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We model a set of 70,694 publications and 347,136 distinct au-
thors using Bayesian networks to predict scientists’ specific con-
tributions on each of their publications. We predict the contri-
butions of 222,925 authors in 6,236,239 publications, and ap-
ply an archetypal analysis to profile scientists by career stage.
We divide scientific careers into four stages: junior, early-
career, mid-career and late-career. Three scientific archetypes
are found throughout the four career stages: leader, specialized,
and supporting. All three archetypes are encountered for the
early- and mid-career stages, whereas for junior and late-career
stages only two archetypes are found. Scientists assigned to the
leader and specialized archetypes tend to have longer careers
than researchers who belong to the supporting archetype. There
is consistent gender bias at all stages: the majority of male sci-
entists belong to the leader archetype, while the larger propor-
tion of women belong to the specialized archetype, especially for
early and mid-career researchers.
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Introduction

The assessment of scientific careers has been under scrutiny
for some time (1-3). Successful careers are built on concepts
such as leadership (4), productivity (1, 5), and impact (6, 7).
However, evidence suggests that the design of a unique ca-
reer path built on individualistic success may hamper the way
in which science is actually produced (8). Collaboration has
become essential and ubiquitous in science (8—10); however,
the increase in team size may come at a cost for those who
are not in leading roles (8). Recent evidence shows an in-
creasing need for a larger and more stratified scientific work-
force (11-14) which necessarily involves a reconceptualiza-
tion of research careers and considering a breadth of profiles
for which specific paths should be considered. The overre-
liance on past success (15, 16) may both reduce the scien-
tific careers of team players (8) and introduce gender biases
(17-19), discouraging women to pursue a career in academia
(20, 21). This heterogeneity in scientists’ profiles realizes the
need for distribution of labor (12). However, there is still
a lack of understanding of how research profiles differ from
each other, and how they are associated with career stages
(22).

The goal of this study is to analyze the relation between task
specialization and career length of scientists. Do specific pro-
files of scientists have shorter research careers than others?

How do profiles relate to gender? Are these differences also
reflected in productivity and citations? To answer those ques-
tions, we develop a Bayesian network—that is, a probabilistic
graphical model—-to predict the specific contributions scien-
tists made to each of their publications throughout their ca-
reer. We then profile researchers based on their contributions
and explore how those profiles evolve throughout their ca-
reers. We investigate how profiles at each career stage affect
career length, with a particular focus on the relationship with
the perceived gender of the scientist. Finally, we examine
the relationship between profiles and bibliometric character-
istics, such as research production and scientific impact.

Our seed dataset contains a total of 70,694 papers authored
by 347,136 scientists from the Medical and Life Sciences.
Author names are disambiguated using a rule-based scoring
algorithm (23). Each author has also been linked to their bib-
liometric data from Web of Science. We restrict our dataset
to the Medical and Life Sciences to make it more homoge-
neous and avoid disciplinary differences in task distribution.
We assign papers to fields by identifying the journal to which
each of the references of the publications in our dataset be-
long. Then, we assign to each publication, the field from
which most of its references come. Finally, we only include
those which are assigned to the Medical and Life Sciences
fields. Further details are provided in the Materials and Meth-
ods section.

We then build a probabilistic model to predict authors’ con-
tribution to publications, based on a set of bibliometric vari-
ables. This model allows us to extend our analysis from the
initial dataset to the complete publication history of these au-
thors. We reconstruct the publication history of 222,925 au-
thors from our original dataset and predict, for each author,
the probability of conducting a given contribution on each
of their publications. Based on the new dataset of predicted
probabilities of contributorship, we divide scientists’ careers
into four stages and conduct an archetypal analysis (24) by
stage. This allows us to identify career paths and discuss dif-
ferences in scientific profiles by stage, scientific paths, and
gender.

Results

Contribution statements and predicting variables. Five
types of contributions are identified in the contribution
dataset: wrote the paper (WR), conceived and designed the

Henriques etal. | bioRxiv | July1,2020 | 1-12


https://doi.org/10.1101/2020.07.01.181669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181669; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

experiments (CE), performed the experiments (PE), analyzed
the data (AD), and contributed reagents/materials/analysis
tools (CT). Furthermore, the number of contributions (NC)
is also considered. These contributions are related to author
position (8, 10, 25), with first and last positions in author or-
der reflecting leadership (26), as per the recommendations
of the (27). Figure 1 relates career stage and author order
with contribution role. We define four career stages: junior
(< 5 years since first publication), early-career (> 5 and <
15 years since first publication), mid-career (> 15 and < 30
years since first publication) and late-career (> 30 years since
first publication).

