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Abstract

Sickle cell disease (SCD), a group of inherited blood disorders with significant morbidity and early
mortality, affects a sizeable global demographic largely of African and Indian descent. It is manifested
in a mutated form of hemoglobin that distorts the red blood cells into a characteristic sickle shape with
altered biophysical properties. Sickle red blood cells (sRBCs) show heightened adhesive interactions
with inflamed endothelium, triggering obstruction of blood vessels and painful vaso-occlusive crisis
events. Numerous studies have reported microfluidic-assay-based disease monitoring tools which rely
on quantifying adhesion characteristics of adhered sRBCs from high resolution channel images. The
current workflow for analyzing images from these assays relies on manual cell counting and detailed
morphological characterization by a specially trained worker, which is time and labor intensive.
Moreover manual counts by different individuals are prone to artifacts due to user bias. We present
here a standardized and reproducible image analysis workflow designed to tackle these issues, using
a two part deep neural network architecture that works in tandem for automatic, fast and reliable
segmentation and classification into subtypes of adhered cell images. Our training utilized an
exhaustive data set of images generated by the SCD BioChip, a microfluidic assay which injects
clinical whole blood samples into protein-functionalized microchannels, mimicking physiological
conditions in the microvasculature. The automated image analysis performs robustly in comparison
to human classification: accuracies were similar to or better than those of the trained personnel,
while the overall analysis time was improved by two orders of magnitude.

1 Introduction 1

1.1 Background 2

Sickle cell disease (SCD) affects over 100,000 Americans and more than 4 million genetically 3

predisposed individuals worldwide [1–4]. The affected demographic commonly draws on ancestral 4

lineage from parts of Africa and India. The most common form of SCD is caused by a single 5

mutation in the β globin gene, leading to the expression of an abnormal form of hemoglobin, HbS, 6

in red blood cells (RBCs). Although SCD originates from a single deficit gene, there are many 7
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observed clinical sub-phenotypes associated with the disease. They are not mutually exclusive and 8

some of the associated complications are seen to cluster together, suggesting independent genetic 9

modifiers as their epidemiological underpinnings [1]. These sub-phenotypes are associated with 10

different acute and/or chronic complications. Common acute complications include pain crises, acute 11

chest syndrome, stroke and hepatic or splenic sequestration. More long term effects include chronic 12

organ damage of the lungs, bones, heart, kidneys, brain, and reproductive organs [5]. The resultant 13

heterogeneity among SCD patients belonging to different disease sub-phenotypes underlies the need 14

for new methodologies to allow intensive patient specific evaluation and management in outpatient, 15

inpatient and emergency department settings [6]. SCD also requires early diagnosis after birth and 16

constant clinical monitoring through the life-span of the patient, the absence of which leaves them 17

prone to reduced quality of life and premature mortality [7, 8]. 18

The underlying biophysics of SCD hinges on associated complex dynamical phenomena playing 19

out in the vascular flow environment. Mutated hemoglobin molecules expressed in affected sickle 20

RBCs (sRBCs) have a tendency to polymerize in oxygen starved environments, forming long chains 21

which distort the cell profile. The damaged cell membrane displays morphological sickling (distortion 22

into a crescent shape) which dislocates the membrane molecules and leads to a stiffer membrane 23

scaffolding. Consequently sRBCs are more adhesive and less deformable than healthy RBCs. This 24

increased membrane rigidity, along with altered adhesion characteristics that heighten interactions 25

with the endothelium and plasma, directly give rise to SCD’s key manifestation: recurring, painful 26

vaso-occlusive crisis events triggered by sRBC aggregation and blood vessel clogging [4, 9, 10]. The 27

problem thus lends itself very naturally towards exploration in a microfluidic or adhesion assay setup. 28

An important line of investigation in such studies is the search for predictive indicators of disease 29

severity in terms of biophysical rather than molecular markers [8, 11–13]. Microfluidic platforms 30

used for evaluation of sRBC adhesion dynamics have the advantage of being able to directly use 31

clinical whole blood taken from SCD patients [8, 9, 14–16]. This is a versatile laboratory setup 32

that allows one to mimic the complex vascular environment, and realistically explore the multiple, 33

interconnected factors at play. These devices are thus good candidate tools for batch quantitative 34

analyses of the mechanisms occurring in micro-vasculature prior to and during crises, as well as for 35

testing intervention mechanisms. 36

In this study, we focus on one particular microfluidic platform, the SCD Biochip [14, 17]—a 37

customizable, in-vitro adhesion assay where the microchannels can be functionalized with various 38

endothelial proteins, and integrated with a programmable syringe pump unit that can implement 39

physiologically relevant flow conditions. The analysis of the data from clinical whole blood samples 40

injected into the SCD Biochip and similar experimental approaches has been challenging, with a 41

major bottleneck being manual counting and categorization of cells from complex phase contrast 42

or bright field microscopic images. Manual quantification of these images is a rigorous, time 43

consuming process and inherently reliant on skilled personnel. This makes it unsuitable for high 44

throughput, operationally lightweight, easily replicable studies. For example, manual cell counting 45

and classification into morphology based sub-groups using the SCD Biochip platform tends to take 46

upwards of 3 hours per image for trained experts. The need for a reliable, fully automated image 47

segmentation, classification, and analysis scheme is thus paramount. 48

Here we present a standardized and reproducible image analysis workflow that eliminates 49

the need for user input and is capable of handling large amounts of data, by utilizing a fully 50

automated, machine-learning-based framework that analyzes SCD BioChip assay images in a matter 51

of minutes. Several earlier studies have explored deep learning approaches for automating SCD image 52

analyses [18,19]. These studies illustrated the power of deep learning to distinguish morphological 53

details at different life stages of the cell. Here we attempt for the first time to use it in a context that 54

closely mimics the micro-vasculature in vivo, with cells from whole blood adhering to endothelial 55
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proteins under flow conditions. Our goal is to design and implement a classification scheme that sorts 56

the sRBCs on the basis of morphological differences that arise with progressive HbS polymerization 57

and sickling—features which strongly correlate with changes to the sRBC’s bio-mechanical properties. 58

