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 2 

Abstract  26 

Human listeners achieve quick and effortless speech comprehension through 27 

computations of conditional probability using Bayes rule. However, the neural 28 

implementation of Bayesian perceptual inference remains unclear. Competitive-29 

selection accounts (e.g. TRACE) propose that word recognition is achieved through 30 

direct inhibitory connections between units representing candidate words that share 31 

segments (e.g. hygiene and hijack share /haidʒ/). Manipulations that increase lexical 32 

uncertainty should increase neural responses associated with word recognition when 33 

words cannot be uniquely identified. In contrast, predictive-selection accounts (e.g. 34 

Predictive-Coding) proposes that spoken word recognition involves comparing heard 35 

and predicted speech sounds and using prediction error to update lexical 36 

representations. Increased lexical uncertainty in words like hygiene and hijack will 37 

increase prediction error and hence neural activity only at later time points when 38 

different segments are predicted. We collected MEG data from male and female 39 

listeners to test these two Bayesian mechanisms and used a competitor priming 40 

manipulation to change the prior probability of specific words. Lexical decision 41 

responses showed delayed recognition of target words (hygiene) following 42 

presentation of a neighbouring prime word (hijack) several minutes earlier. However, 43 

this effect was not observed with pseudoword primes (higent) or targets (hijure). 44 

Crucially, MEG responses in the STG showed greater neural responses for word-45 

primed words after the point at which they were uniquely identified (after /haidʒ/ in 46 

hygiene) but not before while similar changes were again absent for pseudowords. 47 

These findings are consistent with accounts of spoken word recognition in which 48 

neural computations of prediction error play a central role.  49 

 50 
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Significance Statement  51 

Effective speech perception is critical to daily life and involves computations that 52 

combine speech signals with prior knowledge of spoken words; that is, Bayesian 53 

perceptual inference. This study specifies the neural mechanisms that support spoken 54 

word recognition by testing two distinct implementations of Bayes perceptual inference. 55 

Most established theories propose direct competition between lexical units such that 56 

inhibition of irrelevant candidates leads to selection of critical words. Our results 57 

instead support predictive-selection theories (e.g. Predictive-Coding): by comparing 58 

heard and predicted speech sounds, neural computations of prediction error can help 59 

listeners continuously update lexical probabilities, allowing for more rapid word 60 

identification. 61 

 62 

Introduction 63 

In daily conversation, listeners identify ~200 words/minute (Tauroza & Allison, 1990) 64 

from a vocabulary of ~40,000 words (Brysbaert et al., 2016). This means that they 65 

must recognise 3-4 words/second and constantly select from sets of transiently 66 

ambiguous words (e.g. hijack and hygiene both begin with /haidʒ/). Although it is 67 

recognised that humans achieve word recognition by combining current speech input 68 

with its prior probability using Bayes theorem (Norris & McQueen, 2008; Davis & 69 

Scharenborg, 2016; Gwilliams & Davis, in press), the underlying neural 70 

implementation of Bayesian perceptual inference remains unclear (Aitchison & 71 

Lengeyl, 2017).  72 

          Here, we test two computational accounts of spoken word recognition that both 73 

implement Bayes rules. In competitive-selection accounts (e.g. TRACE, McClelland & 74 
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Elman, 1986, Figure 1A), word recognition is achieved through within-layer lateral 75 

inhibition between neural units representing similar words. By this view, hijack and 76 

hygiene compete for identification such that an increase in probability for one word 77 

inhibits units representing other similar-sounding words. Conversely, predictive-78 

selection accounts (e.g. Predictive-Coding, Davis & Sohoglu, 2020) suggest that word 79 

recognition is achieved through computations of prediction error (Figure 1D). On 80 

hearing transiently ambiguous speech like /haidʒ/, higher-level units representing 81 

matching words make contrasting predictions (/æk/ for hijack, /i:n/ for hygiene). 82 

Prediction error (the difference between sounds predicted and actually heard) provides 83 

a signal to update word probabilities such that the correct word can be selected.  84 

          In this study, we used the competitor priming effect (Monsell & Hirsh, 1998; 85 

Marsolek, 2008), which is directly explicable in Bayesian terms, i.e. the recognition of 86 

a word (hygiene) is delayed if the prior probability of a competitor word (hijack) has 87 

been increased due to an earlier exposure. This delay could be due to increased lateral 88 

inhibition (competitive-selection) or greater prediction error (predictive-selection). 89 

Thus, similar behavioural effects of competitor priming are predicted by two distinct 90 

neural computations (Spratling, 2008). To distinguish them, it is critical to investigate 91 

neural data that reveals the direction, timing and level of processing at which 92 

competitor priming modulates neural responses. Existing neural data remains 93 

equivocal with some evidence consistent with competitive-selection (Bozic et al., 2010; 94 

Okada & Hickok, 2006), predictive-selection (Gagnepain et al, 2012), or both 95 

mechanisms (Brodbeck et al., 2018; Donhauser et al., 2019). We followed these 96 

studies in correlating two computational measures with neural activity: lexical entropy 97 

(competitive-selection) and segment prediction error (or phoneme surprisal, for 98 

predictive-selection). 99 
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          Here, we used MEG to record the location and timing of neural responses during 100 

spoken words recognition in a competitor priming experiment. Pseudowords (e.g. 101 

hijure) were included in our analysis to serve as a negative control for competitor 102 

priming, since existing research found that pseudowords neither produce nor show 103 

this effect (Monsell & Hirsh, 1998). We compared items with the same initial segments 104 

(words hygiene, hijack, pseudowords hijure, higent share /haidʒ/) and measured 105 

neural and behavioural effects concurrently to link these two effects for single trials.  106 

          While lexical entropy and prediction error are correlated for natural speech, this 107 

competitor priming manipulation allows us to make differential predictions as illustrated 108 

in Figure 1. Specifically: (1) before the deviation point (DP, the point at which similar-109 

sounding words diverge), competitor priming increases lexical entropy and hence 110 

neural responses (Figure 1B&C Pre-DP). Such responses might be observed in 111 

inferior frontal regions (Zhuang et al., 2011) and posterior temporal regions 112 

(Prabhakaran et al., 2006). However, prediction error will be reduced for pre-DP 113 

segments, since heard segments are shared and hence more strongly predicted 114 

(Figure 1E&F Pre-DP). This should be reflected in the superior temporal gyrus (STG, 115 

Sohoglu & Davis, 2016). (2) After the DP, predictive-selection but not competitive-116 

selection accounts propose that pseudowords evoke greater signals in the left-STG, 117 

since they evoke maximal prediction errors (Figure 1E&F Pseudoword, Post-DP). (3) 118 

Furthermore, in predictive-selection theories, competitor priming is associated with an 119 

increased STG response to post-DP segments due to enhanced prediction error 120 

caused by mismatch between primed words (predictions) and heard speech (Figure 121 

1E&F Word, Post-DP).     122 

 123 

 124 
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Materials and Methods 125 

Participants 126 

Twenty-four (17 female, 7 male) right-handed, native English speakers were tested 127 

after giving informed consent under a process approved by the Cambridge Psychology 128 

Research Ethics Committee. This sample size was selected based on previous studies 129 

measuring similar neural effects with the same MEG system (Gagnepain et al. 2012; 130 

Sohoglu & Davis, 2016; Sohoglu et al. 2012, etc.). All participants were aged 18-40 131 

years and had no history of neurological disorder or hearing impairment based on self-132 

report. Two participants’ MEG data were excluded from subsequent analyses 133 

respectively due to technical problems and excessive head movement, resulting in 22 134 

participants in total. All recruited participants received monetary compensation. 135 

