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Abstract 
A mechanistic understanding of how mutations modulate proteins’ biochemical properties would 
advance our understanding of biology, provide insight for engineering proteins with particular 
functions, and facilitate efforts in precision medicine. However, such mechanistic insight remains 
elusive in many cases. For example, experimentally-derived structures of protein variants with 
dramatically different behaviors are often nearly identical, suggesting that one must consider the 
entire ensemble of structures that a protein adopts. Molecular dynamics (MD) simulations provide 
access to such ensembles, but identifying the relevant features of these complex entities remains 
difficult. Here we develop DiffNets, a deep learning framework that combines supervised 
autoencoders with expectation maximization to identify the structural preferences that are 
responsible for the biochemical differences between protein variants. As a proof of principle, we 
show that DiffNets identify the important structural preferences that confer increased stability to 
TEM β-lactamase variants without any a priori knowledge of the relevant structural features. 
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Intro 
A mechanistic understanding of the functional differences between protein variants is crucial for 
advancing our understanding of fundamental biology and for applications in precision medicine. 
Amino acid substitutions can disrupt protein function leading to morbidity and mortality1,2, but also 
have the potential to bring about new functions, like metabolizing new substrates3. In either case, 
identifying how mutations perturb the underlying structure and dynamics of a protein is the key to 
explaining these functional differences4–9. Streamlining this process would make it easier to infer 
the behavior of new protein variants and to identify essential elements of protein function, which 
would accelerate protein engineering. Further, devising therapeutic strategies for many human 
health challenges is easier when researchers have a structural basis to distinguish drug targets 
(e.g. cancerous protein variant) from other proteins. 
 
Identifying structural features that explain functional differences between protein variants is a 
difficult challenge. While it is appealing to distinguish protein variants by structural differences in 
their ground state configurations, like with crystal structures, often the ground states are 
identical10. Moreover, this comparison neglects many thermally accessible configurations that 
proteins adopt, which are essential for protein function and strongly influence a protein’s 
druggability11–13. Experimentally-derived protein structures can be combined with MD 
simulations14 to sample conformational ensembles, but it is difficult to compare ensembles since 
they contain millions of overlapping states, each with thousands of degrees of freedom15,16. 
Adding to this challenge, its often the case that protein variants are only distinguishable by 
statistical differences in their propensity to adopt specific structural configurations, rather than by 
gross structural rearrangements. For example, mutations in the bacterial protein, TEM β-
lactamase, help it to evolve resistance to new antibiotic drugs by changing how frequently it 
occupies certain types of excited states in the conformational ensemble, rather than by sampling 
new configurations, or changing the native folded structure5. 
 
Because conformational ensembles are extremely high-dimensional, analyzing MD simulation 
data using dimensionality reduction algorithms is crucial. However, existing dimensionality 
reduction algorithms make assumptions about what is important in the data that may not always 
be well-suited for distinguishing protein variants. For example, principal component analysis 
(PCA)17,18 finds linear combinations of features that capture the most geometric variance. As a 
result, PCA learns a low-dimensional projection of data that often highlights large geometric 
differences in protein structural configurations. When PCA identifies differences between protein 
variants it is difficult to discern whether they are arbitrary motions, like of a floppy loop in solution, 
or if they explain functional differences between protein variants. Further, PCA will not uncover 
functional differences between variants if they are due to subtle geometric rearrangements. 
Autoencoders19 are a more powerful alternative since they can find nonlinear combinations of 
features. Autoencoders are neural networks that learn a low-dimensional projection of data that 
is optimized to produce a high-fidelity geometric reconstruction of a protein configuration (Fig. 1). 
However, like PCA, autoencoders still focus on capturing large geometric variations. Time-lagged 
independent component analysis (tICA)20,21 is another common approach, which captures 
kinetically slow motions in a system by identifying linear combinations of features that decorrelate 
slowly. Many functionally relevant structural changes, like protein folding, are kinetically slow so 
tICA is a reasonable approach to capture them. However, there are many situations where the 
conformational changes of interest are fast relative to others (e.g. allostery within the native 
ensemble that is faster than folding and unfolding). 
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We hypothesize that dimensionality reduction algorithms can best identify relevant structural 
differences between protein variants if they are required to predict the variants’ biochemical 
properties. The requirement to make such a prediction constrains the dimensionality reduction, 
forcing data to be sorted based on underlying biochemical properties. Experimentalists operate 
in a similar manner; they sort protein variants based on biochemical differences and then compare 
and contrast structural data to find features that explain these biochemical differences. In other 
words, they start with the assumption that there are differences between two classes of data and 
then search for features that separate the classes of data, regardless of if they are slow motions, 
large motions, or any other kind of motions. Designing a dimensionality reduction algorithm that 
does this systematically in a manner that accounts for the ensemble nature of proteins would be 
of great value to researchers. 
 
