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ABSTRACT High-quality habitats for wildlife (e.g., forest) provide essential ecosystem services while 13 

increasing species diversity and habitat connectivity. Unfortunately, presence of such habitats adjacent 14 

to produce fields may increase risk for contamination of fruits and vegetables by enteric bacteria, 15 

including Escherichia coli. E. coli survives in extra-host environments (e.g., soil) and could disperse 16 

across landscapes by wildlife. Understanding how terrestrial landscapes impact the distribution of soil E. 17 

coli is of importance in assessing the contamination risk of agricultural products. Here, using multi-locus 18 

sequence typing, we characterized 938 E. coli soil isolates collected from two watersheds with different 19 

landscape patterns in New York state, USA, and compared the distribution of E. coli and the influence 20 

of two ecological forces (environmental selection and dispersal) on the distribution between these two 21 

watersheds. Results showed that for the watershed with widespread produce fields, sparse forests, and 22 

limited interaction between the two land-use types, E. coli composition was significantly different 23 

between produce field sites and forest sites; this distribution was shaped by relatively strong 24 

environmental selection likely from soil phosphorus and slight dispersal limitation. For the watershed 25 

with more forested areas and stronger interaction between produce field sites and forest sites, E. coli 26 

composition between these two land-use types was relatively homogeneous; this distribution appeared to 27 

a consequence of wildlife-driven dispersal, inferred by competing models. Collectively, our results 28 

suggest that terrestrial landscape attributes could impact the biogeographic pattern of enteric bacteria by 29 

adjusting the importance of environmental selection and dispersal. 30 

IMPORTANCE Understanding the ecology of enteric bacteria in extra-host environments is important 31 

to allow for development and implementation of strategies to minimize pre-harvest contamination of 32 

produce with enteric pathogens. Our findings suggest that watershed landscape is an important factor 33 

influencing the importance of ecological drivers and dispersal patterns of E. coli. For watersheds with 34 

widespread produce fields, E. coli appears to experience local adaptation, possibly due to exposure to 35 
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environmental stresses associated with agricultural activities. In contrast, for watersheds with high forest 36 

coverage we found evidence for wildlife-driven dispersal of E. coli, which might facilitate more frequent 37 

genetic exchange in this environment. Agricultural areas in such watersheds may have a higher risk of 38 

produce contamination due to less environmental constraints and higher potential of dispersal of enteric 39 

bacteria between locations. The significance of our research lies in exploring ecological principles 40 

underlying the biogeographic pattern of enteric bacteria at the regional level, which can inform 41 

agricultural, environmental and public health scientists that aim to reduce the risk of food contamination 42 

by enteric bacteria. 43 

KEYWORDS enteric bacteria, landscape, environmental selection, dispersal, wildlife 44 

 45 

INTRODUCTION 46 

Forests and other riparian buffers can provide ecological and agricultural benefits (e.g., reducing 47 

soil erosion and leaching of chemical and fecal waste into surface water sources, providing habitat and 48 

connective pathways for wildlife) as well as aesthetic benefits (1–3). While high quality habitats (e.g., 49 

forest) offer conservation services, they may also bring unintended consequences and may increase the 50 

risk of pre-harvest contamination of produce crops. For one, extra-host environments, such as soil in 51 

high quality habitats, can be a critical reservoir for enteric bacteria, leading to potential dispersal of 52 

enteric bacteria to adjacent agricultural fields (4). Direct fecal deposition onto produce by wildlife is also 53 

a potential pathway introducing enteric bacteria onto food crops (5). By providing wildlife movement 54 

pathways, high quality habitats may facilitate the wildlife-driven dispersal of enteric bacteria through 55 

riparian corridors to agricultural regions, possibly resulting in contamination of food crops (6–9). 56 

Subsequent persistence and/or regrowth of pathogenic enteric bacteria introduced into fresh produce 57 

fields would then further increase food safety risks (10). Since the survival of enteric bacteria and 58 
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movement of wildlife vary by land use types (11, 12), it is reasonable to hypothesize that watershed 59 

landscape impacts the distribution of enteric bacteria.  60 

Environmental selection and dispersal are two fundamental ecological forces that drive the 61 

distribution of bacteria (13–16). The essential roles of environmental selection via abiotic (e.g., pH, 62 

salinity) and biotic selective pressures on bacteria have been well documented in many local and even 63 

global habitats (17–20). Environmental selection facilitates the genetic divergence of some 64 

ecophysiological traits owing to their contribution to fitness benefits for adaptation of bacteria to diverse 65 

habitats, such as those with different land cover types (21, 22). With the influence of environmental 66 

selection, a high level of bacterial dissimilarity between locations (beta diversity) can be maintained in a 67 

wide range of environments (15, 23, 24).The role of dispersal in driving the distribution of bacteria at 68 

local as well as regional scales is evident since dispersal provides a mechanism for bacteria to colonize 69 

new habitats (25, 26). The relative importance of dispersal in shaping bacterial distribution varies among 70 

microbial taxa due to diversity in the capacity of bacteria to disperse via wind, water, and wildlife. For 71 

example, bacteria with a long range dispersal capacity (e.g., Polaromonas) tend to exhibit a more global 72 

distribution (27), while bacteria with a limited dispersal range (e.g., Rhizobiaceae, Bradyrhizobiaceae, 73 

Xanthomonadaceae) tend to show more ecological specialization (15). Importantly, wildlife presence 74 

and movement is fundamentally affected by the physical elements and features of land (15). Thus, 75 

wildlife-driven dispersal of bacteria can be quantitatively predicted by landscape ecological methods 76 

based on the relationship of wildlife behaviors and landscape characteristics (e.g., patchiness, land-use 77 

interspersion, patch connectivity, patch diversity, and land-use interactions) (8, 28–30). Based on these 78 

principles, investigating environmental selection and dispersal of enteric bacteria from and within 79 

habitats with distinct landscape patterns has the power to elucidate the role of terrestrial landscapes in 80 
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impacting the distribution of enteric bacteria and assess the associated risk of preharvest contamination 81 

of food by pathogenic enteric bacteria.  82 

As a commensal or pathogenic enteric bacterium widespread in diverse habitats, Escherichia coli 83 

primarily resides in the intestines of warm-blooded animals, and survives in extra-host environments 84 

such as water, soil, sediments as well (31, 32). Soil is a habitat of particular interest for E. coli, since the 85 

high chemical and physical heterogeneity of soil across different environments could pose multifarious 86 

environmental selection pressures on E. coli (22, 23, 32). Observations that the prevalence of E. coli 87 

varies by land cover types (e.g., deciduous forest, cropland, pasture) (22) also suggest that different land 88 

uses could stimulate different types and intensities of selective pressures that act on E. coli. The key 89 

edaphic variables influencing the growth of E. coli in soil are commonly recognized as pH and moisture 90 

(23, 33), while some other soil properties such as organic matter and texture could also play a role (10). 91 