 136 

Experimental Design  137 

To distinguish competitive- and predictive-selection accounts, we manipulated 138 

participants’ word recognition process by presenting partially mismatched auditory 139 

stimuli prior to targets. Behavioural responses and MEG signals were acquired 140 

simultaneously. Prime and target stimuli pairs form a repeated measures design with 141 

two factors (lexicality and prime type). The lexicality factor has 2 levels: word and 142 

pseudoword, while the prime type factor contains 3 levels: unprimed, primed by same 143 

lexical status, primed by different lexical status. Hence the study is a factorial 2 x 3 144 

design with 6 conditions: unprimed word (hijack), word-primed word (hijack-hygiene), 145 

pseudoword-primed word (basef-basis), unprimed pseudoword (letto), pseudoword-146 

primed pseudoword (letto-lettan), word-primed pseudoword (boycott-boymid). Prime-147 

target pairs were formed only by stimuli sharing the same initial segments. Items in 148 

the two unprimed conditions served as prime items in other conditions and they were 149 
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 7 

compared with target items (Figure 2A). 150 

         The experiment used a lexical decision task (Figure 2B) implemented in 151 

MATLAB through Psychtoolbox-3 (Kleiner et al. 2007), during which participants heard 152 

a series of words and pseudowords while making lexicality judgments to each stimulus 153 

by pressing buttons using their left index and middle fingers only, with the index finger 154 

pressing one button indicating word and the middle finger pressing the other button 155 

indicating pseudoword. 344 trials of unique spoken items were presented every ~3 156 

seconds in two blocks of 172 trials, each block lasting approximately 9 minutes. Each 157 

prime-target pair was separated by 20 to 76 trials of items that do not start with the 158 

same speech sounds, resulting in a relatively long delay of ~1-4 minutes between 159 

presentations of phonologically-related items. This delay was chosen based on 160 

Monsell and Hirsh (1998), who suggest that it prevents strategic priming effects (Norris 161 

et al. 2002). Stimuli from each of the quadruplets were Latin-square counterbalanced 162 

across participants, i.e. stimulus quadruplets that appeared in one condition for one 163 

participant were allocated to another condition for another participant. The stimulus 164 

sequences were pseudo-randomised using Mix software (van Casteren & Davis, 165 

2006), so that the same type of lexical status (word/pseudoword) did not appear 166 

successively on more than 4 trials.  167 

 168 

Stimuli  169 

The stimuli consisted of 160 sets of four English words and pseudowords, with 170 

durations ranging from 372 to 991 ms (M = 643, SD = 106). Each set contained 2 171 

words (e.g. letter, lettuce) and 2 phonotactically-legal pseudowords (e.g. letto, lettan) 172 

that share the same initial segments (e.g. /let/) but diverge immediately afterwards.  173 

We used polysyllabic word pairs (Msyllable = 2.16, SDsyllable =0.36) instead of 174 
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monosyllabic ones in our experiments so as to identify a set of optimal lexical 175 

competitors that are similar to their prime yet dissimilar from all other items. All words 176 

were selected from the CELEX database (Baayen et al., 1993). Their frequencies were 177 

taken from SUBTLEX UK corpus (Van Heuven et al., 2014) and restricted to items 178 

under 5.5 based on log frequency per million word (Zipf scale, Van Heuven et al., 179 

2014). In order to ensure that any priming effect was caused purely by phonological 180 

but not semantic similarity, we also checked that all prime and target word pairs have 181 

a semantic distance of above 0.7 on a scale from 0 to 1 based on the Snaut database 182 

of semantic similarity scores (Mandera et al., 2017), such that morphological relatives 183 

(e.g. darkly/darkness) were excluded. 184 

All spoken stimuli were recorded onto a Marantz PMD670 digital recorder by a 185 

male native speaker of southern British English in a sound-isolated booth at a 186 

sampling rate of 44.1 kHz. Special care was taken to ensure that shared segments of 187 

stimuli were pronounced identically (any residual acoustic differences were 188 

subsequently eliminated using audio morphing as described below). 189 

        The point when items within each quadruplet begin to acoustically differ from 190 

each other is the deviation point (hereafter DP, see Figure 3A). Pre-DP length ranged 191 

from 150 to 672 ms (M = 353, SD = 96), while post-DP length ranged from 42 to 626 192 

ms (M = 290, SD = 111, see Figure 3B). Epochs of MEG data were time-locked to the 193 

DP.  Using phonetic transcriptions (phonDISC) in CELEX, the location of the DP was 194 

decided based on the phoneme segment at which items within each quadruplet set 195 

diverge (Mseg=3.53, SDseg=0.92). To determine when in the speech files corresponds 196 

to the onset of the first post-DP segment, we aligned phonetic transcriptions to 197 

corresponding speech files using the WebMAUS forced alignment service (Kisler et 198 

al., 2017; Schiel, 1999). In order to ensure that the pre-DP portion of the waveform 199 
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was acoustically identical, we cross-spliced the pre-DP segments of the 4 stimuli within 200 

each quadruplet and conducted audio morphing to combine the syllables using 201 

STRAIGHT (Kawahara, 2006) implemented in MATLAB. This method decomposes 202 

speech signals into source information and spectral information, and permits high 203 

quality speech re-synthesis based on modified versions of these representations. This 204 

enables flexible averaging and interpolation of parameter values that can generate 205 

acoustically intermediate speech tokens (see Rogers & Davis, 2017, for example). In 206 

the present study, this method enabled us to present speech tokens with entirely 207 

ambiguous pre-DP segments, and combine these with post-DP segments without 208 

introducing audible discontinuities or other degradation in the speech tokens. This way, 209 

phonological co-articulation in natural speech was reduced to the lowest level possible 210 

at the DP, hence any cross-stimuli divergence evoked in neural responses can only 211 

be caused by post-DP deviation. 212 

 213 

Post-test Gating Study 214 

As encouraged by a reviewer, we conducted a post-test perceptual experiment using 215 

a gating task in order to confirm that the cross-splicing and morphing of our stimuli 216 

worked as expected. This experiment used a gating task implemented in JavaScript 217 

through JSpsych (de Leeuw, 2015). During the experiment, auditory segments of all 218 

160 pairs of words used in the MEG study were played. Twenty British English 219 

speakers were recruited through Prolific Academic online with monetary 220 

compensation. The sample size was selected based on a similar gating study 221 

conducted by Davis et al. (2002). Participants were evenly divided into two groups, 222 

one group were presented with 160 stimuli words with different pre-DP segments (e.g. 223 

hygiene), while the other group were presented with the other paired 160 stimuli (e.g. 224 
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hijack). Therefore, participants only ever heard one of the two items in each pair. 225 

Stimuli segments of each word item consist of the pre-DP segment and, depending on 226 

the stimuli length, also longer segments that are 75ms, 150ms, 225ms and 300ms 227 

post DP. The segments of each word were presented in a gating manner, with the 228 

shortest segment played the first and the full item played at the end. After hearing 229 

each segment (e.g. /haidʒ/), participants were also presented with the writing of the 230 

word (e.g. hygiene) that contained the segment and the other paired word that shared 231 

the same pre-DP segment (e.g. hijack) on the screen. We asked the participants to 232 

choose which item the auditory segment matches and indicate their confidence from 233 

a rating scale of 1 to 6, with 1 representing being very confident that the item is the 234 

one on the left and 6 representing being very confident that the item is the one on the 235 

right, while 3 and 4 representing guessing the possible item. In order to avoid potential 236 

practice effect, we also added 40 filler stimuli that are identifiable on initial presentation.  237 