Here we introduce DiffNets, an approach that uses neural networks to identify the ensemble 
features that explain biochemical differences between protein variants. DiffNets use MD 
simulation data to learn a low-dimensional projection (latent space) of protein structures that is 
explicitly organized to separate structural configurations based on the biochemical property a 
structure confers, rather than by slow motions or large geometric changes. For example, if a 
mutation gives rise to a protein variant that can metabolize a new substrate, DiffNets would learn 
differences between the wild-type and protein variant by learning a latent space that separates 
structural configurations based on the degree they contribute to metabolizing the new substrate. 
With the latent space organized in this way it becomes easy to identify structural features that 
explain biochemical differences between protein variants, and therefore, to understand the 
structural details that govern the biochemical property of interest. DiffNets achieve this by 
combining supervised autoencoders22 with expectation maximization. In contrast to standard 
autoencoders (unsupervised) that are singly-focused on performing a geometric dimensionality 
reduction of structural configurations, DiffNets are multi-task networks that perform a 
dimensionality reduction where the low-dimensional projection of data must be able to both 
reconstruct the input structure and accurately classify structures with a label that reflects some 
biochemical property of interest (Fig. 1).  
 
DiffNets rely on two key innovations. First, attaching a classification task to the latent space acts 
as a mechanism to organize the latent space (Fig. 1). It forces the dimensionality reduction to 
dedicate representational power to identifying degrees of freedom that distinguish protein variants 
with different behaviors instead of focusing exclusively on highly variable degrees of freedom. 
Second, we draw inspiration from multiple-instance learning23 to curate training labels for the 
classification task. During multiple-instance learning, learners are given bags of training examples 
where each bag is labelled negative, indicating that the bag is full of negative examples, or 
positive, indicating that there are at least some positive examples in the bag. The learner then 
must figure out how to label all of the individual instances. This is similar to our situation where 
we know the biochemical property of each protein variant (i.e. negative bag or positive bag), but 
we do not know the biochemical property of each structural configuration sampled in a simulation. 
To solve this problem, we train DiffNets using an expectation maximization framework that 
iteratively updates the classification training labels from initial labels indicating which variant 
simulation a structure came from to labels that indicate the biochemical property of each structural 
configuration. Ultimately, DiffNets learn a latent representation of MD simulation data that 
encodes a faithful representation of a protein’s structure and sorts structures based on their 
association with the biochemical property of interest. DiffNets can split up the input and focus the 
classification task on a designated region of the protein, like the region of a mutation (Fig. 1), or 
the active site of an enzyme. This provides a way to guide DiffNets to search for differences at 
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the root (e.g. the mutation), or to incorporate a priori information (e.g. the mutation changes the 
active site of an enzyme). 
 
 
 

Figure 1. Standard autoencoder architecture and the DiffNet architecture used throughout the 
manuscript. Autoencoders have an encoder that compress the input data to a bottleneck, or latent, 
layer and a decoder that expands the latent representation to reconstruct the original input. The 
DiffNet used in this manuscript splits the input into two encoders where atoms near the mutation 
are reduced to a latent layer that performs a classification task, while other atoms are reduced to 
a latent layer without a classification task. The two latent layers are concatenated and trained to 
reconstruct the original input. 

 
To demonstrate the power of DiffNets, we apply it to a set of variants that modulate the stability 
of the enzyme TEM β-lactamase. TEM is a bacterial enzyme that confers antibiotic resistance by 
metabolizing β-lactam drugs like penicillin24. Bacteria are quick to evolve new variants of TEM 
that have activity against new drugs, but these mutations are often destabilizing, so compensatory 
mutations evolve to restore stability25–27. M182T is a clinically important stabilizing mutation in 
TEM that counterbalances destabilizing mutations that otherwise increase activity against 
antibiotics28,29. Until recently, the mechanism of stabilization by M182T was not known, since 
crystal structures of M182T and wild-type are nearly indistinguishable5. Further, even with 
simulation data of both variants, it is difficult to identify distinguishing structural preferences since 
the variants have highly overlapping conformational ensembles (Fig. 2). Recently, our group used 
MD simulations, NMR experiments, and X-ray crystallography to show that M182T and another 
stabilizing variant, M182S, increase stability relative to non-stabilizing variants (wild-type, M182N, 
and M182V) by stabilizing helix 9 and the domain interface between helix 9 and the adjacent β-
sheet. Analysis of MD simulation data showed that stabilizing variants have an increased 
propensity to adopt a more compact helix 9 relative to non-stabilizing variants (Fig. 2). 
Additionally, NMR data showed that stabilizing variants have chemical shifts in the β-sheet 
adjacent to helix 9, which led to speculation that helix 9 has an increased propensity to be packed 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.182725doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182725
http://creativecommons.org/licenses/by-nd/4.0/


more tightly to the adjacent β-sheet, though analysis of MD simulations failed to confirm that 
speculation. We evaluate if DiffNets can pinpoint these underlying features that explain stability 
differences between TEM variants. This is a difficult task for existing methods since helix 9 
compaction is subtle (< 1 Ångstrom compaction) compared to loop motions elsewhere in the 
protein and required many months of analysis to identify in our past work5. 
 

 
Figure 2. Structural configurations sampled from MD simulations of a wild-type TEM (grey – 
nonstabilizing variant) and M182T (red – stabilizing variant). Helix 9 is circled in yellow and shown 
below in a compact configuration (left, red) and a noncompact configuration (right, grey). 
Hydrogen bond distances are shown in Ångstroms. 
  