In addition, wildlife, such as avian species and ruminant animals, could act as dispersal vehicles of E. 92 

coli (34, 35). E. coli can also be transmitted between wildlife hosts through contact and can be deposited 93 

in new locations (e.g., produce fields) by defecation, which often happens when wildlife forages for 94 

food (36). Given the intensive interaction with both extra-host and host habitats, E. coli may be a useful 95 

model to build predictive capabilities surrounding interactions between bacteria and agricultural 96 

landscapes at the meter to kilometer scale. Such an understanding is particularly important for lands 97 

where fresh fruits and vegetables are cultivated, as it could be used to develop better strategies for 98 

minimizing pathogen introduction into preharvest environments.  99 

We hypothesized that the importance of environmental selection and dispersal for the 100 

distribution of E. coli is dependent on landscape and specifically hypothesized that (i) E. coli in 101 

watersheds with higher coverage of agricultural environments is strongly driven by environmental 102 

selection associated with agricultural activity, while (ii) E. coli in regions with higher coverage of 103 
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natural environment is largely influenced by wildlife-driven dispersal. To test our hypotheses, we 104 

characterized 938 generic E. coli isolates obtained from soil samples collected from two watersheds - 105 

Flint Creek and Hoosic River, both located in the New York State, using a hierarchical multi-locus 106 

sequence typing (MLST) scheme. These two watersheds represent an interesting comparison between 107 

one with widespread produce fields and limited interaction between produce fields and forest (Flint 108 

Creek; 69% produce field, 12% forest by area; adjacencyproduce|forest = 23%; Fig. 1a) and one with heavily 109 

forested areas and strong interaction between produce fields and forest (Hoosic River; 28% produce 110 

field, 38% forest by area; adjacencyproduce|forest = 36%; Fig. 1b). Next, we investigated the distribution of 111 

E. coli in these two watersheds, and assessed the relationship between E. coli distribution and soil 112 

variables and the distance-decay relationship among E. coli populations. Last, we developed dispersal 113 

models for four wildlife vehicle candidates (large nuisance wildlife species, small mammals, small 114 

flocking insectivore/granivores, and migratory bird flocks) to quantify the importance of wildlife-driven 115 

dispersal on the dispersal of E. coli in the two watersheds.  116 

 117 

RESULTS 118 

Distribution of E. coli. Soil samples from Flint Creek (predominated by produce fields) showed 119 

considerably lower prevalence of E. coli than soil samples from Hoosic River (predominated by forests); 120 

35% and 72% of soil samples, respectively, were positive for E. coli in these two watersheds. These 121 

samples yielded 289 and 649 E. coli isolates, respectively. Based on initial 2-gene MLST (mdh and 122 

uidA), a total of 138 isolates from Flint Creek and 277 isolates from Hoosic River were selected for 123 

characterization by full 7-gene MLST (aspC, clpX, icd, lysP, fadD, in addition to mdh and uidA). The 7-124 

gene MLST generated 121 unique multilocus sequence types (ST) for Flint Creek and 191 unique ST for 125 

Hoosic River (Table S1, Table S2). Analysis by goeBURST identified 96 and 108 E. coli clonal groups 126 
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for Flint Creek and Hoosic River, respectively, based on ST at single locus variant level (Fig. S1, Fig. 127 

S2). For Flint Creek, forest sites had slightly higher mean richness of E. coli clonal groups than produce 128 

field sites, but the difference was not significant (p = 0.86) (Fig. S3). In contrast, the mean richness of E. 129 

coli clonal groups from produce field sites was significantly higher than forest sites in the Hoosic River 130 

watershed (p < 0.05) (Fig. S3).  131 

E. coli in the two watersheds displayed distinct distribution patterns. For Flint Creek, principal 132 

coordinates analysis (PCoA) based on the dissimilarity of E. coli clonal groups clustered sampling sites 133 

by land-use (Fig. 2a). Both permutational multivariate analysis of variance (PERMANOVA) test and 134 

analysis of similarities (ANOSIM) test showed that this clustering by land-use was significant (p < 0.05; 135 

Table S3, Table S4). By contrast, for the  Hoosic River, the sampling sites were not significantly 136 

clustered by land-use in PCoA (Fig. 2b) of E. coli clonal groups (PERMANOVA p = 0.86, ANOSIM p 137 

= 0.58; Table S3, Table S4), indicating a more homogeneous composition of E. coli between produce 138 

field sites and forest sites in this watershed. To test the robustness of these results and to assess the 139 

effects of potential sampling bias on the E. coli diversity, we further repeated PCoA, PERMANOVA, 140 

and ANOSIM analyses after excluding sites with a low number of E. coli clonal groups detected (≤ 3); 141 

sites being excluded were Field 6, Field 8, and Forest F9 from Flint Creek. Results showed that 142 

sampling sites from this subset were significantly clustered by land-use in the PCoA plot (Fig. S4) for E. 143 

coli clonal groups from Flint Creek at least at the 0.1 level (PERMANOVA p = 0.05, ANOSIM p = 0.08; 144 

Table S5). Slightly larger p values in PERMANOVA and ANOSIM tests using a subset of sites (as 145 

comparted to p-values for the whole set of sites) are likely due to the reduced sample size in these 146 

analyses.  147 

The importance of soil variables driving the distribution of E. coli. We first employed 148 

variance partitioning analysis (VPA) to quantify the contribution of soil variables and spatial variables to 149 
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the distribution of E. coli from Flint Creek and Hoosic River. After screening for high levels of 150 

covariation, moisture, pH, sodium, phosphorus, barium, manganese, and antimony were included in 151 

VPA (Table S6). VPA revealed that the soil variables individually explained 11.7% of the biological 152 

variation of dissimilarity of E. coli clonal groups from Flint Creek, while spatial variables individually 153 

explained 5.5% of this variation (Fig. 3a). The variation explained by spatially structured soil variables 154 

was relatively low (0.1%) and about 83% of the variation was unexplained by selected variables (Fig. 155 

3a). By contrast, for E. coli clonal groups from Hoosic River, about 99% of the variation of dissimilarity 156 

could not be explained by selected variables (Fig. 3b). Individually, selected soil variables did not 157 

explain any of the observed variation and spatial variables only explained 1% of the variation for the 158 

Hoosic River watershed (Fig. 3b). These results indicate that environmental selection outweighs spatial 159 

factors with regard to the importance for E. coli distribution in the Flint Creek watershed; E. coli from 160 

this watershed appear to undergo much stronger environmental selection or a much slower rate of 161 

dispersal than E. coli in the Hoosic River watershed.  162 

To identify the key soil variables correlated with the dissimilarity of E. coli clonal groups, we 163 

performed partial Mantel tests by correcting the correlation of geographic distance and biological 164 

dissimilarity. For Flint Creek, partial Mantel tests showed that geographic distance-corrected 165 

phosphorus and antimony concentrations in soil were significantly correlated with the dissimilarity of E. 166 

coli clonal groups (correlation coefficient r = 0.18, p < 0.05 and r = 0.41, p < 0.05, respectively) (Fig. 167 

3c). In addition, for sites in Flint Creek, we observed that the mean concentration of phosphorus was 168 

significantly higher for soil samples from produce field sites as compared to samples from forest sites 169 

(Mann-Whitney test p < 0.05, Fig. S5a). Also, in Flint Creek, the mean concentration of antimony was 170 

higher for soil samples from produce field sites compared to samples from forest sites, but the difference 171 

was not significant (Mann-Whitney test p = 0.45, Fig. S5b). In contrast, none of the soil variables were 172 
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found to be significantly correlated with the dissimilarity of E. coli clonal groups from Hoosic River (p 173 

