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ABSTRACT 

Background: CRISPR-Cas9-based technologies have revolutionized experimental 

manipulation of mammalian genomes. None-the-less, limitations of the delivery and efficacy of 

these technologies restrict their application in primary cells.  

Aims: To create an optimized protocol for penetrant, reproducible, and fast targeted insertion-

deletion mutation (indel) formation in cell cultures derived from primary cells, using patient-

derived glioblastoma (GBM) stem-like cells (GSCs) and human neural stem/progenitor cells 

(NSCs) for proof-of-concept experiments. 

Methods: We employed transient nucleofection of Cas9:sgRNA ribonucleoprotein complexes 

using chemically synthesized 2'-O-methyl 3’phosphorothioate-modified sgRNAs and purified 

Cas9 protein. Indel frequency and size distribution were measured via computational 

deconvolution of Sanger sequencing trace data. Western blotting was used to evaluate protein 

loss. RNA-seq in edited NSCs was used to assess gene expression changes resulting from 

knockout of tumor suppressors commonly altered in GBM. 

Results: We found that with this optimized technique, we can routinely achieve >90% indel 

formation in only 3 days, without the need to create clonal lines for simple loss-of-function 

experiments. We observed near-total protein loss of target genes in cell pools. Additionally, we 

found that this approach allows for the creation of targeted genomic deletions. We also 

demonstrated the utility of this method for quickly creating a series of gene knockouts that allow 

for the study of oncogenic activities. 

Conclusion: Our data suggest that this relatively simple method can be used for highly efficient 

and fast gene knockout, as well as for targeted genomic deletions, even in hyperdiploid cells 

(such as GSCs). This represents an extremely useful tool for the cancer research community 

when wishing to inactivate not only coding genes, but also non-coding RNAs, UTRs, enhancers, 

and promoters. This method can be readily applied to diverse cell types by varying the 

nucleofection conditions. 
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BACKGROUND  

 In bacteria and archaea, the CRISPR-Cas (Clustered, Regularly Interspaced, Short 

Palindromic Repeats (CRISPR)–CRISPR-associated (Cas)) pathway acts as an adaptive 

immune system, conferring resistance to genetic parasites and bacteriophage (1, 2). CRISPR-

Cas systems are able to target and degrade DNA (1, 2), and this property has been harnessed 

for directed genome editing in prokaryotes and (more recently) eukaryotes, including human 

cells (3-6), using the type II CRISPR-Cas system from Streptococcus pyogenes. In its simplest 

form, this system consists of a complex of two components, the Cas9 protein and an sgRNA. 

Cas9 is an RNA-guided DNA endonuclease. The sgRNA is a chimeric guide RNA composed of 

a ~20nt ‘protospacer’ sequence, which is used for target recognition, and a structural RNA 

required for Cas9:sgRNA complex formation (i.e. tracrRNA). In addition, DNA cleavage by Cas9 

occurs only in the presence of an appropriate protospacer adjacent motif (PAM) at the 3' end of 

the protospacer sequence in the target genomic locus (for Cas9 this is "NGG", where N is any 

nucleotide (2)).  

When Cas9 and an sgRNA are expressed together, a double-strand DNA (dsDNA) 

break is created about 3 bp upstream of the PAM site (7, 8). This break is then repaired by the 

cell either via the high-fidelity homology-directed repair (HDR) pathway, or much more 

commonly, via the error-prone non-homologous end joining (NHEJ) pathway, which leaves 

behind repair scars in the form of small insertion-deletion (indel) mutations (9, 10). When these 

indels occur in an exon, they can cause frameshifts and premature stop codons in the target 

gene, effectively ablating protein function (4, 6, 11).  

 Cas9:sgRNA targeting efficiency in human cells varies considerably depending on the 

methods, reagents, and cell types used. In general, successful generation of indels using 

transient DNA transfection occurs in a range of ~1-30% (8). However, it was shown that 

lentiviral-based stable expression of Cas9:sgRNA greatly improves targeting efficiency to >90% 

(2, 12, 13). As a direct result, we and others have successfully performed pooled lentiviral-
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based sgRNA screens in various human cell types (12-14). However, retesting single sgRNAs 

from these screens, especially those targeting essential genes, can prove challenging. For 

example, in human neural stem/progenitor cells (NSCs) and patient-derived glioblastoma stem-

like cells (GSCs), we have observed that "all-in-one" lentiviral-based CRISPR systems can 

result in protracted windows of indel formation and phenotypically mixed populations, requiring 

incubation of up to 12 days to achieve complete indel formation (14). As a result, it can be 

difficult to set up rigorous experiments analyzing a particular gene knockout (KO) when cell 

populations contain variable mixtures of wild-type (wt) and indel-containing alleles and, if the 

target gene is essential, thereby contain mixtures of alive and dead cells. This represents a 

critical experimental limitation of the use of CRISPR-Cas9 platforms in primary cells. As a result, 

we wished to create an optimized protocol that would allow maximal targeted indel formation 

over the shortest possible experimental window. 