The distribution of contribution roles by career stage shows
that earlier stages are more often associated with perform-
ing experiments and analyzing data, and that this contribu-
tion decreases as individuals become more senior. Writ-
ing the manuscript and contributing reagents and tools in-
crease over time, with a decline in the late-career stage. Con-
ceiving and designing the experiments demonstrates a modal
shape, where early-career and mid-career stages are the ones
in which these tasks are more prominent. In terms of labor
distribution, first authors are heavily associated with all con-
tributions, with the exception of contributing tools, reagents,
data, and other materials. Middle authors are less involved
in writing tasks or in the design and conception of exper-
iments but are associated with contributing resources to a
much greater extent. Lastly, authors contribute mostly to the
design and conception of experiments as well as to writing
tasks, and to a lesser extent to the performance of experi-
ments.

Bibliometric indicators are employed as predictors of con-
tributorship. Two types of bibliometric variables are in-
cluded: paper-level and author-level. Paper-level variables
are document type (DT), number of authors (AU), number
of countries (CO), and institutions (IN) to which authors of
the paper are affiliated. Author-level variables include their
position in the authors’ list (PO), number of years since they
published their first publication (YE) and the average number
of publications per year (PU).

Figure 2A depicts the Spearman rank correlation matrix of
the contributorship and bibliometric data, while Figure 2B
illustrates the Bayesian network used for predicting the con-
tribution of a researcher for a given publication. The high-
est correlations within types of contributorship are between
writing the manuscript and conceiving and designing the ex-
periments (0.51), while the rest of contributorship variables
exhibit low correlations. In the case of bibliometric variables,
there is a moderate positive correlation between number of
countries and institutions (0.57), author position and number
of authors (0.54), and number of authors and number of in-
stitutions (0.51). A positive monotone relation between the
number of contributions and either writing the manuscript
(0.69), conceiving the experiments (0.66) or analyzing the
data (0.64) is observed. Weak monotone relationships are
suggested by correlations between contributorship and bib-
liometric variables are observed. A negative correlation of
-0.38 is observed between performing the experiments and
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position in authors list and years since publication. Weak
to moderate negative correlations are observed between con-
tributorship variables and the number of countries and insti-
tutions, author’s position, and number of authors of a publi-
cation.

Bayesian network model for predicting contributor-
ship. We model our dataset using a Bayesian network (BN)
to be able to predict contribution roles of scientists for their
publications. The aim here is to expand our original dataset to
the complete publication history of the 347,136 researchers
from the Medical and Life Sciences who had published at
least one paper in our PLOS seed dataset. A BN is a prob-
abilistic graphical tool used to model multivariate data (28).
The variables are denoted as nodes in the network, whereas
the arcs denote influences between variables, typically quan-
tified as dependencies.

Figure 2B shows the structure of the obtained BN. Five types
of contributions along with the number of contributions (in
green) of scientists are predicted using the seven bibliometric
variables (in blue). The structure of the BN has been obtained
by using a hybrid data-learning algorithm called Max-Min
Hill Climbing (MMHC) (29), along with the constraint that
bibliometric variables are influencing contributorship vari-
ables. That is, if an arc between bibliometric and contrib-
utorship variables is present in the structure, then it should
be directed to the contributorship variable. Furthermore, the
structure of the network has been tested for robustness. The
strength of the arcs, i.e., relationships between variables, has
been investigated using the bootstrap procedure, with 50 rep-
etitions. Only the arcs that were present in 80% of the repe-
titions have been considered and are depicted in Figure 2B.
We evaluate the predictive power of the obtained BN using
k-fold cross-validation. That is, the data has been repeatedly
divided in 10 random folds, of which 9 have been used to
learn the BN structure using the MMHC algorithm together
with the aforementioned constrained. The contributions were
then predicted for the remaining fold. The procedure has
been repeated for each of the 10 folds and results on the pre-
diction errors are reported in the Data and Methods section.
The predictive performance of the BN has been shown to
be extremely good, with an average classification error rate
of between 6-8% for all contributorships. The BN is used
to predict the contributions for the complete publication his-
tory of a subset of 222,925 scientists who have published in
PLOS journals, for a total of 6,236,239 publications. Each
contribution is predicted as the probability that an author has
performed a given contribution on a publication. We further
investigate the distributions of the predicted contributorships.
When distinguishing by career stage (Figure 3), the densities
clearly depict differences in contributorships. Performing the
experiments is the most discriminative contributorship type,
with junior scientists more likely be associated with this con-
tribution. The more scientists advance in their career, the less
likely that they will perform the experiments. Albeit less
dramatic, the same discriminative pattern can be observed
for analyzing the data and for the total number of contrib-
utorships, with decreasing association by age. Inversely, the
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Fig. 2. Spearman correlation matrix of contributorship and bibliometric variables (A) and the Bayesian network used for predicting contributorship (B). Contribution variables
are in green, bibliometric variables are in blue. Bibliometric variables: PO (author’s position); AU (number of authors); DT (document type); CO (number of countries); IN
(number of institutions); YE (years since first publication); PU (average number of publications). Contribution variables: WR (wrote the paper); AD (analyzed the data); CE
(conceived and designed the experiments); CT (contributed reagents/materials/analysis tools); PE (performed the experiments); NC (number of contributions).
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Fig. 3. Probability density functions of contribution roles predicted using the Bayesian Network model. Distributions are aggregated by career stage.

contribution roles of wrote the manuscript, conceived the ex-
periments, and contributed with tools are more likely for ad-
vanced career stages.