Our processing pipeline has been set up to be of use as a high-throughput tool with detection, tracking, 59

and counting capabilities that could be harnessed to assess visual bio-markers of disease severity. In 60

the long term, this makes our workflow highly suitable for integration into comprehensive monitoring 61

and diagnostic platforms designed for patient specific clinical interventions—a key component of 62

emerging targeted and curative therapies. 63

1.2 Complexity of classification in whole blood imaging 64

While significant progress has been made in understanding SCD pathogenesis [4, 20], full charac- 65

terization of the complex interplay of factors behind occlusion events, and designing appropriate 66

advanced therapeutic interventions, remain significantly challenging. Part of the challenge lies in 67

recreating the conditions of the complex vascular environment, which is the overall goal of the SCD 68

BioChip around which our workflow is designed. Along with the ability to control aspects like 69

applied shear forces and choice of channel proteins, the microfluidic BioChips work with clinical 70

whole blood samples. This lets the experimental setup approximate in vivo conditions as closely 71

as possible, at the cost of significantly increasing the complexity of the image processing problem. 72

Here we describe the various categories of objects—of both cellular and extra-cellular origin—that 73

show up in our channel images. The segmentation process must thus be able to not only identify the 74

sRBCS, but also distinguish them from these other objects with a reliable degree of accuracy. 75

• RBCs: Healthy RBCs are easily identifiable from their circular shape with an apparent dimple 76

arising from a top-down view of the bi-concave cell profile (Fig. 1A). Since the channels are 77

functionalized with proteins showing preferential adherence for sRBCs, very few healthy RBCs 78

show up in our images. 79

• Adhered sRBCs: SCD pathogenesis (progressive stages of HbS polymerization) causes 80

diseased RBCs to undergo deformation of their cell profile, going from a round to a more 81

elongated, spindle-like shape. Simultaneously, the bi-concavity starts distending outwards. 82

Examples of such partially sickled cells are shown in Fig. 1B. Cells at a stage of advanced 83

disease progression, accelerated in hypoxic environments, become highly needle-like in shape, 84

and completely lose their concavity. Examples of such highly sickled cases are shown in Fig. 1C. 85

These two categories of adhered sRBC also correlate with biomechanical characteristics of 86

the cell membrane, and we will label them by their membrane deformability, as described in 87

more detail in Section 1.3: deformable (partially sickled) and non-deformable (highly sickled) 88

sRBCs. 89

• White blood cells (WBCs): Laminin, our choice of functionalization protein for this study, 90

has known sRBC binding capabilities, and shows little WBC adhesion. Thus our channel 91

images exhibit WBCs with far less frequency relative to sRBCs. The WBCs can be identified 92

from a regular, round shape and smooth appearance, with varying degrees of internal detail 93

(Fig. 1D). 94

• Non-functionally adhered objects: The focal plane of the microscope objective in the 95

experiments is set to the protein-functionalized bottom of the channel. Objects adhered to 96

this surface are thus in focus. Due to the finite height of the channel, non-specifically adhered 97

objects outside the focal plane—stuck to the PMMA coverslip on the channel (Fig. 1E, i-iii) or 98
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i. ii. iii. iv. v.

i.

Adhered "deformable" sRBC Adhered "non-deformable" sRBC

visual
"dimple"

Healthy RBC Partially sickled sRBC Highly sickled sRBC

Biconcavity

Top down view under microscope:

WBCs Non-functionally adhered objects

Other unclassified objects

RBC

Fig 1: Object categories in our images: (A-C) The SCD pathogenetic pathway and changes
undergone by the diseased RBC. A: A healthy RBC with biconcavity. The latter appears as a
dimple viewed from the top. B (i-iii): Partially sickled sRBCs at increasing stages of sickling. The
bi-concavity distends out to give a shallower dimple, and elongation in profile. This is the category
we identify as deformable sRBC (see Section 1.3). B (iv-vi): Additional representative image
variants of this category. C (i-iii): Highly sickled sRBCs. The dimple has completely disappeared
and the shape is highly elongated. We classify these into our non-deformable category. C (iv-vi):
More variants in the non-deformable category. Factors like local flow patterns, applied shear forces,
and oxygen levels in the environment give rise to various shapes (teardrop, star-like, amorphous) for
different sRBCs. D: White blood cells (WBCs). E: Non-functionally adhered objects. F: Other
unclassified objects, like (i) platelet clusters, (ii-iii) lysed cells, (iv-v) dirt and dust. In our workflow
types D-F are classified together in the non-sRBC category.
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flowing by in motion (Fig. 1E, iv)—show up as out-of-focus objects. They exhibit characteristic 99

diffraction rings or a blurred appearance. 100

• Other unclassified objects: Various categories of other objects can also appear in the 101

images. Examples include platelet clusters (Fig. 1F, i), cellular debris from lysed cells (Fig. 1F, 102

ii-iii), and dirt/dust (Fig. 1F, iv-v). 103

Along with these objects, the background itself can show considerable variation in luminosity 104

and level of detail, depending on the sample and experimenter. A robust processing workflow should 105

be able to deal with these challenges as well. 106

1.3 Establishing the biophysical basis for our classification problem 107

The observed range of heterogeneities in SCD clinical sub-phenotypes, stemming from the same 108

monogenic underlying cause, remain ill understood [1, 21]. This lack of understanding sets the 109

basis for the specific target problem that motivated our deep learning workflow. In a 2014 study 110

from our group, Alapan et al. observed heterogeneity within sRBCs in terms of deformability and 111

adhesion strength [9]—two biophysical characteristics that are key hallmarks of SCD pathogenesis. 112

