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The gray matter of the spinal cord is the seat of somata of
various types of neurons devoted to the sensory and mo-
tor activities of the limbs and trunk as well as a part of
the autonomic nervous system. The volume of the spinal
gray matter is an indicator of the local neuronal processing
and this can decrease due to atrophy associated with de-
generative diseases and injury. Nevertheless, the absolute
volume of the human spinal cord has rarely been reported,
if ever. Here, we use high–resolution magnetic resonance
imaging, with a cross–sectional resolution of 50 x 50µm2

and a voxel size of 0.0005mm3, to estimate the total gray
and white matter volume of a post mortem human female
spinal cord. Segregation of gray and white matter was ac-
complished using deep learning image segmentation. Fur-
ther, we include data from a male spinal cord of a previ-
ously published study. The gray and white matter volumes
were found to be 2.87 and 11.33 ml, respectively for the
female and 3.55 and 19.33 ml, respectively for a male. The
gray andwhite matter profiles along the vertebral axis were
found to be strikingly similar and the volumes of the cervi-
cal, thoracic and lumbosacral sections were almost equal.
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Abbreviations: GM, gray matter; WM, white matter; MRI, magnetic resonance imaging.
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NEW AND NOTEWORTHY

Here, we combine high field MRI (9.4T) and deep learning for a post-mortem reconstruction of the gray and white
matter in human spinal cords. We report a minuscule total gray matter volume of 2.87 ml for a female and 3.55 ml for
a male. For comparison, these volumes correspond approximately to the distal digit of the little finger.

Introduction

The gray andwhite matter of the central nervous system are conspicuous properties that are attractive to quantify and
compare across humans and animal species. These features represent fundamental properties of the nervous system:
the gray matter is the territory of the input-output processing units, i.e. the neuronal somata, and the white matter
consists primarily of the myelin tracks that connect them. The gray and white matter (GM and WM) volume also
serve as a diagnostic metric in neurological conditions such as multiple sclerosis where the volume decreases due to
axonal atrophy (Kearney et al., 2015; Gilmore et al., 2005; Schmierer and Miquel, 2018; Pallebage-Gamarallage et al.,
2018; Losseff et al., 1996). The gray matter can also decrease due to atrophy of neurodegenerative diseases such
as dementia and in particular in the spinal cord where amyotrophic lateral sclerosis causes motor neuronal death and
decline in the graymatter volume (Paquin et al., 2018). Spinal abnormalities such as cysts and syringomyelia can induce
pressure om the GM andWM and reduce the effective volume of healthy tissue surrounding the syrinx. Similarly, the
extent of damage from spinal cord injury from fall, motor vehicle accident or ischemia can be assessed via the cross-
sectional area of GM and WM (Seif et al., 2018; Kakulas, 2004). Hence, the GM and WM cross-sectional areas serve
important diagnostic metric for spinal neurology (Papinutto et al., 2015; Klein et al., 2011). A convenient technique
for measuring the GM andWM areas is via the non-invasive magnetic resonance imaging (MRI), and quantitative MRI
has been increasingly helpful for diagnosis and measuring the integrity in such conditions.

Although the cross-sectional areas and partial volumes of GM and WM and the ratio between them have been
reported previously, e.g. (Tsagkas et al., 2019; Wheeler-Kingshott et al., 2014), their total volume have rarely been
reported, if ever. Here, we measure the total volume of the GM andWM in the spinal cord of a healthy human female
using high-resolution MRI in post mortem condition. The post mortem condition permitted long continuous scanning
(approximately 30 hrs) and the absence of movement combined with a strongmagnetic field (9.4T) enabled high image
quality and a fine cross-sectional resolution (50x50µm2) with a slice thickness of 200µm (voxel size of 0.0005mm3),
hence facilitating a precise estimate of the volumes. With such high resolution and large number of slices (n=1919),
manual segmentation of gray and white matter is unfeasible and automated segmentation is required. Automated
segmentation via artificial intelligence has previously been implemented to accomplish such a task and we employed
that method for the identification of gray and white matter zones (Perone et al., 2018). Data from a male subject
was provided by a previously published study on a post mortem spinal cord, which was used for a different purpose
(Calabrese et al., 2018). The scanning details of this study was slightly different and although the male was reportedly
healthy, their post morten analysis revealed a small lesion at the 6th thoracic nerve level.