        Given our goal of assessing whether there is any information to distinguish the 238 

words prior to the divergence point, we needed to adopt an analysis approach that 239 

could confirm the null hypothesis that no difference exists between perception of the 240 

shared first syllable of word pairs like hijack and hygiene. We therefore analysed the 241 

results using Bayesian methods which permit this inference. Participants’ response 242 

accuracy was analysed using mixed-effect logistic regression and confidence rating 243 

scores were analysed using mixed-effect linear regression using the brms package 244 

(Bürkner, 2017) implemented in R. Response scores were computed in a way such 245 

that correct and most confident responses were scored 1, while incorrect and most 246 

confident responses were scored 6 and so on. Participants and items were included 247 

as random factors of the models and there was no fixed factor since we are only 248 

interested in the intercepts, whose estimates indicate the logit transformed proportion 249 
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of correctness in the logistic model and the mean rating in the linear model respectively. 250 

We chose weakly informative priors for each model and conducted Bayes Factor 251 

analyses through the Savage-Dickey density ratio method (Wagenmakers et al., 2010). 252 

Model estimate, standard error, lower and upper boundary of 95% credible interval (CI) 253 

are also reported. 254 

         When checking our data, we found that 16 pairs of word items were not morphed 255 

correctly, hence the spectral information of the pre-DP segments of these word pairs 256 

were not exactly the same and some of them diverged acoustically before the DP due 257 

to coarticulation. Therefore, we excluded these items from analyses of the gating data 258 

and confirmed that excluding these items did not modify the interpretation or 259 

significance of the MEG or behavioral results reported in the paper.   260 

        As shown in Figure 3C, we found that when gating segments ended at the DP, 261 

Bayes factor provides strong evidence in favour of the null hypothesis, chance-level 262 

accuracy (i.e. proportion of correct responses is 0.5), β = 0.04, SE = 0.08, lCI = -0.11, 263 

uCI = 0.20, BF01 = 23.04. This indicates that participants could not predict the full 264 

stimuli based on hearing the pre-DP segments. On the other hand, the Bayes factor 265 

at later alignment points is close to 0, providing extremely strong evidence for the 266 

alternative hypothesis that the proportion of correct responses is higher than 0.5 (75ms 267 

post-DP: β = 3.41, SE = 0.22, lCI = 2.99, uCI = 3.85, BF01 < 0.01; 150ms post-DP: β 268 

= 6.26, SE = 0.56, lCI = 5.24, uCI = 7.41, BF01 < 0.01; 225ms post-DP: β = 7.39, SE 269 

= 1.02, lCI = 5.65, uCI = 9.72, BF01 < 0.01; 300ms post-DP: β = 8.04, SE = 1.88, lCI 270 

= 4.99, uCI = 12.32, BF01 < 0.01). Figure 3D shows that, with the gating segment 271 

becoming longer, the rating scores gradually reduce (lower scores indicating more 272 

accurate and more confident identification). We examined whether the mean score at 273 

the DP is equal to 3.5 (i.e. chance performance) and found strong evidence supporting 274 
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the null hypothesis, β = -0.02, SE = 0.04, lCI = -0.10, uCI = 0.06, BF01 = 21.79, which 275 

is consistent with the accuracy results. Furthermore, in order to refine the estimate of 276 

the time point at which participants recognise the stimuli with enough confidence, we 277 

also investigated at what alignment point is there evidence showing the mean score 278 

lower than 2 (i.e. participants indicating more confident identification). We found 279 

moderate evidence supporting the null hypothesis (mean score equals to 2) at 75ms 280 

post-DP (β = -0.09, SE = 0.08, lCI = -0.25, uCI = 0.07, BF01 = 6.07), but extremely 281 

strong evidence in favour of the alternative hypothesis at 150ms post-DP (β = -0.71, 282 

SE = 0.05, lCI = -0.79, uCI = 0.62, BF01 < 0.01). These results show that critical 283 

acoustic information that supports confident word recognition arrives between 75ms 284 

and 150ms post-DP.    285 

         Overall, the post-test gating study confirmed that the pre-DP segments of 286 

correctly morphed stimuli are not distinguishable within each stimuli set. However, 287 

since we found items that were not correctly morphed during this control study, we did 288 

a thorough check of our stimuli and identified all the problematic items (16 words and 289 

12 pseudowords), which resulted in 8.68% of all trials presented in the MEG study. In 290 

order to double check our MEG study results, we then removed all these problematic 291 

trials from the data and reanalysed the data using the same methods as described in 292 

the method section. Fortunately, we did not find any inconsistent pattern or 293 

significance in our behavioural or neural results compared to those reported with all 294 

trials included. Therefore, we kept the original MEG and behavioural results with all 295 

items included in this paper.     296 

 297 

Behavioural Data Analyses 298 
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Response times (RTs) were measured from the onset of the stimuli and inverse-299 

transformed so as to maximise the normality of the data and residuals; Figures report 300 

untransformed response times for clarity.  Inverse-transformed RTs and error rates 301 

were analysed using linear and logistic mixed-effect models respectively using the 302 

lme4 package in R (Bates et al. 2014). Lexicality (word, pseudoword) and prime type 303 

(unprimed, primed by same lexical status, primed by different lexical status) were fixed 304 

factors, while participant and item were random factors. Maximal models accounting 305 

for all random effects were attempted wherever possible, but reduced random effects 306 

structures were applied when the full model did not converge (Barr et al., 2013). 307 

Likelihood-ratio tests comparing the full model to a nested reduced model using the 308 

Chi-Square distribution were conducted to evaluate main effects and interactions. 309 

Significance of individual model coefficients were obtained using t (reported by linear 310 

mixed-effect models) or z (reported by logistic mixed-effect models) statistics in the 311 

model summary. One-tailed t statistics for RTs are also reported for two planned 312 

contrasts: (1) word-primed versus unprimed conditions for word targets, and (2) word-313 

primed versus pseudoword-primed conditions for word targets. 314 

         When assessing priming effects, we excluded data from target trials in which the 315 

participant made an error in the corresponding prime trial, because it is unclear 316 

whether such target items will be affected by priming given that the prime word was 317 

not correctly identified. In addition, three trials with RTs shorter than the average pre-318 

DP length (353ms) were removed from further analysis, since responses before words 319 

and pseudowords acoustically diverge are too quick to be valid lexical decision 320 

responses. 321 

                                                                 322 

MEG Data Acquisition, Processing and Analyses 323 
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Magnetic fields were recorded with a VectorView system (Elekta Neuromag) which 324 

contains a magnetometer and two orthogonal planar gradiometers at each of 102 325 

locations within a hemispherical array around the head. Although electric potentials 326 

were recorded simultaneously using 68 Ag-AgCl electrodes according to the extended 327 

10-10% system, these EEG data were excluded from further analysis due to excessive 328 

noise. All data were digitally sampled at 1 kHz. Head position were monitored 329 

continuously using five head-position indicator (HPI) coils attached to the scalp. 330 

Vertical and horizontal electro-oculograms were also recorded by bipolar electrodes. 331 

