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Abstract15

Protein-protein interaction (PPI) networks represent complex intra-cellular protein inter-16

actions, and the presence or absence of such interactions can lead to biological changes in an17

organism. Recent network-based approaches have shown that a phenotype’s PPI network’s re-18

silience to environmental perturbations is related to its placement in the tree of life; though we19

still do not know how or why certain intra-cellular factors can bring about this resilience. One20

such factor is gene expression, which controls the simultaneous presence of proteins for allowed21

extant interactions and the possibility of novel associations. Here, we explore the influence of22

gene expression and network properties on a PPI network’s resilience, focusing especially on23

ribosomal proteins—vital molecular-complexes involved in protein synthesis, which have been24

extensively and reliably mapped in many species. Using publicly-available data of ribosomal25

PPIs for E. coli, S.cerevisae, and H. sapiens, we compute changes in network resilience as new26

nodes (proteins) are added to the networks under three node addition mechanisms—random,27

degree-based, and gene-expression-based attachments. By calculating the resilience of the result-28

ing networks, we estimate the effectiveness of these node addition mechanisms. We demonstrate29

that adding nodes with gene-expression-based preferential attachment (as opposed to random30

or degree-based) preserves and can increase the original resilience of PPI network. This holds in31

all three species regardless of their distributions of gene expressions or their network community32

structure. These findings introduce a general notion of prospective resilience, which highlights33

the key role of network structures in understanding the evolvability of phenotypic traits.34

1 Author Summary35

Proteins in organismal cells are present at different levels of concentration and interact with other36

proteins to provide specific functional roles. Accumulating lists of all of these interactions, complex37

∗Correspondence: klein.br@northeastern.edu
†Correspondence: k.smith@ed.ac.uk
‡Correspondence: kleppe@clin.au.dk

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.184325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184325
http://creativecommons.org/licenses/by/4.0/


networks of protein interactions become apparent. This allows us to begin asking whether there38

are network-level mechanisms at play guiding the evolution of biological systems. Here, using this39

network perspective, we address two important themes in evolutionary biology (i) How are biological40

systems able to successfully incorporate novelty? (ii) What is the evolutionary role of biological noise41

in evolutionary novelty? We consider novelty to be the introduction of a new protein, represented42

as a new “node”, into a network. We simulate incorporation of novel proteins into Protein-Protein43

Interaction (PPI) networks in different ways and analyse how the resilience of the PPI network44

alters. We find that novel interactions guided by gene expression (indicative of concentration levels of45

proteins) creates a more resilient network than either uniformly random interactions or interactions46

guided solely by the network structure (preferential attachment). Moreover, simulated biological47

noise in the gene expression increases network resilience. We suggest that biological noise induces48

novel structure in the PPI network which has the effect of making it more resilient.49

2 Introduction50

The evolutionary mechanisms by which novel information is incorporated in biological systems are51

not entirely understood. Recently, with the increased availability of genomic data, more attention52

has been devoted to gaining insight into this phenomenon of evolutionary emergence. Part of53

the challenge to understand evolutionary emergence is that any introduced feature poses a risk of54

introducing deleterious effects to a biological system. An extensive amount of research has been55

dedicated to understand the evolutionary trajectory for protein sequence evolution, and what may56

enable adaptation without disrupting already present biological functions. Evolutionary emergence57

has been explored by studying gene duplication [1–3], de novo gene emergence [4–7, 40, 53], open58

reading frame extension [8, 9, 11], and sequence properties [10, 54], i.e. GC-content [12] and codon59

usage [13, 14]. However, whether a novel protein is deleterious or beneficial depends not only on60

its own sequence features but also the environmental context of interaction partners [15,16]. While61

there has been much focus on addressing wherefrom and how novel sequence features emerge, limited62

attention has been given to how novelty may become integrated into the cellular apparatus, from63

a system-level perspective. One study suggests that the robustness of the composition of protein-64

protein interaction (PPI) networks may play a role in the successful incorporation of a novel protein65

into the network [17]. Building on a similar systems-approach in this work, we seek to address66

which features enable robust integration of novelty on a system-level, by analysing redundancy and67

perturbations to protein-protein interaction (PPI) networks.68

Biological redundancy refers to two or more components performing equivalent functions in a69

given biological system and that deactivation of one of them has negligible consequences on the70

performance of the biological phenotype. Previous research has shown that there is a positive71

association between biological redundancy and network connectivity [18, 19]. In the context of72

protein networks, biological redundancy has been found to enable robustness and increased tolerance73

for perturbations [20]. Here, a perturbation is defined as an alteration; either adding or removing74

a protein of the given network. Maintaining functionality in the face of perturbations is typically75

referred to as phenotypic robustness in evolutionary biology [21]. Here, we will primarily use the term76

“network resilience”, following Zitnik et al. (2019), which describes the extent to which random node77

removal deteriorates network structure. Assuming that tolerance for novelty is linked to network78

resilience, we aim to analyse which features affect resilience and enable successful integration of79

novel proteins into protein-protein interaction networks.80
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Here, we use network science to computationally explore how novel proteins may become inte-81

grated in PPIs. Specifically, we introduce and apply a novel network measure referred to as the82

prospective resilience. This involves introducing new proteins to a network based on different attach-83

ment rules and measuring the resulting network’s resilience compared to baseline. By measuring84

the change in network resilience following the addition of new nodes to the network, we are able85

to infer how robust a given network structure is to incorporating novel proteins. More information86

about the resilience measure as well as its behaviour in different types of random networks, such as87

networks generated by preferential attachment, is found in Section 6.1.88

Gene expression is observed to be the strongest predictor for evolutionary rate of proteins, and89

while the underlying causes are being debated [22–25], it has been suggested that network topol-90

ogy and protein abundance (gene expression) are interlinked [26]. For these reasons, we aim to91

infer whether gene expression influences network topology and resilience. To do so, we compare92

the prospective resilience of ribosomal PPI networks under three different mechanisms for attach-93

ing novel proteins to the network: a gene expression-based attachment mechanism, a random-94

attachment mechanism, and a degree-based attachment mechanism. Here, we specifically focus95

on ribosomes as they translate genetic information from mRNA into proteins and are an essen-96

tial cellular complex present across all domains of life. We make use of publicly available data97