> 0.05) (Fig. 3c). This result was consistent with our observation, based on VPA, that soil variables 174 

minimally contributed to the distribution of E. coli clonal groups in the Hoosic River watershed.  175 

The relationship between the dissimilarity of E. coli and geographic distance. We first 176 

assessed the relationship between dissimilarity of E. coli clonal groups and geographic distance using 177 

Mantel tests. Results showed a weak correlation between the dissimilarity of E. coli clonal groups and 178 

geographic distance for Flint Creek at the 0.1 level (Mantel correlation coefficient r = 0.16, p = 0.08; 179 

Table S7). By contrast, no significant correlation at the 0.1 level was observed between the dissimilarity 180 

of E. coli clonal groups and geographic distance for Hoosic River (r = 0.11, p = 0.12; Table S7). Linear 181 

regression analysis further showed that the slope of the regression line of the linear relationship between 182 

the dissimilarity of E. coli clonal groups and geographic distance for Flint Creek (slope = 3.4 10
-3

, R
2
 = 183 

0.027, Fig. 4a) was about 3 times steeper than that for Hoosic River (slope = 9.7 10
-4

, R
2
 = 0.011, Fig. 184 

4b), indicating a stronger distance-decay relationship in E. coli in Flint Creek than Hoosic River. 185 

Overall, results of Mantel test and linear regression analysis along with the VPA suggest that spatial 186 

factors play a more important role in driving the distribution of E. coli clonal groups in Flint Creek than 187 

Hoosic River, and the dispersal of E. coli in Flint Creek was slightly limited, while E. coli in the Hoosic 188 

River was more likely not constrained by dispersal limitation. 189 

To evaluate the impact of land-use on the relationship between E. coli and geographic distance, 190 

we conducted Mantel tests and assessed the distance-decay relationship for produce field sites and forest 191 

sites separately within each watershed. For Flint Creek, Mantel tests showed that the correlation between 192 

the dissimilarity of E. coli clonal groups and geographic distance was not significant at the 0.1 level; the 193 

correlation coefficient for forest sites (r = 0.27) was slightly larger than that for produce field sites (r = 194 

0.22) (Table S8). For Hoosic River, the dissimilarity of E. coli clonal groups and geographic distance for 195 
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forest sites was significantly and highly correlated (p < 0.05, correlation coefficient = 0.49), while there 196 

was no significant correlation for produce field sites (p = 0.56) (Table S8). Consistently, based on the 197 

linear regression analysis assessing the distance-decay relationship, the slope of the linear regression line 198 

for forest sites in both Flint Creek and Hoosic River (slope = 7.0 10
-3

 and 4.3 10
-3

, respectively) was 199 

steeper than that for produce field sites (slope = 5.110
-3 

and -3.0 10
-4

, respectively)
 
 (Fig. S6a and 200 

S6b). These results suggest that dispersal limitation for E. coli tend to be weaker in produce field sites 201 

than in forest sites, which implies that dispersal of E. coli may be more efficient in the produce fields.  202 

Wildlife-driven dispersal of E. coli. Four common classes of wildlife vehicles (large nuisance 203 

wildlife species, small mammals, small flocking insectivore/granivores, and migratory bird flocks) were 204 

selected for identifying potential dispersal vehicles of E. coli (characteristics of these dispersal vehicles 205 

are detailed in Table 1). By adjusting distances among sampled sites to account for movement 206 

preferences of these four types of wildlife vehicles (i.e., cost-distance or landscape resistance modeling), 207 

we sought to assess whether dispersal associated with wildlife behavior explains the E. coli distribution 208 

better than distance alone. As shown in Table 2, the predicted dispersal model was developed based on 209 

the most-likely cost and attraction models selected for each wildlife vehicle according to their 210 

characteristics. The predicted dispersal model for small mammals was defined to have a biological 211 

riparian corridor effect, no proximity effect, absolute dispersal barriers effect, and no attraction 212 

coefficient. The predicted dispersal model for large nuisance wildlife species was defined to have a 213 

biological riparian corridor effect, strong proximity effect, porous dispersal barriers effect, and habitat 214 

quality coefficient. The predicted dispersal model for migratory bird flocks was defined to have a 215 

biological riparian corridor effect, weak proximity effect, no dispersal barriers effect, and area 216 

independent coefficient. The predicted dispersal model for small flocking insectivore/granivores was 217 
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defined to have a biological riparian corridor effect, weak proximity effect, absolute dispersal barriers 218 

effect, and area independent coefficient. Definition of these effects can be found in Table 1. 219 

 Mantel tests showed that none of these dispersal models significantly predicted the composition 220 

of E. coli clonal groups in Flint Creek (p > 0.05), while two wildlife-driven dispersal models – dispersal 221 

via migratory bird flocks (M459) and via small flocking insectivore/granivores (M556) – were found to 222 

be significantly correlated with the dissimilarity of E. coli clonal groups in Hoosic River (correlation 223 

coefficient r = 0.17 and r = 0.16, respectively;  p < 0.05) (Fig. 5). In addition, the model for dispersal via 224 

large nuisance wildlife species (M377) was marginally significantly correlated with the dissimilarity of 225 

E. coli clonal groups (r = 0.14, p = 0.056), so the role of dispersal of E. coli by large nuisance wildlife 226 

species cannot be absolutely excluded. Thus, migratory bird flocks, small flocking 227 

insectivore/granivores, and large nuisance wildlife species were identified as potential dispersal vehicles 228 

which were associated with the distribution of E. coli in Hoosic River. The observation that cost-229 

distance model correlated with the dissimilarity of E. coli clonal groups in Hoosic River better than 230 

geographic distance alone (Mantel correlation coefficient r = 0.11, p = 0.12; Table S7) suggests some 231 

dispersal among sites by the action of wildlife. Our results also suggest that wildlife-driven dispersal 232 

played a more important role in shaping the distribution of E. coli in Hoosic River as compared to Flint 233 

Creek.  234 

 235 

DISCUSSION 236 

E. coli has widely been used as an indicator of fecal contamination (37) and potential presence of 237 

other pathogenic enteric bacteria in water (38).  E. coli comprises a wide spectrum of phenotypes 238 

including harmless commensal variants as well as distinct pathotypes with the capacity to either cause 239 

intestinal or extraintestinal infections in humans and many animals (39). The fecal-oral transmission 240 
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route of E. coli often involves transient presence in extra-host habitats (e.g., surface water, soil, plant 241 

surfaces), including produce fields (23). Therefore, understanding the ecology of E. coli in extra-host 242 

habitats will not only provide an improved understanding of E. coli interaction with environment, but 243 

will also benefit public health by providing knowledge that can be used to minimizing introduction of E. 244 

coli and possibly other enteric pathogens into preharvest environments.  245 

Environmental stressors such as limited availability of nutrients and water, presence of toxic 246 

molecules, and large alterations in temperature and moisture can impose fitness cost on E. coli and other 247 

microbes (40). Fragmented landscapes with smaller forest and grassland patches expose surface soil to 248 

sunlight and greatly increase daily variation in soil conditions. Reduced forest and grassland cover could 249 

also hinder the movement of wildlife, bringing negative demographic and genetic consequences (41). 250 

