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Abstract 
Genome-wide CRISPR screens have transformed our ability to systematically 

interrogate human gene function, but are currently limited to a subset of cellular 

phenotypes. We report a novel pooled screening approach for a wider range of cellular 

and subtle subcellular phenotypes. Machine learning and convolutional neural network 

models are trained on the subcellular phenotype to be queried. Genome-wide screening 

then utilizes cells stably expressing dCas9 (CRISPRi), photoactivatable fluorescent 

protein (PA-mCherry), and a lentiviral guide RNA (gRNA) pool. Cells are screened by 

microscopy and classified by artificial intelligence (AI) algorithms, which precisely 

identify the genetically altered phenotype. Cells with the phenotype of interest are 

photoactivated, isolated via flow cytometry, and the gRNAs are identified by 

sequencing. A proof-of-concept screen accurately identified PINK1 as essential for 

Parkin recruitment to mitochondria. A genome-wide screen identified factors mediating 

TFEB relocation from the nucleus to the cytosol upon prolonged starvation. Twenty of 

the sixty-four hits called by the neural network model were independently validated, 

revealing new effectors of TFEB subcellular localization. This approach, AI-

Photoswitchable Screening (AI-PS) offers a novel screening platform capable of 

classifying a broad range of mammalian subcellular morphologies, an approach 

largely unattainable with current methodologies at genome-wide scale. 

 

Introduction 
Recent advances have expanded traditional genetic screens from bacteria and yeast to 

mammalian cells. RNAi, CRISPRi and CRISPR screens rely on two main strategies: 

arrayed and pooled screens. Arrayed screens are highly specific but require the 

production and, by definition, individual assortment of each RNAi or CRISPR guide 

separately, requiring high-throughput equipment not readily available to academic labs. 

Pooled screens are more facile but restricted to phenotypes that affect cell growth rates 

or viability or result in a fluorescence increase that allows isolation of hits from the 

population using FACS. Single-cell RNA based pooled screens are also useful to link 

genetic profiles to perturbations (Horlbeck et al., 2018; Datlinger et al., 2017; Dixit et al., 

2016; Adamson et al., 2016). Recent reports describe new strategies that distinguish 
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microscopic differences in images from pooled screens. Microfluidic separation of cells 

from the population (Ota et al., 2018; Nitta et al., 2018), in situ sequencing of guides in 

individual cells (Wang et al., 2019; Feldman et al., 2018; Emanuel et al., 2017), 

microscale cell carrier technology (Wheeler et al., 2020), link genotypes to images of 

cell phenotypes. Though elegant, these approaches have technical limitations and are 

not applicable at the whole genome scale. 

 

Recent advances in machine learning, and particularly in deep learning (convolutional 

neural networks) (Caicedo et al., 2018; Bzdok et al., 2018) offer novel strategies for 

identifying individual cells with altered organelle morphology or subcellular protein 

localization. We developed a unique screening method to identify genetic perturbations 

of subcellular morphologies that is widely applicable and high-throughput. The method 

is divided into four steps: first, a morphology classification model is trained on single-cell 

images. Second, pools of CRISPRi-perturbed target cells are imaged sequentially, and 

the phenotypically selected cells are labeled by laser photoactivation of a fluorescent 

protein. Third, the photoactivated cells are sorted and fourth, the guides within 

phenotypically identified cells are amplified and sequenced. The decision to select cells 

is made on-the-fly by pre-trained classification models allowing screening of 1x106 cells 

within 12 hours and the whole human genome in a week. 

 

RESULTS 
Building the single-cell imaging screening approach  
We developed a new platform which assesses images of cells and uses machine 

learning to distinguish their subcellular phenotypes. Using laser activation of a 

fluorescent probe to denote the selected cell phenotypes and FACS to separate the 

cells for guide sequencing, one essentially converts the individual cells exposed to 

pooled CRISPRi libraries into an arrayed screen (Fig. 1). Using this approach, every 

imaged cell is referred to as an independent entity, and a predicted phenotype score is 

produced based on a classification machine-learning model (Fig. 1 e). Making the AI 

platform entails three steps: training and creation of the phenotype classification model; 

model deployment on pooled imaged cells; and validation of the model’s screening 
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performance. We utilized Pink1-dependent Parkin translocation to mitochondria as a 

proof-of-concept (Fig. 1 b). In cells with unimpaired polarized mitochondria, Parkin is in 

the cytoplasm; however, upon mitochondrial depolarization, it translocates to 

mitochondria(Narendra et al., 2008) (Fig. 1 b,c). This binary switch in Parkin location is 

suitable for detection by a support vector machine (SVM) classification model. An SVM 

classification model was trained on images of cells with either cytosolic or mitochondrial 

GFP-Parkin. For each single-cell image, the program calculates a broad set of features 

based on measurements of the GFP signal pixels (Fig. 1 d,e). Feature variations were 

assessed, and redundant contributions were excluded from the model (Fig. S1a,b). 