A 3D digitizer (FASTRAK; Polhemus, Inc.) was used to record the positions of three 332 

anatomical fiducial points (the nasion, left and right preauricular points), HPI coils and 333 

evenly distributed head points for use in source reconstruction.  334 

            MEG Data were preprocessed using the temporal extension of Signal Source 335 

Separation in MaxFilter software (Elekta Neuromag) to reduce noise sources, 336 

normalise the head position over blocks and participants to the sensor array and 337 

reconstruct data from bad MEG sensors. Subsequent processing was conducted in 338 

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) and FieldTrip 339 

(http://www.fieldtriptoolbox.org/) software implemented in MATLAB. The data were 340 

epoched from -1100 to 2000ms time-locked to the DP and baseline corrected relative 341 

to the -1100 to -700ms prior to the DP, which is a period before the onset of speech 342 

for all stimuli (Figure 1C). Low-pass filtering to 40 Hz was conducted both before and 343 

after robust averaging across trials (Litvak et al., 2011). A time window of -150 to 0ms 344 

was defined for pre-DP comparisons based on the shortest pre-DP stimuli length. A 345 

broad window of 0 to 1000ms was defined for post-DP comparisons, which covered 346 

the possible period for lexicality and prime effects. After averaging over trials, an extra 347 
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step was taken to combine the gradiometer data from each planar sensor pair by 348 

taking the root-mean square (RMS) of the two amplitudes.  349 

           Sensor data from magnetometers and gradiometers were analysed separately. 350 

We converted the sensor data into 3D images (2D sensor x time) and performed F 351 

tests for main effects across sensors and time (the term “sensors” denotes interpolated 352 

sensor locations in 2D image space). Reported effects were obtained with a cluster-353 

defining threshold of p < .001, and significant clusters identified as those whose extent 354 

(across space and time) survived p < 0.05 FWE-correction using Random Field Theory 355 

(Kilner & Friston, 2010). Region of interest (ROI) analyses for the priming effect were 356 

then conducted over sensors and time windows that encompassed the significant 357 

pseudoword>word cluster, orthogonal to priming effects. When plotting waveforms 358 

and topographies, data are shown for sensors nearest to the critical points in 2D image 359 

space.  360 

          Apart from the two planned contrasts mentioned above (see Behavioural Data 361 

Analyses), which were applied to post-DP analysis, one-tailed t statistics was also 362 

reported on the pre-DP planned contrast between unprimed and word-primed items.  363 

 364 

Source Reconstruction 365 

In order to determine the underlying brain sources underlying the sensor-space effects, 366 

source reconstruction was conducted using SPM’s Parametric Empirical Bayes 367 

framework (Henson et al., 2011). To begin with, we obtained T1-weighted structural 368 

MRI (sMRI) scans from each participant on a 3T Prisma system (Siemens, Erlangen, 369 

Germany) using an MPRAGE sequence. The scan images were segmented and 370 

normalised to an MNI template brain in MNI space. The inverse of this spatial 371 

transformation was then used to warp canonical meshes derived from that template 372 
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brain back to each subject’s MRI space (Mattout et al., 2007). Through this procedure, 373 

canonical cortical meshes containing 8196 vertices were generated for the scalp and 374 

skull surfaces. We coregistrated the MEG sensor data into the sMRI space for each 375 

participant by using their respective fiducials, sensor positions and head-shape points 376 

(with nose points removed due to the absence of the nose on the T1-weighted MRI). 377 

Using the single shell model, the lead field matrix for each sensor was computed for a 378 

dipole at each canonical cortical mesh vertex, oriented normal to the local curvature 379 

of the mesh.   380 

         Source inversion was performed with all conditions pooled together using the 381 

‘IID’ solution, equivalent to classical minimum norm, fusing the magnetometer and 382 

gradiometer data (Henson et al, 2011). The resulting inversion was then projected 383 

onto wavelets spanning frequencies from 1 to 40 Hz and from -150 to 0ms time 384 

samples for pre-DP analysis and 400 to 900ms for post-DP analysis. This post-DP 385 

time window was defined by overlapping temporal extent of the pseudoword > word 386 

cluster between gradiometers and magnetometers. The total energy within these time-387 

frequency windows was summarised by taking the sum of squared amplitudes, which 388 

was then written to 3D images in MNI space.  389 

         Reported effects for source analyses were obtained with a cluster-defining 390 

threshold of p < 0.05 (FWE-corrected). And as in sensor space, ROI analyses were 391 

conducted over significant sensors and time windows from the orthogonal 392 

pseudoword>word cluster. Factorial ANOVA were carried out on main effects and one-393 

tailed paired t-tests on planned contrasts (see MEG Data Acquisition and Processing). 394 

 395 

 396 

 397 
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Results 398 

Behaviour  399 

          Response Times. As shown in Figure 4A, factorial analysis of lexicality (word, 400 

pseudoword) and prime type (unprimed, primed by same lexical status, primed by 401 

different lexical status) indicated a significant main effect of lexicality, in which RTs for 402 

pseudowords were significantly longer than for words, X2(3) = 23.60, p < .001. In 403 

addition, there was a significant interaction between lexicality and prime type, X2(2) = 404 

10.73, p = .005. This interaction was followed up by two separate one-way models for 405 

words and pseudowords, which showed a significant effect of prime type for words, 406 

X2(2) = 10.65, p = .005, but not for pseudowords, X2(2) = 1.62, p = .445. Consistent 407 

with the competitor priming results from Monsell and Hirsh (1998), words that were 408 

primed by another word sharing the same initial segments were recognised 409 

significantly more slowly than unprimed words (for mean raw RTs see Fig 3A), β = 410 

0.02, SE = 0.01, t(79.69) = 3.33, p < .001, and more slowly than pseudoword-primed 411 

words, β = 0.02, SE = 0.01, t(729.89) = 2.37, p = .018. As mentioned earlier (see 412 

Introduction), both competitive- and predictive-selection models predicted longer 413 

response times to word-primed target words compared to unprimed words, it is hence 414 

critical to distinguish the two accounts through further investigation of the MEG 415 

responses. 416 

         Accuracy. Figure 4B shows that there was a trend towards more lexical decision 417 

errors in response to words than to pseudowords, although this lexicality effect was 418 

marginal, X2(3) = 7.31, p = .063. The error rates for words and pseudowords were also 419 

affected differently by priming, as indicated by a significant interaction between 420 

lexicality and prime type, X2(2) = 6.08, p = .048. Follow-up analyses using two separate 421 

models for each lexicality type showed there was a main effect of prime type for words, 422 
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X2(2) = 13.95, p < .001, but not for pseudowords, X2(2) = 1.93, p = .381. Since we had 423 

not anticipated these priming effects on accuracy, post-hoc pairwise z tests were 424 

Bonferroni corrected for multiple comparisons. These showed that pseudoword 425 

priming reliably increased the error rate compared to the unprimed condition, β = 1.68, 426 

SE = 0.54, z = 3.14, p = .005, and to the word-primed condition, β = 2.74, SE = 0.89, 427 

z = 3.07, p = .007. Although no specific predictions on accuracy were made a priori by 428 

either competitive- or predictive-selection model, it is worth noting that participants 429 

might have expected pseudowords to be repeated given the increased error rate of 430 

responses to pseudoword-primed target words.  431 

 432 

MEG  433 

In order to explore the impact of lexicality and competitor priming on neural responses 434 

to critical portions of speech stimuli, both before and after they diverge from each other, 435 

MEG responses were time-locked to the DP. All reported effects are family-wise error 436 

