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Abstract 

Human listeners achieve quick and effortless speech comprehension through 

computations of conditional probability using Bayes rule. However, the neural 

implementation of Bayesian perceptual inference remains unclear. Competitive-

selection accounts (e.g. TRACE) propose that word recognition is achieved through 

direct inhibitory connections between units representing candidate words that share 

segments (e.g. hygiene and hijack share /haidʒ/). Manipulations that increase lexical 

uncertainty should increase neural responses associated with word recognition when 

words cannot be uniquely identified (during the first syllable). In contrast, predictive-

selection accounts (e.g. Predictive-Coding) proposes that spoken word recognition 

involves comparing heard and predicted speech sounds and using prediction error to 

update lexical representations. Increased lexical uncertainty in words like hygiene and 

hijack will increase prediction error and hence neural activity only at later time points 

when different segments are predicted (during the second syllable). We collected MEG 

data to distinguish these two mechanisms and used a competitor priming manipulation 

to change the prior probability of specific words. Lexical decision responses showed 

delayed recognition of target words (hygiene) following presentation of a neighbouring 

prime word (hijack) several minutes earlier. However, this effect was not observed with 

pseudoword primes (higent) or targets (hijure). Crucially, MEG responses in the STG 

showed greater neural responses for word-primed words after the point at which they 

were uniquely identified (after /haidʒ/ in hygiene) but not before while similar changes 

were again absent for pseudowords. These findings are consistent with accounts of 

spoken word recognition in which neural computations of prediction error play a central 

role.   
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Significance Statement 

Effective speech perception is critical to daily life and involves computations that 

combine speech signals with prior knowledge of spoken words; that is, Bayesian 

perceptual inference. This study specifies the neural mechanisms that support spoken 

word recognition by testing two distinct implementations of Bayes perceptual inference. 

Most established theories propose direct competition between lexical units such that 

inhibition of irrelevant candidates leads to selection of critical words. Our results 

instead support predictive-selection theories (e.g. Predictive-Coding): by comparing 

heard and predicted speech sounds, neural computations of prediction error can help 

listeners continuously update lexical probabilities, allowing for more rapid word 

identification. 

 

Introduction 

In daily conversation, listeners identify 200 words per minute (Tauroza & Allison, 1990) 

from a vocabulary of ~40,000 words (Brysbaert et al., 2016). This produces a 

substantial cognitive challenge: they must recognise more than 3 words per second 

and constantly select from sets of similar words which may be transiently ambiguous 

(e.g. hijack and hygiene both begin with /haidʒ/). Although it is recognised that humans 

and machines achieve word recognition by combining the current speech input with 

the prior probability of words using Bayes theorem (Norris & McQueen, 2008; Davis & 

Scharenborg, 2016), the underlying neural implementation of Bayesian perceptual 

inference remains unclear (Aitchison & Lengeyl, 2017).  

          Here, we compare two neural mechanisms for spoken word recognition. In 

competitive-selection accounts (e.g. TRACE, McClelland & Elman, 1986, Figure1A), 

word recognition is achieved through within-layer lateral inhibition between neural 
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units that represent similar words. By this view, hijack and hygiene compete for 

identification such that an increase in probability for one word inhibits units 

representing other similar sounding words. Conversely, predictive-selection accounts 

(e.g. Predictive-Coding, Davis & Sohoglu, 2020) suggests that word recognition is 

achieved through computations of prediction error (Figure1D). On hearing transiently 

ambiguous speech like /haidʒ/, higher-level units representing matching words make 

contrasting predictions (/æk/ for hijack, /i:n/ for hygiene). Prediction error – the 

difference between sounds predicted and actually heard – provides a signal to update 

word probabilities such that the correct word can be selected (Gagnepain et al, 2012).  

          In this study, we manipulated the prior probability of words through the 

competitor priming effect (Monsell & Hirsh, 1998; cf. Marsolek, 2008), by which the 

recognition of a word (hygiene) is delayed if a similar word (hijack) has been heard 

earlier. This delay could either be due to increased lateral inhibition (competitive-

selection) or greater prediction error (predictive-selection). Thus, similar behavioural 

effects of competitor priming are predicted by two distinct neural computations (cf. 

Spratling, 2008). To distinguish these two theories, it is critical to investigate neural 

data that reveals the direction, timing and level of processing at which competitor 

priming modulates neural responses. Existing neural data remains equivocal with 

some evidence consistent with competitive-selection (Bozic et al., 2010; Okada & 

Hickok, 2006), predictive-selection (Gagnepain et al, 2012), or both mechanisms 

(Brodbeck et al., 2018; Donhauser et al., 2019). We followed these previous studies 

in correlating two computational measures with neural activity: lexical entropy (for 

competitive-selection accounts) and segment prediction error (or phoneme surprisal 

as in other studies, for predictive-selection theories). 
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          Here, we used magnetoencephalography (MEG) to record the location and 

timing of neural responses during spoken words recognition in a competitor priming 

experiment. Pseudowords (e.g. hijure) were included in our analysis to serve as a 

negative control for competitor priming, since existing research found that 

pseudowords neither produce nor show this effect (Monsell & Hirsh, 1998). We 

compared items with the same initial segments (e.g. words hygiene, hijack, 

pseudowords hijure, higent all share /haidʒ/) and measured neural and behavioural 

effects concurrently so as to link these two effects for single trials.  