Profiling scientists using archetypal analysis. We ag-
gregate the predicted contributorships at the individual level
and by career stage to profile scientists based on their contrib-
utorship patterns. To avoid the effect of contributorship out-
liers, we aggregate researchers’ contributorships by choosing
the median predicted contributorship of publications for each
career stage. We perform a robust archetypal analysis to iden-
tify types of scientists based on their contributorships (30).
Archetypes accentuate distinct features of scientists based on
contribution data. Robust archetypal analysis identifies “pro-
totypical types” of the multivariate aggregated contributor-
ship dataset, correcting for outlier effects in the data. Each of
these “prototypical types” or archetypes is represented as a
convex combination of researchers in the aggregated contrib-
utorship dataset and, in turn, each researcher is well described
by a convex combination of these archetypes.
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We consider archetypes of scientists at each career stage.
A residual sum of squares (RSS) analysis for different
archetypes reveals that using two archetypes for the junior
and late-career stages, and three for early-career and mid-
career stages results in significantly smaller RSS. Figure ??
reveals the screeplots of RSS per career stage, where the el-
bow criterion supports the choice of number of archetypes
per career stage. The influence of contributorships within
each archetype is captured by corresponding coefficient val-
ues. Coefficients of each archetype (Leader, Specialized and
Supporting) per career stage are presented in Figure 4. Low
values indicate low prevalence of corresponding type of con-
tributorship, whereas high values indicate a high contribution
to the archetype.

A first notable observation is that differences in contributions
are remarkably small for certain archetypes throughout career
stages. Given that the archetypes at each stage have common
characteristics, we maintain the same profile naming across
stages. Three archetypes are identified. The Leader is charac-
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Fig. 4. Coefficient values of contributorships by archetype, per career stage. Two
archetypes are identified in the junior stage (Specialized and Supporting), three
have been identified for the early- and mid-career (Leader, Specialized and Sup-
porting) and two have been identified for the late-career stage (Leader and Sup-
porting).

terized by high coefficient values for all contributions, except
for PE, indicating a high prevalence of each contribution role,
and especially on WR and CE. The Specialized archetype is
characterized by high coefficient values for PE and AD. A
trend analysis for this archetype indicates a shift between PE
and AD contributions. The third archetype is referred to as
the Supporting, and is characterized by generally low val-
ues for all contributorships. This is the least discriminatory
archetype.

At the junior stage, we observe two archetypes: Specialized
and Supporting. Both are characterized by scientists report-
ing more than two contributions per paper. For the Special-
ized archetype, the most prevalent roles are on PE and AD,
although they show higher coefficients than Supporting for
all contributorships except CT (with a marginal difference).
At the early-career stage, three archetypes are obtained, with
a clear difference on PE between Leader and Specialized.
These three archetypes are maintained during the mid-career
stage, with the most notable difference being the shift be-
tween AD and PE for the Specialized, that now exhibits a
higher probability of conducting the former than the latter. In
the late-career stage, the Specialized archetype is no longer
identified, and again two archetypes emerge. Both archetypes
show low probabilities on PE, while the Leader is charac-
terized by a higher probability on WR and CE. Overall, the
archetypal analysis shows that the predictions obtained from
the BN can accurately capture the diversity of archetypes of
scientists and are sufficiently discriminating.

Career paths, productivity and citation impact. Simi-
larities between the archetypes are identified at each career
stage, demonstrating the stability of the classification by sci-
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entific age (Figure 4). In turn, each scientist can be repre-
sented as a weighted combination of the archetypes. For a
given scientist, the weights, or « scores, corresponding to
each archetype determine the researchers’ assignment to one
of the two or three archetypes. Here, we assign researchers
to archetypes based on the highest weight. The assignment
can be done for each career stage, which naturally leads to a
career path.

Figure 5A presents the assignment of researchers to the
archetypes and their evolution over the four career stages,
using the maximum coefficients and the median aggregation
method. However, we observe some patterns by archetype.
Out of the 222,295 scientists included in the dataset, 27,714
reached the late-career stage. We observe that there is lit-
tle attrition, regardless of the archetype to which scientists
belong, between the junior and early-career stage (93% for
junior Specialized and 83% for Supporting authors). At the
early-career stage, when the Leader archetype emerges, the
advantage of those exhibiting a Leader profile becomes evi-
dent: 84% of scientists who belong to the Leader archetype
in their early-career reach the next career stage, while 30%
and 16% of Specialized and Supporting scientists progress to
mid-career stage respectively. The cost is even higher from
mid-career to late-career, with 37% of Leader profile scien-
tists, and only 1% and 2% of Specialized and Supporting au-
thors reaching the last career stage.