(FWE)-corrected at cluster level for multiple comparisons across scalp locations and 437 

time at a threshold of p < 0.05. We reported data from gradiometers, magnetometers 438 

and source space wherever possible, since sensor x time analyses help define the 439 

time-windows used by source localisation.  Although some minor effects were shown 440 

in only one of these analyses, our most interesting effects are reliable in all three data 441 

types. 442 

          Pre-DP analyses. We assessed neural responses before the DP, during which 443 

only the shared speech segments have been heard and hence the words and 444 

pseudowords in each stimulus set are indistinguishable. Since there could not have 445 

been any effect of lexical status pre-DP, only prime type effects were considered in 446 

this analysis. Predictive- and competitive-selection accounts make opposite 447 
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predictions for pre-DP neural signals evoked by word-primed items compared to 448 

unprimed items. We therefore conducted an F-test for neural differences between 449 

these two conditions across the scalp and source spaces over a time period of -150 450 

to 0ms before the DP. A significant cluster of 295 sensor x time points (p = .023) was 451 

found in gradiometers over the mid-left scalp locations from -28 to -4ms (Figure 5A), 452 

in which unprimed items evoked significantly greater neural responses than word-453 

primed items. On the suggestion of a reviewer, and mindful of the potential for these 454 

pre-DP neural responses to be modulated by post-DP information, we report an 455 

additional analysis with a lengthened analysis time window of -150ms to 100ms. Again, 456 

we found a significant unprimed > word-primed cluster of 313 sensor x time points (p 457 

= .033) over the exact same locations in gradiometers from -28 to -3ms pre-DP, which 458 

confirmed that this pre-DP effect was not pushed forward by any post-DP effect. We 459 

did not find any cluster showing stronger neural responses for word-primed items than 460 

unprimed items and no clusters survived correction for multiple comparisons for 461 

magnetometer responses or for analysis in source space.                                                                                                                      462 

         To further examine these results, we also conducted ROI analysis of gradiometer 463 

signals evoked by unprimed and primed items averaged over the same -150 to 0ms 464 

pre-DP time window but across the scalp locations that showed the post-DP lexicality 465 

effect at which pseudowords elicited greater neural responses than words (see Figure 466 

6A). As shown in Figure 5B, the results indicated that unprimed items elicited 467 

significantly stronger neural responses than word-primed items, t(21) = 2.41, p = .013, 468 

consistent with the whole-brain analysis. In particular, the mid-left cluster shown in 469 

panel A partially overlaps with the post-DP pseudoword>word cluster. The direction 470 

and location of these pre-DP neural responses are in accordance with the predictive-471 

selection account and inconsistent with the competitive-selection account. A surprising 472 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2020.07.01.182717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

finding is that post-hoc analysis also showed greater neural responses evoked by 473 

unprimed items than pseudoword-primed items, t(21) = 2.69, p = .014, although we 474 

had not predicted these effects from pseudoword primes. 475 

          Post-DP analyses. We then examined the post-DP response differences 476 

between words and pseudowords (lexicality effect). The gradiometer sensors showed 477 

a significant cluster of 39335 sensor x time points (p < .001) over the left side of the 478 

scalp at 313-956ms post-DP (Figure 6A). In this cluster, pseudowords evoked a 479 

significantly stronger neural response than words. Similarly, magnetometer sensors 480 

also detected a significant left-hemisphere cluster of 68517 sensor x time points (p 481 

< .001) at 359-990ms post-DP (Figure 6B) showing the same lexicality effect. We did 482 

not find any significant cluster in which words evoked greater neural responses than 483 

pseudowords. These results are consistent with findings from Gagnepain and 484 

colleagues (2012). To locate the likely neural source of the effects found in sensor 485 

space, we conducted source reconstruction by integrating gradiometers and 486 

magnetometers. As shown in Figure 6C, results from source space showed that neural 487 

generators of the lexicality effect were estimated to lie within the left superior temporal 488 

gyrus (STG, volume of 2315 voxels, p < .001, peak at x = -46, y = -36, z = 0; x = -52, 489 

y = -34, z = -6; x = -56, y = -28, z = -10). This location, and direction of response, is 490 

consistent with a sub-lexical (e.g. phonemic) process being modulated by lexicality; in 491 

line with the predictive-selection account.  492 

         Next, we investigated whether the neural responses that were modulated by 493 

lexicality were also influenced by prime type by conducting an ROI analysis which 494 

tested the interaction between prime type and lexicality, as well as planned pairwise 495 

comparisons of priming effects on words alone, using data averaged over the time 496 

window and the sensor locations of the significant cluster shown in panel A and B 497 
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(Figure 6D & E). Since these planned pairwise comparisons involve responses to 498 

familiar words only (i.e. words that are word-primed vs unprimed, words that are word-499 

primed vs pseudoword-primed), they are orthogonal to the lexicality effect that defined 500 

the pseudoword>word cluster and hence are not confounded by task. The interaction 501 

was significant in both gradiometers, F(1.96, 41.11) = 7.30, p = .002, and 502 

magnetometers, F(1.90, 39.99) = 5.80, p = .007. Specifically, there was a significant 503 

effect of prime type for words, F(1.93, 40.55) = 8.01, p = .001 (gradiometers), F(1.81, 504 

37.96) = 5.61, p = .009 (magnetometers), such that neural signals evoked by word-505 

primed words were significantly stronger than those evoked by unprimed words, t(21) 506 

= 2.22, p = .019 (gradiometers), t(21) = 3.33, p = .002 (magnetometers), and 507 

pseudoword-primed words, t(21) = 3.70, p < .001 (gradiometers), t(21) = 2.64, p = .008 508 

(magnetometers). In contrast, there was no reliable main effect of prime type for 509 

pseudowords, F(1.94, 40.80) = 0.67, p = .514 (gradiometers), F(1.79, 37.61) = 0.80, p 510 

= .446 (magnetometers). The corresponding tests performed on the source-511 

reconstructed power within the lexicality ROI of suprathreshold voxels (Figure 6F) did 512 

not show a reliable interaction effect between lexicality and competitor priming, F(1.56, 513 

32.85) = 0.99, p = .36. Nevertheless, consistent with sensor space results, source 514 

power did show a significant effect of prime type for words, F(1.73, 36.42) = 3.77, p 515 

= .038, but not pseudowords, F(1.62, 33.94) = 1.12, p = .326. Pairwise comparisons 516 

also indicated that word-primed words evoked significantly greater source strength 517 

than unprimed words, t(21) = 2.66, p = .007, though the effect between word-primed 518 

and pseudoword-primed words was not significant, t(21) = 1.26, p = .110. Overall, in 519 

line with behavioural results, neural responses evoked by words and pseudowords 520 

were also influenced differently by prime type. Critically, competitor priming modulated 521 

the post-DP neural responses evoked by words, but not those evoked by pseudowords, 522 
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and these effects were localised to the left STG regions that plausibly contribute to 523 

sub-lexical processing of speech. This matches the pattern of responses proposed in 524 

the predictive-selection model (see Figure 1F).  525 

         As encouraged by a reviewer, we also conducted whole brain analyses for the 526 

competitor priming effects. We found a significant word-primed word > unprimed word 527 

cluster of 1197 sensor x time points (p = .034) in magnetometers in the left hemisphere 528 

within a time window of 426 - 466ms post-DP. We also found a significant and a 529 

marginal word-primed word > pseudoword-primed word cluster in gradiometers in the 530 

left hemisphere respectively of 527 sensor x time points (p = .011) at 719-749ms and 531 