          While lexical entropy and prediction error are highly correlated for natural 

speech, this competitor priming manipulation allows us to make differential predictions 

under the two theories as illustrated in Figure 1. Specifically: (1) before the deviation 

point (DP, the point at which similar-sounding words diverge), competitor priming will 

increase lexical entropy and hence neural responses in competitive-selection theories 

(Figure1B,C Pre-DP). However, prediction error, as supported by predictive-selection 

accounts, will be reduced for pre-DP segments, since heard segments are shared and 

hence more strongly predicted (Figure1E,F Pre-DP). (2) After the DP, predictive-

selection but not competitive-selection accounts propose that pseudowords should 

evoke greater neural signals, since they evoke maximal prediction errors (Figure1E,F 

Pseudoword panel, Post-DP). (3) Furthermore, in predictive-selection but not 

competitive-selection theories, competitor priming is associated with an increased 

response to post-DP segments due to enhanced prediction error caused by mismatch 

between primed words (predictions) and heard speech (Figure1E,F Word panel, Post-

DP).     
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Figure 1. Illustration of neural predictions based on competitive-selection and 

predictive-selection models respectively for recognition of a word (hygiene) or 

pseudoword (hijure) that is unprimed or primed by a similar-sounding word (hijack) or 

pseudoword (higent). A. In a competitive-selection model, such as TRACE 

(McClelland & Elman, 1986), word recognition is achieved through within-layer lexical 
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competition. B. Illustration of the competitive-selection procedure for word (e.g. 

hygiene) and pseudoword (e.g. hijure) recognition. Phoneme input triggers the 

activation of multiple words beginning with the same segments, which compete with 

each other until one word is selected. No word can be selected when hearing a 

pseudoword, though it would be expected that lexical probability (although not lexical 

entropy) should be greater for words than for pseudowords. C. Illustration of neural 

predictions based on lexical entropy. Lexical entropy gradually reduces to zero as 

more speech is heard. Before the deviation point (hereafter DP) at which the prime 

(hijack) and target (hygiene) diverge, these items are indistinguishable, and competitor 

priming should transiently increase lexical entropy (shaded area). After the DP, 

competitor priming should not affect entropy since prime and target words can be 

distinguished. D. In a predictive-selection model such as the Predictive-Coding 

account (PC, Davis & Sohoglu, 2020), words are recognised by minimising prediction 

error, which is calculated by subtracting the predicted segments from the current 

sensory input. E. Illustration of the predictive-selection procedure during word (e.g. 

hygiene) and pseudoword (e.g. hijure) recognition. Speech input evokes predictions 

for the next segment (based on word knowledge as in B), which is then subtracted 

from the speech input and used to generate prediction errors that update lexical 

predictions (+ shows confirmed predictions that increase lexical probability, - shows 

disconfirmed predictions that decrease lexical probability). F. Illustration of neural 

predictions based on segment prediction error. Before the DP, priming of initial word 

segments should strengthen predictions and reduce prediction error. There will also 

be greater mismatch between predictions and heard speech for competitor-primed 

words and hence primed words should evoke greater prediction error than unprimed 

words (shaded area). This increased prediction error should still be less than that 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.07.01.182717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

observed for pseudowords, which should evoke maximal prediction error regardless 

of competitor priming due to their post-DP segments being entirely unpredictable.  

 

Materials and Methods 

Participants 

Twenty-four (17 female, 7 male) right-handed, native English speakers were tested 

after giving informed consent under a process approved by the Cambridge Psychology 

Research Ethics Committee. This sample size was selected based on previous studies 

measuring similar neural effects with the same MEG system (Gagnepain et al. 2012; 

Sohoglu & Davis, 2016; Sohoglu et al. 2012, etc.). All participants were aged 18-40 

years and had no history of neurological disorder or hearing impairment based on self-

report. Two participants’ MEG data were excluded from subsequent analyses 

respectively due to technical problems and excessive head movement, resulting in 22 

participants in total. All recruited participants received monetary compensation. 

 

Experimental Design  

To distinguish competitive- and predictive-selection accounts, we manipulated 

participants’ word recognition process by presenting partially mismatched auditory 

stimuli prior to targets. Behavioural responses and MEG signals were acquired 

simultaneously. Prime and target stimuli pairs form a repeated measures design with 

two factors (lexicality and prime type). The lexicality factor has 2 levels: word and 

pseudoword, while the prime type factor contains 3 levels: unprimed, primed by same 

lexical status, primed by different lexical status. Hence the study is a factorial 2 x 3 

design with 6 conditions: unprimed word (hijack), word-primed word (hijack-hygiene), 

pseudoword-primed word (basef-basis), unprimed pseudoword (letto), pseudoword-
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primed pseudoword (letto-lettan), word-primed pseudoword (boycott-boymid). Prime-

target pairs were formed only by stimuli sharing the same initial segments. Items in 

the two unprimed conditions served as prime items in other conditions and they were 

compared with target items (Figure 2A). 

         The experiment used a lexical decision task (Figure 2B) implemented in 

MATLAB through Psychtoolbox-3 (Kleiner et al. 2007), during which participants heard 

a series of words and pseudowords while making lexicality judgments to each stimulus 

via button-press responses. 344 trials of unique spoken items were presented every 

~3 seconds in two blocks of 172 trials, each block lasting approximately 9 minutes. 

Each prime-target pair was separated by 20 to 80 trials of items that do not start with 

the same speech sounds, resulting in a relatively long delay of 1-4 minutes between 

presentations of phonologically-related items. This delay was chosen based on 

Monsell and Hirsh (1998), who suggest that it prevents strategic priming effects (Norris 

et al. 2002). Stimuli from each of the quadruplets were Latin-square counterbalanced 

across participants, i.e. stimulus quadruplets that appeared in one condition for one 

participant were allocated to another condition for another participant. The stimulus 

sequences were pseudo-randomised using Mix software (van Casteren & Davis, 

2006), so that the same type of lexical status (word/pseudoword) did not appear 

successively on more than 4 trials.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.07.01.182717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

 

Figure 2. Experimental design and stimuli. A. Four different types of prime-target pairs. 

Each pair was formed by two stimuli from the same quadruplet, separated by between 

20 to 80 trials of items that do not share the same initial segments. B. Lexical decision 

task. Participants made lexicality judgments to each item they heard via a button-press. 

The response time was recorded from the onset of the stimuli. As shown, items within 

each quadruplet are repeated after a delay of 1-4 minutes following a number of other 

intervening stimuli. C. Stimuli within the same quadruplet have identical onsets in 

STRAIGHT parameter space (Kawahara, 2006) and thus only diverge from each other 

after the deviation point (DP). MEG responses were time-locked to the DP. D. Stimuli 

length histogram.  