(STRING [27] and SNAP [28] databases), which are thoroughly annotated and experimentally98

verified, for three organisms: Escherichia coli (prokaryote), Saccharomyces cerevisiae (unicellular99

eukaryote) and Homo sapiens (multicellular eukaryote). In the following sections, we define and100

describe the behavior of this prospective resilience measure, and we outline several new implications101

of approaching evolvability and resilience from a network perspective.102

3 Results103

3.1 Network resilience and prospective resilience104

In this section we will introduce network resilience and prospective resilience, which will motivate the105

presentation of our results in Section 3.2.1. For full technical details, see Section 5.2. In biological106

terms, individual nodes represent individual proteins of the PPI network, and we infer the phenotypic107

robustness by inferring network resilience. The network resilience, R, is an information theoretic108

measure that describes the extent to which random node removal deteriorates network structure [20].109

It is computed iteratively, involving the incremental isolation of (i.e. removal of all links to) more110

and more nodes in the network. In biological terms, links represent protein interactions, and the111

removal of links represents the removal of an interaction between two proteins, yielding isolated and112

non-interacting proteins. The number of nodes isolated is the fraction f “ a
b of all nodes in the113

network (rounded to the nearest number of nodes), where b is the total number of iterations and a114

increases from 0 to b in steps of 1, i.e, if b “ 100, we remove 0%, 1%, 2%, ... 100% of the nodes. At115

each iteration, a modified Shannon diversity measure,116

HmshpGq “ ´
1

logpNq

X
ÿ

x“1

px log px (1)117

is computed for the resulting network, where px “
|cx|
N and cx is a connected component of the net-118

work; px, therefore, is the probability that a randomly selected node is in the connected component119

cx. As f increases from 0 to 1, the network becomes more and more disconnected until f “ 1,120
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Figure 1: Change in the Shannon diversity indicates network resilience. Here we provide
a visual intuition about how network structure is associated with a particular resilience value.
(A) Network resilience is calculated by iteratively isolating fractions of nodes in the network, f ,
eventually leaving N isolated nodes. (B) Following every iteration, the Shannon diversity of the
component size distribution is calculated, in this case starting at f “ 0 (one connected component),
and increasing until every node is disconnected, f “ 1. (C) Increasing the fraction of nodes that
have been removed creates a curve of increasing entropy values, which is used to compute the
network resilience, as in Equation 2. (D) An example of the prospective resilience of the network
shown in (A). New nodes are iteratively added to the original network, with links attached randomly
or preferentially based on the degree of nodes in the network.
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at which point the resulting network, Gf“1, is a collection of N isolated nodes (Figure 1A & 1B).121

Consequently, the Shannon diversity of these component size distributions increases in f (Figure122

1C). The final value for resilience is then calculated as a discrete approximation of the area under123

this curve:124

RpGq “ 1´
b
ÿ

a“0

HmshpGf“a{bq

b
(2)125

where HmshpGf q is the modified Shannon diversity of the network after f fraction of nodes have126

been disconnected. In Supplemental Information (SI) 6.1, we break down the typical behavior of127

this resilience measure. Particularly, we show that dense Erdős-Rényi networks are more resilient128

than sparse ones (SI Figure 7), which conforms to the intuition that a complete network is the129

most resilient network, with a value RpGq “ 0.5. Note that this measure was previously defined as130

ranging from 0.0 to 1.0 [20], but we show that the theoretical maximum is in fact 0.5 (SI 6.1).131

Here, we introduce a novel adaptation of this resilience measure, which we refer to as the132

prospective resilience (PR). The intuition behind this measure is to ask to what extent the resilience133

of a given network changes following the addition of new nodes into the network structure. In a134

biological context, this models how a network responds to the introduction of new proteins. Building135

on common modeling techniques for studying network growth processes, the prospective resilience136

is obtained by repeatedly adding new nodes to the network and calculating the updated resilience137

of the resulting network. This yields a vector of resilience values, tRt`1pGq, Rt`2pGq, ..., Rτ pGqu,138

corresponding to the resilience of the network after the addition of each of the τ new nodes to the139

network:140

PRτ pGq “ tRtpGqu
τ
t“1 (3)141

Given that the prospective resilience is computed by adding nodes to a network, the mechanism142

by which nodes are added becomes an important consideration. In general, node attachment mech-143

anisms assign a probability that each incoming node, vt`1, attaches its m disconnected links (often144

referred to as “dangling” links) to nodes already in the network, vi P V . This could be based on145

random attachment, where each node, vi, has a probability pi “ 1
N of becoming connected to the146

incoming node, vt`1. Similarly, a new node can add its m links preferentially based on the degree147