Results and Discussion 
 
The DiffNet architecture is inspired by supervised autoencoders. 
 
The DiffNet architecture is based on an autoencoder, which is a deep learning framework 
commonly used for dimensionality reduction. Standard autoencoders have been used in many 
applications to MD simulation data.4,30–41 They connect two separate neural networks, an encoder 
network and a decoder network, to perform an unsupervised dimensionality reduction on input 
data (e.g. a protein structure from a frame of an MD simulation). First, the encoder network 
transforms the input with a series of matrix multiplications and non-linear activation functions to 
progressively reduce the dimensionality of the input to a bottleneck layer, called the latent space 
vector. Then, the latent space vector is used as input to the decoder network, whose architecture 
is often a mirror image of the encoder network, that attempts to reconstruct the original input. If 
the autoencoder can compress and then reconstruct the original input with high accuracy, this 
implies that the low-dimensional latent space vector retains the salient features that describe the 
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input. Autoencoders are initialized with random matrix multiplications and the matrix values 
(weights) are tuned by training across many examples. Concretely, the weights in an 
unsupervised autoencoder are trained to minimize a loss function that measures the difference 
between the input and output of the model, called the input reconstruction error. 
 
Supervised autoencoders22 augment autoencoders with a loss function that measures how 
accurately the latent space vector performs a user-defined classification task (e.g. did the protein 
structure come from a wild-type or variant simulation?). Therefore, supervised autoencoders must 
learn weights that simultaneously minimize protein reconstruction error and classification error. 
Previously, supervised autoencoders have been used as a way to obtain better performance on 
a classification task22. In contrast, we use the classification task to learn a more interpretable low-
dimensional projection of data. 
 
DiffNets are multi-task neural networks that leverage supervised autoencoders to learn a low-
dimensional representation of MD simulation data that organizes protein structural configurations 
based on the degree to which they are associated with a biochemical property. While DiffNets 
encompass any number of architectures that use a supervised autoencoder, this section 
describes the specific architecture that we use throughout the manuscript (Fig. 1). The input to 
this architecture is protein XYZ coordinates (C,CA,N,CB) from a simulation frame, which are 
whitened for normalization (see methods). The input gets split into two encoder networks, based 
on whether or not an atom is within 1nm of the mutated residue under consideration. Each 
encoder network has a single hidden layer that reduces the number of features by 4-fold, which 
is then connected to a bottleneck layer with a smaller number of variables. Only the encoder with 
inputs from near the mutated residue performs a classification task, which has a sigmoid 
activation function. This split architecture guides DiffNets to search in the region near the mutation 
to find differences between variants. In principle, the classification task can be performed on any 
portion of the protein, or the whole protein, but performing the classification based on the region 
near the mutation is a reasonable default since it is the root of any differences between variants. 
Moreover, classifying based on the region of the mutation does not preclude the identification of 
relevant distal structural differences between variants. If the mutation causes biochemically 
relevant differences at distal regions then these regions are inherently linked to the state of the 
region of the mutation and, thus, are implicitly linked to the classification task. After encoding and 
classification, latent vectors from both encoders are concatenated and passed through a single 
decoder network that reconstructs the input protein structure. All hidden layers employ rectified 
linear unit activation functions (ReLU). 
 
Autoencoders and DiffNets successfully reconstruct protein structures.  
 
To gain insight about structural features that distinguish protein variants, DiffNets, or 
autoencoders in general, must learn a low-dimensional representation that preserves important 
structural degrees of freedom. One way to test if the dimensionality reduction preserves important 
structural degrees of freedom is to reconstruct the protein structure from the latent representation 
and measure the reconstruction error. A low reconstruction error indicates that the latent space 
retains important structural information about the protein. Since autoencoders can be tuned to 
have any number of latent variables, it is possible to determine the relationship between number 
of latent variables and the extent that structural degrees of freedom are preserved. We sought to 
ascertain how many latent variables are needed to accurately reconstruct protein structures from 
protein simulations of TEM β-lactamase. Additionally, given that DiffNets commit representational 
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power to a classification task, we wanted to determine if the multi-task nature of DiffNets results 
in degraded ability to reconstruct protein structures relative to a standard autoencoder.  
 
To evaluate how latent space size affects protein reconstruction error for autoencoders and 
DiffNets, we trained them on TEM simulation data using a variable number of latent variables. For 
this experiment, we trained DiffNets in a supervised setting that we designed explicitly to 
understand how the classification task alters the dimensionality reduction. Specifically, we curated 
a dataset of ~18,000 simulation frames from wild-type and M182T simulations where half of the 
frames have a compact helix 9 (helix compaction criteria described in Methods). The DiffNets are 
trained to perform a dimensionality reduction and classify whether or not a given frame has a 
compact helix. The classification labels are not updated with expectation maximization in this 
case. For comparison, we trained an unsupervised autoencoder with the same exact architecture 
and data, only without the classification task. To determine how protein reconstruction error 
changes as a function of the number of latent space variables, we trained with a latent space of 
3, 5, 10, 25, or 50 latent variables. We calculated protein reconstruction error as the root-mean-
square deviation (RMSD) of the reconstructed structure from the DiffNet, or autoencoder, 
compared to the original simulation frame. 
 