Manually selected cell images annotated by phenotype and image features were 

computationally applied on a radial basis kernel SVM to create the classification model 

(Fig. S1 a and b). For this step, we generated an easy-to-use graphical user interface 

program to facilitate image segmentation, measurement and model building (Fig 2). The 

R-based script for image segmentation and analysis, and the SVM-classification model 

(Fig. 2b) were deployed on-the-fly to identify cells exhibiting the desired phenotype 

(GFP-Parkin mitochondrial localization). During live cell image acquisition, single cell 

images were captured following segmentation and stored on a local computer. The 

SVM-based model classified the individual cells and generated a mask corresponding to 

the live image field identifying the location of cells with the phenotype of interest (Fig. 

1g, Extended Data Fig. 2a,b, and Video 1). In cells identified with this mask, PA-mCh 

was then laser photoactivated. This 10 second process was iterated across serial 

images of the entire chamber slide (an average of 500,000 cells for one subgenomic 

CRISPRi guide pool (Gilbert et al., 2014; Horlbeck et al., 2016)). Finally, the 

photoactivated samples were sorted using flow cytometry and deep sequenced to 

determine sgRNA abundance in the activated sample compared to untreated cells. 

 

Parkin translocation screen validation 
For platform validation, U2OS cells stably expressing GFP-Parkin, PA-mCh, and dCAS9 

were infected with subpool of the version 2 CRISPRi library comprising 12,775 guides 

targeting kinases, phosphatases and the druggable genome (Horlbeck et al., 2016). 

Cells were treated with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to 
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depolarize mitochondria and GFP-Parkin localization was assessed using the SVM 

classification model (Fig. 3 a). From approximately 200,000 cells, 1,132 were called, 

photoactivated, sorted and sequenced (Fig. 3 b). The most abundant sgRNAs identified 

in the photoactivated samples were targeted against PINK1 (Fig. 3 c), known to be 

required for Parkin translocation16, exhibiting a nearly 30-fold increase compared to the 

unsorted control sample (FDR adjusted p-value < 0.0001, Table S1). Thus, the single 

known Parkin modifier targeted by the subpool library, PINK1, was identified, validating 

the method. In addition, sample size estimation indicated that three biological repeats 

are sufficient for detecting the desired genetic link in our experimental setup (Fig. S2 d).  

 
TFEB nuclear localization screen: convolutional neural network (CNN) based 
screen 
To explore a subcellular phenotype with more complex regulation, we screened for 

genes affecting the nuclear localization of the transcription factor, TFEB.  Upon nutrient 

starvation, TFEB moves from the cytosol to the nucleus, where it activates the 

transcription of lysosome- and autophagy-related genes (Settembre et al., 2011). Upon 

prolonged starvation, mTOR is reactivated, presumably due to replenishment of 

nutrients through autophagy, lysosomes repopulate the cells (Yu et al., 2010)  and 

TFEB returns to the cytosol (Fig. 4 b, Fig S4 and Video 2). As the import of TFEB to the 

nucleus is well elucidated (Puertollano et al., 2018), we assessed TFEB reappearance 

in the cytosol following prolonged starvation-induced nuclear import. U2OS cells stably 

expressing GFP tagged TFEB, PA-mCH, and dCas9 (designated as TFEB-GFP) were 

infected with a lentiviral library expressing sgRNAs against the entire genome divided in 

seven separate  subpools (Horlbeck et al., 2016). The screen was split into seven 

subscreens, one per day for seven days. To increase reproducibility, each subpool 

screen was repeated at least 3 times.    

 

Because SVM classification failed to predict TFEB nuclear localization accurately 

(performance compression between area under the precision-recall curve of 72% for the 

TFEB SVM classification model versus 99% for the Parkin model (Fig. S2 c and Fig. S3 

a), we used deep learning via a convolutional neural network (CNN) (Fig. 4 c,d). The 
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training set was composed of 100,000, 150 pixel X 150 pixel single-cell images. The 

CNN architecture was based on ImageNet (Deng et al., 2010) architecture and 

composed of three deconvolutions and four Max pooling processes, which were 

followed by a fully connected dense network (Fig. 4 c,d).  

 

TFEB-GFP cells expressing guide libraries were grown under complete nutrient 

deprivation conditions for eight hours prior to the commencement of screening after 

which those cells retaining TFEB in the nucleus were photoactivated (Fig. 5 a), isolated 

by FACS and deep sequenced (Fig. 4 e,f and Fig. S3b, Video 3). Among the seven 

subpooled libraries, a mean accuracy of 90% was calculated from the approximation of 

the area under the precision-recall curve (Fig. S3 c). The entire photoactivated and 

sorted gene abundance ranking list analysed for ontology clusters revealed enrichment 

in mitochondrial and kinase complex gene sets (Puertollano et al., 2018; Nezich et al., 

2015), that may relate to energetic consequences to mitochondrial states and TFEB 

post-translational regulation, respectively (Fig. 5b and Fig. S5). Plasma membrane 

proteins were also enriched, perhaps related to cell division rates or nutrient import.  

