prevent zero inflation, then the abundance of bacteria could be treated as 703 

a dichotomous trait. Next, for 10 million common and low-frequency variants (0.5% ≤ 704 

MAF < 5%) identified in the discovery cohort and 5.9 million common and 705 

low-frequency variants identified in replication cohort, we performed a standard single 706 

variant (SNP/INDEL)-based M-GWAS analysis via PLINK using a linear model for 707 

quantitative trait or a logistic model for dichotomous trait. Given the effects of diet and 708 

lifestyles on microbial features, we included age, gender, BMI, defecation frequency, 709 

stool form, 12 diet and lifestyle factors, as well as the top four principal components 710 

(PCs) as covariates for M-GWAS analysis in both the discovery and the replication 711 

cohort. 712 

 713 
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Genome-wide Association analysis for anthropometric and metabolic traits 714 

For each of the 112 anthropometric and metabolic traits, the log10-transformed of the 715 

median-normalized values was used as a quantitative trait. Samples with missing 716 

values and values beyond 4 s.d. from the mean were excluded from association 717 

analysis. Each of the 10 million common and low-frequency variants identified in the 718 

discovery cohort and the 5.9 million common and low-frequency variants identified in 719 

the replication cohort was tested independently using a linear model for quantitative 720 

trait implemented in PLINK. Age, gender and the top four PCs were included as 721 

covariates. 722 

 723 

Independent predictor and explained phenotypic variance 724 

For each whole-genome wide association result of microbial features and metabolic 725 

traits, we first selected genetic variants that showed association at P < 1 × 10−5 and 726 

then performed the linkage disequilibrium (LD) estimation with a threshold of LD r2 < 727 

0.1 for clumping analysis to get independent genetic predictors. The P-value 728 

threshold of 1 × 10−5 was used for selection of genetic predictors associated with 729 

microbial features by maximizing the strength of genetic instruments and the amount 730 

of the average genetic variance explained by the genetic predictors in an independent 731 

sample. For each microbial feature, we got genetic instruments in discovery cohort 732 

using different P thresholds, including 5 × 10−8, 1 × 10−7, 1 × 10−6 and 1 × 10−5. We 733 

tested the strength of these instruments under different P thresholds by checking 734 

whether they predicted corresponding microbial features in an independent sample 735 

(Supplementary Table 10 and Supplementary Fig. 6), we observed that the mean 736 

value of instrumental F statistics is 3.57 and on average only 0.28% phenotype 737 

variance could be explained by instruments on microbial features when using 5 × 10−8 738 

as instrumental cut-off. Therefore, we used a more liberal threshold of P < 1 × 10-5 to 739 

select the instruments for microbial features, and the instrumental mean F statistics 740 

reached 51.4 (greater than 10) that indicates a strong instrument. The average 741 

phenotypic variance explained by instruments on microbial features was 22.6% for 742 

the discovery cohort and 5.09% for the replication cohort (Supplementary Fig. 2). 743 

For consistency, we used the same threshold and procedure for selecting genetic 744 

predictors of metabolic traits in both the discovery and the replication cohort. The LD 745 

estimation between variants was calculated in 2,002 samples for the discovery cohort 746 

and in 1,430 samples for the replication cohort, respectively. For each phenotype, the 747 

variance explained by the corresponding independent genetic predictors was 748 

estimated using a restricted the maximum likelihood (REML) model as implemented 749 

in the GCTA software68. We adjusted for age, gender and the top four PCs in the 750 

REML analysis. 751 

 752 

One-sample MR analysis 753 

To investigate the causal effects between microbial features and metabolic traits 754 

available from the same cohort, we first performed one-sample bidirectional MR 755 

analysis in discovery cohort, which included 1,539 individuals with both metabolites 756 

and microbiome traits. We specified a threshold of P < 1 × 10−5 to select SNP 757 
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instruments and LD r2 < 0.1 threshold for clumping analysis to get independent 758 

genetic variants for MR analysis. Then, an unweighted polygenic risk score (PRS) 759 

was calculated for each individual using independent genetic variants from GWAS 760 

data. Each SNP was recoded as 0, 1 and 2, depending on the number of trait-specific 761 

risk increasing alleles carried by an individual. We performed Instrumental variable (IV) 762 

analyses employing two-stage least square regression (TSLS) method. In the first 763 

stage, for each exposure trait, association between the GRS and observational 764 

phenotype value was assessed using linear regression and predicted fitted values 765 

based on the instrument were obtained. In the second stage, linear regression was 766 

performed with outcome trait and genetically predicted exposure level from the first 767 

stage. In both stages, analyses were adjusted for age, gender and top four principal 768 

components of population structure. For each trait, TSLS was performed using ‘ivreg’ 769 

command from the AER package in R. We attempted to replicate the causal effects 770 

between traits in replication cohort with 1,004 individuals. 771 

 772 

Two-sample MR analysis 773 

To maximize the sample size in MR analysis and confirmed the causal effect between 774 

microbial features and metabolic traits, we also performed two-sample bidirectional 775 