We find that standard autoencoders and DiffNets reconstruct protein structures from MD 
simulation data with similar performance. Autoencoders and DiffNets can reduce a protein 
structural configuration down to 3 variables and then reconstruct the original protein conformation 
with ~1 Ångstrom error (Fig. 3a,b). We are only aware of one other study that has reported RMSD 
error for an autoencoder applied to MD simulation data. They calculate reconstruction error for 8 
proteins with varying degrees of freedom, fewer and greater than TEM, and report RMSDs 
ranging from 0.89-1.67 Ångstroms when using 30 latent variables32. Generally, adding more 
dimensions can decrease interpretability so it is encouraging that DiffNets produce a high-fidelity 
dimensionality reduction with a small number of latent variables. Moreover, the small difference 
in reconstruction error between DiffNets and unsupervised autoencoders highlights that 
dedicating representational power to a feature classification task results in a negligible 
degradation of the geometric dimensionality reduction. 
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Figure 3. Ability of autoencoders and DiffNets to reconstruct protein structures. a Reconstruction 
error plots showing the RMSD between a protein structure from simulation and the corresponding 
protein structure generated by an unsupervised autoencoder (yellow) or DiffNets (blue). b 
structure representing the difference between a structure generated by the DiffNet (blue) vs. the 
actual conformation from simulation (grey) when training with 3-5 latent variables. 
 
 
DiffNets classification task organizes the latent space to emphasize structural features 
important to biochemical properties. 
 
Dimensionality reduction algorithms are only helpful for identifying differences between two 
classes of data if the two classes of data are separated in the latent space. We propose that 
unsupervised autoencoders learn a latent representation of data that focuses on large geometric 
variations, so structures with large geometric differences are separated, while structures with 
subtle differences are close together. As a result, if biochemical differences between protein 
variants are caused by subtle geometric changes, then the variants will be highly overlapping in 
the latent space and thus, the autoencoder fails to provide a useful way to distinguish variants. 
We hypothesized that augmenting a standard autoencoder with a classification task, as with 
DiffNets, would reorganize the latent space to highlight relevant differences between datasets, 
even if they are subtle.  
 
To evaluate if the DiffNet classification layer alters the latent space in a way that helps identify 
differences between two classes of data, we compared the latent space of DiffNets to the latent 
space of unsupervised autoencoders after training on a dataset that includes two classes of data 
distinguishable by a subtle, but important difference. Helix 9 compaction is a subtle structural 
change, but an important indicator of the relative stability of TEM protein variants. As in the 
previous section, we trained DiffNets and autoencoders on a dataset of ~18,000 simulation frames 
from wild-type and M182T simulations where half of the frames have a compact helix 9. The 
DiffNets and autoencoders trained were identical, except the DiffNet latent space has to classify 
helix 9 as compact or non-compact. This dataset was selected specifically to evaluate how the 
classification task of the DiffNet alters the dimensionality reduction compared to a standard 
autoencoder. In a normal setting we would not have a priori knowledge about the importance of 
helix 9 compaction. However, this is an important test to determine if adding a classification task 
can reorganize the latent space to highlight differences between datasets, which is a property that 
DiffNets will ultimately need to identify differences between variants. 
 
Requiring DiffNets to perform a classification task in tandem with dimensionality reduction 
successfully reconfigures the latent space to disentangle compact helix configurations from non-
compact helix configurations. In the unsupervised autoencoder, simulation frames of compact 
and non-compact helices are overlapping in the latent space (Fig. 4a). This demonstrates that 
training an unsupervised autoencoder on two classes of data does not necessarily yield a latent 
representation that provides any insight on how the two classes of data are different. Further, we 
fixed the latent space and then trained a classification layer (i.e. performed logistic regression) to 
classify frames as having a compact vs. noncompact helix 9. The resulting Receiver Operating 
Characteristic (ROC) curve, which measures classification performance, shows a classification 
performance similar to random guessing (AUC=0.54) providing further evidence that the latent 
representation does not help distinguish the two classes of data. In contrast, when autoencoders 
are trained with a classification task (as with DiffNets), there is clear separation between the 
classes of data (Fig. 4a). The latent space is organized explicitly to highlight the differences 
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between the two classes of data and has excellent performance at classifying compact vs. non-
compact helix states (AUC=0.91) (Fig. 4b). From this result, we reasoned that DiffNets should be 
able to learn a latent space that highlights biochemically-relevant differences between protein 
variants if given a classification task that labels structural configurations with an indication of their 
biochemical properties. 

 
Figure 4. Evaluation of how the classification layer of a supervised autoencoder alters the learned 
latent representation. a Simulation frames that have a compact helix (red) and a noncompact helix 
(black) are projected onto the three-dimensional latent space learned by an unsupervised 
autoencoder (left) and a DiffNet (right). The decision boundary (black dotted line) indicates the 
plane that each neural network uses to separate compact helix states from non-compact helix 
states. b ROC curve showing the average classification performance of the unsupervised 
autoencoder (dark yellow) and the DiffNet (dark blue) as well as the performance for each of the 
5 folds of cross validation (faded dotted lines). 
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Self-supervised DiffNets learn the important structural preferences that govern stability in 
TEM variants. 
 