 

 

C

B

Deviation 
Point (DP) 

l e   tt er    

l e   tt uce    

l e   tt o    

l e   tt an    

W = Word    
P  = Pseudoword

20-80 trials

hijack

1 2 3 4 50

letto
Hear

Response

Time (Sec)

word pseudoword

Trial Type Prime 
Word  

     Prime 
Pseudoword
       

123 124 1256 126

lettan

pseudoword

     Target 
Pseudoword

180 181     182      183      

hygiene

word

Target 
 Word  
 

... ... ... ...

A

 
     hijack 
 /haɪdʒæk/

      hygiene
      /haɪdʒin/

 
           basef
         /beɪsef/

  
         basis
       /beɪsɪs/

 
    boycott
    /bɒɪkɒt/

 boymid
/bɒɪmɪd/

letto
/letəʊ/

lettan
/letən/

W(W) P(P)        (P)P (W)W

Word-Word (WW)

Pseudoword-Word (PW)

Word-Pseudoword (WP)

Pseudoword-Pseudoword (PP)

Prime Target

0

40
Full Stimuli Length

0

40 Pre-DP Length

0 100 200 300 400 500 600 700 800 900 1000
0

40
     Post-DP Length

Time (ms)

No.

D

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.07.01.182717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Stimuli  

The stimuli consisted of 160 sets of four English words and pseudowords, with 

durations ranging from 372 to 991 ms (M = 643, SD = 106). Each set contained 2 

words (e.g. letter, lettuce) and 2 phonotactically-legal pseudowords (e.g. letto, lettan) 

that share the same initial segments (e.g. /let/) but diverge immediately afterwards.  

We used polysyllabic word pairs (Msyllable = 2.16, SDsyllable =0.36) instead of 

monosyllabic ones in our experiments so as to identify a set of optimal lexical 

competitors that are similar to their prime yet dissimilar from all other items. All words 

were selected from the CELEX database (Baayen et al., 1993). Their frequencies were 

taken from SUBTLEX UK corpus (Van Heuven et al., 2014) and restricted to items 

under 5.5 based on log frequency per million word (Zipf scale, Van Heuven et al., 

2014). In order to ensure that any priming effect was caused purely by phonological 

but not semantic similarity, we also checked that all prime and target word pairs have 

a semantic distance of above 0.7 on a scale from 0 to 1 based on the Snaut database 

of semantic similarity scores (Mandera et al., 2017), such that morphological relatives 

(e.g. darkly/darkness) were excluded. 

All spoken stimuli were recorded onto a Marantz PMD670 digital recorder by a 

male native speaker of southern British English in a sound-isolated booth at a 

sampling rate of 44.1 kHz. Special care was taken to ensure that shared segments of 

stimuli were pronounced identically (any residual acoustic differences were 

subsequently eliminated using audio morphing as described below). 

        The point when items within each quadruplet begin to acoustically differ from 

each other is the deviation point (hereafter DP, Figure 2C). Pre-DP length ranged from 

150 to 672 ms (M = 353, SD = 96), while post-DP length ranged from 42 to 626 ms (M 

= 290, SD = 111) (Figure 2D). Epochs of MEG data were time-locked to the DP.  Using 
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phonetic transcriptions (phonDISC) in CELEX, the location of the DP was decided 

based on the phoneme segment at which items within each quadruplet set diverge 

(Mseg=3.53, SDseg=0.92). To determine when in the speech files corresponds to the 

onset of the first post-DP segment, we aligned phonetic transcriptions to 

corresponding speech files using the WebMAUS forced alignment service (Kisler et 

al., 2017; Schiel, 1999). In order to ensure that the pre-DP portion of the waveform 

was acoustically identical, we cross-spliced the pre-DP segments of the 4 stimuli within 

each quadruplet and conducted audio morphing to combine the syllables using 

STRAIGHT (Kawahara, 2006) implemented in MATLAB. This way, phonological co-

articulation in natural speech was reduced to the lowest level possible at the DP, hence 

any cross-stimuli divergence evoked in neural responses can only be caused by post-

DP deviation. 

 

Behavioural Data Analyses 

Response times (RTs) were inverse-transformed so as to maximise the normality of 

the data and residuals; Figures report untransformed response times for clarity.  

Inverse-transformed RTs and error rates were analysed using linear and logistic 

mixed-effect models respectively using the lme4 package in R (Bates et al. 2014). 

Lexicality (word, pseudoword) and prime type (unprimed, primed by same lexical 

status, primed by different lexical status) were fixed factors, while participant and item 

were random factors. Maximal models accounting for all random effects were 

attempted wherever possible, but reduced random effects structures were applied 

when the full model did not converge (Barr et al., 2013). Likelihood-ratio tests 

comparing the full model to a nested reduced model using the Chi-Square distribution 

were conducted to evaluate main effects and interactions. Significance of individual 
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model coefficients were obtained using t (reported by linear mixed-effect models) or z 

(reported by logistic mixed-effect models) statistics in the model summary. One-tailed 

t statistics for RTs are also reported for two planned contrasts: (1) word-primed versus 

unprimed conditions for word targets, and (2) word-primed versus pseudoword-primed 

conditions for word targets. 

When assessing priming effects, we excluded data from target trials in which the 

participant made an error in the corresponding prime trial, because it is unclear 

whether such target items will be affected by priming given that the prime word was 

not correctly identified.  

                                                                      

MEG Data Acquisition and Processing 

Magnetic fields were recorded with a VectorView system (Elekta Neuromag) which 

contains a magnetometer and two orthogonal planar gradiometers at each of 102 

locations within a hemispherical array around the head. Although electric potentials 

were recorded simultaneously using 68 Ag-AgCl electrodes according to the extended 

10-10% system, these EEG data were excluded from further analysis due to excessive 

noise. All data were digitally sampled at 1 kHz. Head position were monitored 

continuously using five head-position indicator (HPI) coils attached to the scalp. 