We found a robust method that utilizes transient nucleofection of in vitro-formed 

Cas9:sgRNA ribonucleoprotein (RNP) complexes using chemically synthesized 2'-O-methyl 

3’phosphorothioate-modified sgRNAs and purified Cas9 protein (Fig. 1A). With this optimized 

approach, we are able to achieve >90% indel formation in multiple human GSCs and NSCs in 

only 3 days, without the need to create clonal lines for simple loss-of-function experiments. In 

addition, we find that this approach allows for the creation of targeted deletions in cell pools or 

cell clones, depending on the size of the desired deletion. Here we present these results 

illustrating the utility of this method and a detailed step-by-step protocol (Supplementary 

Materials).  
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RESULTS 

Nucleofection of Cas9:sgRNA (chemically synthesized, modified) RNPs results in highly 

penetrant generation of small indels in human GSCs and NSCs  

Due to the previously-discussed challenges with indel formation using lentiviral-based 

Cas9:sgRNA delivery, we explored alternative approaches, including the use of Cas9:sgRNA 

ribonucleoprotein (RNP) complexes composed of purified Cas9 protein and purified gRNA. 

Such RNPs have recently been used effectively for several applications, including gene loss-of-

function in human cell lines (15-17) and ES cells (15), editing of CXCR4 in human T cells (18), 

HDR tests in human cells via insertion of restriction sites (15, 19), epitope tagging in mouse 

NSCs (20), and studying effects of sgRNA sequence on editing efficiency (21). The efficiencies 

reported for in vitro editing in these contexts are most often in the range of ~15-60%, with most 

studies reporting maximum (not routine) efficiencies £80%. We wanted to further improve upon 

these RNP methods so we could routinely achieve high efficiency, multi-allelic editing in GSCs 

and NSCs (Fig. 1A). 

Since most studies using RNPs utilize in vitro-transcribed gRNA, we instead tested 

chemically synthesized sgRNAs with 2'-O-methyl 3’ phosphorothioate modifications in the first 

and last 3 nucleotides, which are more nuclease resistant than unmodified sgRNAs and 

therefore likely increase RNP half-life (22, 23). We formed RNPs by combining these sgRNAs 

with purified sNLS-SpCas9-sNLS nuclease and then delivered them via nucleofection, a 

modified electroporation technique developed by Amaxa (now Lonza) that allows direct transfer 

of nucleic acids into the nucleus of mammalian cells in culture. 

To follow indel formation in cell pools, we employed a method that uses Sanger 

sequencing of sgRNA target site-spanning PCR amplicons followed by computational trace 

decomposition of the control and experimental traces to predict indel frequency and KO 

frequency (24, 25), where KO frequency is the percent of predicted sequences that result in a 

frameshift or an indel ³21 bp in length (25) (Fig. 1B). In order to determine the efficiency and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.07.01.183145doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.183145
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

timing of indel formation, we measured indel and KO frequency for RNP doses ranging from ~2-

60 pmol (Fig. 1C) and at 24, 48, and 72 hours post-nucleofection (Fig. 1D) in diploid NSC-

CB660 cells, near-diploid GSC-0131 cells, and hypertriploid GSC-0827 cells, for single sgRNAs 

targeting TP53 exon 7 (sgTP53-1) and NF1 exon 2 (sgNF1-1). TP53 and NF1 are both located 

on chromosome 17, of which GSC-0131 have 2 copies and GSC-0827 have 3 copies. These 

experiments revealed that high (>90%) multi-allelic indel efficiencies can be achieved starting at 

RNP doses of 7.5-15 pmol in GSCs and NSCs (Fig. 1C). Furthermore, we observed that 50-

70% of editing has occurred by 24 hours post-nucleofection, reaching its maximum by 72 hours 

(Fig. 1D). Similar penetrance of sgRNAs targeting other genes was also observed in multiple 

GSC isolates and NSCs which had been immortalized and oncogenically transformed (Fig. S1). 

Because many of our sgRNA sequences had been prevalidated through our lentiviral screens 

(14) (e.g. sgTP53-1; sgNF1-1; 13 of 23 sgRNAs in Fig. S1), these experiments illustrate 

representative results for active RNPs. Of note, several of the genes targeted are present at 

hyperdiploid levels in GSCs; for instance, GSC-G166 contain 3 copies of SCAP, FBXO42, and 

GMPPB. Furthermore, targets included top scoring essential genes for both GSCs and NSCs, 

which cause profound viability loss (14), indicating that the high efficiencies we observe are not 

simply due to outgrowth of edited cells. 