This observation revealed two new sub-classes with distinct morphologies, called deformable and 113

non-deformable sRBCs (see Fig. 1B-C). The cells corresponding to the deformable class retain the 114

RBC bi-concave detail, while the non-deformable sRBCs completely lose the bi-concave feature. 115

This bi-concave feature for deformable sRBCs is visible to the naked eye in most ideal cases (see 116

Fig. 1B i, ii, and v). However, based on the variety of configurations of the cell while adhered 117

to the microchannel wall (see Fig. 1B iv and vi), in many cases detecting deformable sRBCs via 118

human analysis can be complicated and inconsistent. These difficulties underline the importance of 119

implementing deep learning models to quickly and consistently count and classify adhered cells. 120

As their name suggests, deformable sRBCs have relatively flexible shapes that can easily deform 121

under a variety of physiologically relevant flow conditions. However, as RBCs fully progress through 122

the sickling process, not only do the cells ultimately lose the concave dimple feature, but they also 123

become stiffer. These so-called non-deformable sRBCs are readily distinguishable from deformable 124

RBCs based on their sharper edges along with their missing dimples (see Fig. 1C). Below in Results 125

Section 3.1 we demonstrate that these morphological differences correlate to significantly altered 126

biomechanical properties in our experimental setup. Furthermore, in addition to their deformability 127

characteristics, these two types of cells are also distinguishable in terms of their adhesion strength to 128

endothelial and sub-endothelial proteins under fluid forces, making them potentially significant for 129

understanding the biophysics of vaso-occlusive crises. In subsequent experiments that integrated 130

a micro-gas exchanger with microfluidics, SCD heterogeneity is more dramatic under hypoxic 131

conditions [22], a known precursor for the onset of these crises. 132

A wealth of information can be extracted by studying the morphological heterogeneity of sRBCs 133

as a predictive indicator relevant to SCD pathogenesis and adhesion dynamics. Thus our automated 134

deep learning workflow focuses on the above described SCD heterogeneity: counting sRBCs adhered 135

to endothelial proteins in our microfluidic setup, and classifying these adhered cells into deformable 136

and non-deformable types. Because the input consists of complex microscopy images of whole blood, 137

the approach has to reliably disregard non-adhered sRBCs (see Fig. 1E) and other miscellaneous 138

objects (see Fig. 1F). 139
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2 Materials and methods 140

2.1 Details of experimental assay and image collection 141

RBC adhesion was measured using an in vitro microfluidic platform developed by our group, the 142

SCD Biochip [14,17]. The SCD Biochip is fabricated by lamination of a polymethylmethacrylate 143

(PMMA) plate, custom laser-cut double-sided adhesive film which has a thickness of 50µm (3M, Two 144

Harbors, MN) and an UltraStick adhesion glass slide (VWR, Radnor, PA). 15 µl of whole blood 145

collected from patients diagnosed with SCD at University Hospitals, Cleveland, Ohio, was perfused 146

into the microchannels functionalized with laminin (Sigma-Aldrich, St. Louis, MO). Laminin is a 147

sub-endothelial protein with preferential adherence to sRBCs over healthy RBCs [23], allowing us to 148

focus on sRBC characterization. 149

Images for the deep learning analysis were collected using the following protocol. Shear stress 150

was kept at 0.1 Pa, mimicking the average physiological levels in post-capillary venules. After the 151

non-adherent cells were removed by rinsing the microchannels, microfluidic images were taken by 152

an Olympus IX83 inverted motorized microscope. Mosaic images were recorded and then stitched 153

together by Olympus CellSense live-cell imaging and analysis software coupled with an QImaging 154

ExiBlue Fluorescense Camera. An Olympus 10x/0.25 long working distance objective lens was used 155

for imaging. 156

For the separate deformability analysis of Results Section 3.1, channel images were first captured 157

under constant flow conditions of 10 µL/min (which corresponds to a shear rate of about 100/s), 158

and then subsequently captured again after the flow was turned off. 159

2.2 Overview of the image analysis workflow 160

We designed a bipartite network consisting of two individually trained neural networks that work in 161

tandem to quantify our whole channel microfluidic image data. The workflow contains two phases of 162

analysis that involve convolutional neural nets for cell segmentation/detection and classification of 163

adhered sRBCs. We found this bipartite approach helpful in streamlining our workflow, trimming 164

unnecessary operational bulk, and significantly improving robustness and performance metrics. 165

A schematic of the processing pipeline described here is shown in Fig. 2. Each phase of the 166

pipeline has been built around a separate neural network. Since we are dealing with vast amounts of 167

complex microscopy data that contains a plethora of cellular objects under fluid flow, we created 168