Furthermore, 98% of scientists reaching the late-career stage
exhibited a Specialized archetype in their junior stage, and
67% of those reaching this last career stage have consistently
displayed a Leader profile in early- and mid-career stages.
Shifts across archetypes appear more likely at earlier career
stages, as well as from the Leader archetype to the other two
archetypes (but not vice versa). Even though most of the sci-
entists reaching the late-career stage belong to the Leader
archetype in their mid-career stage, 66% of late-career re-
searchers are in a Supporting role, although they remain in-
volved in more than one contributorship type.

When comparing archetypes by number of publications (Fig-
ure 5B), we observe almost no differences on publication
rates in the junior stage. Nonetheless, differences emerge for
later career stages. Except for the late-career stage, where
Supporting scientists are the most productive, the Leader
archetype exhibits higher productivity, followed by Support-
ing. Specialized scientists appear to be much less produc-
tive than scientists assigned to the other two archetypes in the
early- and mid-career stages. This pattern is also observed for
Specialized, in the case of citation impact. However, differ-
ences in terms of share of highly cited publications between
the Leader and the Supporting archetypes are much smaller,
with the latter exhibiting higher values.

Archetypes and gender. Figure 6 shows that scientists are
unevenly distributed by gender in each archetype. Note that
scientists from different generations are included in the anal-
ysis, therefore, caution should be expressed in drawing any
conclusion on the number of scientists by gender that reach
the late-career stage. The share of women who reach the late-
career stage is affected by the generational diversity of sci-
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entists and hence we make comparisons only within career
stage. As observed, a gender disparity on the distribution by
archetype and stage is consistent in all career stages. The
share of men is higher for the Specialized archetype at the ju-
nior stage, and for the Leader archetype at the early- and mid-
career stages. The second most frequent is the Specialized
archetype, with few men in the Supporting archetype, except
for the late-career stage. Women are less likely to appear
as the Leader archetype in the early- and mid-career stages.
Whereas 87% of men in the junior stage have a Specialized
archetype, 43% and 77% in the early- and mid-stage are des-
ignated as Leaders; 84% of women in junior are Specialized,
and only 27% and 65% in early- and mid-career stages are as-
signed to that profile. The gender distribution becomes more
balanced again at the late-career stage, where 35% of men
and 31% of women are in the Leader archetype. In summary,
women appear to group within the Specialized archetype in
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the early-career stage, and show similar distributions to that
of men at the other career stages, although the shares of the
Leader archetype are consistently lower to that of men.

Archetypes and author position. We analyze the relation-
ship between author order and archetypes by career stage.
Figure 7 shows the share of papers by archetype and career
stage of scientists based on their author position. Middle au-
thorships occupy a larger share of publications irrespective
of the archetype or career stage, which is a consequence of
the fact that any paper with more than three authors, most
authors are in middle positions. We do observe, however,
variation in middle authorship by career stage. At the junior
stage, middle authorships account for half of the papers from
Specialized scientists, while Supporting scientists occupy a
middle position in almost 75% of their publications. In the
early-career stage, the Leader archetype emerges, exhibiting
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a more balanced share of publications between first (32%),
middle (37%) and last positions (32%). Specialized scientists
publish a slightly higher share as first authors (36%) but al-
most in half of their papers appear in middle positions (48%).
The Supporting archetype publishes more than half of their
papers as middle authors (53%), evenly distributed between
first and last authored publications.

At the mid-career stage, Leader scientists start to shift to last
positions (36%), with only 26% of their publications being
first authored. Specialized scientists become the middle au-
thors in 55% of their publications and are last authors on 23%
of their publications. Supporting scientists, however, position
themselves as last authors in 35% of their publications. The
Specialized archetype disappears in the late-career stage. The
Leader and Supporting archetypes show similar distributions
of publications according to their author position, revealing
that at this stage, author position is more related with senior-
ity than contributorship.
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Discussion

Scientists are immersed in a reward system that evaluates
them individually following uniform expectations of leader-
ship and excellence (1, 15, 16, 31). Such evaluation mecha-
nisms do not consider the fact that science increasingly relies
on larger teams of scientists to be able to tackle grand chal-
lenges (14), which requires specialization across tasks (12).
Claims have been made that the breadth and diversity of pro-
files need to be taken into account when assessing individual
research performance (8, 10). Here we identify and charac-
terize such diversity of profiles by career stage, by combining
contribution statements with bibliometric variables and ap-
plying a machine learning algorithm to predict contributions.
We find that scientists display different archetypes at different
stages, following many paths during their career trajectory.
Some paths, however, come at a cost. Out of the 222,295
scientists included in our dataset, only 12% reached the late-
career stage, out of which the vast majority (98%) displayed a
Specialized archetype in their junior stage. Even though most
of them belonged to the Leader archetype in their early- and
mid-career stages, scientists at the late-career stage mostly
exhibit a Supporting archetype (66%). This could be hap-
pening because many scientists adopt a secondary role when
they reach seniority, leaving the leading role to their younger
colleagues.