 

RNP nucleofection allows for targeted deletion of several hundred bp genomic regions 

In our efforts to assess RNP efficiency and dosing, we also observed that for sgTP53-1 

and sgNF1-1, the KO efficiency closely mirrored the indel efficiency (Fig. 1C-D). In these cases, 

this is due to repair bias at the target sites, where each sgRNA produced a high percentage of 

1bp insertions in GSCs and a mixture of frameshifting 1bp insertions/deletions and 2 bp 

deletions in NSCs (Fig. 2A-B, top panels). This is consistent with a recent analysis of sgRNA 

targeting repair events in human cells, which found that frameshift frequencies are higher than 
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expected (81% versus the expected 67% for random NHEJ-mediated repair) due to 

unexpectedly high 1 bp insertion/deletion events (11). 

Given the precise and reproducible nature of the indels created for sgNF1-1 and 

sgTP53-1, we wondered if using two sgRNAs in close proximity (e.g. 50-1000 bp) would favor 

the production of precise deletions using our protocol. This was indeed the case when we 

simultaneously nucleofected with two sgRNAs targeting TP53 or NF1 (Fig. 2A-B, bottom 

panels). We observed remarkably high predicted exact deletion frequencies between 44-73% 

for GSCs and NSCs (Fig. 2C). Allowing +/-2bp for the deletion size window further increased 

the predicted “near-precise” deletion efficiencies to 68-86% (Fig. 2C). It is also important to note 

that in this multiple sgRNAs scenario, the bioinformatic predictions for total indel frequencies 

were somewhat reduced due to adjustment for slightly lower regression fit R2 values. However, 

essentially 0% wt sequences were predicted in the trace data (see indel size of “0” in bottom 

panels of Fig. 2A and 2B), suggesting that the total indel frequencies – and thereby also the 

deletion frequencies – may actually have been even higher. We observed similar near-precise 

deletion results when nucleofecting with two other sets of double sgRNAs (Fig. S2). 

To further investigate these results, we designed sets of 3 sgRNAs to target 13 different 

non-coding genomic loci on chromosomes X, 2, 5, 13, 15, and 21 in GSC-0827 cells, which 

contain 4, 3, 3, 2, 3, and 3 copies of these chromosomes, respectively. These sgRNA 

sequences were designed using the Broad GPP Web Portal (26) and were used without 

prevalidation. Each target locus was defined by two outer/flanking sgRNA cut sites (176-981 bp 

apart) and a third sgRNA targeting roughly the midpoint (Fig. S3A). Five days after 

nucleofection using these sgRNA pools (compared to a non-targeting control sgRNA), deletion 

production was visualized via PCR using primers flanking the outermost cut sites (Fig. S3A). 

The results showed that deletions, spanning either the flanking cut sites or a flank-to-mid cut, 

were dramatically favored over simple small indels (which are contained in the ~wt-sized band 

due to lack of separation for size differences of only a few bp) (Fig. S3B). These results suggest 
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that deletions that are near-precise lengths of <1000bp can be readily generated using this 

protocol.  

 

RNP nucleofection generates dramatic protein loss in cell pools 

Given the potential of our approach to create highly penetrant multi-allelic KOs in pools, 

we wanted to further demonstrate its utility by creating a series of KO mutants in human NSCs. 

Previously, we and others have used ectopic expression of human oncogenes (e.g. EGFRvIII, 

RasV12, myr-Akt1, CCND1, CDK4R24C, dominant-negative TP53) to partially or completely 

transform NSCs (14). Our current method afforded us the opportunity to affect the same 

pathways by instead creating loss-of-function mutations in tumor suppressors. We chose to 

successively target four genes commonly mutated or deleted in adult GBM tumors: TP53, 

CDKN2A, PTEN, and NF1, which affect distinct pathways required for glioma progression, 

including the p53-pathway, the Rb-axis, the PI3-k/Akt pathway, and the RTK-Ras-MAPK 

pathway (27).  