Thus, in order to disperse to and survive new habitats, E. coli needs to overcome those barriers by 251 

maintaining variable survival strategies such as evolving adaptive traits relying on dispersal to rescue 252 

local populations. In this scenario, landscape structure imposes constraints on environmental selection 253 

and dispersal, which is particularly essential for the dispersal of E. coli among different extra-host 254 

habitats. 255 

To quantitatively probe the importance of environmental selection and dispersal in driving the 256 

distribution and composition of E. coli in soil under the impact of landscape, we compared the 257 

biogeographic patterns of  E. coli isolated from two watersheds with distinct landscape patterns (i.e., 258 

Flint Creek, an area with widespread produce fields and limited interaction between produce fields and 259 

forest, and Hoosic River, a heavily forested area with strong interaction between produce fields and 260 

forest). Our data specifically suggests that in the watershed with widespread produce fields and sparse 261 

forest coverage, environmental selection, possibly caused by soil phosphorus, and slightly limited 262 

dispersal may result in relative heterogeneous composition of E. coli between produce field and forest 263 
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sites and potential local adaptation in E. coli. In contrast, in the watershed with heavily forested areas, 264 

no evidence of environmental selection was observed, and dispersal facilitated by wildlife such as 265 

migratory bird flocks and small flocking insectivore/granivores may enhance the likelihood of genetic 266 

exchange among E. coli populations, resulting in relative homogeneous composition between produce 267 

field sites and forest sites in this watershed. This higher level of homogeneity is consistent with greater 268 

interaction between produce fields and forests in the Hoosic River watershed (adjacencyproduce|forest = 269 

36%) compared to Flint Creek (adjacencyproduce|forest = 23%).  270 

Agricultural practice involving input of phosphorous in soil may enhance the selective 271 

pressure on E. coli. Agricultural activities normally involve cultivation and soil amendments, which 272 

could dramatically change soil organic matter and nutrient pools in comparison to undisturbed systems 273 

(e.g., forest) (42). Consequently, long-term organic and chemical amendments could dramatically 274 

impact the abundance, diversity, and composition of bacterial communities in soil of agricultural land 275 

(43). This is because such alteration of soil properties could trigger selective pressures on bacteria, 276 

sorting the individuals or traits that better cope with modified soil condition, which has been termed 277 

“local adaptation” (23). For example, copper‐amendment in agricultural soil has been found to 278 

significantly increase the frequency of copper‐resistant Gram-negative bacteria (44). Based on the 279 

results of our study reported here, agricultural practices may have caused selective pressure on soil E. 280 

coli, partially resulting in the distinct E. coli composition between produce fields sites and forest sites in 281 

the Flint Creek watershed. Consistent with our findings, Dusek et al. (22) observed E. coli population 282 

structures that differed between cropland and forest, with much lower prevalence of E. coli in cropland 283 

than forest. The diverse lifestyles and phenotypes of E. coli strains were thought to be caused by 284 

population expansion paired with differential niche adaptation under specific selective pressures in the 285 

last 5 million years (39). Our findings suggest that agriculture-stimulated selective pressures may 286 
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contribute to E. coli diversification.  287 

Besides directly yielding selective pressures on E. coli, soil property alterations caused by 288 

agricultural activities may also indirectly impact the adaptation of E. coli by changing the interaction 289 

with other microbial taxa in the community. A wealth of studies have shown that anthropogenic 290 

activities in agricultural land greatly change biological soil characteristics including the diversity, 291 

structure, and metabolic guilds of microbial communities (45–48). For example, E. coli has been 292 

reported to exhibit bacteriocin-mediated competitive interactions (49) and cooperative interactions using 293 

cross-feeding metabolic products with other taxa in the microbial community (50). Changes in microbial 294 

community structure and composition caused by agricultural activities thus possibly generate selective 295 

pressures on E. coli through altering the competition and cooperation behaviors with other microbial 296 

taxa.  297 

The high correlation between phosphorous and antimony and the dissimilarity of E. coli 298 

composition observed in the watershed with widespread produce fields (Flint Creek) suggest that the 299 

alteration in these two soil variables may change the structure of E. coli populations in Flint Creek. 300 

Phosphorus is one of the soil variables well documented to dramatically change after the conversion of 301 

undisturbed systems to agriculture (42, 51). The input of phosphorus in fertilizer and manure to 302 

agricultural systems have been reported to often exceed the output in harvested crops (52). Phosphorus 303 

is a critical nutrient for the growth of bacteria and is part of many biomolecules in bacterial cells (e.g., 304 

DNA, phospholipids, polyphosphates, and ATP). Phosphorus availability could act as an important 305 

selective force driving divergence among bacterial populations. For example, Coleman et al. (21) 306 

identified a number of genes encoding functions related to phosphorus acquisition and metabolism (e.g., 307 

alkaline phosphatase, a pathway for phosphonate utilization, upregulation during phosphorus-starvation 308 

conditions) as significantly enriched in Prochlorococcus populations in locations with lower phosphate 309 
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concentrations in North Atlantic and North Pacific subtropical gyres. Antimony is a toxic metalloid 310 

present widely at trace concentrations in natural soil (53, 54). Its concentration could be elevated or even 311 

reach contamination threshold in agricultural lands due to human activities (55). For example, 312 

application of lead arsenate pesticides in produce field can increase antimony concentration, since 313 

antimony is present as a contaminant in the antimony- and arsenic-containing ores used for pesticide 314 

manufacturing (56). A previous study has shown that increased antimony could prevent the growth of E. 315 

coli, Bacillus subtilis and Staphylococcus aureus, and may affect nitrogen cycle in soil by changing 316 

urease activity under neutral pH (57). However, the concentration of antimony detected in this studied 317 

was relatively low across all sites, and for some sites the concentration was below detection limit, thus 318 

the presence of antimony may not necessarily inhibit the growth of E. coli in soil studied here. 319 

Therefore, it is most likely that phosphorus represents agriculture-related selective pressures on E. coli, 320 

though other physical soil parameters may have also played a role. In addition, the fact that this 321 

correlation was overserved in Flint Creek but not in Hoosic River suggests that E. coli populations found 322 

in different watersheds and environments may differ in their adaptive traits (e.g., those associated with 323 

phosphorous). 324 

E. coli in a watershed with high forest coverage may experience very weak selective 325 

pressure and a proximity effect of forest. In this study, environmental selection tended to be very 326 

weak on E. coli in watershed with higher forest coverage (Hoosic River). This relatively week 327 

environmental selection might be because, compared to produce fields, plant cover and shading in forest 328 

could moderate perturbations in soil moisture, nutrients and temperature, thus providing more favorable 329 

and stable conditions with fewer environmental stressors for E. coli (4, 22). As previously proposed (4), 330 

soil in undisturbed temperate forests could act as potential habitat for long-period persistent, even 331 

resident E. coli populations rather than acting as a transient habitat. Albeit E. coli may be exposed to 332 
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fewer or less intense stressors in undisturbed environments, as compared to disturbed ones, some factors 333 

such as temperature, moisture and nutrients have been shown to be correlated with E. coli density in 334 