We propose that DiffNets trained to classify structural configurations based on their associated 
biochemical property would result in a latent space that separates structural configurations based 
on their biochemical properties. This would make it easy to identify structural features that explain 
biochemical differences between protein variants. However, providing a label indicating the 
biochemical property of each structural configuration is a difficult challenge since we typically only 
know the biochemical property associated with each protein variant, rather than each structural 
configuration. Requiring DiffNets to classify simulation frames from different protein variants as 
different classes could be a reasonable starting point but comes with challenges. First, many 
labels are likely to be incorrect. For example, while M182T is a stabilizing variant, M182T 
simulations are likely to sample some conformations that are not stabilizing, and vice-versa for 
wild-type. Additionally, it is unlikely that binary labels (e.g. stabilizing vs. not stabilizing) are 
optimal. Structural configurations are often on a spectrum where a specific configuration may 
have some features associated with a biochemical property, but not all, so labels are not easily 
discretized. Without addressing these challenges, DiffNets would learn a latent space that places 
structural configurations on a spectrum that indicates the degree that a single configuration is 
“wild-type-like” or “variant-like”, but does not explicitly separate configurations based on the 
biochemical property they confer, which is our ultimate goal.  As a result, DiffNets would separate 
structural configurations based on any structural differences that distinguish protein variants, even 
if they are unrelated to their biochemical differences. This classic supervised approach might have 
utility for developing therapeutics, but would be bolstered by a mechanism that addresses the 
above challenges to shift the classification labels from indicating which variant simulation a 
structure came from to labels that indicate the biochemical property that a structure is associated 
with. 
 
We devised an expectation maximization scheme that iteratively updates the classification labels 
of simulation frames to indicate the degree to which each structural configuration is associated 
with a particular biochemical property. Expectation maximization is a statistical method that allows 
the parameters of a model to be fit, even when the outputs of the model cannot directly be 
observed in the training data42 (i.e. when they are hidden). In our case, the hidden variables are 
the elements of a vector of numbers (𝑦) that label each individual frame, or conformation, of a 
molecular dynamics simulation with a classification label indicating the degree that a conformation 
is associated with a biochemical property, or not. For example, if stability is the biochemical 
property that distinguishes protein variants, each frame, (𝑦"), should have a label between 0 and 
1 that ranges from nonstabilizing to stabilizing. However, there is no a priori knowledge detailing 
if a given conformation increases stability, thus, these variables are hidden. To estimate these 
values, the expectation maximization algorithm iteratively alternates between an expectation step 
and a maximization step. We adapt an expectation maximization scheme from Zaretski et. al.43 
to improve DiffNets training labels. During the maximization step, DiffNets are trained to estimate 
a value for each state indicating the likelihood that a state is stabilizing, which is initially learned 
using noisy training labels (e.g. all 1s for stabilizing variants and all 0s for non-stabilizing variants). 
Then, the expectation step refines the training labels by computing the expected values of the 
hidden variables, 𝑦, using the output from the DiffNet, 𝑦#, conditioned on constraints about how 
many frames from each type of simulation we expect to be in stable conformations.  The 
expectation is the probability-weighted average of all binary realizations of binomial distributions 
parameterized by 𝑦# that assign the right number of stable conformations to a given batch of 
conformations. 
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𝑦" = 𝐸[	𝑦("	|	𝑆+ ≤ 	𝑦#- ≤ 𝑆.	] 

 

= 𝑃(𝑦#"	is	1) ∗ 7
𝑃(𝑆+ − 1 ≤ 𝑦#9 − 𝑦#" ≤ 𝑆. − 1

𝑃(𝑆+ ≤	 𝑦#9 ≤ 𝑆.)
: 

 
where 𝑦" is the true label of each individual frame, 	𝑦(" is the DiffNet output,  𝑆+ and 𝑆. are the 
lower and upper bounds on how many conformations in a batch are stabilizing based on user-
defined constraints, 	𝑦(- is the sum of the binary outcomes of a batch which contains conformation 
𝑖, 𝑃(𝑆+ − 1 ≤ 𝑦#9 − 𝑦#" ≤ 𝑆. − 1) is the probability that the number of conformations in a batch is 
within the limits if conformation 𝑖 is ignored, and 𝑃(𝑆+ ≤ 	 𝑦#9 ≤ 𝑆.) is the probability that the number 
of conformations in a batch is within the limits, including conformation 𝑖.  Ultimately, the desired 
outcome is that the expectation maximization algorithm redistributes training labels from all 0s 
and 1s for simulation frames of non-stabilizing and stabilizing variants, respectively, to values 
between 0 and 1 that reflect the degree that a structural configuration is stabilizing. This 
mechanism is self-supervised since the training labels are learned by the algorithm, rather than 
explicitly curated. 
 