We nucleofected TERT-immortalized NSC-CB660 cells with pools of 3 sgRNAs for each 

gene, in four successive rounds of nucleofection spaced 1 week apart (to allow cells time to 

recover from electroporation) (Fig. 3A). In this case, we chose to spread the sgRNAs across 

each gene to favor individual indels rather than deletions, reasoning that the cumulative effect of 

3 sgRNA sites for each gene would lead to a high percentage of cells that contained at least 

one out-of-frame edit in each allele. We examined the effect on target protein expression via 

western blotting on the pool at each stage in the process, as well as on eight subclones of the 

final pool. Remarkably, we observed dramatic protein loss for each gene in the targeted pools 

(Fig. 3B). Examination of the eight clones of the final TP53+CDKN2A+PTEN+NF1 targeted KO 

pool revealed a similar result, where all proteins showed similar reduction in individual clones, 

except for one clone which still showed protein expression of Nf1 (Fig. 3C). 
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RNP nucleofection allows for targeted biallelic deletion of multi-kb genomic regions 

We also assessed indel efficiencies in the tumor suppressor KO cell pools across one 

test sgRNA for each gene. For TP53, CDKN2A, and NF1 we observed high predicted indel 

frequencies of 98%, 95%, and 95%, respectively. For PTEN, however, we noted a discrepancy 

between the Western blot results, which showed near total ablation of protein expression, and 

the indel analysis for all 3 sgRNAs, which each revealed only ~33% efficiency. Since probability 

suggests that even the cumulative editing effect of these 3 sgRNAs should not quite account for 

near total protein loss, we suspected that the PTEN sgRNA pool may have allowed for the 

generation of a large deletion. To investigate this possibility, we performed PCR with primers 

flanking the outer sgRNA cut sites (Fig. 4A). In this case, an allele that did not harbor deletion of 

the entire ~64kbp region would not amplify properly in our PCR conditions since the product 

would be too large. We observed that 2 of 8 clones tested contained a deletion allele, and one 

of these actually produced two products of similar but distinct sizes, indicating a biallelic deletion 

with slightly different editing results (Fig. 4B, left panel). As a positive control for gDNA integrity, 

we used a second PCR spanning a small PTEN region outside the deletion region, and we 

observed the correct product for all 8 clones in this case (Fig. 4B, right panel).  

Gel-purification of the deletion PCR bands followed by Sanger sequencing confirmed 

that each deletion allele observed in the clones was a result of cutting near the predicted 

outermost sgRNA cut sites, with one allele tested being an exact deletion, one containing an 

additional 1bp insertion, and one containing an additional 10bp 5’-deletion and 48bp 3’-deletion 

(Fig. 4C). To further investigate this, we performed RNA-seq and examined reads mapping to 

the PTEN locus in the KO pool and in clone 1. Analysis of predicted “splice junctions” based on 

RNA-seq reads showed that mRNA containing the exact deletions observed at the gDNA level 

could be identified in clone 1, and no properly spliced reads were present, corroborating the fact 

that this clone did not contain any non-deletion allele (Fig. 4D). Furthermore, reads 

corresponding to large deletions could be observed in the cell pool as well, in addition to the 
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expected normally spliced reads. These results suggest that using multiple sgRNAs with our 

method has the potential to create large (>50kbp) deletions, which may be monoallelic or 

biallelic in subsets of clones. 

 

Analysis of gene expression changes induced by tumor suppressor KO targeting events 

To further assess the fidelity of gene KOs via CRISPR RNP nucleofection, we examined 

the progressive changes in gene expression after each successive targeting event (sgTP53, 

sgCDKN2A, sgPTEN, sgNF1) in NSC-CB660-TERT cells, by performing RNA-seq on the 

parental cells compared to the targeted cells at each stage. We used edgeR (28) for differential 

gene expression analysis, and Figure 5A shows the overall relationship of these data in cluster 

analysis and the gene expression changes after each targeting. The greatest number of 

changes were produced by TP53 KO (269 genes with log2 fold-change (log2FC)>0.5 and 682 

genes log2FC<-0.5 (FDR<0.05)) and CDKN2A KO (1340 genes log2FC>0.5 and 1733 genes 

log2FC<-0.5 (FDR<.05)). Importantly, ≥80% of TP53 KO-induced expression changes were 

maintained (at FDR<0.05) even after further CDKN2A KO, PTEN KO, and NF1 KO, and ≥78% 

of CDKN2A KO induced expression changes were maintained even after further PTEN KO and 

NF1 KO. 

 The gene expression changes associated with TP53 KO cells were consistent with p53’s 

known transcriptional function. We observed downregulation of key p53 transcriptional targets, 

including 27 of 132 found in Pathway Interaction Database (p=8.2E-20) and 51 of 116 literature-

curated p53 targets, including: BAX, BBC3/PUMA, BTG2, CDKN1A/p21, RRM2B, and ZMAT3 

(29) (Fig. 5B & C; Tables S2 & S3). CDKN2A KO cells most prominently revealed upregulation 

of genes associated with the cell cycle (285 genes; GO:0007049; p=6E-116) and specifically 

E2F targets (52 genes; p=2.4E-42), including E2F1 and E2F2 themselves (Fig. 5B & C; Tables 

S2 & S3). This is consistent with loss of CDKN2A's p16 protein, which inhibits Cyclin D/CDK 

activity in G1, preventing de-repression of E2F (30). Other prominent cell cycle regulated genes 
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included those associated with: CDK1 interactions (67 genes, p=1.7E-28), MCM6 interactions 

(33 genes, p=6.1E-19), PCNA interactions (64 genes, p=6.2E-28), and PLK1 interactions (50 

genes, p=6.4E-20). Thus, loss of CDKN2A leads to profound reprogramming of the transcription 

of critical cell cycle-regulated genes in human NSCs, consistent with loss of p16 function. 