forest (58, 59). Due to lack of niche differentiation caused by environmental selection, we observed 335 

more homogeneous E. coli compositions between forest and produce field in watershed with higher 336 

forest coverage. We also observed that E. coli was much more prevalent in the watershed with higher 337 

forest coverage (72%) as compared to the watershed with lower forest coverage (35%), consistent with 338 

previous findings by Dusek et al. (22).  339 

The higher prevalence of E. coli in the watershed with higher forest coverage might be caused by 340 

proximity effect, which proposes that the likelihood of E. coli isolation from surrounding sites such as 341 

produce field increases with the proximity to forests (22). Such a proximity effect is formed by the 342 

spread of E. coli out of forests into surrounding areas, given that forest is a vital sink for E. coli (4). In 343 

addition, the large adjacency between forest and produce fields in the watershed with higher forest 344 

coverage, which indicates strong direct interactions between the two land covers, may enhance the 345 

proximity effect. Consistent with our findings, Dusek et al. (22) reported that E. coli was more prevalent 346 

in a landscape with greater forest coverage; this study specifically showed that E. coli was most 347 

prevalent in soils sampled in close proximity (0 to 38 m) of forests, but was up to 90% less prevalent 348 

when forest cover in the 250m radius was less than 7%. In addition to E. coli, such proximity effects of 349 

forest have also been reported for Listeria monocytogenes and other Listeria species. Weller et al. (60) 350 

found that with a 100m increase in the distance of a sampling site from forests, the likelihood of L. 351 

monocytogenes and other Listeria species isolation in croplands decreased by 14% and 16%, 352 

respectively.  353 

Watershed landscape could constrain or facilitate the dispersal of soil E. coli by influencing 354 

the movement of wildlife host. Wildlife, which is thought to be an important vehicle for the dispersal 355 
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of foodborne pathogens between hosts and locations (36), could enable bacteria to overcome landscape 356 

barriers and make the dispersal of bacteria more active. Several studies have specifically indicated that 357 

wildlife is a major source of E. coli in surface waters and may contribute to the contamination of E. coli 358 

in rural watersheds and produce fields by defecation (11, 36, 61, 62). Landscape connectivity (i.e., the 359 

degree to which a landscape facilitates or prevents movement of organisms among resource patches) and 360 

particular landscape elements such as the structure of habitat (e.g., riparian corridor, terrestrial land, 361 

waterbody) have also previously been shown to influence dispersal of pathogens (63, 64) and the 362 

movement of wildlife (41). Wildlife-dependent dispersal of E. coli would thus be indirectly impacted by 363 

landscape. Our results showed that the dispersal of soil E. coli in the watershed with widespread produce 364 

fields was slightly limited, while the dispersal of soil E. coli in the watershed with high forest coverage 365 

tended to be largely facilitated by wildlife, highlighting the important role of watershed landscapes on 366 

the dispersal of E. coli. These influences may consequently shape the spatial patterns of pathogenic E. 367 

coli persistence and incidence (65). Consistent with our findings, Mechai et al. (66) showed evidence of 368 

the impact of landscape connectivity on the dispersal patterns of Borrelia burgdorferi, particularly 369 

rodent-associated strains, which is relevant to the spread of Lyme disease risk across locations.  370 

Based on the above notions, our observation that the dispersal of soil E. coli in the watershed 371 

with widespread produce fields was relatively limited could be explained by a combination of 372 

environmental constraints (i.e., relatively strong environmental selection) in soil and poor connectivity 373 

of agricultural areas, which may impede the movement of wildlife that disperses E. coli (41). By 374 

contrast, the dispersal of soil E. coli in the watershed with high forest coverage tended to be promoted 375 

by wildlife. This may be because forest exhibits better connectivity and could provide passage and 376 

support to the movement of wildlife vehicles of E. coli. Besides wildlife, it is also possible that the 377 

dispersal of E. coli was directly influenced by the landscape elements of the two watersheds. Forest and 378 
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most produce fields in Hoosic River, which is heavily forested, were both located in a floodplain. By 379 

contrast, forest in Flint Creek was in a floodplain but produce fields were not. Since during periods of 380 

high discharge, a floodplain normally experiences flooding, such events may facilitate the dispersal of E. 381 

coli between forest and produce field particularly in the Hoosic River watershed. This hypothesis is 382 

supported by a number of modelling studies, showing that the peak fecal bacteria levels during flooding 383 

can be more than 20 or even 50 times higher than prior to flooding (67–69). Future studies on comparing 384 

the distribution of E. coli before, during, and after flooding and assessing the correlation between 385 

flooding-associated landscape factors (e.g., elevation and patchiness) and distribution of E. coli are 386 

needed for an improved understanding of the impact of landscape on the microbial biogeography. 387 

Migratory bird flocks, small flocking insectivore/granivores, and large nuisance wildlife were 388 

identified, in our study here, as potential vehicles that disperse E. coli and affect the distribution of E. 389 

coli in the watershed with high forest coverage. Migratory bird flocks (e.g., Canada goose) tend to have 390 

low movement cost in all land-use types except for heavy urban development areas (70). Small flocking 391 

insectivore/granivores (e.g., European starling) tend to have low movement cost in all land-use types 392 

except for open water and heavy urban development areas (70). Large nuisance wildlife (e.g., white 393 

tailed deer or feral swine) tend to have low movement cost in forests, scrublands, grasslands, wooded 394 

wetlands and cultivated croplands, while they can have high movement cost to cross roads (71). Each of 395 

these three classes of wildlife have been previously reported (34, 35, 72) to serve as dispersal vehicles of 396 

E. coli and have been considered public health concerns in terms of agricultural contamination. For 397 

example, a study of E. coli isolated from fecal samples of Canada geese over a year in Colorado, US 398 

reported that the prevalence for E. coli ranged from 2% during the coldest months to 94% during the 399 

warmest time of the year (72). European starlings, which are considered an invasive species in the 400 

United States and a nuisance pest to agriculture, were proposed to be a potential suitable reservoir and 401 
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vector of E. coli O157:H7, and can carry and disseminate this human pathogen to cattle (34). In addition, 402 

deer feces were reported to contaminate fresh strawberries, being responsible for an outbreak of E. coli 403 

O157:H7 infections in Oregon (35). Forest is a relative stable environment with less disturbance of 404 

anthropologic activities, thus serving as an ideal living habitat for wild animals (73). Forest may provide 405 

easy transport pathways for small flocking insectivore/granivores and large nuisance wildlife to move 406 

around and support high density of migratory birds, which increases the chance of colonized E. coli 407 

dispersed from forest to adjacent produce fields.  408 

Conclusion. By comparing the biogeographic patterns of E. coli isolated from two watershed 409 

with distinct landscape characteristics in New York state, we showed that terrestrial landscape could 410 

impact the distribution of E. coli by adjusting the importance of environmental selection and dispersal. 411 