We trained self-supervised DiffNets to identify structural preferences that distinguish stabilizing 
and non-stabilizing TEM variants using data from four β-lactamase variants. In this case, the 
DiffNets receive no a priori information about features, like helix 9 compaction, that are 
responsible for biochemical differences between variants. If self-supervision of DiffNets works as 
expected, then training should produce a latent space where it is easy to identify the structural 
features that confer stability to M182T and M182S, relative to WT and M182V. Specifically, we 
expect to see structural configurations with a compact helix 9 in one region of latent space and 
scanning across to the other side of latent space should correlate with structural configurations 
becoming less compact. Additionally, based on previous NMR data, we expect to see changes at 
the interface between helix 9 and the adjacent β-sheet. To evaluate if DiffNets learn these 
functionally-relevant structural differences between variants, we trained DiffNets on 6.5μs of 
simulation data for each variant: M182T, M182S, WT, and M182V. All frames from M182T and 
M182S (stabilizing variants) were initially assigned classification labels of 1, and simulation 
frames from M182V and wild-type were initially assigned 0s. During the EM procedure, we 
calculate the expected values (updated labels) conditioned on the constraint that 0-30% of non-
stabilizing variants frame are likely to be stabilizing, and 60-90% of frames for stabilizing variants.  
 
Using expectation maximization, DiffNets learn a low-dimensional representation that accurately 
highlights helix 9 compaction as an important difference between protein variants. If self-
supervision helps DiffNets learn structural differences between variants that explain their 
biochemical differences, we expect to see a gradient in the latent space that correlates with 
changes in structural configurations from non-stabilizing to stabilizing. We can use the DiffNets 
classification score as a proxy for the latent space and measure how it changes in response to 
helix 9 compaction. Encouragingly, the DiffNets classification score correlates well with helix 
compaction. When we bin DiffNet classification scores from 0 to 1 on all simulation frames, we 
find the DiffNet classification score increases as the distance between three important residue 
pairs involved in helix 9 compaction decreases (Fig. 5a). This shows that the DiffNet accurately 
learned that helix 9 compaction is a structural preference that confers stability to M182T and 
M182S even though it received no a priori knowledge about the importance of this helix. While 
capturing helix compaction is necessary to explain the mechanism of increased stability, it is not 
sufficient, since packing against nearby β-sheets is also important. Therefore, if the DiffNet 
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classification score is comprehensively capturing stability it should not be a perfect proxy for helix 
compaction. To evaluate if the DiffNet classification score is overfit to helix compaction, we 
measured how well the DiffNet classification score classifies simulation frames that have compact 
vs. non-compact helices. Appropriately, the DiffNet classification score classifies compact vs non-
compact helix with reasonable, but not perfect, accuracy (AUC=0.73) (Fig. 5B). We are 
encouraged by this AUC score because it indicates that the DiffNets classification score is 
strongly influenced by helix compaction, but must also be a function of other structural features.  

 
 
Figure 5. Ability of self-supervised DiffNets to identify the importance of helix 9 compaction. a 
DiffNet classification score as a function of the distance of 3 hydrogen bond residues in helix 
binned using all simulation data from WT, M182V, M182T, and M182S. b ROC curve showing 
the performance of DiffNets when classifying compact vs. noncompact helix states, which DiffNets 
were not explicitly trained on. 

 
While many deep learning approaches are criticized for their lack of interpretability, the DiffNet 
architecture provides a straightforward means to understand what the network learned, which 
makes it easy to gain biophysical insight. To automate DiffNet interpretation, we measured all 
inter-atom distances within 1nm of the mutation for 2000 cluster centers calculated from all 
simulations and then measured the linear correlation between each distance and the DiffNet 
classification score. We plot the top 1% of distances correlated with the DiffNet classification score 
to visualize the conformational changes that the DiffNet views as important for distinguishing 
stabilizing and non-stabilizing variants. Encouragingly, the distance correlations strongly point to 
helix 9 compaction as an important feature of stability (Fig. 6). While the helix compaction is 
striking, there are other important distance changes that match well with previous NMR data5. 
The previous study proposed that the interface between helix 9 and the adjacent β-sheet become 
more tightly packed, but months of analysis of simulation data failed to confirm this hypothesis. 
On the same simulation dataset, DiffNets clearly learn that this interface becomes more tightly 
packed for stabilizing variants (Fig. 6). Moreover, the distance correlations line up with NMR data 
perfectly in some instances. For example, the distance correlations show a compaction between 
residue 189, in the middle of the helix, and residue 263 on the β-sheet, which both have chemical 
shift perturbations for stabilizing variants relative to the nonstabilizing wild-type variants. Often 
times the important order parameter that distinguishes protein variants can be complicated and, 
therefore, easily missed even with months of analysis. DiffNets can learn complicated order 
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parameters and help automate the process of identifying structural features that explain 
biochemical differences between protein variants. 
 

 
Figure 6. Visualization of the features that DiffNets find important for increased stability of M182T 
and M182S variants. Protein atoms are colored cyan if they are near the mutation, which indicates 
that they were included in the classification task and considered for the distance correlation 
calculation. Dotted lines indicate distances between two atoms that change in a way that is 
strongly correlated with an increased DiffNet classification score. Red indicates the atoms move 
closer together as the classification score increases, blue indicates atoms moving away from each 
other. 