 By contrast to TP53 and CDKNA, PTEN KO produced the fewest changes in gene 

expression in our scheme (upregulation of 169 genes and downregulation of 216 genes (+/-0.5 

log2FC, FDR<0.05)). This may be due to epistasis with gene expression changes caused by 

CDKN2A KO. Nonetheless, manual curation of these genes revealed possible connections to 

the PI-3 kinase pathway itself, suggestive of feedback regulation. For example, within the 

downregulated genes, PPL/Plakin binds Akt directly (31), and brain-derived neurotrophic factor 

(BDNF) activates Akt (32) and Pten itself (33). Within the upregulated genes, GAL/galanin 

codes for neuroendocrine peptide that exhibits an autocrine mitogenic effect through Erk and 

Akt activity (34) (Fig. 5C). In addition, there were many novel genes affected by PTEN loss, 

including, among others: C8orf4/TCIM, a positive regulator of the Wnt/beta-catenin pathway 

(34); FEZF2, a marker and transcription factor associated with NSC-dependent patterning of the 

cerebral cortex (35); and TRAF1, which mediates the anti-apoptotic signals from TNF receptors 

(36) (Fig. 5C).  

 With the further addition of NF1 KO in TP53+CDKN2A+PTEN KO cells, we observed 

changes in expression of an additional 1022 genes (321 up- and 701 downregulated; log2FC+/-

0.5; FDR<0.05). The downregulated genes were most significantly enriched for extracellular 

matrix organization genes (43 genes; GO:0030198; p=1.8E-15), which included many collagen 

encoding genes and Periostin (Fig. 5C). Upregulated genes included genes involved in 

regulation of cell proliferation (43 genes, p=5.2E-6), including members of the WNT signaling 

pathway (WNT7B, FZD4, LEF1, and TCF7). Interestingly, also upregulated were eight genes 

coding for major histocompatibility complex (MHC) class II proteins, including CIITA, the master 

transcriptional activator controlling expression of the MHC class II genes (37) (Fig. 5B & C; 
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Tables S2 & S3). CIITA expression was upregulated ~10-fold in NF1 KO cells relative to NSC-

CB660-TERT cells. MHC class II genes are primarily expressed by professional antigen 

presenting cells, such as dendritic cells, macrophages, and B cells (38). However, remarkably, 

upregulation of MHC class II protein complex is a hallmark of NF1-/- human neurofibroma tumor 

cells, which CIITA activity is required to maintain (37, 39). It has also been observed that 

gliomas and other cancers have a high proportion of MHC class II-expressing tumor cells (40), 

which may promote tolerance to tumor-associated antigens (41). Our results show that NF1 loss 

is one route to de-repression of MHC class II machinery in human NSCs.  

 In addition to gene expression changes in response to loss of TP53, CDKN2A, PTEN, 

and NF1, we also identified 806 genes whose expression remained largely unaltered in all 

conditions (FDR≥0.2 across all comparisons with ≥10 CPM counts across all samples). Gene 

set enrichment analysis revealed that 487 of these were involved in a "cellular metabolic 

process" (GO:0044237; FDR=1.5E-15), with 129 encoding mitochondrial proteins (including 19 

involved in oxidative phosphorylation) and 29 encoding ribosomal proteins (Tables S2 & S3). 

Our previous CRISPR-Cas9 lethality screens in NSC-CB660 cells demonstrate that at least 208 

of these genes score as essential, including, for example, 34 genes associated with ribosome 

biogenesis, 11 genes coding for respiratory electron transport machinery, and 23 overlapping 

with "housekeeping" genes (42) (GSEA: 111197; p= 7.12E-13). These results suggest that a 

subset of genes expressed in human NSCs are transcriptionally regulated and/or maintain their 

mRNA levels independently of p53, Rb-axis, PI-3 kinase, and Nf1 pathways. 

 Altogether, our gene expression results highlight the utility of our CRISPR/Cas9 RNP 

nucleofection method for quickly creating a series of KOs that allow for the study of gene 

activities. Importantly, due to the high targeting efficiency using our method, we were able to 

confirm many known as well as identify novel transcriptional changes associated with loss of the 

genes we targeted, using nucleofected cell pools rather than cell clones. 
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METHODS 

CRISPR sgRNA Design 

CRISPR sgRNAs were designed via manual curation of all possible sgRNA sequences for a 

given region as identified by the Broad Institute’s GPP Web Portal (26). See Table S1 for a list 

of sgRNA sequences used. 