471 sensor x time points (p = .053) at 315-336ms. These topographies and time 532 

courses overlap with the pseudoword > word clusters and are consistent with our ROI 533 

results. Hence, the ROI analyses have picked up the most important findings from 534 

these whole-brain analyses. 535 

          To ensure that other response patterns were not overlooked, we also 536 

investigated whether there was any lexicality by prime-type interaction at other 537 

locations across the scalp and source spaces, and during other time periods. As 538 

shown in Figure 7A, a significant cluster of Gradiometers at midline posterior scalp 539 

locations were found at 397-437ms post-DP, in which the effect of priming was 540 

significantly different for words and pseudowords. Figure 7B shows gradiometer 541 

signals evoked by conditions of interest averaged over the spatial and temporal extent 542 

of the significant cluster in panel A. To explore this profile, we computed an orthogonal 543 

contrast to assess the overall lexicality effect (the difference between words and 544 

pseudowords), and the result was marginal, F(1.00, 21.00) = 3.50, p = .075. The effect 545 

of prime type was marginally significant for words, F(1.89, 39.78) = 3.08, p = .060, but 546 

significant for pseudowords, F(1.80, 37.85) = 7.14, p = .003. The location and pattern 547 
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of this interaction cluster were dissimilar to those predicted by either competitive- or 548 

predictive-selection theories and no cluster survived correction in magnetometer 549 

sensors or source space hence we did not consider this effect to be as relevant or 550 

interpretable as our other findings. We report it here in the interest of completeness 551 

and transparency. 552 

           Linking neural and behavioural effects. To further examine the relationship 553 

between neural and behavioural response differences attributable to competitor 554 

priming or lexicality, we conducted a single-trial regression analyses using linear 555 

mixed-effect models that account for random intercepts and slopes for participants and 556 

stimuli sets (grouped by their initial segments). We calculated behavioural RT 557 

differences and neural MEG differences caused by: (1) lexicality. i.e. the difference 558 

between pseudoword and word trials (collapsed over primed and unprimed conditions) 559 

and (2) competitor priming, i.e. the difference between unprimed and word-primed 560 

word trials, with MEG signals averaged over the spatial and temporal extent of the 561 

post-DP pseudoword>word cluster seen in sensor space and the STG peak voxel in 562 

source space (see Figure 6). We then assessed the relationship between these 563 

behavioural and neural difference effects in linear mixed-effect regression of single 564 

trials, with differences in RTs as the independent variable and differences in MEG 565 

responses as the dependent variable. The analyses were conducted using the lme4 566 

package in R (Bates et al. 2014). 567 

           As shown in Figure 8A, we observed a significant positive relationship between 568 

RTs and magnetometers on lexicality difference (β = 0.11, SE = 0.01, t(23.31) = 7.77, 569 

p < .001), although associations between RTs and gradiometers or source response 570 

were not significant. These observations from magnetometers indicated that slower 571 

lexical decision times evoked by pseudowords were associated with greater neural 572 
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responses. Furthermore, the intercept parameter for the magnetometers model was 573 

significantly larger than zero, β = 37.58, SE = 5.72, t(23.09) = 6.57, p < .001. We can 574 

interpret this intercept as the neural difference that would be predicted for trials in 575 

which there was no delayed response to pseudowords compared to words. The 576 

significant intercept indicated a baseline difference in neural responses to words and 577 

pseudowords, even in the absence of any difference in processing effort (as indexed 578 

by lexical decision RTs). This suggested the engagement of additional neural 579 

processes specific to pseudowords regardless of the behavioural effect (cf. Taylor et 580 

al., 2014).  581 

           Figure 8B showed another significant positive relationship between RTs and 582 

magnetometers on competitor priming difference (β = 0.15, SE = 0.02, t(38.85) = 7.89, 583 

p < .001), while relationships between RTs and gradiometers or source response were 584 

again not significant. Interestingly, unlike for the lexicality effect, the intercept in this 585 

competitor priming magnetometers model did not reach significance (β = 12.88, SE = 586 

7.27, t(21.33) = 1.77, p = .091). This non-significant intercept might suggest that if 587 

word-primed words did not evoke longer RTs than unprimed words, magnetometer 588 

signals would not be reliably different between the two conditions either. Hence, 589 

consistent with predictive-selection accounts, the increased post-DP neural responses 590 

in the STG caused by competitor priming was both positively linked to and mediated 591 

by longer response times.  592 

 593 

 594 

Discussion (1487) 595 

In this study, we distinguished different implementations of Bayesian perceptual 596 

inference by manipulating the prior probability of spoken words and examining the 597 
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pattern of neural responses. We replicated the competitor priming effect such that a 598 

single prior presentation of a competitor word (e.g. hijack) delayed the recognition of 599 

a similar-sounding word (e.g. hygiene), whereas this effect was not observed when 600 

the prime or target was a pseudoword (e.g. hijure). Armed with this behavioural 601 

evidence, we used MEG data to test the neural bases of two Bayesian theories of 602 

spoken word recognition.  603 

 604 

Competitive- vs predictive-selection 605 

Competitive-selection accounts propose that word recognition is achieved through 606 

direct inhibitory connections between representations of similar candidates (e.g. 607 

McClelland & Elman, 1986). Priming boosts the activation of heard words and 608 

increases lateral inhibition applied to neighbouring words, which delays their 609 

subsequent identification. The effect of competitor priming is to increase lexical 610 

uncertainty, and hence lexical-level neural responses, until later time points when 611 

target words can be distinguished from the competitor prime (Figure 1C). In contrast, 612 

predictive-selection accounts propose that word recognition is achieved by subtracting 613 

predicted speech from heard speech and using computations of prediction error to 614 

update lexical probabilities (Davis & Sohoglu, 2020). By this view, predictions for 615 

segments that are shared between competitor primes and targets (pre-DP segments) 616 

will be enhanced after presentation of prime words. Thus, competitor priming will 617 

reduce the magnitude of prediction error, and hence neural responses pre-DP (Figure 618 

1F). Only when speech diverges from predictions (post-DP segments) will competitor-619 

primed words evoke greater prediction error, leading to increased neural response in 620 
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brain areas involved in pre-lexical (e.g. phonemic) processing of speech representing 621 

prediction error (Blank et al., 2018; Blank & Davis, 2016).  622 

It should be acknowledged that both models involve multiple levels of 623 

representation and hence both sub-lexical and lexical processes. However, our focus 624 

is on lexical processing within the competitive-selection framework and sub-lexical 625 

processing within the predictive-selection framework. These are the critical levels that 626 