Methods

The study was conducted on a deceased individual who had bequeathed her body to science and education at the
Department of Cellular and Molecular Medicine (ICMM) of Copenhagen University according to Danish legislation
(Health Law No 546, Section 188). The study was approved by the head of the Body Donation Program at ICMM.
This study consists of high-resolution MRI scanning of two human spinal cords, one based on publicly available data
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F IGURE 1 Estimates of gray and white matter area of a human spinal cord (91-year old female) as a function of
vertebral level. A: Sample sections of cervical, thoracic, lumbar and sacral spinal cord from a T2-weighted MRI scan.
Artificial intelligence identified the gray and white matter in each transverse slice (total of n=1919 slices), here
shown with masks of white matter (blue, top) and gray matter (red, bottom). In-plane resolution is 50 x 50 µm2. B:
Location of samples indicated in a parasagittal section of the whole spinal cord. C: The cross-sectional GM and WM
area as function of location. Vertebral levels are indicated.

set of a male (please find details in (Calabrese et al., 2018)), the other a female performed in this study. A spinal cord
from a 91-year old Caucasian female without known diseases was dissected out and fixed using immersion fixation
in paraformaldehyde (4%) within 24 hours after death. The tissue was kept in fixative for 2 weeks, after which it was
transferred to and stored in phosphate buffered saline.

Structural MRI acquisition

Images from the female spinal cord were acquired on a 9.4 T preclinical MRI system (BioSpec 94/30; Bruker Biospin,
Ettlingen, Germany) equipped with a 1.5 T/m gradient coil. Prior to imaging, the spinal cord was placed in a plexiglass
tube and immersed in fluorinert (FC-40 Sigma Aldrich) to reduce background signal. Because of the limited field
of view (1.6 cm) relative to the length of the spinal cord (approximately 40 cm), scanning was done in 29 sections.
Between each section scan, the spinal cord was advanced 1.4 cm by a custom-built mechanical stepper, resulting in
a 0.2 cm overlap of neighboring sections. For each section, a T2-weighted 2D RARE structural scan was performed.
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Scan parameters were TR=7 s, TE=30 ms, 20 averages, field of view 1.92 x 1.92 x 1.6 cm3, and a matrix size of 384 x
384 x 80, resulting in 50 x 50 µm2 in-plane resolution and a slice thickness of 200 µm, resulting in a voxel size of 500
000 µm3. Scan time was approximately 30 hours.

| MRI data analysis

Stitching
For each of the 29 scanned sections, dicom-files were exported from the scanner software (ParaVision 360, Bruker)
and converted to nifti format using open source software (dcm2niix, (Li et al., 2016)). The individual section images
were combined by rigid registration of overlapping regions using another piece of open source software (Advanced
Normalization Tools Python adaption, ANTSpy, with default parameters (Avants et al., 2009)). To stitch two sections
A and B together, the overlapping 0.2 cm bottom of A and top of B were registered to each other. A margin of dis-
placement in the z-direction (rostral-caudal) of 400 µm (two slices) was allowed. For each such displacement window,
registration between overlapping regions was run 50 times. The window with the highest mean mutual information
across the 50 runs was accepted. Section B was then transformed to match section A using the transformation matrix
from the best registration among the 50 runs. The bottom of the transformed section B was then registered to the
top of the next section in the same way as A and B were registered to each other. This process was repeated until the
last section had been registered to the second last one. The transformed sections were then concatenated using half
of the overlapping region from each section, resulting in a single image of the whole spinal cord.

Cropping
The stitched imagewas cropped to reduce deep learningmemory load. Amask separating spinal cord frombackground
was created for the stitched image using an open source software (MRtrix’s dwi2mask) on a faked 4D version of the
3D image (Tournier et al., 2019). Cropping was done to accommodate the mask in-plane, with a 10 voxel (0.5 mm)
margin. The caudal-most part of the spinal cord was removed from the image since it did not contain any internal GM
or WM. Final cropped image dimensions were 348 x 296 x 1919 voxels, 17.4 x 14.8 x 383.8 mm3.

Definition of spinal segments
Spinal segments were defined using the relative lengths of each spinal segment estimated from a number of studies
on human spinal morphology (Frostell et al., 2016).