Vertical and horizontal electro-oculograms were also recorded by bipolar electrodes. 

A 3D digitizer (FASTRAK; Polhemus, Inc.) was used to record the positions of three 

anatomical fiducial points (the nasion, left and right preauricular points), HPI coils and 

evenly distributed head points for use in source reconstruction.  

            MEG Data were preprocessed using the temporal extension of Signal Source 

Separation in MaxFilter software (Elekta Neuromag) to reduce noise sources, 

normalise the head position over blocks and participants to the sensor array and 
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reconstruct data from bad MEG sensors. Subsequent processing was conducted in 

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) and FieldTrip 

(http://www.fieldtriptoolbox.org/) software implemented in MATLAB. The data were 

epoched from -1100 to 2000ms time-locked to the DP and baseline corrected relative 

to the -1100 to -700ms prior to the DP, which is a period before the onset of speech 

for all stimuli (Figure 1C). Low-pass filtering to 40 Hz was conducted both before and 

after robust averaging across trials (Litvak et al., 2011). A time window of -150 to 0ms 

was defined for pre-DP comparisons based on the shortest pre-DP stimuli length. A 

broad window of 0 to 1000ms was defined for post-DP comparisons, which covered 

the possible period for lexicality and prime effects. After averaging over trials, an extra 

step was taken to combine the gradiometer data from each planar sensor pair by 

taking the root-mean square (RMS) of the two amplitudes. 

           After converting the sensor data into 3D images (2D sensor x time), F tests for 

main effects were performed across sensors and time (the term “sensors” here 

denotes interpolated scalp locations in 2D image space). Reported effects were 

obtained with a cluster-defining threshold of p < .001, and significant clusters identified 

as those whose extent (across space and time) survived p < 0.05 FWE-correction 

using Random Field Theory (Kilner & Friston, 2010). Region of interest (ROI) analyses 

for the priming effect were then conducted over scalp locations and time windows that 

encompassed significant clusters for the (orthogonal) lexicality effect.  When plotting 

waveforms and topographies, data are shown for sensors nearest to the critical points 

in 2D image space.  

          Apart from the two planned contrasts mentioned above (see Behavioural Data 

Analyses), which were applied to post-DP analysis, one-tailed t statistics was also 

reported on the pre-DP planned contrast between unprimed and word-primed items.  
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Source Reconstruction  

In order to determine the underlying brain sources of the sensor-space effects, source 

reconstruction was conducted using SPM’s Parametric Empirical Bayes framework 

(Henson et al., 2011). Forward models for each sensor type (magnetometers and 

gradiometers) were based on a template brain normalised to each participant’s T1-

weighted structural MRI (sMRI) scan obtained on a 3T Prisma system (Siemens, 

Erlangen, Germany) using an MPRAGE sequence. Fiducials, sensor positions and 

head-shape points (with nose points removed) in MEG space were projected onto 

sMRI space to co-register the two coordinate systems. The data were then inverted 

using the ‘IID’ solution, equivalent to classical minimum norm, fusing the 

magnetometer and gradiometer data (Henson et al, 2011). This inversion was 

performed using a 1-40 Hz frequency band with a time window of -150 to 0ms for pre-

DP analysis and 100 to 800ms for post-DP analysis. This post-DP time window was 

defined by the temporal extent between the approximate lexicality diverging point 

(between words and pseudowords) (~100ms) and the approximate average ending 

latency of the significant cluster (~800ms) shown in gradiometers and magnetometers. 

The total energy within the pre- and post-DP time windows was then written to 3D 

images in MNI space. As in sensor space, ROI analyses were conducted over 

significant scalp locations and time windows from the most reliable lexicality cluster. 

Factorial ANOVA were carried out on main effects and one-tailed paired t-tests on 

planned contrasts (see MEG Data Acquisition and Processing). 
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Results 

Behaviour  

          Response Times. As shown in Figure 3A, factorial analysis of lexicality (word, 

pseudoword) and prime type (unprimed, primed by same lexical status, primed by 

different lexical status) indicated a significant main effect of lexicality, in which RTs for 

pseudowords were significantly longer than for words, X2(3) = 23.60, p < .001. In 

addition, there was a significant interaction between lexicality and prime type, X2(2) = 

10.73, p = .005. This interaction was followed up by two separate one-way models for 

words and pseudowords, which showed a significant effect of prime type for words, 

X2(2) = 10.65, p = .005, but not for pseudowords, X2(2) = 1.62, p = .445. Consistent 

with the competitor priming results from Monsell and Hirsh (1998), words that were 

primed by another word sharing the same initial segments were recognised 

significantly more slowly than unprimed words (for mean raw RTs see Fig 3A), β = 

0.02, SE = 0.01, t(79.69) = 3.33, p < .001, and more slowly than pseudoword-primed 

words, β = 0.02, SE = 0.01, t(729.89) = 2.37, p = .018. As mentioned earlier (see 

Introduction), both competitive- and predictive-selection models predicted longer 

response times to word-primed target words compared to unprimed words, it is hence 

critical to distinguish the two accounts through further investigation of the MEG 

responses. 

         Accuracy. There was a trend towards more lexical decision errors in response 

to words than to pseudowords, although this lexicality effect was marginal, X2(3) = 

7.31, p = .063. The error rates for words and pseudowords were also affected 

differently by priming, as indicated by a significant interaction between lexicality and 

prime type, X2(2) = 6.08, p = .048. Follow-up analyses using two separate models for 

each lexicality type showed there was a main effect of prime type for words, X2(2) = 
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13.95, p < .001, but not for pseudowords, X2(2) = 1.93, p = .381. Since we had not 

anticipated these priming effects on accuracy, post-hoc pairwise z tests were 

Bonferroni corrected for multiple comparisons. These showed that pseudoword 

priming reliably increased the error rate compared to the unprimed condition, β = 1.68, 

SE = 0.54, z = 3.14, p = .005, and to the word-primed condition, β = 2.74, SE = 0.89, 

z = 3.07, p = .007. Although no specific predictions on accuracy were made a priori by 

either competitive- or predictive-selection model, it is worth noting that participants 

might have expected pseudowords to be repeated given the increased error rate of 

responses to pseudoword-primed target words.  