Phase 1 to deal with object detection of adhered sRBCs exclusively. For Phase 2 (Fig. 2F) we 169

focused on the biophysical classification of sRBCs into deformable and non-deformable types. After 170

collecting microchannel images from the SCD BioChip, the workflow first implements Phase 1, which 171

consists of a convolutional neural net with an architecture that downsamples and then upsamples the 172

input image data into a segmentation mask (Fig. 2A-C). The downsampling portion of the network 173

constructs and learns feature vectors as input data for the upsampling part of the neural network, 174

allowing it to find segmentation masks for the original input images [24]. We also include crop and 175

concatenations, motivated by the success of U-Net, a semantic segmentation network heavily used in 176

the biomedical image segmentation community [25]. 177

Given an input image, the network learns to assign individual pixels to four categories (illustrated 178

in Fig. 7A): background, deformable adhered sRBC, non-deformable adhered sRBC, and other. The 179

other category largely involves detached or freely flowing cells (i.e. cells not attached to endothelial 180

proteins along the channel wall, as seen in Fig. 1E), which are easily distinguishable from adhered 181

cells. Training is done using a cross-entropy loss function penalizing wrong predictions of individual 182

pixels. 183
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Fig 2: Overview of processing pipeline: A: SCD BioChip and cartoon illustration represents
an in-vitro adhesion assay and adhesive dynamics of sRBCs within a mimicked microvasculature. B:
Generated input image fed into the Phase I network. C: Phase I segmentation network predicts
pixels belonging to adhered sRBCs, shaded red in the images. D: Drawing bounding boxes around
segmented objects. E: Extracting adhered objects into individual images. F: The input layer of the
Phase II classifier network receives an image from the Phase I detection network, then performs a
series of convolutions and nonlinear activations to finally output class predictions.
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Phase Dataset

I Initial: 2,295 pixel-labeled single-cell images (each 32× 32 pixels)

Final: 1,000 pixel-labeled tiles (each 224× 224 pixels)

II 6,863 single-cell images (each 32× 32 pixels) representing:

3,362 deformable sRBC, 1,449 non-deformable sRBC, 2,052 non-sRBC

Table 1: Details of data sets used both network phases. At each stage 75% of the data is used for
training the network, 10% is used for validation, and 15% for testing.

The four-class pixel labeling scheme we have used for our Phase I segmentation network is a 184

first step toward capturing the complexity of features of in our images. Ultimately however we are 185

interested in classifying entire objects rather than individual pixels. Because the network might 186

assign pixels from different classes to the same cell, there can be ambiguity in making definitive 187

object classifications based on pixel labels (i.e. how to classify a cell with a comparable number of 188

pixels assigned to the deformable and non-deformable sRBC classes). Thus further refinement is 189

necessary, motivating the introduction of our Phase II network. To understand this issue in more 190

detail, let us define two broader pixel label categories: sRBC, which is the combination of the two 191

adhered sRBC pixel classes, and non-sRBC, which consists of the background / other classes. In 192

Fig. 2D-E the pixels predicted to be sRBC by the network are shaded red, while the non-sRBC pixels 193

are uncolored. As detailed in Section 2.3, with the appropriate training approach (in our case class 194

weight balancing using transfer learning), the Phase I network does an excellent job distinguishing 195

between these two broader classes. It is not as accurate in making the finer distinction between 196

deformable and non-deformable adhered sRBCs. However we can at least rely on the Phase I network 197

to accurately identify clusters of pixels as adhered sRBCs. The algorithm then computes 32× 32 198

pixel bounding boxes around such clusters, each box centered around the cluster centroid (Fig. 2D). 199

The size of the box takes into account the average size of the sRBCs in our channel images at 10x 200

magnification, so that one box typically contains an entire cell. These boxes then form a set images 201

(Fig. 2E) that are the input for our Phase II network. 202

In Phase II (Section 2.4), the images are run through a convolutional neural net for biophysical 203

classification. The neural network performs a series of convolutions and filters, which ultimately 204

classifies the image as a deformable sRBC, non-deformable sRBC or non-sRBC (Fig. 2F). If the 205

Phase I analysis was entirely error-free, there would of course be no input images in Phase II 206

corresponding to non-sRBC objects. But we include this category to filter out the rare mistakes 207

made by the Phase I analysis, further enhancing the accuracy of the results at the completion of 208

Phase II. Our dataset for Phase II consisted of a library of 6,863 manually classified cell images. 209

Since this is a modestly-sized dataset for training an image classification network, we decided to 210

implement transfer learning, an approach that can enhance training in cases with limited data [26]. 211

We found that the deep residual network called ResNet-50 [27], pretrained on ImageNet [28], worked 212

well in learning morphological features for our biophysical classification task. We also conducted a 213

k-fold cross-validation protocol to estimate the accuracy of our machine learning model on test data. 214

The details of the architectural design, data set pre-processing and preparation, progress checkpoints, 215

and evaluation metrics for each network phase are presented in the next two sections. 216
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Phase I: Segmentation Network
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Fig 3: Phase I network: The architecture for our semantic segmentation convolutional neural
network. The expanding and contracting arms making up the U shape are characteristic of U-Net-like
networks. Dimension labels for each image volume are enumerated every time there is a change
during a convolutional operation.

2.3 Phase I: Detecting adhered sRBCs 217

This section is ordered as follows. First, we present the details of our neural network for semantic 218

segmentation with an architecture inspired by SegNet [24] and U-Net [25]. Then we demonstrate an 219

issue with imbalanced pixel classes during training and how we overcame this issue using a transfer 220

learning approach. This approach utilizes weights transferred from a network trained on a more 221

balanced data set [29]. The latter contains image instances of individual cells to jump-start the 222

learning process. Finally, we illustrate overall performance of the network to detect adhered sRBC 223

cells by presenting multiple relevant evaluation metrics. 224

Preprocessing of microchannel images and preparation of the data set 225

Before we implement the neural network for segmentation and detection, we record mosaic images 226

of a single whole channel and stitch each image together, leading to a larger image with pixel 227
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dimensions 15,000 × 5,250. We then split the raw whole channel image into 1,000 equally-sized tiles 228

by dividing the rectangular image with 50 vertical and 20 horizontal partitions, leading to tiles with 229

pixel dimensions 300× 262. 230

For our optimal architecture, the network has an input layer with size 224× 224× 3, with the 231