 
DiffNets predictive power extends to variants not seen during training. 
 
We challenged DiffNets by testing if they correctly classify M182N, a variant outside of the training 
set that does not confer stability to β-lactamase. The M182N mutation is not stabilizing, but does 
have a helix-capping residue, like the stabilizing variants, whereas the non-stabilizing variants do 
not. Ultimately, M182N is not stabilizing because of competition between capping of helix 9 and 
other interactions. Accurately classifying M182N with the non-stabilizing variants is a particularly 
difficult challenge for DiffNets since M182N may have helix dynamics that are more similar to the 
stabilizing variants. We used 6.5μs of simulation data from the M182N variant as input for the 
self-supervised DiffNet described above. 
 
DiffNets accurately groups M182N with the non-stabilizing variants. The DiffNet classification 
score across variants that were in the training is as expected; stabilizing variants are grouped 
together at high values, and non-stabilizing variants group together at lower values (Fig. 7). 
Interestingly, there is some overlap between stabilizing and non-stabilizing variants, which 
suggests that self-supervision helped DiffNets learn that some structural configurations from 
stabilizing variants can be non-stabilizing, and vice-versa. Importantly, the untrained variant, 
M182N, has a major peak with the non-stabilizing variants and a minor peak with the stabilizing 
variants (Fig. 7). We find it interesting, but not surprising, that M182N has a minor peak with the 
stabilizing variants even though M182N is not a stabilizing mutation. We reason that DiffNets can 
recognize that the helix capping residue is important for stability, but still recognizes other 
nuances of stability that help it accurately group M182N with the non-stabilizing variants. 
Altogether, these results suggest that self-supervised DiffNets learn how to separate protein 
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variants based on biochemical differences and will be a useful tool to identify the structural basis 
of biochemical properties.  In future scenarios, it is possible that MD simulations of novel variants 
could be combined with DiffNets to predict their biochemical properties. It is likely that this will 
only work if the conformational space of the novel variant has high overlap with variants that were 
used to train DiffNets. 
 

 
Figure 7. DiffNet groups M182N with nonstabilizing variants. Histogram shows the DiffNet 
classification score across all simulation frames from M182Tand M182S (red - stabilizing 
variants), WT and M182V (grey – nonstabilizing variants), and M182N (dotted black – untrained 
variant).  
 
Discussion 
We have introduced DiffNets, a deep learning framework to identify the mechanistic basis for 
biochemical differences between protein variants. MD simulations provide information that can be 
used to uncover structural mechanisms that explain how an amino acid substitution causes a 
protein to lose its normal function to become pathogenic or gain a new function to adapt to new 
environments. However, comparing MD simulations of protein variants is difficult since it typically 
requires several steps including data featurization, dimensionality reduction, clustering, building 
conformational maps of variants, and then searching in a high-dimensional space to identify 
structural trends that differentiate variants. Previous work, especially VAMPnets44, has 
demonstrated that deep learning algorithms can be used to automate many parts of MD 
simulation analysis for understanding the important states and dynamics of a single protein. In 
contrast, DiffNets use deep learning to simplify the process of identifying important structural 
differences between systems. The key to performing this task is to perform a dimensionality 
reduction simultaneously with a classification task to learn a latent representation that organizes 
protein structural configurations based on their biochemical properties. In this work we applied 
DiffNets to identify structural differences that explain stability differences in TEM protein variants, 
but we imagine DiffNets will be used to identify biochemically relevant structural differences 
between systems with any type of perturbation. For example, DiffNets applied to a protein 
receptor in the apo- and holo- states would identify differences in these systems that could provide 
information on how signaling proteins are activated. 
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Methods 
 
MD Simulations 
 
All MD simulation data were generated for a previous manuscript by Zimmerman et. al5. Briefly, 
all simulations were run with Gromacs 5.1.145. Simulations were initialized from the TEM-1 β-
lactamase crystallographic structure (PDB ID: 1JWP)26 and ran at 300K using the AMBER03 
force field with explicit TIP3P solvent46,47. Each variant, wild-type, M182V, M182T, M182S, and 
M182N was simulated for 6.5 μs including 4 μs of FAST-RMSD adaptive sampling48 and 2.5 μs 
of conventional sampling. Conformations were stored every 20 ps. 
 
Data Processing 
 
Simulation data was preprocessed before becoming input to the DiffNets. Simulation trajectories 
and the original crystallographic structure (PDB ID: 1JWP) are stripped down to the XYZ 
coordinates of the protein backbone without carbonyl oxygens (C, CA, CB, and N). Then, the 
trajectories are centered at the origin and aligned to the crystallographic structure. Next, we 
follow a procedure similar to Wehmeyer and Noe36 to mean-shift the XYZ coordinates to zero, 
followed by whitening. First, we mean shift, 
 

𝑥=>?@AB9>> =C𝑥" − �̅�
EF

"GH

 

 
where 𝑥=>?@AB9>>  is the mean-shifted trajectory of XYZ coordinates, 𝑥" is a single frame with 
XYZ coordinates, �̅� is the mean of the XYZ coordinates across all trajectories, and 𝑁J is the 
number of frames in all trajectories.  
 