 

Figure 3. Response time results (A) and accuracy results (B) of the lexical decision 

task. Bars are color-coded by lexicality and prime type on the x axis (words, blue frame; 

pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent 

fill and frame colors; primed by different lexicality, inconsistent fill and frame colors). 

Bars show the subject grand averages, error bars represent ± within-subject SE, 

adjusted to remove between-subjects variance (Cousineau, 2005). Statistical 

significance is shown based on generalised linear mixed-effects regression: * p<0.05, 

** p<0.01, *** p<0.001. Statistical comparisons shown with solid lines indicate the 

lexicality by prime-type interaction and main effects of prime-type for each lexicality, 

0.05

0.10

0.15

0.20

Unprimed
Word

(Word Prime)
Word Target

(Pseudo Prime)
Word Target

Unprimed
  Pseudo

(Pseudo Prime)
Pseudo Target

 (Word Prime)
Pseudo Target

1000

1050

1100

1150

1200

1250

R
es

po
ns

e 
Ti

m
es

(m
s)

A

*** **

ns

**

    0

Er
ro

r R
at

e

B

Unprimed
Word

(Word Prime)
Word Target

(Pseudo Prime)
Word Target

Unprimed
  Pseudo

(Pseudo Prime)
Pseudo Target

 (Word Prime)
Pseudo Target

**

  *

Unprimed 

Primed by 
Same 

Lexicality

     

Primed by 
Different

Lexicality 

     

Word 

Pseudoword

**

**

ns***

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.07.01.182717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

whereas comparisons with broken lines indicate the significance of pairwise 

comparisons.  

 

MEG  

In order to explore the impact of lexicality and competitor priming on neural responses 

to critical portions of speech stimuli, both before and after they diverge from each other, 

MEG responses were time-locked to the DP. All reported effects are family-wise error 

(FWE)-corrected at cluster level for multiple comparisons across scalp location and 

time at a threshold of p < 0.05.  

          Pre-DP analyses. We assessed neural responses before the DP, during which 

only the shared speech segments have been heard and hence the words and 

pseudowords in each stimulus set are indistinguishable. Since there could not have 

been any effect of lexical status pre-DP, only prime type effects were considered in 

this analysis. Predictive- and competitive-selection accounts make opposite 

predictions for pre-DP neural signals evoked by word-primed items compared to 

unprimed items. We therefore conducted an F-test for neural differences between 

these two conditions across the scalp and source spaces over a time period of -150 

to 0ms before the DP. Two significant clusters were found in gradiometers respectively 

over the mid-left scalp locations at -21 to -14ms (Figure 4A) and posterior-right scalp 

locations at -9ms (Figure 4B). In both of these locations, unprimed items evoked 

significantly greater neural responses than word-primed items. We did not find any 

cluster showing stronger neural responses for word-primed items than unprimed items 

and no clusters survived correction for multiple comparisons for magnetometer 

responses or for analysis in source space.                                                                                                                      
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         To further examine these results, we also conducted ROI analysis of gradiometer 

signals evoked by unprimed and primed items averaged over the same -150 to 0ms 

pre-DP time window but across the set of scalp locations that showed the post-DP 

lexicality effect at which pseudowords elicited greater neural responses than words 

(see Figure 5A). As shown in Figure 4C, the results indicated that unprimed items 

elicited significantly stronger neural responses than word-primed items, t(21) = 2.41, 

p = .013, consistent with the whole-brain analysis. In particular, the mid-left cluster 

shown in panel A partially overlaps with the post-DP pseudoword>word cluster. The 

direction and location of these pre-DP neural responses are in accordance with the 

predictive-selection account and inconsistent with the competitive-selection account. 

A surprising finding is that post-hoc analysis also showed greater neural responses 

evoked by unprimed items than pseudoword-primed items, t(21) = 2.69, p = .014, 

although we had not predicted these effects from pseudoword primes. 
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Figure 4. Pre-DP results. A & B. Pre-DP response difference between items that are 

unprimed and primed by a word in MEG gradiometer sensors within -150 to 0ms (a 

time window at which words and pseudowords are indistinguishable). The topographic 

plots show F-statistics for the entire sensor array with the scalp locations that form two 

statistically significant clusters highlighted and marked with black dots. Waveforms 

represent MEG response averaged over the spatial extent of the significant cluster 

shown in the topography. C. ROI analysis of neural responses evoked by unprimed 

and primed items averaged over the same pre-DP time period of -150-0ms but across 

gradiometer sensor locations which showed the post-DP pseudoword>word lexicality 
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effect (see Figure 5A). Bars are color-coded by prime type on the x axis (unprimed 

items, no fill; word-primed items, blue; pseudoword-primed items, orange; black frame 

indicates that words and pseudowords are indistinguishable). All error bars represent 

± within-participant SE, adjusted to remove between-participant variance (Cousineau, 

2005). Statistical significance: * p<0.05. 

 

          Post-DP analyses. We then examined the post-DP response differences 

between words and pseudowords (lexicality effect). The gradiometer sensors showed 

a significant cluster over the left side of the scalp at 410-726ms post-DP (Figure 5A). 

In this cluster, pseudowords evoked a significantly stronger neural response than 

words. Similarly, magnetometer sensors also detected a significant left-hemisphere 

cluster at 398-903ms post-DP (Figure 5B) showing the same lexicality effect. We did 

not find any significant cluster in which words evoked greater neural responses than 

pseudowords. These results are consistent with findings from Gagnepain and 

colleagues (2012). To locate the likely neural source of the effects found in sensor 

space, we conducted source reconstruction by integrating gradiometers and 

magnetometers. As shown in Figure 5C, results from source space showed that neural 

generators of the lexicality effect were estimated to lie within the superior temporal 

gyrus (STG, peak at x = -56, y = -28, x = -10; x = -54, y = -26, z = 4 and x = -58, y = -

14, z = 16). This location, and direction of response, is consistent with a sub-lexical 

(e.g. phonemic) process being modulated by lexicality; in line with the predictive-

selection account.  