first two dimensions representing height and width in pixels, and the last dimension representing 232

three channels. Though our tile images were all grayscale, their format varied depending on the 233

experimental procedure for recording the photo, with some having three channels and some just one 234

channel. In the latter case we copy the first channel and then concatenate the copied channel two 235

more times, creating images with three-channel depth. We then resize the width and height of the 236

tile from 300× 262× 3 to 224× 224× 3 with a bicubic interpolation function, to match the input 237

specfications of the network, and apply zero-centered normalization. 238

Since we are using supervised learning, we require that the data set be manually labeled 239

beforehand. This was accomplished using the Image Labeler app in Matlab R2019a. As described 240

above, each pixel is assigned to one of four labels: background, deformable sRBC, non-deformable 241

sRBC, and other. Examples of an original tile and its labeled counterpart are shown in Fig. 7(i)-(ii). 242

Phase I network architecture 243

Our Phase I network implements five convolutional blocks that contain filters, nonlinear activation 244

functions (ReLU), batch normalization, down (max), and up (transpose) sampling layers. Altogether, 245

these layers sum to a total of 61 individual layers that take images as input and classify individual 246

pixels into the four label categories to generate a segmentation mask. The full details of the network 247

architecture are shown in Fig. 3. 248

Overcoming imbalanced classes by transfer learning 249

A common challenge in training semantic segmentation models is class imbalanced data [30]. A class 250

imbalance occurs when the frequency of occurrence of one or more classes characterizing the data 251

set differs significantly in representation, usually by several orders of magnitude, from instances 252

of the other classes. This problem results in poor network performance in labeling the minority 253

classes, a significant challenge for biomedical image segmentation in which frequently the minority 254

class is the one under focus. A typical example is in pathologies such as inflammatory tissues or 255

cancer lesions, where the aberrant tissue patch or lesion is much smaller in size compared to the 256

whole image. This issue leads to reduced capacity for learning features that correlate to the lesions. 257

For our microchannel images, the background far outstrips the adhered sRBCs in representation, 258

heavily skewing the data set. In the absence of balancing, since our cross-entropy loss sums over all 259

the pixels in an image, we find the network significantly misclassifies adhered sRBC pixels, in some 260

cases completely ignoring them. Since our interest lies in accurately identifying the adhered cells, it 261

is imperative to address this imbalance and improve accuracy for these minority classes. 262

We explored and tested a transfer learning-oriented method to overcome class imbalances within 263

our pixel-labeled data. In place of a standard training procedure starting with starting weights drawn 264

from a normal distribution, we transferred weights from a pre-trained network. The pre-training 265

involves a more inherently class balanced data set: 2,295 manually extracted images of deformable 266

and non-deformable adhered sRBCs, as well as non-sRBC objects like out-of-focus cells. Unlike the 267

set of 1,000 tiles described earlier, which typically contain multiple cells per tile, in this case we use 268

single cell images, with bounding boxes of 32× 32. Because our Phase I network architecture has 269

a fixed input layer size, we then resize these images to 224× 224 with bicubic interpolation. The 270

details of the two Phase I data sets (single-cell images and larger tiles) are summarized in Table 1. 271
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The single cell images used in this pre-training had a much lower fraction of background pixels 272

relative to the tiles. Thus by pre-training the network on these images, the hope is that this biases 273

the network to classify non-background pixels more accurately during the subsequent training on 274

the tiles. 275

In both the pre-training stage and the training on tiles, 75% of the respective data sets are used 276

to train the network, with the remainder reserved for validation (10%) and testing (15%). For the 277

tile stage, to prevent overfitting we inspected the training and validation loss progress and manually 278

aborted the training process after the network reached 21 epochs, approximately 25 mins (see Fig. 4). 279

Section 2.3 lists hardware implementation details. 280

2.4 Phase II: Classification into morphological subtypes 281

Network structure and data set preparation 282

The structure of our Phase II cell classifier network was adapted from ResNet-50, the very deep 283

residual neural network [27]. Residual neural networks implement skip connections in the hopes 284

of avoiding vanishing gradients. Our implementation of ResNet-50 is pre-trained on the reduced 285

ImageNet ILSVRC database, consisting of over 1 million training images and belonging to 1000 286

different classes [28]. 287

As mentioned earlier, the input images for Phase II are 32× 32 pixel images corresponding to 288

single cells. Ideally these are all adhered sRBCs, but there is a tiny subset of non-sRBC objects, a 289

source of error that the Phase II network is designed to mitigate. The details of constructing these 290

single-cell images are as follows. Starting with the four-class segmentation mask generated at the 291

end of Phase I, we binarize the pixels in these images according to our two combined pixel classes 292

(Fig. 7B) by assigning 1 to sRBC pixels and 0 to non-sRBC pixels. We delete any small objects that 293

form connected clusters of 1 pixels where the cluster size is smaller than 60. This threshold allows us 294

to remove debris from the images, while being small enough relative to the range of sRBC cell sizes 295

to preserve clusters that are actually sRBCs. We compute the centroids of the remaining clusters, 296

ideally corresponding to sRBC cells, and extract 32 × 32 pixel bounding boxes centered at each 297

cluster centroid (see Fig. 2 D-E). Before we input these extracted cell images into the Phase II neural 298

network for biophysical classification, we resize the image from 32 × 32 × 3 to the corresponding 299

ResNet50 input layer size of 224× 224× 3, and apply zero-centered normalization. 300