1) support word recognition according to each theory, 2) are modulated by the 627 

competitor priming effect that our study manipulates and 3) are invoked to explain the 628 

slower behavioural responses and associated changes in MEG responses that we 629 

observed.  630 

          We tested the predictions for the direction and timing of neural responses 631 

associated with competitor priming using MEG data which showed opposite neural 632 

effects pre- and post-DP. In the pre-DP period, consistent with predictive-selection but 633 

contrary to competitive-selection mechanism, we saw decreased neural responses for 634 

word-primed items compared to unprimed items. The initial, shared segments between 635 

prime (hijack) and target (hygiene) words evoked a reduced response during early 636 

time periods in line with a reduction in prediction error. However, during the post-DP 637 

period, we found competitor-primed words evoked stronger neural responses than 638 

unprimed words in exactly the same locations and time periods that showed increased 639 

responses to pseudowords (hijure) compared to words. These post-DP response 640 

increases are in line with enhanced processing difficulty for competitor-primed words 641 

and pseudowords due to greater prediction error. Thus, the time course of the 642 

competitor priming neural effects – showing reduced neural responses pre-DP and 643 

increased neural responses post-DP – closely resembles the expected changes in 644 

prediction error (Figure 1F) based on predictive-selection mechanisms. 645 
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          On top of the direction and timing of neural responses, effects of lexicality and 646 

competitor priming localised to the left STG. This is a brain region that has long been 647 

associated with lower-level sensory processing of speech (Yi et al., 2019). Our 648 

observation of increased responses to pseudowords in this region is in accordance 649 

with source-localised MEG findings (Gagnepain et al., 2012; Shtyrov et al., 2012) and 650 

evidence from a meta-analysis of PET and fMRI studies (Davis & Gaskell, 2009). This 651 

location is also consistent with the proposal that lexical influences on segment-level 652 

computations produce reliable neural differences between words and pseudowords 653 

(Davis & Sohoglu, 2020). We take this finding as further evidence in favour of 654 

computations of segment prediction error as a critical mechanism underlying word 655 

identification.  656 

          We further show using regression analyses that neural (MEG) and behavioural 657 

(RT) effects of lexicality and competitor priming are linked on a trial-by-trial basis. 658 

Trials in which pseudoword processing or competitor priming leads to larger increases 659 

in RT also have greater post-DP neural responses. These links between behavioural 660 

and neural effects of lexicality and competitor priming are once more in-line with the 661 

proposal that post-DP increases in prediction error are a key neural mechanism for 662 

word and pseudoword processing and can explain the delayed behavioural responses 663 

seen in competitor priming. Interestingly, lexicality and competitor priming effects differ 664 

in terms of whether a reliable neural response difference would be seen for trials with 665 

no baseline RT difference. While neural lexicality effects were significant even for trials 666 

that did not show behavioural effects, the same was not true for the competitor priming 667 

effect. These results indicate that, consistent with predictive-selection accounts, the 668 

post-DP neural competitor priming effect was mediated by changes in behavioural RTs. 669 

In contrast, an increased neural response to pseudowords was expected even in trials 670 
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for which RTs did not differ between pseudowords and words. We will consider the 671 

implications of these and other findings for pseudoword processing in the next section. 672 

 673 

How do listeners process pseudowords? 674 

Participants identified pseudowords with a speed and accuracy similar to that seen 675 

during recognition of familiar words. This is consistent with an optimally-efficient 676 

language processing system (Marslen-Wilson, 1984; Zhuang et al, 2014), in which 677 

pseudowords can be distinguished from real words as soon as deviating speech 678 

segments are heard. Beyond this well-established behavioural finding, however, we 679 

reported two seemingly contradictory observations concerning pseudoword 680 

processing.  681 

The first is that, while post-DP neural activity and response times for words were 682 

modulated by competitor priming, processing of pseudowords was not similarly 683 

affected. This might suggest that the prior probability of hearing a pseudoword and the 684 

prediction error elicited by mismatching segments are not changed by our 685 

experimental manipulations. This may be because pseudowords have a low or zero 686 

prior probability and elicit maximal prediction errors that cannot be modified by a single 687 

prime. Yet, memory studies suggest that even a single presentation of a pseudoword 688 

can be sufficient for listeners to establish a lasting memory trace (Mckone & Trynes, 689 

1999; Arndt et al., 2008). However, it is possible that this memory for pseudowords 690 

reflects a different type of memory (e.g. episodic memory) from that produced by a 691 

word, with only the latter able to temporarily modify long-term, lexical-level 692 

representations and predictions for word speech segments (cf. Complementary 693 

Learning Systems theories, McClelland et al., 1995; Davis & Gaskell, 2009).  694 
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A second observation is that, contrary to the null result for post-DP processing, 695 

pseudoword priming reduced subsequent pre-DP neural responses evoked by target 696 

items to a similar degree as word priming (Figure 5B). This pre-DP effect is surprising 697 

given previous evidence suggesting that pseudowords must be encoded into memory 698 

and subject to overnight, sleep-associated consolidation in order to modulate the 699 

speed of lexical processing (Tamminen et al., 2010; James et al., 2017) or neural 700 

responses (Davis & Gaskell, 2009; Landi et al. 2018). It might be that neural effects 701 

seen for these pre-DP segments were due to changes to the representation of familiar 702 

words that our pseudowords resembled, though these were insufficient to modulate 703 

processing of post-DP segments.  704 

           705 

Summary 706 

Our work provides compelling evidence in favour of neural computations of prediction 707 

error during spoken word recognition. Although the previous work by Gagnepain et al. 708 

(2012) also provided evidence for the predictive-selection account, their behavioural 709 

effects of consolidation on word recognition were obtained during different tasks and 710 

different sessions from their neural responses. Our current study goes beyond this 711 

previous work by adopting a single task (lexical decision) and using a competitor 712 

priming paradigm that permits concurrent measurement of perceptual outcomes and 713 

neural responses in a single session. This enables us to directly link trials that evoked 714 

stronger neural signals in the STG to delayed RTs and hence provide stronger 715 

evidence that both of these effects are caused by competitor priming.  716 

         In addition, unlike previous work (Brodbeck et al. 2018; Donhauser & Baillet, 717 

2020) which reported neural responses correlated with lexical entropy as well as 718 
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prediction error (surprisal), we did not find any similarly equivocal evidence. These 719 

earlier studies measured neural responses to familiar words in continuous speech 720 

sequences such as stories or talks. It might be that effects of lexical entropy are more 721 

apparent for connected speech than isolated words. However, since lexical uncertainty 722 

(entropy) and segment-level predictability (segment prediction error or surprisal) are 723 

highly correlated in natural continuous speech, these studies may be less able to 724 

distinguish between the lexical and segmental mechanisms that we assessed here. In 725 

contrast, our speech materials were carefully selected to change lexical probability 726 

(through priming) and for priming to have opposite effects on segment prediction error 727 

before and after DP. This manipulation provides evidence in favour of predictive-728 

selection mechanisms that operate using computations of prediction error during 729 

spoken word recognition.   730 
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Figures 900 

 901 

Figure 1. Illustration of neural predictions based on competitive-selection and 902 

predictive-selection models respectively for recognition of a word (hygiene) or 903 

pseudoword (hijure) that is unprimed or primed by a similar-sounding word (hijack) or 904 

pseudoword (higent). A. In a competitive-selection model, such as TRACE 905 

(McClelland & Elman, 1986), word recognition is achieved through within-layer lexical 906 
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competition. B. Illustration of the competitive-selection procedure for word (e.g. 907 

hygiene) and pseudoword (e.g. hijure) recognition. Phoneme input triggers the 908 

activation of multiple words beginning with the same segments, which compete with 909 

each other until one word is selected. No word can be selected when hearing a 910 

pseudoword, though it would be expected that lexical probability (although not lexical 911 

entropy) should be greater for words than for pseudowords. C. Illustration of neural 912 

predictions based on lexical entropy. Lexical entropy gradually reduces to zero as 913 

more speech is heard. Before the deviation point (hereafter DP) at which the prime 914 