         Next, we investigated whether the neural responses that were modulated by 

lexicality were also influenced by prime type, by testing the interaction between prime 

type and lexicality on data averaged over the time window and the scalp locations of 
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the significant cluster shown in panel A and B (Figure 5D & E). This interaction was 

significant in both gradiometer, F(1.96, 41.11) = 7.30, p = .002, and in magnetometer, 

F(1.90, 39.99) = 5.80, p = .007, data. Follow-up tests showed that there was a 

significant effect of prime type for words, F(1.93, 40.55) = 8.01, p = .001 (gradiometers), 

F(1.81, 37.96) = 5.61, p = .009 (magnetometers), such that neural signals evoked by 

word-primed words were significantly stronger than those evoked by unprimed words, 

t(21) = 2.22, p = .019 (gradiometers), t(21) = 3.33, p = .002 (magnetometers), and 

pseudoword-primed words, t(21) = 3.70, p < .001 (gradiometers), t(21) = 2.64, p = .008 

(magnetometers). In contrast, there was no reliable main effect of prime type for 

pseudowords, F(1.94, 40.80) = 0.67, p = .514 (gradiometers), F(1.79, 37.61) = 0.80, p 

= .446 (magnetometers). The corresponding tests performed on the source-

reconstructed power within the lexicality ROI of suprathreshold voxels (Figure 5F) did 

not show a reliable interaction effect between lexicality and competitor priming, F(1.47, 

30.91) = 1.06, p = .34. Nevertheless, consistent with the sensor space results, source 

power did show a significant effect of prime type for words, F(1.59, 33.49) = 4.21, p 

= .031, but not pseudowords, F(1.68, 35.36) = 1.02, p = .359. Pairwise comparisons 

also indicated that word-primed words evoked greater source strength than unprimed 

words, t(21) = 2.28, p = .017, and pseudoword-primed words, t(21) = 2.20, p = .020. 

Thus, in line with behavioural results, neural responses evoked by words and 

pseudowords were also influenced differently by prime type. Critically, competitor 

priming modulated the post-DP neural responses evoked by words, but not those 

evoked by pseudowords, and these effects were localised to STG regions that 

plausibly contribute to sub-lexical processing of speech. This matches the pattern of 

responses proposed in the predictive-selection model (see Figure 1F).  
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Figure 5. Post-DP results showing lexicality effects and corresponding ROI responses 

evoked by conditions of interest. A & B. Post-DP lexicality effects in MEG gradiometer 

and magnetometer sensors. The topographic plots show the statistically significant 

cluster with a main effect of lexicality (pseudoword > word). Waveforms represent 
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MEG response averaged over the spatial extent of the significant cluster shown in the 

topography. The width of waveforms represents ± within-participant SE, adjusted to 

remove between-participants variance (Cousineau, 2005). C. Statistical parametric 

map showing the cluster (pseudoword > word) rendered onto an inflated cortical 

surface of the Montreal Neurological Institute (MNI) standard brain thresholded at 

FWE-corrected cluster-level p < 0.05. D, E & F. Post-DP ROI ANOVA on neural 

signals and source strength evoked by conditions of interest averaged over the time 

window and scalp locations of the significant cluster shown in panel A, B & C. Bars 

are color-coded by lexicality and prime type on the x axis (words, blue frame; 

pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent 

fill and frame colors; primed by different lexicality, inconsistent fill and frame colors). 

All error bars represent ± within-participant SE, adjusted to remove between-

participants variance (Cousineau, 2005). Statistical significance from ANOVAs: * 

p<0.05, ** p<0.01, *** p<0.001. Statistical comparisons shown with solid lines indicate 

the lexicality by prime-type interaction and main effects of prime-type for each lexicality, 

whereas comparisons with broken lines indicate the significance of planned pairwise 

comparisons.  

 

 

          To ensure that other response patterns were not overlooked, we also 

investigated whether there was any lexicality by prime-type interaction at other 

locations across the scalp and source spaces, and during other time periods. As 

shown in Figure 6A, a significant cluster of Gradiometers at midline posterior scalp 

locations were found at 405-427ms post-DP, in which the effect of priming was 

significantly different for words and pseudowords. Figure 6B shows gradiometer 
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signals evoked by conditions of interest averaged over the spatial and temporal extent 

of the significant cluster in panel A. To explore this profile, we computed an orthogonal 

contrast to assess the overall lexicality effect (the difference between words and 

pseudowords), and the result was marginal, F(1.00, 21.00) = 3.50, p = .075. The effect 

of prime type was marginally significant for words, F(1.89, 39.78) = 3.08, p = .060, but 

significant for pseudowords, F(1.80, 37.85) = 7.14, p = .003. The location and pattern 

of this interaction cluster were dissimilar to those predicted by either competitive- or 

predictive-selection theories and no cluster survived correction in magnetometer 

sensors or source space.  

 

Figure 6. Post-DP results showing lexicality-by-priming interaction effects in MEG 

gradiometers. A. The topographic plot shows F-statistics for the statistically significant 

cluster that showed an interaction between lexicality and prime type. Waveforms 

represent gradiometer responses averaged over the spatial extent of the significant 

cluster shown in the topography. B. Gradiometer signals evoked by conditions of 

interest averaged over temporal and spatial extent of the significant cluster in panel A. 

All error bars represent ± within-participant SE, adjusted to remove between-

participants variance (Cousineau, 2005). Statistical significance: ** p<0.01. The 

statistical comparison lines indicate main effects of prime type for each lexicality. The 
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lexicality by prime-type interaction is statistically reliable as expected based on the 

defined cluster.  