The training set for our supervised learning in Phase II consists of 6,863 single-cell images in 301

three object categories: deformable sRBC (3,362 images), non-deformable sRBC (1,449 images), and 302

non-sRBC (2,052 images). Examples of these images are shown Fig. 9A. In terms of curating our 303

data set, we initially started with a batch of individual objects that were manually extracted from a 304

large set of channel images displaying different luminescence and granularity features that covered 305

the broad spectrum of sample and experimental variance (see Fig. 1A). However, after we completed 306

our Phase I network, we expanded the data set to include the single-cell images generated by Phase 307

I, though we manually verified the labels to correct any errors. Our data set also covers different 308

physiological conditions like normoxia and hypoxia, which allows the resulting image processing 309

pipeline to handle data from a wide range of SCD assays. 310

The overall data set size is still relatively small for our complex classification task, which requires 311

learning subtle morphological features in cells of various sizes, shapes, and orientations. We thus 312

choose to utilize a transfer learning framework [26]: rather than initializing the network with 313

randomly chosen weights, we start with weights pre-trained on ImageNet, allowing us to achieve a 314

higher starting accuracy on our own data set, faster convergence, and better asymptotic accuracy. 315

To tailor the network for our purposes, we swapped out the final fully-connected layer of ResNet-50, 316
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Fig 4: Phase I training and validation history: (A) Loss vs. training iterations for a network
with no class balance (blue), and one with pre-training on a class-balanced data set (purple). Training
and validation loss curves are shown in light-thick and dark-thin curves respectively. Training loss
was evaluated at every iteration while validation loss was computed every 50 iterations. (B) shows
a close up view of the loss ≤ 0.1 region of (A) (boxed in red).
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which has output size 1000, to a layer with three output neurons corresponding to the three object 317

classes (Fig. 5). 318

removing old 1000
category fully connected 
classification layer

upper layers: trained to
recognize general image 
features, i.e. edges, textures

Phase II: Classifier Network

ResNet-50

{

{
lower layers: trained to
recognize higher level 
image-specific features

inserting new fully connected
classification layer
for our 3 category data set

Fig 5: Phase II network: A schematic of the transfer learning workflow used to train our classifier
network. We employ the ResNet-50 architecture and start with weights pre-trained on the 1000
category reduced ImageNet ILSRVC database. The final fully connected learnable classification
layer is swapped out for a 3 class classification layer suited to our problem.

Phase II training details 319

The data set was split randomly into 80% training and 20% testing subsets, and the network was 320

trained with maximum epoch number 10 and minibatch size 64. Each training session had 850 321

iterations, and thus 85 iterations per epoch. This process took approximately 13 minutes per fold on 322

an NVIDIA GeForce RTX 2080Ti GPU. To prevent overfitting, we implemented data augmentation 323

on the training subset. We utilized random reflections along the horizon and vertical symmetry lines 324

for the augmentation process: an image was reflected with a probability of 50% during each iteration. 325
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We further augmented our data with x and y translations, where the translation distance (in pixels) 326

is picked randomly from a uniform distribution within a chosen interval: [−10, 10]. Lastly, we also 327

augmented the images with random rotations of small angles between the values -5 and 5 degrees. 328

3 Results and Discussion 329

3.1 Cellular deformability analysis 330

To validate the connection between adhered sRBC morphology and deformability in our experimental 331

setup, we analyzed pairs of images of the microfluidic channel first under flow (10 µL/min) and then 332

under no flow conditions. These images were examined to look for sRBCs that had not detached 333

or moved significantly between the two image captures, to allow for legitimate comparison. The 334

relative change in cell aspect ratio (AR) under the two flow conditions was then analyzed for each 335

cell (Fig. 6), as a measure of cellular deformability. We have defined the cellular AR as the ratio of 336

the estimated minor to the major axis. A set of 14 cells was identified and manually classified as 337

seven deformable and seven non-deformable according to the morphological characteristics described 338

in Section 1.2. After analyzing the cellular AR of the adhered RBCs under the two flow conditions, 339

we found that the morphology of the sRBCs correlates to the deformability characteristics. The 340

cells classified morphologically as deformable showed a mean change in AR of about 20% on average 341

between flow and no flow. For those classified as non-deformable sRBCs, the average percent change 342

in AR was close to zero. Results are summarized in Fig. 6. Given the heterogeneity of the cell 343

shapes and errors introduced by the pixelation of the images, the AR changes of each subtype have 344

a distribution, but the difference in the average AR between the two distributions is statistically 345

significant (p = 0.00057). These results reproduce the link between morphology and deformability 346

observed in Alapan et. al. [9] in exactly the same experimental setup we use to do the deep learning 347

image analysis. Thus the classification into subtypes produced by the algorithm should be strongly 348

correlated with a key biomechanical feature of the individual sRBCs. 349

3.2 Phase I network performance 350

Efficacy of class balancing using transfer learning 351

To test the efficacy of our approach for mitigating class imbalance in Phase I, we compared the 352

performance of our network (pre-trained on class-balanced images) against one trained without any 353

kind of balance control. The confusion matrix results for each network are shown in Fig. 7B, along 354

with sample segmentation masks generated by the two networks. Since the the main utility of Phase 355

I in our scheme is to distinguish sRBC from non-sRBC pixels, the confusion matrices are presented 356

in terms of these two combined classes. Unsurprisingly, the imbalanced network performed poorly 357

for the minority (sRBC) class, while our approach worked very well for both classes. This is also 358

reflected in the trajectory of the training and validation loss for the two networks during the learning 359

process, as shown in Fig. 4. Our network begins to outperform the imbalanced one on both the 360

training and validation subsets early in the process, and achieves smaller losses at the end of the 361

training. 362
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Fig 6: Cell deformability analysis: A: Schematic for estimation of change in cell aspect ratio (AR)
between flow and no flow conditions. (i-ii) show a deformable type cell, and (iii-iv) a nondeformable.
B: Mapping deformability to morphology: Cells visually identified as the deformable morphological
subtype show significantly higher percentage change in cell AR between flow and no flow conditions
compared to the non-deformable subtype.