 

Cas9:sgRNA RNP Nucleofection 

See detailed protocol in Supplementary Materials. Briefly, to prepare RNP complexes, 

reconstituted sgRNA (Synthego) and then sNLS-SpCas9-sNLS (Aldevron) were added to 

complete SG Cell Line Nucleofector Solution (Lonza), to a final volume of 20 µL. The mixture 

was incubated at room temperature for 15 minutes to allow RNP complexes to form. A 

Cas9:sgRNA molar ratio of 1:2 was used, unless otherwise noted. Total RNP doses described 

refer to the amount of the limiting complex member (Cas9). To nucleofect, 1.5 x 105 cells were 

harvested, washed with PBS, resuspended in 20 µL of RNPs, and electroporated using the 

Amaxa 96-well Shuttle System or 4D X Unit (Lonza) and program EN-138. 

 

CRISPR Editing Analysis 

Nucleofected cells were harvested at indicated timepoints and genomic DNA was extracted 

(MicroElute Genomic DNA Kit, Omega Bio-Tek). Genomic regions around CRISPR target sites 

were PCR amplified using Phusion polymerase (Thermo Fisher) and primers located (whenever 

possible) at least 250bp outside cut sites. After size verification by agaorse gel electrophoresis, 

PCR products were column-purified (Monarch PCR & DNA Clean-up Kit, New England BioLabs) 

and submitted for Sanger sequencing (Genewiz) using unique sequencing primers. The 

resulting trace files for edited cells versus control cells (nucleofected with non-targeting 
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Cas9:sgRNA) were analyzed for predicted indel composition using the Inference of CRISPR 

Edits (ICE) web tool (25). See Table S1 for a list of all PCR and sequencing primers used. 

 

Cell Culture 

Patient tumor-derived GSCs and fetal tissue-derived NSCs were provided by Drs. Do-Hyun 

Nam, Jeongwu Lee, and Steven M. Pollard, were obtained via informed consent, and have been 

previously published (49-51). Isolates were cultured in NeuroCult NS-A basal medium (StemCell 

Technologies) supplemented with B27 (Thermo Fisher), N2 (homemade 2x stock in Advanced 

DMEM/F-12 (Thermo Fisher)), EGF and FGF-2 (20 ng/ml) (PeproTech), glutamax (Thermo 

Fisher), and antibiotic-antimycotic (Thermo Fisher). Cells were cultured on laminin (Trevigen or 

in-house-purified) -coated polystyrene plates and passaged as previously described (49), using 

Accutase (EMD Millipore) to detach cells. 

 

Western blotting 

Cells were harvested, washed with PBS, and lysed with modified RIPA buffer (150mM NaCl, 

25mM Tris-HCl (pH 8.0), 1mM EDTA, 1.0% Igepal CA-630 (NP-40), 0.5% sodium deoxycholate, 

0.1% SDS, 1X protease inhibitor cocktail (complete Mini EDTA-free, Roche)). Lysates were 

sonicated (Bioruptor, Diagenode) and then quantified using Pierce BCA assay (Thermo Fisher). 

Identical amounts of proteins (20-40µg) were electrophoresed on 4–15% Mini-PROTEAN TGX 

precast protein gels (Bio-Rad). For transfer, the Trans-Blot Turbo transfer system (Bio-Rad) with 

nitrocellulose membranes was used according to the manufacturer’s instructions. TBS (137mM 

NaCl, 20mM Tris, pH 7.6) +5% nonfat milk was used for blocking, and TBS+0.1%Tween-20+5% 

milk was used for antibody incubations. The following commercial primary antibodies were 

used: Tp53 (Cell Signaling #48818, 1:500), p14/Arf (Bethyl Laboratories #A300-340A-T, 1:500), 

p16/Ink4a (Abcam #ab16123, 1:200), Pten (Cell Signaling #9559S, 1:1,000), Nf1 (Santa Cruz 

#sc-67, 1:50), aTubulin (Sigma #T9026, 1:1,000), Gapdh (Sigma #SAB2500450, 1:100). The 
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following secondary antibodies were used (LI-COR): #926-68073, #926-32212, #926-32214, 

#926-68074. An Odyssey infrared imaging system (LI-COR) was used to visualize blots.  