 

           Linking neural and behavioural effects. To further examine the relationship 

between neural and behavioural response differences attributable to competitor 

priming or lexicality, we conducted a single-trial regression analyses using linear 

mixed-effect models that account for random intercepts and slopes for participants and 

stimuli sets (grouped by their initial segments). We calculated behavioural RT 

differences and neural MEG differences caused by: (1) lexicality. i.e. the difference 

between pseudoword and word trials (collapsed over primed and unprimed conditions) 

and (2) competitor priming, i.e. the difference between unprimed and word-primed 

word trials, with MEG signals averaged over the spatial and temporal extent of the 

post-DP pseudoword>word cluster seen in sensor space and the STG peak voxel, x 

= -54, y = -26, z = 4, in source space (see Figure 5). We then assessed the relationship 

between these behavioural and neural difference effects in linear mixed-effect 

regression of single trials, with differences in RTs as the independent variable and 

differences in MEG responses as the dependent variable.  

           As shown in Figure 7A, we observed a significant positive relationship between 

RTs and magnetometers on lexicality difference (β = 0.11, SE = 0.01, t(23.31) = 7.77, 

p < .001), although associations between RTs and gradiometers or source response 

were not significant (gradiometers: β = -0.0001, SE = 0.0002, t(97.47) = -0.77, p = .444; 

source: β = -0.000002, SE = 0.000001, t(27.49) = -1.22, p = .234). These observations 

from magnetometers indicated that slower lexical decision times evoked by 

pseudowords were associated with greater neural responses. Furthermore, the 

intercept parameter for the magnetometers model was significantly larger than zero, 
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β = 37.58, SE = 5.72, t(23.09) = 6.57, p < .001. We can interpret this intercept as the 

neural difference that would be predicted for trials in which there was no delayed 

response to pseudowords compared to words. The significant intercept indicated a 

baseline difference in neural responses to words and pseudowords, even in the 

absence of any difference in processing effort (as indexed by lexical decision RTs). 

This suggested the engagement of additional neural processes specific to 

pseudowords regardless of the behavioural effect (cf. Taylor et al., 2014).  

           Figure 7B showed another significant positive relationship between RTs and 

magnetometers on competitor priming difference (β = 0.15, SE = 0.02, t(38.85) = 7.89, 

p < .001), while relationships between RTs and gradiometers or source response were 

again not significant (gradiometers: β = 0.0004, SE = 0.0003, t(20.61) = 1.08, p = .293; 

source: β = -0.0000009, SE = 0.000002, t(15.04) = -0.47, p = .646). Interestingly, 

unlike for the lexicality effect, the intercept in this competitor priming magnetometers 

model did not reach significance (β = 12.88, SE = 7.27, t(21.33) = 1.77, p = .091). This 

non-significant intercept suggested that if word-primed words did not evoke longer RTs 

than unprimed words, magnetometer signals would not be reliably different between 

the two conditions either. Hence, consistent with predictive-selection accounts, the 

increased post-DP neural responses in the STG caused by competitor priming was 

both positively linked to and mediated by longer response times.  
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Figure 7. Single-trial linear mixed-effect models which accounted for random 

intercepts and slopes for participants and stimuli sets (grouped by initial segments) 

were constructed to compute the relationship between RTs and magnetometers on (A) 

lexicality difference (i.e. between pseudowords and words, collapsed over unprimed 

and primed conditions) and (B) competitor priming difference (i.e. between word-

primed word and unprimed word conditions). Magnetometer responses were 

averaged over the time window and scalp locations of the significant post-DP 

pseudoword>word cluster (see Figure 5). β1 refers to the model slope, β0 refers to 

the model intercept. Statistical significance: *** p<0.001.  

 

Discussion 

In this study, we distinguished different implementations of Bayesian perceptual 

inference by manipulating the prior probability of spoken words and examining the 

pattern of neural responses. We replicated the competitor priming effect such that a 

single prior presentation of a competitor word (prime, e.g. hijack) delayed the 

recognition of a word with the same initial sounds (target, e.g. hygiene), whereas this 

effect was not observed when the prime or target was a pseudoword (e.g. hijure). 
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Armed with this behavioural evidence, we used MEG data to test the neural bases of 

two Bayesian theories of spoken word recognition.  

 

Competitive- vs predictive-selection 

Competitive-selection accounts propose that word recognition is achieved through 

direct inhibitory connections between representations of similar candidate words (e.g. 

McClelland & Elman, 1986). Priming boosts the activation of heard words and 

increases lateral inhibition applied to neighbouring words, which delays their 

subsequent identification (Monsell & Hirsh, 1998). The effect of competitor priming is 

to increase lexical uncertainty, and hence lexical-level neural responses, until later 

time points when target words can be distinguished from the competitor prime (see 

Figure 1C). In contrast, predictive-selection accounts propose that word recognition is 

achieved by subtracting predicted speech from heard speech and using these 

computations of prediction error to update lexical probabilities (see Gagnepain, et al, 

2012; Davis & Sohoglu, 2020). By this view, predictions for segments that are shared 

between competitor primes and targets (pre-DP segments, like /haidʒ/ for hijack and 

hygiene) will be enhanced after presentation of prime words. Thus competitor priming 

will reduce the magnitude of prediction error, and hence neural responses before the 

DP (Figure 1F). Only when speech diverges from predictions (post-DP segments, such 

as /i:n/ in hygiene) will competitor-primed words evoke greater prediction error, leading 

to an increased neural response in brain areas involved in pre-lexical (e.g. phonemic) 

processing of speech that have been shown to represent prediction error (Blank et al., 

2018; Blank & Davis, 2016).  

          We tested these predictions for the direction and timing of neural responses 

associated with competitor priming using MEG data which showed opposite neural 
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effects of competitor priming before and after the DP. In the pre-DP period, consistent 

with predictive-selection but contrary to competitive-selection, we saw decreased 

neural responses for word-primed items compared to unprimed items. The initial, 

shared segments between prime (hijack) and target (hygiene) words evoke a reduced 

response during early time periods in line with a reduction in prediction error. However, 

during the post-DP period, we found competitor primed words evoked stronger neural 

responses than unprimed words in exactly the same scalp locations and time periods 

that show increased responses to pseudowords (hijure) compared to words. These 

post-DP response increases are in line with increased processing difficulty for 

competitor-primed words and for pseudowords being due to an increase in prediction 

error. Thus, the time course of the neural effects of competitor priming – with reduced 

neural responses pre-DP and increased neural responses post-DP – closely 

resembles the expected changes in prediction error shown in Figure 1F based on 

predictive-selection mechanisms. 