(number of neighbors) of the nodes in the network, pi9ki, where ki is the degree of node vi. This148

means that the probability that vi will receive an incoming link is pi “ ki
2E , where E is the total149

number of links in the network.150

From the biological perspective, we posited that a novel protein entering a system is inevitably151

more likely to interact with proteins that are more abundant in that system. This abundance can be152

determined by the protein’s gene expression [29,30]. To this end, we compare the random and degree-153

based attachment mechanisms with attachment based on gene expression. This is implemented154

exactly as for degree-based attachment; the probability that node vi receives an incoming link155

is proportional to vi’s gene expression (i.e., the gene expression of node vi divided by the sum156

of the gene expressions of all nodes). New nodes (novel proteins) will not have a known gene157

expression, and as such, we assign them the average gene expression of the network. Through this158

attachment rule, we explicitly couple insights from network science to the biological properties of159

protein networks.160
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Figure 2: Ribosomal networks of three model species. These species have ribosomal in-
teraction networks that span a range of different network structures. Colours in this plot depict
detected communities in the networks—nodes of a given colour are more likely to connect to other
nodes of that colour. Node size is proportional to gene expression. (A) S. cerevisiae ribosomal
network. (B) E. coli ribsomoal network. (C) H. sapiens ribosomal network. Panels (D), (E),
and (F) show the gene expression distribution for the three model ribosomal networks discussed in
the paper. Panels (G), (H), and (I) shows the gene expression against node degree on a scatter
plot for the three networks respectively. To accentuate clusters of nodes that share degree and gene
expression attributes, the points in these plots share the same color as their corresponding nodes in
Figure 2. Of particular note: the gene expression distribution of these three networks are skewed
and non-uniform, often referred to as heavy-tailed.
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Network property S. cerevisiae E. coli H. sapiens
Network size 145 55 105
Density 0.284 0.929 0.471
Average degree 40.82 50.18 48.93
Resilience 0.438 0.435 0.444
Average clustering 0.685 0.962 0.898
Modularity 0.182 0.0013 0.363

Table 1: Basic network measures of the three networks studied.

3.2 Ribosome protein networks161

In this work, we explore the notion of prospective resilience in biological systems. To do so, we focus162

on ribosomal protein networks: S. cerevisiae, E. coli, and H. sapiens. In this section, we introduce163

the procedure for generating these ribosomal protein networks.164

Each ribosomal protein of a given species is represented by a node in the network. The links165

between nodes were then established wherever there was evidence of protein-protein interactions166

in that species, based on data from the SNAP database [20, 28]. We identified ribosomal proteins167

from data in [31] and constructed the ribosomal protein networks based on data from the STRING168

database [27].169

Expression for S. cerevisiae came from NCBI GEO [32,33], H. sapiens from EMBL-EBI Expres-170

sion Atlas [34,35], and E. coli K12 from NCBI GEO [32,36]. See SI 5.1 for a detailed description on171

how the networks were constructed and how their associated gene expression data was collected. Vi-172

sualisations of these networks are shown in Figures 2A, 2B, and 2C, and several network properties173

reported in Table 1. In Figures 2D, 2E, and 2F, distributions of gene expression for each network174

are plotted as histograms and against node degree. The distributions for all three species had heavy175

tails, with small numbers of highly expressed proteins and a bulk of proteins with relatively low176

expression. Across the three networks included here, we see that nodes with similar gene expression177

and degree tend to cluster together, however the correlation between degree and gene expression178

itself varies between species (Figures 2G, 2H, and 2I, with Spearman rank correlation coefficients179

included).180

3.2.1 Prospective resilience in ribosomal networks181

We here report the prospective resilience of the three ribosomal networks. Each of the three species182

included here started with similar resilience values (see Table 1). This is useful, as it gives us a183

common starting point to observe the change in resilience following the introduction of new nodes.184

We computed prospective resilience under a number of different scenarios in order to determine185

the conditions under which networks would have the highest prospective resilience (i.e., which186

attachment mechanism is the most effective for maximizing thee network’s prospective resilience).187

In each condition, we calculate the prospective resilience by adding 20 new nodes to each network.188

We varied the number of new links, m, that each new node added to the network (m “ 4, 8 and189

16). Each simulation was repeated 100 times and the means and standard deviations were recorded190

from these runs. The resilience was calculated with a rate of node removal, b “ 50 (see Section 3.1).191

The results comparing the prospective resilience across the three species and attachment mech-192

anisms are shown in Figure 4. We found that the most effective mechanism for adding new nodes to193
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Figure 3: The effect of attachment mechanism on network structure. Here, we offer further
intuition about the effect of adding nodes under different attachment mechanisms. In each example,
10 nodes are added, connecting their m “ 4 links to nodes in the original network (indicated by the
black nodes). Node size corresponds to its likelihood of gaining new links. (A) Example network,
before any new nodes have been added to it. (B) Example of uniform attachment. (C) Example
of (simulated) gene expression preferential attachment. (D) Example of degree-based preferential
attachment. (E)—(G) Histograms showing the change in the original network’s degree distribution
after the addition of 10 nodes, under each attachment mechanism. While these histograms highlight
the change in a single network property (degree, k), one can imagine a number of structural changes
occurring following the addition of new nodes, depending on the attachment mechanism.

the networks was the attachment rule based on the gene expression of nodes in the original network.194

Degree-based and random attachment were on average less effective at increasing the resilience195

of these networks. In general, a higher positive slope indicated that the attachment rule (along196

with the number of links that each new node enters the network with) generated higher prospective197

resilience. For information about the statistical differences between the slopes of each curve in198

Figure 4, see SI 5.4.199

In order to put these results in a better context, we performed a survey of resilience in random200

networks as the inference of network resilience has been under-explored for random networks. In SI201

6.1, we include several explanatory simulations that offer a more comprehensive intuition about how202

this measure behaves in networks. We highlight two main behaviors of this measure: its dependence203

on the network density and the degree heterogeneity of the network. We illustrated this further in204

the context of Erdős-Rényi networks (SI 6.1.1) and preferential attachment networks (SI 6.1.2).205