MR analysis using six different methods, including genome-wide complex trait 776 

analysis-generalized summary Mendelian randomization (GCTA-GSMR) approach69 777 

and the other five methods implemented in “TwoSampleMR” R package as a robust 778 

validation. A consistent effect across the six methods is less likely to be a false 779 

positive. If the genetic variants have horizontally pleiotropic effects but are 780 

independent of the effects of the genetic variants on the exposure, this is known as 781 

balanced pleiotropy. If all the pleiotropic effects are biasing the estimate in the same 782 

direction (directional pleiotropy), this will bias the results (with the exception of the 783 

MR-Egger method). We used the MR-PRESSO (mendelian randomization pleiotropy 784 

residual sum and outlier) Global test to estimate for the presence of directional 785 

pleiotropy. 786 

We first performed GWAS analysis for every trait and used summary statistics data for 787 

MR analysis. Genetic variants with P < 1 × 10−5 and LD r2 <0.1 were selected as 788 

instrumental variables.  789 

The six two-sample MR methods were described as following: 790 

GCTA-GSMR. GSMR tackled pleiotropy using HEIDI test which assumes that most 791 

SNPs are not strongly affected by horizontal pleiotropy and attempt to control 792 

SNP-heterogeneity by removing SNP-outliers. The p-value default threshold of 0.01 793 

was specified for the HEIDI-outlier analysis to remove horizontal pleiotropic SNPs. 794 

After pruning for LD by a clump analysis and filtered for horizontal pleiotropy by the 795 

HEIDI-outlier analysis, we got the final independent predictors required for the GSMR 796 

analysis. 797 

Inverse-variance weighting (IVW). The simplest way to obtain a MR estimate using 798 

multiple SNPs is to perform an inverse variance weighted (IVW) meta-analysis of 799 

each Wald ratio70,71, effectively treating each SNP as a valid natural experiment. We 800 

used a multiplicative random effects version of the method, which incorporates 801 
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between instrument heterogeneity in the confidence intervals (allowing each SNP to 802 

have different mean effects). 803 

MR–Egger regression. This method was adapted from the IVW analysis by allowing 804 

a non-zero intercept, which allows the nethorizontal pleiotropic effect across all SNPs 805 

to be unbalanced, or directional72,73. Horizontal pleiotropy refers to the effects of the 806 

SNPs on the outcome not mediated by the exposure. 807 

Weighted median. This method allows for consistent causal effect estimation even if 808 

the InSIDE assumption is violated, which allows stronger SNPs to contribute more 809 

towards the estimate, and can be obtained by weighting the contribution of each SNP 810 

by the inverse variance of its association with the outcome74. 811 

Mode-based estimate (MBE). The mode-based estimator clusters the SNPs into 812 

groups based on similarity of causal effects, and returns the causal effect estimate 813 

based on the cluster that has the largest number of SNPs75. This procedure allows for 814 

consistent causal effect estimation even if most instruments are invalid. The weighted 815 

mode introduces an extra element similar to IVW and the weighted median, weighting 816 

each SNP’s contribution to the clustering by the inverse variance of its outcome 817 

effect.We tested Simple mode and Weighted mode method in “TwoSampleMR” R 818 

packages. 819 

 820 

In vitro growth of Escherichia coli with 5-methyltetrahydrofolic acid 821 

supplementation 822 

To directly test the interactions between Escherichia coli and 5-methyltetrahydrofolic 823 

acid, the anaerobic growth of a strain Escherichia coli AM17-9 was characterized at 824 

different concentrations of 5-methyltetrahydrofolic acid. The Escherichia coli AM17-9, 825 

isolated from feces of a male, was routinely grown in Luria-Bertani (LB) broth while 826 

supplementing 5-methyltetrahydrofolic acid with concentrations of 0, 1 and 2 ng/ml, 827 

respectively. The normal concentration of 5-methyltetrahydrofolic acid in human blood 828 