          On top of the direction and timing of neural responses, effects of lexicality and 

competitor priming localise to the superior temporal gyrus (STG). This is a brain region 

that has long been associated with lower-level sensory processing of speech (see Yi 

et al., 2019, for a review). Our observation of increased responses to pseudowords in 

this region is in accordance with source-localised MEG findings (Gagnepain et al., 

2012; Shtyrov et al., 2012) and evidence from a meta-analysis of PET and fMRI 

studies (Davis & Gaskell, 2009). This location is also consistent with the proposal that 

lexical influences on segment-level computations (rather than lexical-level 

computations themselves) produce reliable neural differences between words and 

pseudowords. We take this finding as further evidence in favour of computation of 

segment prediction error as a critical mechanism underlying word identification. 
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Increased prediction error for pseudowords has also been linked to encoding of novel 

lexical items in theoretical work (Davis & Sohoglu, 2020) and in studies of word 

learning in young children (Ylinen, et al 2017).  

          We further show using regression analyses that neural (MEG) and behavioural 

(RT) effects of lexicality and competitor priming are linked on a trial-by-trial basis. 

Trials in which pseudoword processing or competitor priming leads to a larger increase 

in RT also lead to larger post-DP neural responses. These links between behavioural 

and neural effects of lexicality and competitor priming are once more in-line with the 

proposal that post-DP increases in prediction error are a key neural mechanism for 

word and pseudoword processing and can explain the delayed behavioural responses 

seen in competitor priming. Interestingly, although regression analyses show positive 

relationships between RT and MEG effects on both lexicality and competitor priming, 

they differ in terms of whether a reliable neural response difference would be seen for 

trials in which response time effects were null (i.e. the baseline difference). While 

neural lexicality effects were significant even for trials that did not show behavioural 

effects, the same was not true for the competitor priming effect. These results indicate 

that, in accordance with predictive-selection accounts, the post-DP neural competitor 

priming effect was mediated by changes in behavioural response times. Only those 

trials in which competitor priming slowed behavioural responses led to larger neural 

responses. In contrast, an increased neural response to pseudowords would be 

expected even in trials for which response times did not differ between pseudowords 

and words. We will consider the implications of these and other findings for 

pseudoword processing in the next section. 
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How do listeners process pseudowords? 

Participants identified pseudowords with a speed and accuracy that is similar to that 

seen during recognition of familiar words. This is consistent with an optimally-efficient 

language processing system (Marslen-Wilson, 1984; Zhuang et al, 2014;), in which 

pseudowords can be distinguished from real words as soon as deviating speech 

segments are heard. Beyond this well-established behavioural finding, however, we 

reported two seemingly contradictory observations concerning pseudoword 

processing.  

The first is that, while post-DP neural activity and response times for words were 

modulated by competitor priming, processing of pseudowords was not similarly 

affected. This might suggest that the prior probability of hearing a pseudoword and the 

prediction error elicited by mismatching segments are not changed by our 

experimental manipulations. This may be because pseudowords have a low or zero 

prior probability and elicit maximal prediction errors that cannot be modified by a single 

prime. Yet, memory studies suggest that even a single presentation of a pseudoword 

can be sufficient for listeners to establish a lasting memory trace (Mckone & Trynes, 

1999; Arndt et al., 2008). However, it is possible that this memory for pseudowords 

reflects a different type of memory (e.g. episodic memory) from that produced by a 

word, with only the latter able to temporarily modify long-term, lexical-level 

representations and predictions for word speech segments (as in Complementary 

Learning Systems theories, cf. McClelland et al., 1995; Davis & Gaskell, 2009). 

Additionally, these differences between words and pseudowords may be influenced 

by the lexical decision task, which may have implicitly cued participants to treat words 

and pseudowords differently. Participants need to identify the exact form of a single 
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word in order to confirm its lexical status, but a deviation from all known words needs 

to be established to indicate a pseudoword (Norris & Kinoshita, 2008). 

A second observation is that, contrary to the null result for post-DP processing, 

pseudoword priming reduced subsequent pre-DP neural responses evoked by target 

items to a similar degree as real word priming (Figure 4C). This pre-DP effect is 

surprising given previous evidence suggesting that pseudowords must be encoded 

into memory and subject to overnight, sleep-associated consolidation in order to 

modulate the speed of lexical processing (Tamminen et al., 2010; James et al., 2017) 

or neural responses (Davis & Gaskell, 2009; Landi et al. 2018). It might be that neural 

effects seen for these pre-DP segments were due to changes to the representation of 

familiar words that our pseudowords resembled, though these were insufficient to 

modulate processing of post-DP segments.  

           

Summary 

Our work provides compelling evidence in favour of neural computations of prediction 

error during spoken word recognition. Unlike previous work (Brodbeck et al. 2018; 

Donhauser & Baillet, 2020) which reported neural responses correlated with lexical 

entropy as well as prediction error (surprisal), we did not find any similarly equivocal 

evidence. These earlier studies measured neural responses only to familiar words in 

continuous speech sequences such as stories or talks. However, since lexical 

uncertainty (entropy) and segment-level predictability (segment prediction error or 

surprisal) are highly correlated in natural speech, these studies may not be as able to 

distinguish between the lexical and segmental mechanisms that we assessed here. In 

contrast, our speech materials were carefully selected to change lexical probability 

(through priming) and for priming to have opposite effects on segment prediction error 
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before and after DP. This manipulation provides conclusive evidence in favour of 

predictive-selection mechanisms that operate using computations of prediction error 

during spoken word recognition.  
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