The names assigned to each archetype are figurative but re-
flect an implicit hierarchy in science. This hierarchy exists
at each career stage, indicating that the diversity of profiles
is not the result of scientists evolving in their career trajec-
tory and adopting different roles, but that diverse archetypes
exist between and within career stages. The archetypal anal-
ysis identified no Leader archetype at the junior stage, when
scientists are still ’earning their stripes’, nor are there Spe-
cialized scientists in the late-career stage. Such reality en-
ters into conflict with the current expectations on research ca-
reers, which consider roles to be attached with career stages
and steps that must be made to progress. Our findings have
important policy implications as they indicate that scientists’
career design may be at odds with the way science is pro-
duced, and suggest a complete reform wherein reproduction
of Leaders is not the only model of success (8).

Our results demonstrate the high versatility of the Leader
archetype: scientists with this profile are able to move seam-
lessly across archetypes during their careers. While there are
some scientists with a Specialized or Supporting profile who
manage to shift to the other three archetypes, most of the sci-
entists fitting these archetypes in our dataset do not progress
to more senior stages. Our analysis on productivity and ci-
tation impact by archetype sheds light on the mechanisms
which may be affecting trajectories. Specialized scientists
are less productive and have a lower share of highly cited
publications than Leaders and Supporting scientists, which
may serve a disadvantage for career advancement in envi-
ronments which prioritize bibliometric indicators in research
assessment (Figure 5B,C). The lack of assessment schemes
sensitive to the diversity of profiles, partly due the inappropri-
ate use of bibliometric indicators at the individual researcher
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level (1, 32), limits the capacity of policies to correct for in-
equalities observed across and within archetypes. Structural
changes in the academic reward system are necessary to sup-
port the advancement and retention of Specialized and Sup-
porting scientists.

We observe consistent differences in the distribution of
archetypes by gender, which may contribute to explain the
higher rates of attrition for women (21). Early-career stage is
key to the development of scientific careers, and it is at this
stage that large gender differences are observed. While in
the other career stages women and men exhibit a similar dis-
tribution of archetypes, women are more likely to be of the
Specialized archetype in early-career, while men are more
likely to be Leaders. That women disproportionately engage
in technical labor-even when controlling for academic age—
has been demonstrated in previous studies (18). This is con-
sistent with general patterns in academic labor; for example,
the higher service work done by women academics (33).
Contributorships are generally associated with author order
(10, 25), based on the presumption that first and last author
will have major roles, while middle authors will play a sec-
ondary role. These roles reinforce hierarchy and organiza-
tional strategies: leaders set the agenda and define lines of
work, whereas technicians are prized for their ability to im-
plement this agenda (34). This model, however, does not
provide equal access to career advancement for all scientists:
those showcasing a Specialized or Supporting archetype in
their early- and mid-career stages have greater difficulties
to progress in their research career. These obstacles affect
women at a greater extent than men, as a higher propor-
tion of female scientists adopt these roles. Our findings sug-
gest systematic biases on the selection of individuals which
may be hampering the efficiency of the scientific system to
self-organize itself and assemble robust and diverse scientific
teams.

Methods and Materials

The data needed to reproduce the paper are openly accessible
at http://doi.org/10.5281/zenodo.3891055.

Our analysis is based on two datasets: a seed dataset of
contributorship statements and dataset of researchers’ late-
publication histories. The seed dataset combines bibliomet-
ric and contributorship data for 85,260 publications from
7 PLOS journals, during the 2006-2013 period. Although
many biomedical journals have adopted contributorship state-
ments (e.g., BMJ, The Lancet), PLOS journals provide data
in an XML format which ease the data retrieval process.
This dataset is used to train a predicting model of contribu-
torship based on bibliometric variables. The full publication
histories dataset contains the complete publication history of
the 222,925 authors selected from the list of publications of
the first dataset. This dataset is used to predict authors’ con-
tributorship per paper and is later aggregated at the individual
level to identify archetypes of scientists per career stage.

Contributorship statements. We used a dataset of 85,260
distinct PLOS papers published during the 2006-2013 pe-
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riod. This dataset was gathered from the PLOS website in
combination with Web of Science data. Full account of the
complete extraction procedure is provided in a previous study
(12). For each publication and author, a dummy value is as-
signed based on the tasks they performed. Table 2 shows
the list of journals together with the number of publications
per journal. 88% of the publications have been published in
PLOS One. Seven types of contributions were originally in-
cluded in the dataset. Only five of those contributorships are
being used consistently throughout the dataset. "Approved fi-
nal version of the manuscript" and "Other contributions" are
present in less than 5% and 20% of the papers respectively.
While the former is a requirement of the ICMJE and there-
fore is used mostly in PLOS Medicine, the latter is not an in-
dividual category, but an aggregate containing nearly 20,000
different types of contributions. The low incidence of the
"Approved final version" contribution together with the diffi-
culties in interpreting the "Other" contributorship led to their
exclusion from the analysis.