Next, we whiten the data, 
 

𝑥K = 	𝐶MM
AHN	𝑥=>?@AB9>>  

 
where 𝑥K is the whitened trajectory of XYZ coordinates and 𝐶MM	  is the covariance matrix for the 
XYZ coordinates. Whitening decorrelates the inputs and adjusts their variance to be unity. After 
whitening, we use one out of every ten simulation frames for each epoch of DiffNet training. In 
practice, whitening and unwhitening of the data is performed on the input XYZ coordinates 
directly in the DiffNet with frozen (untrainable) weights. 
 
Neural network training  
 
We trained DiffNets with three loss functions to minimize protein reconstruction error (ℓP>QR@), 
minimize feature classification error (ℓST?UU), and minimize the correlation of latent space 
variables (ℓSR99). 

ℒW"BBE>J = ℓP>QR@ +	ℓST?UU +	ℓSR99	 
 
The reconstruction loss term attempts to tune the network weights to properly reconstruct the 
original XYZ coordinates of the protein. This loss combines an absolute error (L1), which 
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funnels reconstructions to the proper XYZ coordinates, and a mean-squared error (L2) to 
strongly discourage outliers. Explicitly, 
 

ℓP>QR@ =
1
𝑁-
C

1
𝑁@
	CYZ𝑥"[ − 𝑥#"[Z + \𝑥"[ − 𝑥#"[]

N
^

E_

[GH

E`

"GH

		 

 
where 𝑁@ is the number of output nodes (all XYZ coordinates), 𝑁- is the number of examples in 
a training batch, 𝑥"[ is a target value (actual XYZ coordinate), and 𝑥#"[ is the output value from 
the DiffNet.  
 
The classification error is a binary cross entropy error that penalizes misclassifications by the 
latent space. This classification loss attempts to constrain the latent space to learn a 
dimensionality reduction that can also classify a biophysical feature. Explicitly, 
 

ℓST?UU = 	
1
𝑁-
C𝑦" ∗ log(𝑦#") + (1 − 𝑦") ∗ log	(1 − 𝑦#")
E`

"GH

 

 
where 𝑁- is the number of examples in a training batch, 𝑦" is the target value, a binary value 
indicating if a simulation frame has a specific feature or not, and 𝑦#" is the output of the 
classification layer by the DiffNet. For the section of the paper that demonstrates how the 
DiffNets classification layer alters the latent space, we provided classification labels as “compact 
helix” or “non-compact helix”. This designation was based on a previous manuscript that 
identified three key hydrogen bond distances in Helix 9 that distinguish stabilizing variants from 
nonstabilizing variants (Res 182-186, Res 183-187, and Res 186-190)5. 
 
Finally, we include a loss function to minimize the covariance between latent space variables. 
This loss takes the form of 

 
ℓSR99 = 	C𝐶𝑜𝑣\𝑧", 𝑧[]

N

"h[

 

 
where 𝐶𝑜𝑣(𝑧", 𝑧[) is the covariance matrix of the latent vector, Z, across all 𝑁- samples in a 
training batch.  We reason that preventing redundancy in latent variables should maximize the 
amount of information one can gain in a small number of variables. Ideally, this sets us up to 
use just a few latent variables and still have a rich amount of information. With fewer latent 
variables, models are generally more interpretable. 
 
Our training procedure uses several training iterations to progressively build in hidden layers of 
the DiffNet. First, we train a minimal version of a DiffNet. Explicitly, the encoders have an input 
layer and a reduction layer with a four-fold reduction in variables. There is no further reduction 
to a bottleneck layer. Instead, the decoder takes the reduction layer as input and passes it to an 
output layer. Training this simplified autoencoder is an easier task than training a full DiffNet 
because the dimensionality reduction it performs is modest. It has ~an order of magnitude more 
dimensions to explain the original data compared with a true bottleneck layer. We reason that 
this can generate useful priors for what the reduction layer should capture. In our second 
pretraining procedure, we freeze those priors and add the bottleneck layer in to train the full 
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DiffNet. Therefore, this second pretraining step concentrates its representational power on 
tuning how to properly reduce from the reduction layer to the bottleneck layer. Finally, we 
unfreeze the priors and train the full DiffNet to polish all weights. Each of these three procedures 
undergoes 20 training epochs. In the self-supervised setting, classification labels are updated 
using expectation maximization after each training epoch. 
 
All training was performed in PyTorch 1.149 on an NVIDIA Tesla P100. Training on ~120,000 
simulation frames of TEM takes under 30 minutes. Training with expectation maximization 
approximately doubled the training time for DiffNets trained on TEM. We used the Adam 
optimizer with a learning rate of 0.0001 and a batch size of 32. We did not perform any 
hyperparameter search. 

 
Code Availability 
 
Data normalization and DiffNet training with, or without, expectation maximization is freely 
available on GitHub at https://github.com/bowman-lab/diffnets. 
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