Segmentation performance evaluation 363

To quantify overall performance of our Phase I network, we computed the performance metrics [31]
defined below for a given class i, where i corresponds to either non-sRBC or sRBC pixel:

Precision(i) =
TPi

TPi + FPi
, (1)

Recall(i) =
TPi

TPi + FNi
, (2)

Prevalence(i) =
TPi + FNi

Total
. (3)

(4)

Here TPi, TNi, FPi, and FNi denote the number of true positive, true negative, false positive and 364

false negative outcomes in classifying a given target pixel into class i. “Total” represents the total 365

number of pixels involved in the evaluation. Precision indicates the agreement between predicted and 366

target class labels, while recall measures the the effectiveness of the neural network’s classification 367

ability when identifying pixel-classes. Prevalence tells us how often does a specific class actually 368

occur in the data set. 369

The results are summarized in Fig. 8. We see that despite the huge imbalance in non-sRBC 370

vs. sRBC pixels (evident in the pixel count confusion matrix of Fig. 8A and the discrepancy in 371

prevalence of Fig. 8B), our Phase I network is successful: it is able to reach state-of-the-art accuracy 372

in segmentation of channel images from whole blood experiments compared to similar studies in 373

literature [18,19], reaching & 97% accuracy in non-sRBC/sRBC pixel distinction in the testing set. 374
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Fig 7: (A) Example of an input image tile for the Phase I network, along with the manually labeled
segmentation mask assigning each pixel in the image to the classes listed on the right. (B) Given the
predominance of background pixels in the image tiles, we use a pre-trained class balancing method
for our Phase I network training. The results of this approach (panel ii) are compared against the
case without any balancing (panel i). We show the segmentation mask produced by each network for
the sample tile from A, with pixels predicted to be in the combined class sRBC colored red, while
those predicted to be non-sRBC left uncolored. Comparison to the true segmentation mask shows
that the pre-trained network does a much better job of distinguishing sRBC from non-sRBC pixels.
This is quantified in the two confusion matrices from each network’s test run, expressed in terms
of percentages. The matrix for the balanced network exhibits large diagonal elements (indicating
class-wise prediction accuracy), and negligible off-diagonals (indicating low mis-classification).
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Care must be taken in interpreting these metrics, and they should not be naively used as an adequate 375

standalone measure of the overall performance. As is commonly the case, we found that the bulk of 376

our error arose from segmentation of cell boundaries rather than the cell itself. Since we are more 377

concerned about locating centroids of the predicted segmentation masks, to crop and extract sRBC 378

images for classification in Phase II, the cell boundary errors do not significantly affect the final 379

results in our pipeline. 380

precision

0.2

0.4

0.6

0.8

1.0

0

A 

3.9 x 106 1959

3429 6.1 x 104

sRBCnon-sRBC

sR
BC

no
n-

sR
BC

tr
ue

 c
la

ss

predicted class

confusion matrix

sRBC

non-
sRBC

B performance metrics

recall prevalence

Fig 8: Phase I network performance metrics: (A) The customary confusion matrix in terms
of pixel label counts rather than percentages of the predictions on the test data. (B) The precision,
recall, and prevalence metrics, representing the overall performance of the network. The high values
of precision and recall for the non-sRBC and sRBC categories testify to the ability of the network to
correctly detect pixels belonging to sRBCs within large microchannel images. Prevalence illustrates
the imbalance of non-sRBC vs. sRBC pixels in our data set.

3.3 Phase II network performance 381

During learning, the network weights are optimized to make the class predictions for the training 382

data set as accurate as possible. However, depending on the training set and the stochastic nature 383

of the optimization process, the accuracy of the network on the testing set can vary. Attention to 384

this issue becomes imperative when dealing with smaller data sets for classification tasks, like in 385

our Phase II case. k-fold cross-validation is one approach to validate the overall performance of 386

the network in this scenario. The general procedure starts by shuffling the total data set before 387

splitting it into training/testing subsets, to generate an ensemble of k such unique subsets (or folds). 388

We choose k = 5, with an 80/20% split for training/testing sets. Each fold consists of a unique 389

combination of 20% of the images as the hold-out (test) set, and the remaining 80% as the training 390

set. Our combined data set of 6863 total images thus generates five unique folds with training and 391

testing sets containing 5488 and 1372 images each (accounting for rounding off). Finally, we fit 392

the neural network parameters on the training set and evaluate the performance on the test set for 393

five unique runs. Then for each single run, we collect the training and testing accuracy, listed in 394

Table 2. We also show the mean and standard deviation of all the folds, with the small standard 395

deviation being an indicator that our training did not suffer from overfitting. Performance metrics 396

and confusion matrices for fold 1 are shown in Fig. 9, highlighting the typical ∼ 95% accuracy in 397

object classification on the testing set. 398
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Fold No. Training Accuracy (%) Testing Accuracy (%) Training Time

1 97.78 95.63 13 min 25 sec

2 98.07 95.39 13 min 47 sec

3 98.07 93.59 14 min 36 sec

4 97.85 94.75 15 min 18 sec

5 97.85 94.97 15 min 10 sec

Mean 97.92±0.44 94.77±0.74 14 min 45 sec

Table 2: Results from the 5-fold cross-validation of the Phase II network.
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Fig 9: Phase II network performance metrics: (A) Representative examples of single-cell
images for each classifier category, the input for Phase II. (B-C) Confusion matrices giving classifier
performance accuracy on the training and testing sets (results shown for fold 1). Matrix elements are
the numbers of each case in the data set, with percentages shown additionally along the diagonals.
(D) Precision, recall and prevalence metrics for the network.