Based on our analyses of random networks, adding more links (therefore making the resulting206

network more dense) increased the prospective resilience in each of the three networks. This is207

shown by the different colored lines in Figure 4. This holds regardless of the method of attachment.208

In other words, given that links in these networks correspond to interactions between proteins, our209

results suggest that a network’s resilience is more likely to increase if novel proteins are highly210

interactive and particularly if they are highly interactive with highly expressed proteins that are211
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Figure 4: Prospective resilience of three model ribosomal networks. As more nodes are
added (horizontal axes), the resilience of the resulting network changes (vertical axes). The colour
of each curve corresponds to the number of new links that each new node enters the network with,
and the line style (solid, dashed, or dotted) corresponds to the three different node-attachment
mechanisms, as indicated in the legend.

already present in the network.212

3.2.2 Resilience and modularity213

We found that the gene expression-based attachment mechanism was most effective at maximizing214

the prospective resilience of the three networks included here. This finding does not immediately215

account for the extent to which this could have been due to higher-order, structural (i.e., not216

necessarily biological) properties of the network. To address this, we tested whether the observed217

results could be explained by other network properties—in this case, the modularity. In general, we218

refer to networks as being modular when they consist of densely-connected clusters of nodes that219

are connect more to each other than to the rest of the network. We chose to analyse modularity220

due to observations of strong modular structures in the ribosomal networks, especially in the case221

of H. sapiens (Figure 2). Additionally, we note that the three networks have very different initial222

levels of modularity (Table 1).223

Here, we examine whether we observe similar results to those in Section 3.2.1 if we instead224

look at the change in the networks’ modularity following the introduction of new nodes. To do225

this, we computed the modularity of the network after each addition of new nodes. Full details226

of the analysis are found in Section 5.3.1. We found that the behavior of prospective modularity227

did not resemble the observed trends for prospective resilience (Figure 5). In fact, node addition228

affected the prospective modularity of each network differently, with no discernible pattern between229

the different networks. As such, modularity was ruled out as an explanatory measure for network230

resilience. In conclusion, the modular structure of the networks included here did not drive their231

prospective resilience.232
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Figure 5: Prospective modularity of three model ribosomal networks. As a comparison
measure, we also examined how the modularity of the network changes following the addition of
new nodes. The colour scheme and line styles are the same as in Figure 4. Crucially, we do not
find any evidence that the prospective resilience results observed in Figure 4 are being driven by
the change in the networks’ community structures, as the three plots above show highly divergent
patterns, suggesting that there is a more distinct mechanism underlying the prospective resilience.

3.2.3 Noise and protein networks233

We previously observed that gene expression was moderately correlated with node degree while gene234

expression-based attachment performed better than degree-based attachment. Here, we examine235

how decoupling of gene expression from the network topology affects the prospective resilience of236

the network. In other words, we probe to what extent the performance of gene expression-based237

attachment is influenced by the distribution (i.e. Figure 2D, 2E, and 2F) of gene expression values238

and its potential to create novel network structure, rather than any relationship between the gene239

expression values and the PPI network’s existing topology. To do this, we randomly shuffled the240

gene expression values across the network and re-ran the prospective resilience simulations. We did241

this for different amounts of shuffling. For example, at 20% shuffling, the gene expression values242

for a randomly chosen 20% of the proteins (network nodes) were subject to a random permutation,243

while the remaining 80% of proteins retained their original gene expression. At 100% noise the gene244

expression values were randomly assigned to nodes across the network.245

We observe, in each of the three networks, that elevated shuffling of gene expression increased246

prospective resilience (Figure 6). In other words, biological noise simulated as random distribution247

of expression, increases prospective resilience. It makes sense that some noise would increase the248

prospective resilience; resilience increases as networks becomes more dense, and shuffling the gene249

expression values may increase the chance that a given node receives a link from an incoming node.250

However, increasing noise always increased the prospective resilience. This can be explained by251

how our computational simulation does not regard limitations or consequences regarding biological252

functionality, merely protein interaction and PPI network structure.253

Therefore, we conclude that the effect of the uneven distribution of gene expression (and its254

limited association with degree) on the preferential attachment mechanism promotes new hubs255

(higher degree nodes) of connectivity in the network, which increases the network’s prospective256
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A B CS. cerevisiae
protein interaction network

E. coli
protein interaction network

H. sapiens
protein interaction network

Figure 6: Prospective resilience and randomized gene expression. Here, we ask whether
the specific gene expression of the proteins in these three networks is driving the high prospective
resilience of the expression-based attachment rule or whether merely attaching based on a shuffled
gene expression distribution could bring about these results. In each of the three panels above, we
see that the prospective resilience of the networks increases simply by increasing the fraction of
nodes with shuffled gene expressions. Note: for the three panels above, each new node joins with
m “ 5 for S. cerevisiae and E. coli, and m “ 6 for H. sapiens. These values were selected so that
the slope of the prospective resilience would be closest to 0.0 when the gene expression was not
shuffled (0% shuffled). See Table 2 for how the correlation between a node’s degree and its gene
expression changes as noise increases.

resilience. The greater the novelty in the network structure created by this mechanism (i.e. the less257

correlation between degree and gene expression) the greater the network’s prospective resilience.258