Bibliometric data. The bibliometric data is obtained from the
CWTS (Leiden University) in-house version of the Web of
Science. This database contained at the moment of analysis
all publications included in the Science Citation Index Ex-
panded, Social Science Citation Index, and Arts and Human-
ities Citation Index for the 1980-2017 period. Furthermore,
an author name disambiguation algorithm (23) is applied to
the complete database, allowing to identify a scientist’s com-
plete publication history. This allowed us to retrieve, for each
paper contained in the contribution dataset, bibliometric vari-
ables at the publication and at the author level. A set of seven
bibliometric variables is considered, which is described in Ta-
ble 1 by author-publication combination. Here, we highlight
the use of the variable years since first publication (YE). This
variable is used to determine the age of scientists and is used
later to estimate the different career stages of the individuals
identified. Our use of the year of first publication as an indi-
cator for academic age is based on previous research (35), in
which the year of first publication is found to be the best pre-
dictor for the age of scientists. In the case of productivity, we
use a full counting approach. While fractional counting can
be considered as being more accurate from a mathematical
point of view (36), the focus here is on the previous pub-
lication experience of the author and how that might influ-
ence their role in future publications. Hence we consider full
counting to suit best the purposes of the analysis.

Merging of bibliometric and contribution data. The merging
process was undertaken by matching documents by their DOI
identifier and authors who had the same initials and surname
in both datasets. We only included papers for which all au-
thors were successfully matched. After this process was un-
dertaken, we ended up with a total of 77,749 publications,
containing a total of 369,537 disambiguated unique authors.

Subject field identification. We assigned a subject field to

each publication and filtered only those publications that be-
long to the Medical and Life Sciences to ensure consistency
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Table 1. Definition of variables included in the dataset.

Acronym Definition Source
Bibliometric variables
PO Author’s position in the paper WoS
AU Total number of authors in the paper WoS
DT Document type. Letters are excluded WoS
CcO Number of countries to which authors of the paper are affiliated WoS
IN Number of institutions to which authors of the paper are affiliated WoS
YE Number of years since first publication at the time the paper was published WoS
PU Average number of publications (full counting) per year of the author at the time =~ WoS
the paper was published
Contribution variables
WR Wrote the paper PLOS
AD Analyzed the data PLOS
PE Performed the experiments PLOS
CE Conceived and designed the experiments PLOS
CT Contributed reagents/materials/analysis tools PLOS
NC Number of contributions PLOS

on publication patterns and distribution of contributorships.
For this, we used the Dutch NOWT Classification which in-
troduces three levels of categorization: 7 broad areas, 14
fields, and 34 subjects. This classification is linked to the the
Web of Science subject categories (see correspondence here
https://www.cwts.nl/pdf/nowt lassi ficationgc.pdf ). The
classification is made at the journal level, which implies that,
given the high incidence of the PloS One papers in our data
set, most publications would be categorized as Multidisci-
plinary. To overcome this issue, publications in Multidisci-
plinary were reclassified into other more specific fields based
on their reference lists. We identified the journal to which
each of the references of the publications in our data set be-
long to. Then, we assigned to each publication the field from
which most of its references come from. Finally, we only in-
clude those which are assigned to the Medical and Life Sci-
ences fields. A total of 70,694 publications and 347,136 dis-
tinct authors were extracted from this process, constituting
the “seed data set”.

Publication history of individual scientists. We recon-
structed the publication histories of scientists, and predicted
their contributions throughout their careers. The set of au-
thors identified is retrieved from the seed dataset to en-
sure consistency on the predictions of the Bayesian Network
model. But a series of thresholds are imposed. First, we re-
trieve authors’ gender using the following sources to identify
gender: Gender API, Genderize.io and Gender Guesser. We
apply a 90% accuracy threshold before assigning gender and
only include those authors who surpass such threshold. Sec-
ond, we include only authors whose first publication occurred
from 1980 onwards. While the CWTS in-house database in-
cludes publications prior to 1980, it does not contain meta-
data of sufficient quality as to rely on the name disambigua-
tion algorithm. Hence, authors with their first publication
prior to 1980 are discarded. Third, we include only authors
who have contributed to at least five publications. We do
this for two reasons. On the one hand, we remove transient
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Table 2. Distribution of papers by journal of the seed dataset on contributions.

Journal No. of papers
PLOS ONE 62,174
PLOS GENETICS 2,408
PLOS PATHOGENS 1,882
PLOS COMPUTATIONAL BIOLOGY 1,684
PLOS NEGLECTED TROPICAL DISEASES 1,432
PLOS BIOLOGY 697
PLOS MEDICINE 417

authors, that is, those who have published sporadically, and
focus only on scientists that have more chances of being pur-
suing a research career. On the other hand, this increases the
accuracy of the author name disambiguation performed on
those researchers. This is specially relevant since the algo-
rithm adopts a conservative approach: when confronted with
individuals having outlier patterns of behavior, such as rapid
shifts across publication venues, disciplines and co-authors,
it will consider them as different authors and consequently
split their publications across different “individuals”. Hence,
by including a publication threshold, we focus on those in-
dividuals for whom the algorithm is more robust and accu-
rate at identifying them uniquely. Last, we remove the pub-
lications classified as letters to ensure consistency between
the two datasets with respect to the document type. As a re-
sult, the final dataset contains a total of 222,925 individuals
and 6,236,239 distinct publications. The reason for the much
larger set of publications is that for those scientists identified
in the Seed dataset, we have expanded to all their other pub-
lications identified by the algorithm (and not just those from
Table 2).