Segmentation of gray and white matter
Segmentation of images into gray matter and white matter was done on the stitched image using a 2D convolutional
neural network with dilated convolutions developed for GM segmentation in spinal MRI (Perone et al., 2018). Model
code was adapted from the Spinal Cord Toolbox (De Leener et al., 2017) to enable training on our data. A training data
set was constructed by manual labelling of 15 slices. The model was trained on these slices using data augmentation
with details described elsewhere (Perone et al., 2018). Training parameters were batch size 9, 32 batches per epoch,
and 734 epochs. This procedure was done separately for GM and WM. Voxels present in both masks were removed
from the WM mask. Both masks were visually inspected and identified errors were manually corrected. The area of
GM and WM was calculated for each slice as the number of voxels belonging to each of the masks multiplied by the
in-plane resolution. For the male spinal cord, GM andWMmasks published along with the structural image were used
(Calabrese et al., 2018).
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F IGURE 2 Comparison of profiles of spinal gray and white matter area along vertebral level of a female (91-year
old) and a male (in his sixties). A: Gray matter of female (top) and a male (bottom, gray line). For comparison and due
to difference in size, the female curve is rescaled and plotted together with the male profile (bottom). B:White
matter vertebral profiles plotted and rescaled in similar fashion to (A). Note the female spinal cord was missing
C1-C2, so the curves do not start at the same location (indicated by a ∗). Arrows indicate the pyramidal decussation.
Male data adapted with permission from (Calabrese et al., 2018).

Estimation of uncertainty in volume

The area of GM and WM was calculated based on the artificial intelligence image segmentation (Deep dilated con-
volutional neural network, (Perone et al., 2018)). The variability of area between neighboring slices is an indication
of the certainty of the identification. Hence, we estimated the uncertainty in areas based on the mean and standard
deviation of five consecutive slices sliding across the entire sample. The standard error of the mean was calculated
and used as uncertainty and the propagation of uncertainty was estimated by summation for the total volumes and
the fractions (Table 1). This was also performed on the adopted data (a male spinal cord) from a previously published
study (Calabrese et al., 2018).

Spinal cord volume

Subject Gray Matter (ml) White matter (ml) Total (ml) Fraction (WM/GM)

Female 91-yr old 2.87 ± 0.02 11.33 ± 0.03 14.20 ± 0.05 3.95 ± 0.04

Male 60+ yrs old† 3.55 ± 0.02 19.33 ± 0.03 22.88 ± 0.05 5.45 ± 0.04

TABLE 1 Total volumes of gray and white matter from two human subjects calculated using high resolution MRI
sequential scans and a deep dilated convolutional neural network for image segmentation of gray and white matter.
† Calculated with permission from (Calabrese et al., 2018).

Results

First, the spinal cord from a 91-year-old female was analyzed. After training the machine learning algorithm (Perone
et al., 2018) on selected slices, the gray and white matter was segregated and identified reliably as verified by visual
inspection (Fig. 1A-B). In this specimen the first two cervical segments (C1-C2) were partially missing, making the
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F IGURE 3 Gray and white matter volumes distributed over the cervical, thoracic and lumbosacral parts for the
female and male subjects. There is a striking similarity in gray matter volumes across the sections (see ∗) despite
their difference in length and cross-sectional area. In contrast, the white matter volumes are vastly different across
the 3 sections. Male data adapted and analysed with permission from (Calabrese et al., 2018).

cord a bit shorter. The cross-sectional area of the GM and WM masks was determined and plotted as a function of
vertebral level (Fig. 1C). The GM and WM areas were larger both in the cervical and the lumbo-sacral enlargements.
The fact that the white matter had a local peak in the lumbar enlargement suggests that some of the myelinated fibres
both started and stopped within the lumbar region and thus serve local connectivity within the region. A similar local
peak in thewhitematter profilewas observed in the cervical region, whichmost likely represents the local connectivity
within the cervical region.

Next, data from the spinal cord of a male in his sixties that was previously published for a different purpose
(Calabrese et al., 2018) was analyzed in a similar fashion and compared with that from the 91-year-old female (Fig.
2). Since the length and size of the spinal cords are different presumably due to differences in their body size, we
rescaled the profile of the the gray matter for vertebral levels (Fig. 2A). The profiles where strikingly similar except for
a minor offset due to the missing initial cervical sections of the female spinal cord (C1-C2). An analogous comparison
between the two subjects was performed for the white matter (Fig. 2B). Again, the profiles of the white matter along
the vertebral axis were notably similar when the first subject (the female) data was rescaled to the other subject (same
proportions as in Fig. 2A).