4 Discussion259

This study used new network scientific methods to undertake a systems approach to understanding260

how novelty is incorporated into protein-protein interaction networks. We accomplished this by261

adapting a measure of network resilience to characterize the prospective resilience of three ribosomal262

protein networks. We found that the prospective resilience of the S. cerevisiae, E. coli, and H.263

sapiens ribosomal networks was greatest when node addition was based on the gene expression of264

the proteins in the original networks. This suggests that the distributed levels of gene expression265

among proteins facilitates or enables the system of interacting proteins to receive and incorporate266

new proteins. It also suggests an important correspondence between the structure and biological267

properties of protein networks.268

We also undertook a comprehensive survey of how network resilience behaves in random and269

preferential attachment networks, and highlighted its dependence on the density and degree hetero-270

geneity of the network (SI 6.1). These simulations contextualize the analyses that we performed for271

ribosomal networks and provide a platform for further use of the metric in a more theoretical sense.272

We compared the prospective resilience to a meso-scale network structural measure (which we273

refer to as the prospective modularity) to determine if the observed increases in resilience was due to274
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Species Noise ρ p-value
S. cerevisia 0.0% 0.55 1.06e´16

20.0% 0.44 1.03e´10

40.0% 0.33 2.18e´06

60.0% 0.22 1.84e´03

80.0% 0.11 1.22e´01

100.0% -0.0 5.17e´01

E. coli 0.0% 0.27 4.47e´02

20.0% 0.23 4.47e´02

40.0% 0.16 1.72e´01

60.0% 0.11 3.07e´01

80.0% 0.06 4.04e´01

100.0% -0.0 4.78e´01

H. sapiens 0.0% 0.75 2.78e´20

20.0% 0.61 4.04e´12

40.0% 0.45 1.23e´06

60.0% 0.31 1.47e´03

80.0% 0.15 1.21e´01

100.0% -0.0 4.95e´01

Table 2: Spearman rank correlation between the degree and gene expression of a
network at different levels of noise. The table displays the correlation after Noise % has been
introduced to the network. The Spearman correlation was run over the mean from 1000 iterations.

the more widely studied property of community structure [37]. No clear trend between prospective275

resilience and prospective modularity was found between the networks (Figure 5). This supports276

the hypothesis that there remains a crucial role of gene expression specifically in the resilience of a277

PPI network.278

In a biological setting, network resilience infers biological redundancy. We assume that novel279

proteins can be integrated into existing PPI networks if they do not cause dis-connectivity of the280

network, and instead add to the network redundancy. In other words, we assume that novel proteins281

are likely to be integrated into an existing PPI network if they elevate the network redundancy. We282

find that likelihood of a novel protein being integrated is dependent on the existing topology of PPI283

and internal connectivity, but also gene expression. The results of our node attachment analysis284

imply that novel proteins are able to be integrated if they i) are interactive with many existing285

proteins, or ii) primarily interact with proteins that are already highly interactive and abundant286

(inferred by gene expression) [38].287

Our findings suggest that novel proteins might enter PPI networks and interacting broadly as288

generalists. This is in line with previous research that suggests how many proteins, i.e. enzymes,289

begin as generalists with many interacting partners, and later evolve more specialized interactions290

[38,39]. We speculate that novel proteins may be conserved prior to gaining a so called ‘important’291

function, simply by being tolerated and adding to the network resilience, as suggested in research292

on de novo genes [6, 7]. De novo genes are found to have both high, stable and stochastic gene293

expression [40]. Future research should address to what extent gene expression enables de novo294

genes to integrate in PPI networks, by comparing the topologies of highly conserved PPI networks295
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with PPI networks that have undergone evolutionary recent topological alteration, e.g. where de296

novo genes are integrated. However, this should not only be limited to analyses of de novo genes,297

but any protein acquiring a novel function (e.g. new interaction partner or catalytic function).298

The results from the noise analysis, Section 3.2.3, suggest that shuffling gene expression tends299

to further increase resilience. The tails of the gene expression distributions may indicate that i) the300

most important factor for increasing resilience is the creation of new hubs of connectivity (new nodes301

strongly connecting to a few existing nodes), and ii) these new hubs are more effective in increasing302

resilience if created randomly in the network and not correlated with the already established topol-303

ogy. Interestingly, a heavy-tailed (log-normal) factor of attachment has been recently demonstrated304

as an accurate explanation of the degree distributions across various complex networks [41], lending305

credence to the idea of gene expression as (at least part of) such an explanatory mechanism in PPI306

networks. If gene expression influences the evolution of the PPI network, then it necessarily needs307

to have an amount of correlation with the existing degree distribution of the network. Thus, even308

though we observe that the completely randomised gene expression across the network yields a more309

resilient network, given enough time, the network connectivity would evolve to correlate with the310

new gene expression values of the corresponding proteins. Then, more noise would be required to311

increase the network resilience. In an biological setting, we assume resilience to be important for312

functional performance, but not more important than the biological function of the network. In313

an evolutionary trajectory of a PPI network, we would thus expect to see a trade-off between the314

topological influence of gene expression (i.e. correlation between gene expression and protein node315

degree) and the emergence of novelty through biological noise (i.e. weakened correlation between316

node degree and gene expression). Arguably, this is reflected in the weak to moderately strong317

correlations found in Figure 2G, 2H, and 2I. This conforms to classic theoretical notions of the318

usefulness of noise in biological systems [42,43]. Further research is needed to determine the extent319

to which this holds for biological networks in general.320

Subsequent and systematic analyses of the prospective resilience of other species’ ribosomal net-321

works (not to mention gene pathway networks, metabolic networks, etc.) will allow researchers to322

form more precise hypotheses about other possible mechanisms—especially ones relating gene ex-323

pression, pair-wise protein interactions and overall PPI network topology—which might be driving324

the results we observe and delineate here. In addition, it would be useful to explore how prospective325

resilience changes under other biologically-informed methods for introducing proteins into PPI net-326

works. For example, the measured interaction strength between proteins is used to define presence327

or absence of interaction here but it may also be used to create a weighted network. Novel proteins,328

e.g. duplicates of existing proteins, may have their attachment probabilities formed based on the329

interaction strength that the original protein has with other proteins. However, we view this work330

as a first step towards understanding the stability of a network’s resilience to novel information.331