Bayesian networks for predicting contributorships.
Bayesian networks (BNs) graphically depict interactions
among dependent multivariate data. The network struc-
ture represents a directed acyclic graph (DAG), where nodes
represent random variables and arcs encode direct influ-
ences. Along with dependence statements, a BN encodes
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conditional independence statements among random vari-
ables. These conditional independencies are described by
the d-separation concept (28) and are captured graphically
by the BN structure. The Markov property ensures a conve-
nient factorization of the joint distribution of the multivari-
ate data. Say n continuously distributed random variables
X1,Xo,..., X, are modeled by a Bayesian network. Then,
the joint probability density function can factorize in the fol-
lowing manner

n
flar, e, mn) = [ [ @il Pa(X3)), ¢V
i=1
where Pa(X;), for i =1,...,n, represents the parent set of

node X, that is, the set of nodes (variables) whose arcs are
directed at X;. The conditional densities f(x;|Ps(X;)), for
i =1,...,n, of each random variable conditioned on its set
of parent nodes encode the Markov property. The joint den-
sity factorization therefore depends on the structure of the
network, that is, on the presence or absence of arcs and their
directions.

There are numerous structures that can be considered, and
the number of structures grows super-exponentially with the
number of variables (35). Let a,, denote the number of BNs
with n random variables. Then

n
_ C\VE+L M ok(n—k)
an = 1;1( DM 2R N an g, @
where ag = 1. The structure of a BN can be learned from
data or from experts, or from mixing data-driven algorithms
with expert input.

Data driven learning algorithms of a BN structured are
broadly categorized into constraint-based and score-based
learning algorithms (36). Constraint-based methods rely on
conditional independence tests, whereas score-based meth-
ods employ likelihood-based metrics to evaluate structures.
Both types of algorithms also contain a search procedure,
such as a local search in the space of network structure
(36, 37). We employ the Max-Min Hill-Climbing (MMHC)
algorithm (29), which combined techniques from constraint
and score-based algorithms, along with an initial local dis-
covery algorithm of edges without any orientation.

We have employed a mixed approach, which imposed, via a
white list, the direct influences of bibliometric to contributor-
ship variables. The white-listed arcs are depicted in red in
Figure S1. It is noteworthy that the arcs were present from
employing the MMHC data-driven algorithm, and only the
direction was switched. These white-listed nodes have been
accounted for in learning the structure with the remaining
variables. Thus, the remaining arcs in the BN together with
their directionality have been fully assigned by using data-
driven algorithms.

Finally, the BN structure has been subjected a robustness
check by employing a bootstrap procedure, by which boot-
strap replications of the data have been sampled 50 times
from the initial data, with replacement. The bootstrap sam-
ples had the same size as the initial dataset. The MMHC
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Table 3. Classification error rates from cross-validation of Bayesian Network model
for the contribution variables.

Variables Min. Median Mean Max.
WR 0.062 0.064 0.064 0.065
AD 0.064  0.067 0.067 0.069
PE 0.072 0.075 0.075 0.077
CE 0.062 0.064 0.064 0.066
CT 0.077 0.078 0.078 0.081
NC 0.729 0.732 0.732 0.735

algorithm has provided network structures and the arcs that
have appeared in at least 80% of the structures have been re-
tained. Figure 2B illustrates the resulting network. The BN
analysis has been performed using the bnlearn package in R
(36).

Crossvalidation. To validate the BN used for predictions,
we perform a k-fold cross-validation. The data are split in 10
subsets. For each subset, in turn, the BN is fitted on the other
k - 1 subsets and a predictive loss function is then computed
using that subset. Loss estimates for each of the k subsets are
then combined to give an overall predictive loss. Since we
are interested in predicting whether a scientist had a certain
contributorship for the publications in the dataset, we trans-
late the predictive loss into classification error. That is, we
quantify the classification error rate of the BN in predicting a
certain contributorship, given the bibliometric information of
scientists and publications. The classification error rates ob-
tained for each contributorship are shown in Table 3. While
the error rates obtained are quite low, it is true that this valida-
tion is performed using data which is of the same nature as the
data on which the BN has been quantified. This means that
the extent to which contribution patterns in our dataset can be
inferred to other datasets should be further investigated using
different journals or fields.

Constructing scientific profiles.

Data aggregation. Predicted probabilities of all contributor-
ship types obtained from the BN are available for each
author-publication combination. We aim to aggregate those
prediction at the author level, that is, to derive, for each sci-
entist, the probability of fulfilling each contribution role. For
this, we used the median probability value per contribution
type. Furthermore, we grouped the publications by career
stage, that is, publications within 5 years from the first pub-
lication (junior stage), publications between 5 and 15 years
from first publication (early-career), publications between 15
and 30 years from first publication (mid-career) and publica-
tions after 30 years from first publication (late-career). Here
must note that the selection of the time periods was selected
for convenience and that any other division could have been
selected. For each researcher, we obtain a median probability
per contribution type and career stage.