 

RNA-seq and analysis 

Cells were lysed with Trizol (Thermo Fisher). Total RNA was isolated (Direct-zol RNA kit, Zymo 

Research) and quality validated on the Agilent 2200 TapeStation. Illumina sequencing libraries 

were generated with the KAPA Biosystems Stranded RNA-Seq Kit (52) and sequenced using 

HiSeq 2000 (Illumina) with 100bp paired-end reads. RNA-seq reads were aligned to the UCSC 

hg19 assembly using STAR2 (v 2.6.1) (53) and counted for gene associations against the UCSC 

genes database with HTSeq (54). Normalized gene count data was used for subsequent 

hierarchical clustering (R package ggplot2 (55)) and differential gene expression analysis 

(R/Bioconductor package edgeR (28)). Heatmaps were made using R package pheatmap (56). 
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DISCUSSION 

 Here, we present a method for creating bi- and multi-allelic loss-of-function indel 

mutations, using in vitro assembled Cas9:sgRNA RNPs composed of chemically synthesized, 

modified sgRNA and purified Cas9 protein. By this method, indel efficiencies of >90% can 

routinely be achieved in populations of cells, obviating the need for clonal selection of edited 

cells or chemical selection of DNA-based sgRNA expression systems. Moreover, because gene 

editing is complete within three days of RNP introduction, this approach offers better 

experimental tractability over current approaches, which can suffer from lack of indel penetrance 

and protracted windows of indel formation.  

 This method also improves upon existing methods for the creation of precise or near-

precise deletions. In mammals, single dsDNA breaks, including those generated by 

Cas9:sgRNA cutting, produce NHEJ-dependent small insertions or deletions at break sites (i.e., 

error-prone repair) (11, 43). However, adding a second dsDNA break in close proximity to the 

first can cause rejoining without error via "accurate" NHEJ (44, 45). Our results support this 

notion. We observe a high frequency and penetrance of conversion of single indels to precise 

and near-precise deletions. It has been previously shown that using 2-3 proximal sgRNAs can 

create deletions of ~10bp to 1Mb in mouse embryos and cultured cells (4, 44, 46, 47). However, 

these approaches produce deletion formation efficiencies ranging from ~2% to ~40%. By 

contrast, we observe near-precise deletion frequencies as high as >90% using sgRNAs spaced 

up to 1000bp apart. This suggests that the use of 2 sgRNAs using our approach can have the 

added benefit of triggering accurate NHEJ and being able to specify a high frequency of precise 

or near-precise deletions.  

This technique does have a few limitations. First, achieving high multi-allelic indel 

efficiencies may require pre-validation of sgRNAs. However, we have had good success 

designing sgRNAs using the Broad GPP Web Portal design tool (where ~60-70% of sgRNAs 

that we choose via manual curation produce >80% indel formation) or, alternatively, choosing 
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sgRNA sequences from positively scoring CRISPR-Cas9 lentiviral-based screen hits. Second, 

reliance on chemically synthesized sgRNAs can be cost-prohibitive for large-scale projects. An 

alternative option is to generate in vitro transcribed sgRNA using T7, T3, or SP6 RNA 

polymerase in the presence of ribonucleoside triphosphates and a DNA template (3). However, 

this requires additional steps, namely the initial creation of an accurate DNA template and the 

purification of the transcribed sgRNA to remove unincorporated triphosphates, enzyme, and 

template DNA. In addition, in vitro transcription can result in errors toward the 5’ end of the RNA 

(48). Also, it is not possible to easily generate modifications, meaning in vitro transcribed sgRNA 

does not possess increased protection from nucleases once it has entered the cell, resulting in 

decreased editing efficiency compared to chemically synthesized, modified sgRNA. 

Nonetheless, it is a viable alternative to consider when cost is a concern. Another alternative is 

to employ a commercially sourced dual gRNA system (crRNA:tracrRNA), which may represent 

only a slight reduction in efficiency. The two chemically synthesized RNAs can still be modified 

to enhance nuclease resistance, but they are usually available at a lower cost since the 

accurate synthesis of these shorter RNAs is less complex compared to a longer chimeric 

sgRNA. 

Our data suggest that the relatively simple method described here can be used for highly 

efficient (>90%) and fast (72 hours) gene knockout, as well as for targeted genomic deletions, 

even in hyperdiploid cells (such as many tumor cells). This represents an extremely useful tool 

for  inactivating not only coding genes, but also non-coding elements such as non-coding RNAs, 

UTRs, enhancers, and promoters. The gain in efficiency that we observe can allow for 

systematic well-by-well screening (similar to small interfering RNA screens), but provides the 

flexibility of targeting any small (<1000bp) element in the genome. This method can be readily 

applied to diverse mammalian cell types by varying the nucleofection buffer and program (Lonza 

can provide appropriate conditions for many cell types). Thus, it represents an important step 
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forward in the ability to manipulate the genomes of cell cultures derived from primary cells, such 

as patient-derived tumor cells and human stem/progenitor cells. 
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FIGURE LEGENDS 