Moreover, prospective resilience is a measure that can describe networks in general; it is particu-332

larly meaningful in the study of biological systems, but since complex systems are often described333

as recapitulating common properties across different domains, this network measure can be used in334

any system that undergoes and incorporates novel information.335
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5 Methods336

5.1 Data sources337

We make use of publicly available data of protein interaction networks from Zitnik et al. (2019).338

Full interactomes were obtained from their website (SNAP) for 3 model organisms: Saccharomyces339

cerevisiae, Homo sapiens, and Escherichia coli str. K12 [28]. We additionally gathered gene expres-340

sion data for each of the species studied. Expression data for S. cerevisiae came from the wildtype341

data accessible on the NCBI GEO database (accession: GSE67387) [32, 33]. The GTEx Consor-342

tium [35] collected H. sapiens gene expression data for various tissues, which was accessed via the343

EMBL-EBI Expression Atlas [34]. We utilized expression reported in the spleen as it was the tissue344

where most of the genes in the ribosomal network were expressed. Wildtype gene expression data for345

Escherichia coli str. K12 substr. MG1655 (NCBI:txid511145) was obtained from the NCBI GEO346

database (accession: GSE48829) [32, 36]. Meysman et al. (2013) originally reported expression as347

count data; we converted from counts to transcripts per million (TPM) with custom R scripts and348

gene lengths for Escherichia coli str. K12 retrieved from UniProt [44] in June 2019. To convert to349

TPM, we first divided the read counts by the length of each gene (in kilobases) to get reads per350

kilobase (RPK). The sum of all RPK values was divided by one million to produce a scaling factor,351

which was then multiplied by each protein’s RPK to produce their expression in TPM.352

5.2 Network resilience353

A network, G, consists of N nodes, V “ tv1, v2, . . . , vNu, connected by M links, E “ tpvi, vjq :354

vi, vj P V u. The resilience of a network is based on an information theoretic analysis of the dis-355

tribution of the sizes of connected components in G [20]. A connected component may be defined356

as follows. If there exists a path of links between two nodes, vi and vj , in G, then they are in the357

same connected component, cx, of G. Otherwise vi and vj are in separate components, cx and cy,358

say, of G. If vi has no links, and thus no paths from itself to any other node in G, then vi is an359

isolated component of G. From this, we see that G is composed of X disjoint connected components,360

tcxu
X
x“1, of varying sizes such that

řX
x“1 |cx| “ N . We can then confer a notion of probability to361

each component proportional to its size, px “ |cx|{N , such that if we chose a node at random from362

G it would have probability px of coming from component cx. Resilience is then measured through363

a modified Shannon diversity of the connected component size distribution in the presence of node364

removal [20], as follows:365

HpGf q “ ´
1

logpNq

X
ÿ

x“1

px log px (4)

This value is minimal, HpGf q “ 0, when the network consists of a single connected component366

where paths exist between all node pairs, since log 1 “ 0, and maximal, HpGf q “ 1, when the367

network consists only of isolated components—HpGq “ ´ logpN´1q{ logN “ 1. Through simulating368

the removal of a fraction of randomly-selected nodes, f , in a given network by removing all links to369

those nodes and leaving them as isolated components, we are left with a new network, Gf . Then the370

entropy of the connected component distribution will increase with increasing f . With an increasing371

fraction of randomly-removed nodes, f , the entropy of the number of connected components will372

increase until f “ 1.0, at which point there are N disconnected nodes (isolated components),373
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reducing the network to the maximal case of H, as previously noted. We show an example of this374

process, as f increases, for an arbitrary simulated network (Figure 1). The resilience, RpGq of a375

network, G, is then defined as follows:376

RpGq “ 1´
1
ÿ

f“0

HpGf q

rf
(5)

where rf is the rate of node removal such that f P
!

0
rf
, 1
rf
, 2
rf
, ...,

rf
rf

)

. In this work, we default to377

a value of rf “ 100, which means that the calculation of a network’s resilience involves iteratively378

removing 0%, 1%, 2%, ..., 100% of the nodes in the network. For each value of f , we simulate the379

node removal process 20 times.380

5.3 Structural modularity measure381

5.3.1 Network modularity382

Networks are often analyzed by their community structure—that is, to what extent do nodes in a383

network connect to other similar nodes, whether in their structural properties or specific attributes384

[37, 45–48]. There are a number of different ways to detect community structure in networks, from385

algorithmic optimization to statistical/inferential to dynamical approaches [45,49,50] (e.g., the color386

of the nodes in the networks in Figure 2 was determined by one such approach [48]). Regardless387

of the community detection approach, each method outputs a partition that maps each node to a388

given community. The modularity of a given partition is a number that scores the extent to which389

it captures nodes’ tendencies to connect to other nodes in their same community at the expense of390

nodes in other communities [37]. While imperfect, this measure endows us with a powerful intuition391

for assessing higher-order network properties; namely, a network with high modularity partitions is392

likely to have obvious clusters of nodes, structurally separated from other parts of the network.393