Suppose within career stage i, withi =1,...,4, a scientist has
k publications. Let pé- the probability that the scientist per-
forms contributorship 5 within career stage ¢, for j =1,...,5
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denoting the five different types of contributions (WR, CT,
CE, PE, AD). Then

p; :Medlan(p;’l;p;72>7p_§,k)7 (3)

where p7, 1)* is the predicted probability of contribution j of
the scientist’s first publication in career stage i. For the num-
ber of contributions (NC), the same aggregation is applied

NC]?:Median(NC%,m»NC/i) @

where NC1 is the predicted number of contributions for the
first paper in career stage i.

Robust archetypal analysis. Profiles of researchers, by ca-
reer stage, are obtained using a robust archetypal analysis.
Archetypal analysis aims to identify archetypes that emerge
from the given contribution data for scientists. This approach
has been previously applied to identify scientists’ profiles
based on citation and publication data (40). The archetypes
are extreme observations in a multivariate dataset and rep-
resented as convex combinations of the observations in the
dataset that result from a least squares problem (24). For
multivariate data with n observations (scientists, per career
stage, in our case) and m random variables (types of con-
tributorships, in our case), then X is a nxm matrix denoting
the aggregated dataset. For given k archetypes, denote by Z
the kxm the matrix of archetypes, represented in terms of the
types of contributorships. Then, the residual sum of squares
(RSS) plotted in Figure S1 is denoted by

RSS =||X —aZ™||, (5)

with Z = XTﬂ, where «, are positive coefficients and
where || -||2 denotes the Euclidean matrix norm. In turn,
each observation in the dataset can be represented as a convex
combination of the archetypes

X ~aZT (6)

In the standard approach of archetypal analysis, each residual
contributes to the RSS with equal weight. The archetypal
analysis is thus sensitive to outliers, whose large residuals
can contribute significantly to the RSS. A robust archetypal
analysis (30) has been proposed to weight down the influence
of outliers to the construction of archetypes. By letting W be
a nxn matrix of weights, we define the weighted RSS

RSS =||W(X —aZ")||2. ()

The weights can be chosen by the user or can be chosen to
depend on each observation’s residual. The robust archetypal
analysis proposed by (30) proposes an iterative re-weighted
least squares algorithm. Unlike the k-means clustering ap-
proach, which engages averaging when profiling out clus-
ters, archetypal analysis focuses on extremes and explore
the heterogeneity of complex multivariate data. Furthermore,
archetypes are not forced to be mutually exclusive, as prin-
cipal components are, nor do they remain the same when the
number of considered archetypes is changing. The archetypal
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analysis has been performed using the archetypes package in
R (38).

Limitations of the study.

Representativeness of the sample of scientists. The analy-
sis is based on a set of publications and a sample of scientists
which may not represent accurately the whole population of
scientists. This means that, despite the robustness of the re-
sults, any inference to the whole population should be done
with caution. Furthermore, the thresholds imposed to intro-
duce such scientists in the archetypal analysis further restricts
such inference endeavour. If we compare the productivity
distributions of our set of researchers and for the whole pop-
ulation of the Web of Science, we observe that while we still
retain a high skewness of productivity, this is much lower
than the overall one.

Identification of scientists. The study relies heavily on the
competence of an author name disambiguation algorithm
to correctly identify disambiguated authors. As previously
noted, this algorithm has some limitations which are partially
overcome by the production thresholds imposed. However,
inaccurate assignments can still occur.

Author age. We estimate researchers’ age based on the year
of first publication and build the four career stages based on
such year. However, alternative approaches could have been
adopted and these could have some impact on the results. For
instance, first year of first-authored publication could have
been used instead. The selection of the first year of publica-
tion is based on empirical data suggesting that it is the best
proxy for PhD year (39).

Taxonomy of contributorships. In this paper, contributions
are classified into five types. These types are obtained from
the data itself. However, one may question the appropriate-
ness of the number and contribution types. The ones used in
this paper are consistent with those used in other studies (12),
but different from those proposed in the recent CRediT initia-
tive, which defines up to 14 types of contributions. Further-
more, evidence suggests that author self-reporting on contrib-
utorship is not exempt of limitations. Questions like the ex-
tent to which contribution types are field-dependent are still
unsolved. With this respect, our predictions already point
towards some of these issues. Despite the low error rates,
we observe that the distribution of predicted probabilities ex-
hibits a normal distribution for writing the manuscript (Fig-
ure 2A). This could be due to the ambiguity of the state-
ment. As observed in the CRediT intitiative, this statement
is disclosed into two: wrote the first draft and wrote parts of
the manuscript and revised. Such distinction might help the
model to better discriminate contributorships.
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