ranged from 4.4 ng/ml to 32.8 ng/ml. The growth of Escherichia coli AM17-9 was 829 

inhibited when supplementing 5-methyltetrahydrofolic acid from 0 to 2 ng/ml. The 830 

optical density at 600 nm (OD600) was measured at intervals of two hours using a 831 

microplate reader. 832 

 833 

MR analyses for diseases in Japan Biobank 834 

We downloaded summary statistics data for 42 diseases and 59 blood quantitative 835 

traits in 212,453 Japanese individuals32 (http://jenger.riken.jp/en/result, 836 

Supplementary Table 13). More specifically, the 42 diseases encompassed a 837 

wide-range of disease categories; 13 neoplastic diseases, five cardiovascular 838 

diseases, four allergic diseases, three infectious diseases, two autoimmune diseases, 839 

one metabolic disease, and 14 uncategorized diseases. The 59 quantitative traits 840 

were comprised of common blood parameters. By combining these data and the gut 841 

microbiome GWAS summary data from discovery cohort with high-depth WGS, we 842 

performed the two-sample bidirectional MR analysis to investigate the causal effect 843 

between the exposure (40 microbial features and 12 metabolic traits that were 844 

involved in the 72 significant causal relationships (Fig. 4)) and the outcome (42 845 
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diseases from BioBank Japan), by applying the GSMR method and the other five MR 846 

tests as described in the previous paragraph. For consistency, genetic variants with P 847 

< 1 × 10−5 and LD r2 <0.1 were also selected as instrumental variables for phenotypes 848 

in the Japan Biobank study. 849 

 850 
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Figure legends 1071 

 1072 

Figure 1. The design and workflow of this study. The schematic representation of 1073 

our study highlights, for each step, the research question that we sought to answer, 1074 

the analysis workflow, the used data and the generalized result. We first performed 1075 

metagenome and metabolome GWAS to detect genetic variants associated with 1076 

microbial features and metabolic traits, respectively, both in discovery and replication 1077 

cohorts (Step 1). We then performed observational analysis to identify which microbial 1078 

feature (taxa, GMM) correlated with metabolic traits in this cohort (Step 2). We used 1079 

2,545 samples with information of both microbial features and metabolic traits; We 1080 

observed 457 significant associations between 500 unique microbial features and 112 1081 

anthropometric and blood metabolic traits at a FDR adjusted P < 0.05. We then 1082 

estimated causal relationships for the 457 observational associations through 1083 

bidirectional MR analysis in discovery cohort (Step 3). One-sample BMR detected 58 1084 

causal associations between microbial features and blood metabolites after multiple 1085 

test correction (P < 1.09 × 10-4); two-sample BMR detected the same associations 1086 

and an additional 14 associations. As a validation, we replicated the discovered 1087 

causal relationships by using the same MR analysis in an independent replication 1088 

cohort (Step 4). Over half (43) of the 58 causal associations were replicated in the 1089 

same direction (P < 0.05). Finally, we used two-sample MR analysis to investigate the 1090 

effects of the identified 72 causal relationships on diseases from Japan Biobank study 1091 

(Step 5).  1092 

 1093 

Figure 2. Independent genetic variants and their explained variance of microbial 1094 

features. (a) The density plot showed the distribution of number of independent 1095 

genetic variants for 500 unique microbial features at P < 10-5. The X-axis indicates the 1096 

number of independent genetic variants for each microbial feature (taxon or GMM). 1097 

The Y-axis indicates the number of microbial features under a given number of 1098 

independent predictors. (b) Variance explained by the corresponding independent 1099 

genetic variants for each microbial feature was shown. The polar bar plot indicates 1100 

how much the independent genetic variants of each common genus (appeared at 1101 

least 50% of samples) explained for their phenotypic variance (relative abundance of 1102 

each genus). Genera were classified according to their respective phylum which were 1103 

marked with different colors. The h2 was calculated using REML method in GCTA 1104 

tools.  1105 

 1106 

Figure 3. Independent genetic variants and their explained variance of 1107 

metabolic traits. (a) The density plot showed the distribution of number of 1108 

independent genetic variants for 112 metabolic traits at P < 10-5. The X-axis indicates 1109 

the number of independent genetic variants for each metabolic trait. The Y-axis 1110 

indicates the number of metabolic traits under a given number of independent 1111 

predictors. (b) Variance explained by the corresponding independent genetic variants 1112 

for each metabolic trait was shown. The polar bar plot indicates how much the 1113 

independent genetic variants of each metabolic trait explained for their phenotypic 1114 
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variance. Each metabolic trait was classified into different catalogs which were 1115 

marked with different colors. The h2 was calculated using REML method in GCTA 1116 

tools. 1117 

 1118 

Figure 4. Identifying 58 causal relationships for the microbial features and 1119 

metabolic traits. (a) showed the causal effects of 12 specific microbial features on 8 1120 

metabolic traits involved in the 17 causal associations from gut microbiome to blood 1121 

metabolites. (b) showed the causal effects of 7 blood metabolites on 33 microbial 1122 

features involved in 41 causal associations from blood metabolites to gut microbiome. 1123 