5.3.2 Prospective modularity394

Here, we use the notion of modularity in an attempt to give possible explanations for the network395

mechanisms behind the observed trends in the prospective resilience of the ribosomal networks stud-396

ied in this work. In particular, we define prospective modularity in the same vein as our prospective397

resilience measure to compare how node addition impacts resilience and modularity. The prospec-398

tive modularity (PM) of a network is defined as the change in modularity following the addition399

of new nodes to a network (note the precise similarities between this measure and the prospective400

resilience). The addition of a new node, vt`1 with m disconnected links, to a network, Gt, at time,401

t`1 will likely change the modularity of the network. More specifically, by re-running a community402

detection algorithm on the resulting network, Gt`1, and calculating the modularity of the resulting403

partition, we can observe the stability of this partition over time and ask whether the modularity404

will increase or decrease. Further, by varying the node-addition mechanism (adding nodes ran-405

domly, preferentially based on degree, or preferentially based on gene expression), we can observe406

the different effects that network structure and gene expression has on the prospective modularity407

of a given network.408
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5.4 Statistics of prospective resilience and modularity409

In order to determine the extent to which the curves in Figure 4 differ from one another, we perform410

a series of statistical tests. The curves represent the average of 10 independent simulations for each411

condition. We utilize all existing simulation data here. For each value of m in each species, we412

perform an ANCOVA for each pair of attachment methods. We do a Bonferri-correction to correct413

for multiple testing and obtain a significance cutoff at p “ 0.0166. Additionally, we calculate414

Cohen’s d from the F -statistic presented by the ANCOVA. The p-values and effect size (Cohen’s d)415

for each comparison are presented in Table 3. Almost all of these slope comparisons are statistically416

significant. We do the same pairwise ANCOVA and effect size comparisons for the curves in Figure417

5 and report the outputs in Table 4. For S. cerevisiae, E. coli and H. sapiens, the majority of slopes418

are significantly different and show significant differences for larger values of m.419
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6 Supplementary Information574

This supplementary information consists of theoretical and experimental work on the general prop-575

erties of network resilience (Section 6.1), and supplementary Tables 3 and 4 on statistical results576

on differences of the network prospective resilience and modularity curves for different attachment577

mechanisms.578

6.1 Resilience in random networks579

Here, we describe resilience as calculated on two different random network models. One set of580

networks is generated by the Erdős-Rényi model and the other set is composed of preferential581

attachment models. Calculating the resilience of these networks offers insight into the behaviour of582

this resilience measure. In addition, we show here that the theoretical upper bound of the resilience583

measure is 0.5.584

6.1.1 Resilience in Erdős–Rényi networks585

In Erdős–Rényi networks nodes are connected uniformly at random. That is, each new node has a586

probability p to connect to one of the N nodes present in the network. In this way, the parameter p587

dictates the density of the network since a higher p means that each new node is more likely to form588

more edges (more of the possible edges between nodes that can exist, exists). Plotting resilience589

against p will then show us something about the relationship between resilience and density. Indeed,590

we observe a positive relationship between density and resilience (Figure 7 right). For a network591

with density close to 0 (generated by a very low p) the resilience is also close to 0 and conversely a592

complete graph p “ 1 yields a high resilience.593

6.1.2 Resilience in preferential attachment networks594

Preferential attachment networks are generated by the addition of new nodes, each with m dangling595

links (or disconnected links) [51, 52]. These m links connect to nodes, vj , that are already present596

in the network based on a probability proportional to kαj . Where kj is the degree of node vj and597

α a parameter which gives the amount of preferential attachment. α “ 0 means that there is no598

preferential attachment and the probability of attaching a dangling link to a node is the same for599

all nodes. α ą 0 means that dangling links are more likely to attach to nodes that have a high600

degree (nodes that already have a lot of links attached to them) and means that there is positive601

preferential attachment. Finally, α ă 0 means that dangling links are more likely to attach to nodes602

that have a low degree.603

We observed that the resilience of a preferential attachment network depended on both α (Fig-604

ures 8 B, D & F) and m (which varies between rows of subfigures in Figure 8). Looking at the605

network where the number of dangling links, m, is 1, (Figure 8B), we see that resilience varies to606

a large extent as the tuning parameter α varies (roughly between 0.19 and 0.32). As m increases607

the relationship between α and resilience changes and now low values of α yield higher values of608

resilience. In addition the spread of resilience decreases drastically, already for m “ 2 resilience609

varies roughly only between 0.38 and 0.39 for different values of α. For m “ 24, resilience hardly610

varies at all and there is no clear relationship between α and resilience. A higher m means that the611

networks are more dense. Therefore it seems that for dense networks, the structure of the network612

(governed by α) plays a less important role.613
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A B

Figure 7: Erdős–Rényi and resilience. Shannon Diversity changes as nodes are removed from
random attachment networks of 100 nodes for different values of p (A). For p ă 0.4, the networks
tend to have disconnected components before any of the nodes are removed. This means that
the Shannon diversity is greater than zero before any of the nodes are removed. In addition, the
resilience values for the preferential attachment networks corresponding to (A) are shown in (B).

6.1.3 Upper bound for network resilience614

It was originally claimed that resilience takes values in r0, 1s [20]. However, we show that the615

upper bound of resilience is not higher than 0.5 as this is achieved asymptotically by the continuous616

counterpart of resilience applied to the complete graph of size N as N Ñ8.617

The maximum resilience for a network of size N is achieved if, when all the links adjacent to any
k nodes are removed, we end up with those k nodes as isolated nodes and the rest of the network
remains connected as one component of size N´k, for all k. A network which satisfies this property
is the complete graph, KN . Take away the links of any k nodes in the complete graph and we have
k isolated nodes and a complete subgraph of size N ´ k. In this instance, the modified Shannon
diversity is:

HkpKN q “ ´
1

logN

N
ÿ

i“1

px log px

“ ´
N ´ k

N logN
log

ˆ

N ´ k

N

˙

´
k

N logN
log

ˆ

1

N

˙

.