 

Figure 1. Highly efficient and fast indel formation using RNPs composed of purified Cas9 

and chemically synthesized 2'-O-methyl 3’phosphorothioate-modified sgRNA. (A) 

Overview of CRISPR RNP targeting strategy. (B) Sanger trace example for a pool of NSC-

CB660 nucleofected with 15 pmol RNPs using either a non-targeting control sgRNA or sgNF1-1 

(72 hours post-nucleofection). Sequence was created using a reverse sequencing primer. Blue 

shaded box denotes sgRNA, orange shaded box denotes PAM sequence, and dotted red line 

represents sgRNA cut site. The sgNF1-1 treated cells produce a clean sequence trace that 

mirrors the control up until the sgRNA cut site, at which point the trace begins to represent the 

compounding effect of multiple overlapping traces due to various indel mutations. Sanger trace 

data like this was used in conjunction with a freely-available bioinformatics tool (ICE) in order to 

predict CRISPR editing sequence distribution in cell pools. (C) CRISPR editing efficiency as a 

function of RNP dose for 2 different sgRNAs. Solid data lines denote indel frequency while 

dotted lines denote predicted KO frequency (% of predicted sequences that result in a 

frameshift or an indel ≥21 bp in length). All samples were harvested 72 hours post-

nucleofection. (D) CRISPR indel frequency and KO frequency as a function of time post-

nucleofection for 2 different sgRNAs. A dose of 10 pmol was used. 

 

Figure 2. Cas9:sgRNA RNPs can be used to create small targeted deletions. (A) Indel size 

distribution of predicted indel sequences for cell isolates nucleofected with individual sgTP53s 

(top panel) or two simultaneous sgTP53s (bottom panel) (168 bp apart). (B) Indel size 

distribution of predicted indel sequences for cell isolates nucleofected with individual sgNF1s 

(top panel) or two simultaneous sgNF1s (bottom panel) (61 bp apart). (C) Summary of dual 

sgRNA indel profiles shown in (A) and (B). 
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Figure 3. Use of Cas9:sgRNA RNPs to generate multi-gene knockout cell pools to model 

oncogenic transformation reveals dramatic protein loss. (A) Overview of strategy for 

successive Cas9:sgRNA RNP nucleofections targeting various tumor suppressors in NSCs. (B) 

Western blots for targeted genes in the cell pool at each successive stage. Predicted % indel 

formation for each gene from Sanger sequencing results is shown above blot. del* indicates that 

large deletions were identified in addition to indels (detailed in Figure 4). For detection of p53, 

cells were treated with doxorubin to stabilize the protein. (C) Western blots for 8 clones derived 

from the final sgTP53+sgCDKN2A+ sgPTEN+sgNF1 cell pool. 

 

Figure 4. Cas9:sgRNA RNPs can be used to generate large genomic deletions in cell 

clones. (A) The targeting strategy for the PTEN gene. Three sgRNAs were designed targeting 

exons 2, 5, and 7. To check for the potential deletion of the ~64kb segment between the 

outermost sgRNAs, deletion PCR primers (in blue) were devised to amplify a product only if the 

entire region had been deleted. Amplification of the region around the non-targeted exon 8 

(primers in green) served as a positive control for gDNA integrity. (B) Left: Deletion PCR as 

described in (A) for 8 different clones of transformed NSC-CB660 that had been nucleofected 

with the 3 sgRNAs targeting PTEN. Right: Positive control PCR as described in (A) for the 8 

clones. (C) Genomic sequences of the 3 deletion alleles identified in (B). Red dotted lines 

denote sgRNA cut sites. (D) A sashimi plot of RNA-seq reads covering the PTEN gene for 

parental NSC cells, targeted pool, and clone 1. “Transcripts” with a minimum junction coverage 

of 5 reads are shown. 

 

Figure 5. Gene expression changes induced by tumor suppressor knockout targeting 

events in human NSCs. (A) Cluster analysis showing relative gene expression profile 

relationships based on RNA-seq for parental NSC-TERT cells and NSC-TERT successively 

nucleofected with sgTP53, then sgCDKN2A, then sgPTEN, and then sgNF1, as well as for 
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clone 1 derived from the final pool where all 4 genes had been targeted. Duplicates were 

sequenced for all samples except clone 1. (B) Networks showing gene relationships for genes 

altered upon TP53, CDKN2A, or NF1 knockout. (C) A heatmap displaying examples of sgTP53, 

sgCDKN2A, sgPTEN, and sgNF1-specific gene expression changes observed in RNA-seq data. 

Relative gene expression values were normalized for all samples within each gene. Each RNA-

seq replicate is shown as a separate column. 
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