The cells marked with “**” represented 43 of the 58 associations that identified in 1124 

discovery cohort were also replicated in replication cohort, while “*” represented the 1125 

other 15 only significant in discovery cohort. The cell was colored according to the 1126 

beta coefficients from one-sample MR analysis, with red and blue corresponding to 1127 

positive and negative associations, respectively.  1128 

 1129 

Figure 5. Causal effects of genus Oscillibacter and Alistipes on decreasing 1130 

blood triglyceride concentration. (a) Schematic representation of the MR analysis 1131 

results: genetic predisposition to higher abundance of Oscillibacter is associated with 1132 

decreased blood triglyceride concentration, to a lesser extent for lowering body mass 1133 

index (BMI) and waist-hip ratio (WHR). (b) Forest plot represented the effect of per 1134 

1-s.d. increase in Oscillibacter abundance on blood triglyceride, BMI and WHR, as 1135 

estimated using observational and Mendelian randomization (MR) analysis, 1136 

respectively. Observational correlation analysis was performed in a total of 2,545 1137 

samples (purple). One-sample MR analysis was carried out by using a PGS 1138 

constructed by up to 134 genetic predictors as an instrumental variable, as estimated 1139 

in discovery cohort (blue) and replication cohort (red), respectively. Corresponding P 1140 

values from both the observational and MR analysis were shown. CI, confidence 1141 

interval. (c-d) Forest plots represented the MR estimates and 95% CI values of the 1142 

causal effects of Oscillibacter (c) and Alistipes (d) on triglyceride level, respectively. 1143 

The MR analyses were performed using an one-sample MR and six different 1144 

two-sample MR methods both in discovery cohort (blue) and replication cohort (red), 1145 

respectively.  1146 

 1147 

Figure 6. Causal effects of Proteobacteria and Escherichia coli on diseases. 1148 

Forest plots represented the MR estimates and 95% CI values of the causal effects of 1149 

Proteobacteria (a) and Escherichia coli (b) on diseases. The diseases’ summary 1150 

statistics data was from Japan Biobank study. The gut microbiome GWAS summary 1151 

data from this discovery cohort with high-depth WGS was used. Six different 1152 

two-sample MR approaches were used. GSMR, generalized summary Mendelian 1153 

randomization implemented in GCTA toolbox. IVW, inverse variance weighted. The 1154 

corresponding P values and β values were shown. 1155 
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Step 2. Which microbial features correlate with metabolic 
traits?

Step 3. Do changes in microbial features causally affect 
metabolic traits or vice versa?

M
et

ab
ol

ic
 tr

ai
ts

Microbial features

A total of 3,432 samples with anthropometric and blood metabolic traits 
and whole genome data, of which 2,545 samples with gut metagenome

43 of the 58 causal associations were replicated in the same directions 
and P < 0.05 in an independent sample of replication cohort, for example
genus Oscillibacter and Alistipes consistently decreased triglyceride level. 

Step 1. What are the genetic variants associated with 
metabolic traits and microbial features? 

anthropometric 
and blood 
Metabolites Y

Step 4. Can we replicate causal relationships?

anthropometric 
and blood 
Metabolites Y

SNP1
SNP2

…
SNPn

  Microbial 
feature X

Microbial 
feature X

SNP1
SNP2

…
SNPn

Association of genetic
variants with X

Association of genetic 
variants with Y

Discovery Replication

SNP1
SNP2

…
SNPn

X
Association of genetic
variants with 

1    2    3   4   5  6  7  8  9    11   13  15  18   22 

40
35
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Chromosome

Discovery cohort: 2,002 samples with anthropometric and blood metabolites 
and high-depth whole genome, 1,539 of which with gut metagenome; 
10M common and low-frequency variants (MAF > 0.005; HWE P > 10-5; 
variants calling rate > 0.98) 

Replication cohort: 1,430 samples with anthropometric and blood metabolites 
and low-depth whole genome, 1,006 of which with gut metagenome;
5.9M common and low-frequency variants (MAF > 0.005; HWE P > 10-5; 
variants calling rate > 0.98)

Metagenome and metabolome GWAS detected genetic variants associated 
with  microbial features and metabolic traits, respectively. 