Environmental stress was identified as a possible strong contributor to local adaptation of E. coli in the 412 

watershed with widespread produce fields. On the other hand, wildlife-driven dispersal, which could 413 

facilitate genetic exchange, was identified as a major force in shaping E. coli populations in the 414 

watershed with high forest coverage. As such, our findings not only highlight the critical role of 415 

landscape in driving the biogeographic pattern of E. coli in perspective of ecology, but also open the 416 

possibility that the evolutionary forces (e.g., positive selection, genetic drift, gene flow) driving the 417 

diversification of E. coli vary by watershed landscape as well. In addition, our study suggests that due to 418 

the less intense environmental stress, frequent wildlife-facilitated dispersal, and the proximity effect of 419 

forest on E. coli, produce fields in watershed with high forest coverage may have higher risk in E. coli 420 

contamination. This information can inform spatial modeling of food contamination risk associated with 421 

produce fields in different watersheds, which can be used to modify pre-harvest product sampling 422 

strategies and produce harvest methods to account for the spatial structure in contamination risk in a 423 

produce field. Despite the contributions to the field of microbial ecology, our study has some non-424 
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negligible limitations. First, we did not differentiate commensal and pathogenic E. coli; however, 425 

biogeographic patterns and the impact of landscape may differ between the two groups. Second, we only 426 

assessed the coverage of forest and produce field as one landscape attribute using a relatively small set 427 

of sampling sites, while many other landscape attributes such as the size, diversity, and richness of patch 428 

size may also be important to the biogeographic pattern and adaptation of E. coli. Third, wildlife 429 

population/community structure, which could be strongly affected by land-use features (74), was not 430 

included in the competing models. Future studies warrant more intensive sampling efforts, sequencing 431 

techniques with higher discriminatory power (e.g., whole genome sequencing), and comprehensive 432 

assessment of a wider range of high order landscape attributes and wildlife characteristics to better 433 

understand the impact of the landscape on the biographic pattern and adaptation of E. coli. Such 434 

methodology development, ideally validated by experimental data, could considerably improve 435 

prediction of produce contamination risk based on the potential influence of landscape on the dispersal 436 

of E. coli to produce field, benefit the development of trade-off risk assessments of food contamination, 437 

and eventually help to decrease human exposure to pathogenic enteric bacteria.   438 

 439 

MATERIALS AND METHODS 440 

Study sites and soil collection. Two watersheds with different landscape patterns, Flint Creek 441 

and Hoosic River, located in the New York state, were selected for this study based on topography and 442 

land-cover composition. Flint Creek is an area with widespread vegetable and livestock production that 443 

is sparsely forested (69% produce field, 12% forest by area), whereas the Hoosic River watershed is a 444 

heavily forested area with interspersed produce production (28% produce field, 38% forest by area). Soil 445 

sampling was carried out between September 4 and October 10, 2012 on 7 farms comprising 19 produce 446 

field sites and in 16 forest sites (Fig. 1). For produce fields, two parallel 200 m transects were laid in 447 
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each field, perpendicular to the forest boundary. Along each transect, five soil samples (at approximately 448 

5 cm-depth) were collected at 50 m intervals using sterile scoops (Fisher Scientific, Hampton, NH) and 449 

sterile Whirl-Pak bags (Nasco, Fort Atkinson, WI). Latex gloves and disposable plastic boot covers 450 

(Nasco, Fort Atkinson, WI) were worn for sample collection. Gloves and boot covers were changed 451 

between each site, and gloves were disinfected with 70% ethanol prior to sample collection. A total of 452 

278 soil samples were collected with 142 and 136 samples collected from the Flint Creek and the Hoosic 453 

River watershed, respectively. All samples were transported to the Food Safety Lab at Cornell 454 

University in an icebox. Samples were stored at 4 ± 2°C in dark and processed within 24 h of collection.  455 

Isolation of E. coli. E. coli were isolated from soil samples as previously described (23). Briefly, 456 

8 g sieved soil was diluted 1:10 in EC medium with 4-methylumbelliferyl-,D-glucuronide broth (EC-457 

MUG). To maximize genetic diversity among recovered E. coli isolates, the suspension was subdivided 458 

among four 96-well microtiter plates for a total of 384 subsamples of approximately 180 uL each. 459 

Microtiter plates were incubated at 37°C. Bacteria from fluorescent wells were isolated on EC-MUG 460 

agar plates and were further tested with a standard biochemical assay for glutamate decarboxylase and 461 

beta-glucuronidase activity. Isolates that were positive for these two tests were presumptively identified 462 

as E. coli, which were confirmed by subsequent gene sequencing as detailed below. No E. coli isolates 463 

were detected in samples from 3 produce sites (Field 7, Field 9, and Field 10), and 2 forest sites (Forest 464 

F4 and Forest F18). 465 

DNA extraction, MLST genotyping and clonal groups. Genomic DNA was extracted from E. 466 

coli by alkaline lysis of biomass in 50 mM NaOH at 95°C.  Two genes (mdh and uidA) were sequenced 467 

first from all isolates. Then, only the unique two-gene sequence types from each sample were subjected 468 

to additional sequencing in five additional genes (aspC, clpX, icd, lysP, fadD) by Sanger sequencing, 469 

performed by the Cornell University Life Sciences Core Laboratories Center. Evaluation of sequence 470 
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read quality and assembly of forward and reverse reads were performed using Perl scripts, which 471 

iterated runs of phred and CAP3, respectively. Sequences with a probability of error of > 0.005 (Q score 472 

< 23) in terms of read quality were edited manually, where possible, or discarded. Assembled sequences 473 

of each MLST locus were aligned and trimmed to standard base positions matching the E. coli K-12 474 

sequence type from the STEC Center website (http://www.shigatox.net) (23). Alignments of assembled 475 

sequences for isolates from Flint Creek and Hoosic River are available on GitHub 476 

(https://github.com/pbergholz/Dispersal-cost-modeling). The clonal groups of E. coli strains for Flint 477 

Creek and Hoosic River were determined based on MLST sequence types using the goeBURST analysis 478 

program (75) at single locus variant level. 479 

Remotely sensed data and soil property data. GPS coordinates of sites were imported into the 480 

Geographical Resources Analysis Support System (GRASS) geographic information system (GIS) 481 

environment. Map layers for land cover (National Land Cover Database [NLCD], 2006) and the digital 482 

elevation model (DEM; Shuttle Radar Topography Mission, 1-arc-second data set) were acquired from 483 

the U.S. Geological Survey (USGS) Earth Explorer geographical data bank 484 

(http://earthexplorer.usgs.gov/). Map layers for soil characteristics were acquired from the U.S. 485 

Department of Agriculture Soil Survey Geographic (SSURGO) database 486 

(http://soils.usda.gov/survey/geography/ssurgo/). Road and hydrologic line graphs were obtained from 487 

the Cornell University Geospatial Information Repository (CUGIR; http://cugir.mannlib.cornell.edu/). 488 

Percent landcover and adjacency were estimated by using FRAGSTATS v. 3.3 to analyze 489 

landcover within a 2 km buffer surrounding the Flint Creek and Hoosic River, respectively (76).  All 490 

land NLCD maps identified as pasturage was reclassified as cropland for our analyses. Percent 491 

adjacency was calculated as the proportion pixels in the NLCD map that were adjacent forest and 492 

produce field, compared to the total of non-self-adjacencies in 2 km buffer surrounding the waterway. 493 
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For example, adjacencyproduce|forest = 10% would indicate that 10% of the edges of produce fields abutted 494 

forest in a given area. 495 

Organic matter, moisture, pH, aluminium, arsenic, boron, barium, calcium, cadmium, cobalt, 496 

chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, 497 

lead, sulphur, strontium, and zinc content of soil samples were measured at Cornell Nutrient Analysis 498 