(hijack) and target (hygiene) diverge, these items are indistinguishable, and competitor 915 

priming should transiently increase lexical entropy (shaded area). After the DP, 916 

competitor priming should not affect entropy since prime and target words can be 917 

distinguished. D. In a predictive-selection model such as the Predictive-Coding 918 

account (PC, Davis & Sohoglu, 2020), words are recognised by minimising prediction 919 

error, which is calculated by subtracting the predicted segments from the current 920 

sensory input. E. Illustration of the predictive-selection procedure during word (e.g. 921 

hygiene) and pseudoword (e.g. hijure) recognition. Speech input evokes predictions 922 

for the next segment (based on word knowledge as in B), which is then subtracted 923 

from the speech input and used to generate prediction errors that update lexical 924 

predictions (+ shows confirmed predictions that increase lexical probability, - shows 925 

disconfirmed predictions that decrease lexical probability). F. Illustration of neural 926 

predictions based on segment prediction error. Before the DP, priming of initial word 927 

segments should strengthen predictions and reduce prediction error. There will also 928 

be greater mismatch between predictions and heard speech for competitor-primed 929 

words and hence primed words should evoke greater prediction error than unprimed 930 

words (shaded area). This increased prediction error should still be less than that 931 
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observed for pseudowords, which should evoke maximal prediction error regardless 932 

of competitor priming due to their post-DP segments being entirely unpredictable.  933 
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 935 

Figure 2. Experimental design. A. Four different types of prime-target pairs. Each pair 936 

was formed by two stimuli from the same quadruplet, separated by between 20 to 76 937 

trials of items that do not share the same initial segments. B. Lexical decision task. 938 

Participants made lexicality judgments to each item they heard via left hand button-939 

press. The response time was recorded from the onset of the stimuli. As shown, items 940 

within each quadruplet are repeated after a delay of ~1-4 minutes following a number 941 

of other intervening stimuli.  942 

 943 
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 945 

Figure 3. Stimuli and post-test gating study results. A. Stimuli within the same 946 

quadruplet have identical onsets in STRAIGHT parameter space (Kawahara, 2006) 947 

and thus only diverge from each other after the deviation point (DP). MEG responses 948 

were time-locked to the DP. B. Stimuli length histogram. C. Bayes factor for chance 949 

level accuracy (BF01) at each post-DP alignment point of the stimuli in the post-test 950 

gating study. D. Mean rating score at each post-DP alignment point of the stimuli in 951 

the gating study.  952 
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 953 

Figure 4. Response time results (A) and accuracy results (B) of the lexical decision 954 

task. Bars are color-coded by lexicality and prime type on the x axis (words, blue frame; 955 

pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent 956 

fill and frame colors; primed by different lexicality, inconsistent fill and frame colors). 957 

Bars show the subject grand averages, error bars represent ± within-subject SE, 958 

adjusted to remove between-subjects variance (Cousineau, 2005). Statistical 959 

significance is shown based on generalised linear mixed-effects regression: * p<0.05, 960 

** p<0.01, *** p<0.001. Statistical comparisons shown with solid lines indicate the 961 

lexicality by prime-type interaction and main effects of prime-type for each lexicality, 962 

whereas comparisons with broken lines indicate the significance of pairwise 963 

comparisons.  964 

 965 
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 967 

Figure 5. Pre-DP results. A & B. Pre-DP response difference between items that are 968 

unprimed and primed by a word in MEG gradiometer sensors within -150 to 0ms (a 969 

time window at which words and pseudowords are indistinguishable). The topographic 970 

plots show F-statistics for the entire sensor array with the scalp locations that form two 971 

statistically significant clusters highlighted and marked with black dots. Waveforms 972 

represent MEG response averaged over the spatial extent of the significant cluster 973 

shown in the topography. The grey shade of waveforms represents ± within-participant 974 

SE, adjusted to remove between-participants variance (Cousineau, 2005). C. ROI 975 

analysis of neural responses evoked by unprimed and primed items averaged over 976 

the same pre-DP time period of -150-0ms but across gradiometer sensor locations 977 

which showed the post-DP pseudoword>word lexicality effect (see Figure 5A). Bars 978 

are color-coded by prime type on the x axis (unprimed items, no fill; word-primed items, 979 

blue; pseudoword-primed items, orange; black frame indicates that words and 980 

pseudowords are indistinguishable). All error bars represent ± within-participant SE, 981 

adjusted to remove between-participant variance. Statistical significance: * p<0.05. 982 

 983 
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 984 

Figure 6. Post-DP results showing lexicality effects and corresponding ROI responses 985 

evoked by conditions of interest. A & B. Post-DP lexicality effects in MEG gradiometer 986 

and magnetometer sensors. The topographic plots show the statistically significant 987 

cluster with a main effect of lexicality (pseudoword > word). Waveforms represent 988 
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MEG response averaged over the spatial extent of the significant cluster shown in the 989 

topography. The grey shade of waveforms represents ± within-participant SE, adjusted 990 

to remove between-participants variance. C. Statistical parametric map showing the 991 

cluster (pseudoword > word) rendered onto an inflated cortical surface of the Montreal 992 

Neurological Institute (MNI) standard brain thresholded at FWE-corrected cluster-level 993 

p < 0.05, localised to the left STG. D, E & F. Post-DP ROI ANOVA on neural signals 994 

and source strength evoked by conditions of interest averaged over the time window 995 

and scalp locations of the significant cluster shown in panel A, B & C. Bars are color-996 

coded by lexicality and prime type on the x axis (words, blue frame; pseudowords, 997 

orange frame; unprimed, no fill; primed by same lexicality, consistent fill and frame 998 

colors; primed by different lexicality, inconsistent fill and frame colors). All error bars 999 

represent ± within-participant SE, adjusted to remove between-participants variance. 1000 

Statistical significance from ANOVAs: * p<0.05, ** p<0.01, *** p<0.001. Statistical 1001 

comparisons shown with solid lines indicate the lexicality by prime-type interaction and 1002 

main effects of prime-type for each lexicality, whereas comparisons with broken lines 1003 

indicate the significance of planned pairwise comparisons.  1004 

 1005 

  1006 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2020.07.01.182717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

 1007 

Figure 7. Post-DP results showing lexicality-by-priming interaction effects in MEG 1008 

gradiometers. A. The topographic plot shows F-statistics for the statistically significant 1009 

cluster that showed an interaction between lexicality and prime type. Waveforms 1010 

represent gradiometer responses averaged over the spatial extent of the significant 1011 

cluster shown in the topography. The grey shade of waveforms represents ± within-1012 

participant SE, adjusted to remove between-participants variance. B. Gradiometer 1013 

signals evoked by conditions of interest averaged over temporal and spatial extent of 1014 

the significant cluster in panel A. All error bars represent ± within-participant SE, 1015 

adjusted to remove between-participants variance. Statistical significance: ** p<0.01. 1016 

The statistical comparison lines indicate main effects of prime type for each lexicality. 1017 

The lexicality by prime-type interaction is statistically reliable as expected based on 1018 

the defined cluster.  1019 
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 1021 

Figure 8. Single-trial linear mixed-effect models which accounted for random 1022 

intercepts and slopes for participants and stimuli sets (grouped by initial segments) 1023 

were constructed to compute the relationship between RTs and magnetometers on (A) 1024 

lexicality difference (i.e. between pseudowords and words, collapsed over unprimed 1025 

and primed conditions) and (B) competitor priming difference (i.e. between word-1026 

primed word and unprimed word conditions). Magnetometer responses were 1027 

averaged over the time window and scalp locations of the significant post-DP 1028 

pseudoword>word cluster (see Figure 6). β1 refers to the model slope, β0 refers to 1029 

the model intercept. Statistical significance: *** p<0.001.  1030 
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