3.4 Processing Pipeline: Manual vs AI Performance 399

After both Phase I and II are complete, we are ready for the final test of our processing pipeline, 400

pitting the artificial intelligence (AI) deep learning approach against 3 human experts in detecting, 401

classifying, and counting adhered sRBCs for a set of 19 whole channel images displaying a wide 402
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variety of cells. Importantly, this competition between the two sides will highlight the workflow’s 403

true effectiveness and robustness for potentially replacing manual labor within biophysical studies of 404

SCD. Results are illustrated in Fig. 10. Error bars along the AI axis are obtained from recall metrics 405

of our classifier. Error bars on the manual axis are estimated from variance in repeated manual 406

analyses on a set of whole channel images. Panel A shows results for total adhered sRBC cell count 407

in each image, which can be taken as a proxy for overall object identification accuracy. We see how a 408

very high degree of agreement is reached between our AI and human experts, with an estimated R2
409

statistic value of 0.96. Note how the manual error bars increase with sample size. This has serious 410

implications for manual analyses of high cell count samples. A host of factors like longer duration of 411

analysis time, mental fatigue of the experimentalist, etc. can affect these numbers. An AI-based 412

automated classifier is immune to these human limitations. Panel B and C show comparison 413

results for subcounts of deformable and non-deformable sRBCs in each sample image, indicative 414

of classification accuracy. Excellent agreement is reached for deformable cells, with corresponding 415

R2 ∼ 0.95. For non-deformable cells—a category significantly harder to identify because of the high 416

degree of cross-correlating features with several objects in our “others” category—decent AI-manual 417

agreement is still achieved, with R2 ∼ 0.77. We that note that our human experts showed significant 418

variance among themselves in categorizing these kinds of images. The SCD pathogenetic pathway 419

exhibits a continuum of physiological features, which we are trying to sort into discrete categories. 420

Thus some level of disagreement is expected, particularly for images with borderline features between 421

classes (e.g. Fig. 1B(iii) and C(i)). The role of the AI then goes beyond simply matching human 422

performance. It takes on the role of a standardized arbiter for these borderline images, and improves 423

overall consistency in results compared to human performance, where random, spur-of-the-moment 424

classification decisions would play a sizeable role. 425
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Fig 10: Manual vs AI performance: Results from pitting count estimates from 19 whole
microchannel images processed through our automated two-part processing pipeline vs. manual
characterization. Error bars along the manual axis are obtained from variance in repeated manual
counts on a set of test images. The red line is the line of perfect agreement. Error bars on AI counts
are estimated from the precision rates reached by our Phase II classifier network in predicting true
positive outcomes in relevant categories on a test set (see Fig.9). R2 statistic values, indicating
goodness of agreement between manual and AI counts, are indicated in each graph. A: Results for
total sRBC (deformable + nondeformable) cell counts. This plot is illustrative of the high degree of
accuracy achieved by our AI in identifying sRBCs. B and C: Results for number of sRBCs in each
channel image classified manually and by AI as deformable or non deformable respectively. This
measures the agreement reached in classification of the two morphological categories.
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4 Conclusion 426

We designed and tested a deep learning image analysis workflow for a microfluidic SCD adhesion 427

assay that completely eliminates the need for user input requiring ad hoc expertise, enabling the 428

processing of large amounts of image data with robust and highly accurate results. For this study 429

our target problem was identifying sRBCs in complex, whole channel bright field images using 430

clinical whole blood samples, and distinguishing between their morphological subtypes (deformable 431

and non-deformable). These subtypes are in turn strongly correlated with sRBC biomechanical 432

properties, making the image analysis method a fast, high-throughput proxy for the much more 433

laborious cell-by-cell direct measurement of membrane deformability. We demonstrated that our 434

network performed robustly in terms of accuracy when pitted against trained personnel, while 435

improving analysis times by two orders of magnitude. 436

This proof-of-concept study focuses on sRBC deformable and non-deformable classification, but 437

this is by no means the only feature worth exploring. We are working on generalizing our workflow to 438

examine patient heterogeneities along more expanded metrics like white blood cell (WBC) content, 439

WBC versus sRBC content, emergent sub-types and so on. Clinical heterogeneities among SCD- 440

affected patients constitute a critical barrier to progress in treating the disease, and understanding 441

them will be crucial in designing targeted patient-specific curative therapies. Increasing the frequency 442

of therapeutic interventions, novel screening technologies, and better management of both acute 443

short term and chronic SCD complications have gone a long away in increasing patient survival. The 444

challenge lies in achieving targeted patient-specific administration of appropriate therapies, due to the 445

wide heterogeneity among clinical sub-phenotypes. Developing tools for consistent and comprehensive 446

monitoring of heterogeneities among patient groups is thus paramount. Emerging potentially curative 447

therapies like allogenic hematopoietic stem cell transplantation (HSCT) and targeted gene therapy 448

are also promising and becoming more widely available, but mostly in developed countries. These 449

treatments need to be streamlined and heavily standardized, requiring fast and affordable monitoring 450

tools for assessment of efficacy checkpoints and endpoint outcomes along multiple relevant metrics. 451

The advent of AI in high throughput, fully automated analyses of large amounts of data is able 452

to address both these needs. The workflow presented here has been designed for integration with 453

the SCD BioChip microfluidic assay, to ultimately realize the goal of delivering an SCD monitoring 454

platform capable of high throughput, highly standardized and reproducible automated batch analyses 455

enabled by AI. 456

Code availability 457

The code associated with this manuscript is available at: 458

https://github.com/hincz-lab/DeepLearning-SCDBiochip. 459
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