Lab.  499 

Distribution of E. coli clonal groups and its relationship with geographic location. The 500 

Mann-Whitney test was used to determine if number of clonal groups differed significantly between soil 501 

samples from produce field sites and forest sites for Flint Creek and Hoosic River. Principal coordinate 502 

analysis (PCoA) was conducted using phyloseq package in R 3.6.0 to visualize the distribution of E. coli 503 

clonal groups among sites, based on Bray-Curtis distance. The 95% confidence ellipse in the PCoA plot 504 

assumes a multivariate normal distribution. Permutational multivariate analysis of variance 505 

(PERMANOVA) (77) was employed using the adonis function in R 3.6.0’s vegan package to test 506 

whether the centroids and dispersion of sample groups as defined by land-use (produce field or forest) 507 

are equivalent for both groups based on Bray-Curtis distance of E. coli clonal groups. PERMANOVA 508 

test statistic (F) and p-value were obtained by 9,999 permutations. Analysis of similarities (ANOSIM) 509 

(77) was employed using the anosim function in R 3.6.0’s vegan package to test whether there is a 510 

significant difference between two groups (produce field sties and forest sites) of sampling units based 511 

on the Bray-Curtis distance of E. coli clonal groups. ANOSIM test statistic (R) and p-value were 512 

obtained by 9,999 permutations. To test the sampling bias which possibly caused the large variation of E. 513 

coli clonal groups observed across sampling sites within each watershed, sites with a number of clonal 514 

groups ≤ 3 (Field 6, Field 8, and Forest F9) were excluded and this subset of samples were repeated for 515 

PCoA, PERMANOVA, and ANOSIM analyses. 516 
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Mantel tests were performed using vegan package in R 3.6.0 to assess the relationship between 517 

the biological dissimilarity of E. coli and geographic distance (9,999 permutations). Biological 518 

dissimilarity of E. coli clonal groups was calculated in Bray-Curtis distance using vegan package in R 519 

3.6.0. Geographic distance between isolates was calculated from latitude and longitude, using the geopy 520 

module in Python 3.6.8. Linear regression analysis of biological dissimilarity of E. coli and geographic 521 

distance was performed in R 3.6.0. Distance-decay relationship was inferred from the slope and R
2
 of 522 

the linear regression. A steeper slope with a larger R
2
 value suggests stronger distance-decay 523 

relationship. 524 

The relationship between E. coli clonal groups and soil variables. Due to a lack of mineral 525 

soil to measure soil property after combusting away the organic matter, Forest F6, Forest F11, and 526 

Forest F16 were not included in analyses on the relationship between E. coli clonal groups and soil 527 

variables. After screening for covariation, soil variables with low levels of covariation (r < 0.7 and p < 528 

0.05 in Pearson’s correlation analysis) were selected for variation partitioning analysis (VPA) using 529 

vegan package in R 3.6.0 to quantify the relative contribution of the environment effect and the 530 

geographical effect on the dissimilarity of E. coli clonal groups based on Bray-Curtis distance (78). 531 

Principal coordinates of neighbor matrices (PCNM) were used to represent spatial patterns based on 532 

GPS coordinates (79). By using ‘ordistep’ function in vegan package, a subset of PCNM variables 533 

which significantly explained variation in the dissimilarity of E. coli clonal groups was included in VPA. 534 

Four components of variations were calculated in VPA: i) pure contribution of environmental effect 535 

(R
2

A – R
2

G); ii) pure geographical effect (R
2

A – R
2

E); iii) spatially structured environmental effect (R
2

G + 536 

R
2

E – R
2

A); and iv) unexplained effect (1- R
2

A). R
2

A, R
2

G, and R
2

E represent variation of the dissimilarity 537 

of E. coli clonal groups explained by all variables, spatial variables, and environmental variables, 538 

respectively. 539 
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Partial Mantel test was performed to examine the correlation between environmental 540 

dissimilarity of each soil variable and the dissimilarity of E. coli clonal groups independent of 541 

geographical influence using vegan package in R 3.6.0 (9,999 permutations). Dissimilarity of E. coli 542 

clonal groups was calculated in Bray-Curtis distance, and environmental dissimilarity was calculated in 543 

Euclidian distance. Soil variables with a p value < 0.05 in partial Mantel tests were defined as key soil 544 

variables. Mann-Whitney tests were further performed to determine if key soil variables differed 545 

significantly between soil samples from produce field sites and forest sites.  546 

Dispersal model formulation and selection. To predict the dispersal of E. coli across watershed 547 

landscapes, multiple dispersal models were developed to describe landscape effects by integrating 548 

remotely sensed and field-collected data into resistance surfaces for wildlife vehicles. Four common 549 

classes of wildlife vehicles including (i) large nuisance wildlife species, (ii) small mammals, (iii) small 550 

flocking insectivore/granivores, and (iv) migratory bird flocks were selected in this study.  551 

Predicted dispersal among sites was calculated according to the equation below: 552 

  553 

Where Di,j is the dispersal rate among sites i and j, Li is the E. coli load from the source site (i.e., 554 

starting point), Aj is the attraction (gravity) coefficient of the sink site (i.e., stopping point) to vehicle 555 

and Ci,j is the least-cost distance between sites i and j. E. coli load Li expresses the expected mobility of 556 

E. coli from these areas as a function of expected prevalence. Expected prevalence was inferred from 557 

random forest analysis of E. coli prevalence based on sampling excursions. One load map was generated 558 

per watershed. The attraction (gravity) coefficient Aj describes the tendency of a dispersal vehicle to 559 

move towards an area on the landscape and expected residence-time of dispersal vehicle after they arrive 560 

at a location. Attraction was primarily a function of percent favored land-cover for each of the vehicles 561 

and interspersion of land-cover types. The least-cost distance Ci,j describes the movement preferences of 562 
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a dispersal vehicle in terms of a friction surface (borrowed from circuit theory) that predicts resistance of 563 

the landscape to movement of dispersal vehicles. The cost surfaces were a function of baseline 564 

resistance (dependent on the dispersal vehicle), riparian corridor effect (i.e., the tendency of wildlife to 565 

prefer movement through riparian forests), dispersal barrier effect (i.e., the strength of barriers to 566 

movement, such as major road- and water-ways), and proximity effect (i.e., the strength and type of 567 

edge interactions among forests, produce fields, pasturage, and urban areas). The least-cost distance was 568 

measured as the distance along the path that accrued the least cumulative cost between pairs of 569 

movement start and stop sites. The characteristics of the dispersal vehicles, E. coli load model (Li), 570 

attraction model (coefficient Aj), cost model (i.e., riparian corridor effect, dispersal barrier effect and 571 

proximity effect) were shown in Table 1, which were summarized on the basis of published literature 572 

(73–84). Based on these characteristics, the most-likely attraction model and cost model were selected 573 

for each class of vehicle, generating the predicted dispersal models (Table 2).  574 