Identifying 457 observationally significant associations between 500 
unique microbial features and 112 anthropometric and blood metabolites 
at a FDR adjusted P < 0.05 using a multivariable linear regression analysis

One sample BMR detected 58 causal associations between microbial 
features and blood metabolites after multiple test correction (P < 1.09 ×10-4); 
two sample BMR detected the same associations and an additional 
14 associations

17 causal associations from gut microbiome to blood metabolites 
involving12 microbial features and 8 blood metabolites
Two taxa, genus Oscillibacter and Alistipes decreased triglyceride level.

41 causal associations from blood metabolites to gut microbiome 
involving 7 blood metabolites and 33 microbial features
 

Step 5. Whether the identified causal relationships have 
potential link to disease?

Trait X Trait Y

Metagenome GWAS
Disease and and blood 
quantitative traits GWAS

Two sample MR using metagenome GWAS summary data in this study, 
together with disease and blood quantitative traits GWAS summary data 
from Biobank Japan study

We replicate the causal effect of uric acid on increased species    
unclassified Lachnospiraceae bacterium 9_1_43BFAA abundance

Some gut bacteria potentially linked to disease risk

Trait YTrait X
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    Causal effects
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Outcome

Type 2 Diabetes

Congestive heart failure

Colorectal Cancer

Method

GSMR
IVW
MR Egger
Weighted median
Simple mode
Weighted mode
GSMR
IVW
MR Egger
Weighted median
Simple mode
Weighted mode
GSMR
IVW
MR Egger
Weighted median
Simple mode
Weighted mode

0.08(0.05 to 0.11)
0.07(0.05 to 0.10)
0.00(−0.15 to 0.12)
0.06(0.02 to 0.10)
0.07(0.00 to 0.13)
0.05(0.00 to 0.10)
0.13(0.09 to 0.18)
0.09(0.04 to 0.14)
0.02(−0.02 to 0.05)
0.10(0.03 to 0.16)
0.16(0.05 to 0.28)
0.17(0.07 to 0.27)
0.09(0.03 to 0.14)
0.12(0.07 to 0.18)
0.07(0.02 to 0.11)
0.15(0.07 to 0.23)
0.25(0.11 to 0.40)
0.25(0.13 to 0.37)

P value

7.61E−04
2.47E−03
5.12E−02
1.01E−01
2.98E−01
3.24E−01
3.15E−03
5.52E−02
3.67E−01
1.34E−01
1.67E−01
1.02E−01
4.70E−02
1.98E−02
6.72E−01
6.11E−02
9.15E−02
5.69E−02

−0.5 0 0.5

Outcome

Hepatocellular carcinoma

Interstitial lung disease

Urolithiasis

Method

GSMR
IVW
MR Egger
Weighted median
Simple mode
Weighted mode
GSMR
IVW
MR Egger
Weighted median
Simple mode
Weighted mode
GSMR
IVW
MR Egger
Weighted median
Simple mode
Weighted mode

0.25(0.13 to 0.37)
0.23(0.11 to 0.36)
0.04(−0.02 to 0.10)
0.37(0.20 to 0.53)
0.45(0.21 to 0.70)
0.43(0.18 to 0.68)
−0.49(−0.67 to −0.31)
−0.49(−0.79 to −0.21)
−0.13(−0.24 to −0.03)
−0.17(−0.45 to 0.10)
−0.13(−0.53 to 0.26)
−0.03(−0.35 to 0.29)
0.15(0.09 to 0.22)
0.16(0.09 to 0.23)
0.04(0.01 to 0.08)
0.18(0.09 to 0.27)
0.19(0.06 to 0.31)
0.19(0.05 to 0.32)

P value

4.14E−02
5.25E−02
3.52E−01
2.43E−02
1.04E−01
1.19E−01
6.99E−03
8.88E−02
3.05E−02
5.26E−01
7.43E−01
9.26E−01
9.24E−03
1.75E−02
6.27E−01
4.76E−02
1.91E−01
1.93E−01

−0.4 0 0.4

ꞵ (95% CI) ꞵ (95% CI)

ꞵ (95% CI) ꞵ (95% CI)

a

b

-0.25 0.25

−0.8 0.8
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