The total volume of gray andwhite matter was calculated by integrating the cross-sectional areas with the section
thickness of 200 µm (Table 1). The total gray matter volume was a minuscule 2.87 ml and 3.55 ml for the female and
male, respectively. For the male data, the part of the gray matter profile more rostral of the pyramidal decussation
was not included, since that is part of the caudal medulla oblongata. The white matter volume was approximately 4-5
times larger than the gray matter volumes (Table 1).

From the profiles (Fig. 2A) it is clear that the thoracic cross-sectional area is much smaller than the cervical and
lumbar parts, but it is also much longer. Interestingly, when separating out the gray matter volumes in their cervical,
thoracic and lumbosacral parts, these were approximately equal to each other (Fig. 3). For the female spinal cord data,
the volumes were 0.92, 0.98 and 0.97 ml, for the cervical, thoracic and lumbosacral sections, respectively. Similar
equivalence was found in the male specimen, although the cervical was slightly larger (Fig. 3). Hence, it seems that
the extra length of the thoracic part makes up for the smaller cross-sectional area that it has in the vertebral profile
(Fig. 2A). In contrast to the gray matter volumes, the white matter volumes were greatly different across the cervical,
thoracic and lumbosacral regions (Fig. 3).
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Discussion

Gray and white matter are distinguished features of the central nervous system. Nevertheless, measurements of
their volumes in the spinal cord have rarely been reported, possibly due to the laborious nature of assessment by
conventional histological techniques and its long extension. Magnetic resonance imaging performed on living subjects
is limited on field strength and scan time, and by various types of tissue and air in proximity of the tissue of interest,
which distorts the MRI-signal. This restricts the image resolution and quality. The analysis of post-mortem tissue
where scanning time is no restriction opens up new possibilities. The combination of high-strength magnetic fields in
a smaller bore absent of mechanical movement artifacts and where the tissue, in a signal-free, non-distorting fluid, can
be advanced through the smaller scanning region with strong gradients allows for unprecedented spatial resolutions
(Atik et al., 2019; Sitek et al., 2019; Calabrese et al., 2018; Colon-Perez et al., 2015; Lundell et al., 2011). In the present
study, we use a small bore strong field (9.4T) scanner where a post-mortem ex-vivo spinal cord is advanced using a
stepping motor through a small region of about 2 cm of scanning area with constant field strength and homogeneous
gradient. The sections from these scans formed the basis for estimating the gray and white matter volumes and the
profiles of their cross-sectional areas.

Nevertheless, the benefit of in-vivo scanning, e.g. (Tsagkas et al., 2019; Papinutto et al., 2015; De Leener et al.,
2018), is amuch larger cohortwhich is devoid of any post-mortemdistortion due to tissue processing andwhich allows
better statistical sampling. The age of our subjects should also be considered, since the gray andwhite matter volumes
change over the course of a lifetime (Kearney et al., 2015). Younger adults would be expected to have slightly larger
volumes than reported here (Table 1). The two spinal cords were obtained post-mortem and dissected out within 24
hours. One was treated in paraformaldehyde (4% formaldehyde) and the other was fixed using formalin, which is a
saturated formaldehyde solution, with the same fixative effect on the tissue. The difference in concentration should
have minimal effect, if any, on the tissue properties. Similarly, the lesion in the thoracic region of the male specimen,
which likely occurred post-mortem during extraction, did not have a clear effect on the cross-sectional profile (Fig. 2).

Two observations from the profiles (Fig. 2) are interesting. First, the cross-sectional area of the gray matter
within the lumbosacral enlargement is significantly larger than of the cervical enlargement. Nevertheless, the cervical
enlargement is longer and the volume of the two enlargements turns out to be almost identical (Fig. 3). If the gray
matter volume represents local circuitry, which can be interpreted as computational capacity, then the sensorimotor
requirements of the hands and the arms are approximately equivalent to those of the legs. The thoracic region has
the lowest cross-sectional gray matter area, but it also entails the longest part of the spinal cord. Hence, the volume
of these regions are almost identical, perhaps as a coincidence (Fig. 3). Second, the white matter has a local maximum
both in the cervical and the lumbar enlargements. The fact that the white matter volume does not steadily increase
towards the cerebrum suggest that some of the white matter fibers that are both initiated in the more caudal regions
also terminate within the spinal cord in more rostral regions, although the fibers are probably bi-directional. These
fibers, also called the proper fasciculi or spinospinal fasciculi, partially represent communication and coordination
between sensorimotor regions of the spine.
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