For each of the predicted dispersal models for the four classes of wildlife vehicles, an association 575 

matrix Di,j containing predicted dispersal rates along least cost paths among all pairs of sites was 576 

generated.  This was accomplished by using a set of scripts developed in the GRASS GIS ver. 6.4.3 577 

programming environment; Perl scripts were used to automate calculations in the GIS; scripts are 578 

available on GitHub (https://github.com/pbergholz/Dispersal-cost-modeling). Mantel tests were 579 

employed to estimate the correlation between predicted dispersal models and biological dissimilarity of 580 

E. coli clonal groups among sampled sites in each watershed using R version 3.6.0. Statistical 581 

significance of model fits was estimated by 9,999 permutations. The wildlife vehicle for which the 582 

predicted model had the highest significant correlation coefficient was deemed to represent the dominant 583 

dispersal vehicle for E. coli. 584 

 585 
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809 

FIGURE LEGENDS 810 

FIG 1 Sampling maps of (a) Flint Creek and (b) Hoosic River. Dots indicate the sampling sites within 811 

each watershed. Map layers for land cover (National Land Cover Database [NLCD], 2006) were 812 

acquired from the U.S. Geological Survey (USGS) Earth Explorer geographical data bank 813 

(http://earthexplorer.usgs.gov/). 814 
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FIG 2 PCoA plots of E. coli clonal groups of sites in (a) Flint Creek (FC) and (b) Hoosic River (HR). 815 

Green dots indicate forest sites; orange dots indicate produce field sites; Green circle indicates the 95% 816 

confidence ellipse of forest sites; orange circle indicatedsthe 95% confidence ellipse of produce field 817 

sites. p values of permutational multivariate analysis of variance (PERMANOVA) test and analysis of 818 

similarities (ANOSIM) test are shown; “*” indicates the clustering of sampling sites by land-use is 819 

significant at the 0.05 level. (a) PCo Axis 1 and 2 explained 18.7% and 14.9%, respectively, of the 820 

variation of E. coli clonal groups for Flint Creek. (b) PCo Axis 1 and 2 explained 14.6% and 12.0%, 821 

respectively, of the variation of E. coli clonal groups for Hoosic River.  822 

FIG 3 Variance partitioning analysis (VPA) showing relative contributions of spatial factors (Geo.), soil 823 

variables (Env.), and spatially structured environmental variables to the variations of the dissimilarity of 824 

E. coli clonal groups based on Bray-Curtis distance for (a) Flint Creek (FC) and (b) Hoosic River (HR).825 

(c) Partial Mantel correlation between the dissimilarity of E. coli clonal groups and geographic distance-826 

correlated dissimilarity of soil variables for FC and HR. r is the Partial Mantel correlation coefficient. 827 

Significant correlations at the 0.05 and 0.01 level are denoted by “*” and “**”, respectively.  828 

FIG 4 Linear relationship between biological dissimilarity of E. coli clonal groups and geographical 829 

distance for (a) Flint Creek (FC) and (b) Hoosic River (HR). The biological dissimilarity of E. coli 830 

clonal groups was calculated as Bray–Curtis distance. Geographical distance was calculated as the actual 831 

physical distance. Linear regression line is in grey; shaded area indicates 95% confidence region; R
2

832 

indicates the variability explained by fitted linear regression model and the formula of the linear 833 

relationship is shown. 834 

FIG 5 Mantel test result of wildlife-driven dispersal models and composition of E. coli clonal groups for 835 

Flint Creek and Hoosic River. M106, M377, M459, and M556 on the x-axis are the identification 836 

numbers of the predicted dispersal models for small mammals, large nuisance wildlife, migratory bird 837 
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838 

839 

flocks, and small flocking insectivore/granivores, respectively. Examples of each wildlife vehicle type 

are shown. The description of the predicted dispersal model for each wildlife vehicle is detailed in Table 

840 2. Models significant or marginally significant at the 0.05 level in Mantel tests are denoted by “*”. 

841 
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Unexplained 82.7%

11.7% 5.5%

HR

Geo.

Env.

Unexplained 99.0%

1.0%

Spatially structured Env.

0.1%

(a) (b)

(c)
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(a) (b)FC HR
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Small mammals Large nuisance 

wildlife 

Migratory 

bird flocks

Example of 

wildlife vehicle 

Small flocking 

insectivore/granivores 
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TABLE 1 Basic dispersal model characteristics 

Class Description 

Dispersal vehicles
a
 

LT: Large nuisance wildlife species (e.g. "deer" or "feral 

swine") 

Forests, scrublands, grasslands, wooded wetlands and cultivated croplands impose low 

movement costs, roads impose increased movement costs based on census category 

ST: Small mammals (e.g. "shrews", "voles" and "mice") 
Light urban development, grassland and scrublands impose low movement costs, roads 

impose increased movement costs based on census category 

LB: Small flocking insectivore/granivores (e.g., 

"starlings") 
Open water and heavy urban development are higher cost, all other movement costs are low 

MB: Migratory bird flocks (e.g. "Canada goose") Heavy urban development imposes higher cost, all other movement costs are low. 

Riparian corridor (movement costs are reduced by half) 

Adjacency All land parcels that overlap a 100 m zone around the main river/creek 

Distance Land within 100 m of the main river/creek 

Biological Land below the 50 yr flood height for the main river/creek and adjacent wetlands 

None No riparian corridor effect 

Dispersal barriers 

Absolute Major roads and waterways are absolute barriers (movement cost 40,000 per pixel) 

Porous Major roads and waterways are porous barriers (movement cost 200 per pixel) 

None No barrier effect 

Proximity effects (specifics vary by vehicle) 

Strong Nearness to high quality habitat substantially reduces movement cost 

Weak Nearness to high quality habitat somewhat reduces movement cost 

None No benefit of proximity to good cover 

Attraction (gravity) coefficients (specifics vary by vehicle) 

Habitat Quality 
Proximity, interspersion and area of high quality habitat increase the chances that E. coli will 

be deposited 

Reduced Habitat Effect Effect of high quality habitat is reduced by half 

Area Independent As habitat quality model, but area of high quality habitat does not impact the result 

None Attraction does not influence dispersal 

Load (source) coefficient 

E. coli load estimation Areas close to forest or pasture-class landcover are higher load. 
a
Conceptual models are based on published literature (80-91).
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TABLE 2 The predicted dispersal model for each wildlife vehicle 

Vehicles 
Most-likely cost model

a
 Most-likely attraction 

model (coefficient)
b
 Riparian corridor Proximity effects Dispersal barriers 

ST (Small mammals) Biological None Absolute None 

LT (Large nuisance wildlife species) Biological Strong Porous Habitat Quality 

MB (Migratory bird flocks) Biological Weak None Area Independent 

LB (Small flocking insectivore/granivores) Biological Weak Absolute Area Independent 

a
Cost model was developed based on three factors, riparian corridor, proximity effects, and dispersal barriers. Definition of the three factors can be 

found in Table 1. The most-likely cost model was selected based on the characteristics of each wildlife vehicle (Table 1).
b
Definition of classes of attraction model can be found in Table 1. The most-likely attraction model was selected based on the characteristics of

each wildlife vehicle (Table 1). 
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