Then, taking the above as a continuous function, integrating between 0 and N with respect to618

k and dividing by N (i.e. taking the average of the function) we get:619
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as N Ñ8,

where ˚ is achieved by polynomial division and then integration of the remaining integrand. Also,620

this is a decreasing function with respect to N , so 1
2 is the minimum of this integral with respect621

to N , so an upper bound of the continuous resilience function, RcpGq is given by 1´ 1
2 “

1
2 . Since622

the discrete function, RpGq takes values equally spaced on RcpGq and RcpGq is a concave function,623
1
2 is also an upper bound for RpGq.624
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Species m Pairwise comparison p-value Cohen’s d
S. cerevisiae 4 expression-based, degree-based 4.86e´16 1.31
S. cerevisiae 4 expression-based, random attachment 4.02e´11 0.89
S. cerevisiae 4 degree-based, random attachment 1.79e´07 0.62
S. cerevisiae 8 expression-based, degree-based 6.66e´26 2.55
S. cerevisiae 8 expression-based, random attachment 1.03e´08 0.71
S. cerevisiae 8 degree-based, random attachment 7.21e´01 0.04
S. cerevisiae 16 expression-based, degree-based 2.03e´25 2.47
S. cerevisiae 16 expression-based, random attachment 2.20e´04 0.40
S. cerevisiae 16 degree-based, random attachment 6.84e´10 0.80
E. coli 4 expression-based, degree-based 5.68e´27 2.73
E. coli 4 expression-based, random attachment 4.52e´33 4.00
E. coli 4 degree-based, random attachment 2.46e´29 3.17
E. coli 8 expression-based, degree-based 2.93e´23 2.15
E. coli 8 expression-based, random attachment 6.94e´30 3.28
E. coli 8 degree-based, random attachment 2.83e´06 0.54
E. coli 16 expression-based, degree-based 2.34e´33 4.07
E. coli 16 expression-based, random attachment 1.81e´15 1.26
E. coli 16 degree-based, random attachment 1.53e´19 1.68
H. sapiens 4 expression-based, degree-based 4.75e´12 0.96
H. sapiens 4 expression-based, random attachment 1.37e´22 2.06
H. sapiens 4 degree-based, random attachment 6.30e´21 1.85
H. sapiens 8 expression-based, degree-based 1.90e´15 1.26
H. sapiens 8 expression-based, random attachment 1.39e´28 3.02
H. sapiens 8 degree-based, random attachment 1.72e´16 1.36
H. sapiens 16 expression-based, degree-based 1.12e´25 2.52
H. sapiens 16 expression-based, random attachment 1.56e´31 3.64
H. sapiens 16 degree-based, random attachment 2.74e´04 0.39

Table 3: ANCOVA results for pairwise prospective resilience slope comparisons in Fig-
ure 4. Almost all comparisons are significant under the Bonferroni-corrected significance threshold
(p ă 0.0166). Cohen’s d was calculated from the ANCOVA’s F -statistic for each comparison.
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Figure 8: Preferential attachment and resilience. Shannon Diversity changes as nodes are
removed from random attachment networks of 100 nodes for different values of α (Figures 8A, 8C,
and 8E). The resilience values for the preferential attachment networks corresponding to the left
plot are shown in Figures 8B, 8D, and 8F. The difference between the rows of plots are the number
of dangling edges, m, a node has as it enters the network when the network is being generated.
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Species m Pairwise comparison p-value Cohen’s d
S. cerevisiae 4 expression-based, degree-based 6.93e´01 0.04
S. cerevisiae 4 expression-based, random attachment 6.65e´14 1.12
S. cerevisiae 4 degree-based, random attachment 4.07e´12 0.97
S. cerevisiae 8 expression-based, degree-based 4.49e´01 0.07
S. cerevisiae 8 expression-based, random attachment 4.71e´25 2.42
S. cerevisiae 8 degree-based, random attachment 4.07e´25 2.43
S. cerevisiae 16 expression-based, degree-based 2.34e´01 0.12
S. cerevisiae 16 expression-based, random attachment 6.31e´36 4.77
S. cerevisiae 16 degree-based, random attachment 2.46e´33 4.07
E. coli 4 expression-based, degree-based 7.63e´06 0.51
E. coli 4 expression-based, random attachment 3.24e´04 0.39
E. coli 4 degree-based, random attachment 4.13e´11 0.89
E. coli 8 expression-based, degree-based 4.13e´06 0.52
E. coli 8 expression-based, random attachment 1.92e´01 0.13
E. coli 8 degree-based, random attachment 1.32e´05 0.49
E. coli 16 expression-based, degree-based 8.36e´13 1.03
E. coli 16 expression-based, random attachment 1.06e´04 0.42
E. coli 16 degree-based, random attachment 1.74e´16 1.36
H. sapiens 4 expression-based, degree-based 3.00e´24 2.30
H. sapiens 4 expression-based, random attachment 6.39e´36 4.77
H. sapiens 4 degree-based, random attachment 1.05e´32 3.91
H. sapiens 8 expression-based, degree-based 4.65e´08 0.66
H. sapiens 8 expression-based, random attachment 5.60e´30 3.30
H. sapiens 8 degree-based, random attachment 1.49e´27 2.83
H. sapiens 16 expression-based, degree-based 1.80e´10 0.84
H. sapiens 16 expression-based, random attachment 4.43e´35 4.53
H. sapiens 16 degree-based, random attachment 4.90e´33 3.99

Table 4: ANCOVA results for pairwise prospective modularity slope comparisons in
Figure 5. Many comparisons are significant based on the Bonferroni-corrected significance thresh-
old (p ă 0.0166). Cohen’s d was calculated from the ANCOVA’s F -statistic for each comparison.
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