Differential sgRNA abundance analysis between unsorted and 

photoactivated/sorted samples showed a significant fold-change enrichment in 64 

genes (Fig. 5c, Table S2). A second validation screen was conducted of the 64 enriched 

genes using two new sgRNAs. As with the whole-genome screen, TFEB-GFP nuclear 

localization following validation guide transduction during prolonged starvation was 

recorded 8 hours after starvation for 10 hours. The perturbation effect on TFEB 

positioning was compared to a non-targeting control sgRNA. We found that 21 of the 64 

sgRNAs from the whole genome analysis significantly extended nuclear TFEB retention 

(p < 0.05, repeated-measures ANOVA, Fig. 5 d). Interestingly, these 21 validated hits 

were amongst the genes with the highest ranked p-value significance in the whole 

genome screen (Table S2). Amongst the validated genes, the signaling receptor 

TGFBR1 was enriched in the secondary TFEB screen (Fig. 5 d,e and Fig. 6a, Video 4). 

This may be related to a previous report of the induction of another MITF family 

transcription factor, TFE3, by the loss of TGFBR1 (Sun et al., 2016). Validating the 

screen, one of the strongest hits is the transcription factor, CREB (Fig. 5d,e and Fig. 6b, 
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Video 5), which has been shown previously to mediate autophagy and induce the 

expression of several autophagy genes including Ulk1, Atg5 and Atg7 upstream of 

TFEB following starvation and TFEB itself (Seok et al., 2014). Certain autophagy genes 

are more predominantly activated by CREB and others more by TFEB.  In addition, loss 

of another hit, Pitx2, in vivo causes an increase in mitophagy that has been linked to 

TFEB activation (Nezich et al., 2015; Chang et al,. 2019). Additionally, the membrane 

protein, TMEM184b, has been reported previously to play a role in autophagy (Fig. 5 

d,e) (Bhattacharya et al., 2016; Agod et al., 2018). Loss of the phosphatase, PPP1R1B, 

which also scored amongst the top validated hits, resulted in significant retention in 

TFEB in the nucleus upon starvation (Fig. 5 d,e and Fig. 6c, Video 6). As 

phosphorylation of TFEB is intimately linked to its activation and subcellular localization 

(Puertollano et al., 2018), this hit deserves further mechanistic study. The extensively 

studied TFEB regulator mTOR was not significantly enriched in our photoactivated 

samples. To explore this explicitly, live-cell imaging of starved GFP-TFEB infected with 

two distinct sgRNAs targeting mTOR showed an accumulation of TFEB on lysosomes, 

which resulted in punctate cytosolic foci, similar to previous reports (Martina and 

Puertollano, 2013; Settembre et al., 2012) (Fig. 6d, Video 7). Therefore, mTOR was not 

identified in the enrichment analysis owing to the lack of classification of this specific 

mTOR phenotype, which is distinct from the deep learning model trained for nuclear 

localization.    

 
Discussion  
Here, we present a platform that applies machine learning and deep learning algorithms 

to allow pooled genetic screening for subcellular image phenotypes. This method, which 

we call Artificial Intelligence-Photoswitchable Screening (AI-PS), reduces the time, cost 

and complexity compared to standard screening methods that have required arrayed 

RNAi or CRISPR libraries.  

 

The speed of AI-PS screening relies on the simultaneous execution of four steps: image 

capture, segmentation, generation of classification region of interest, and 

photoactivation of the region of interest. For a field of approximately 200 cells, these 
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four steps together take an average of 10 seconds, which is then iterated across an 

entire plate. Therefore, a screen of 600,000 cells infected with 1/7th of the genome guide 

library, composed of 12,500 sgRNAs, takes ~12 hours. Hence, this accelerated platform 

coupled with a user-friendly interface should accelerate the utility of pooled genomic 

screens.   

 

The method enables the detection and labelling of cells according to subcellular protein 

localization. We validated this by identifying PINK1 as the only significant hit required for 

Parkin translocation to damaged mitochondria within the genome guide sub-library of 

kinases, phosphatases and the druggable genome, demonstrating an exceptional 

signal-to-noise ratio when using the method.  

 

We also applied AI-PS to explore a completely different protein translocation process, 

one which again would be undetectable via FACS separation of whole cells based on a 

change in overall fluorescence intensity. The transcription factor, TFEB, is retained in 

the cytosol in growing cells and upon starvation relocalizes to the nucleus, where it 

induces transcription of lysosomal- and autophagy-related genes (Settembre et al., 

2011; Sardiello et al., 2009). Upon prolonged starvation, TFEB returns to the cytosol via 

an undefined process. Either nuclear TFEB migrates back to the cytosol or nuclear 

TFEB is degraded while newly synthesized TFEB repopulates the cytosol. As we found 

minimal evidence for a role of cytoskeletal or nuclear transporter proteins, whether the 

appearance of TFEB in the cytosol is due to physically shuttling of preexisting TFEB or 

to an increase in translation of new TFEB remains an open question. Beyond protein 

localization screens, our method will be useful to identify genes involved in regulation of 

organelle abundance, size and shape.  

 

Similar to the concepts presented in our study, machine learning-based image analysis 

has been used for calling and sorting of cells (Ota et al., 2018; Nitta et al., 2018).  

However, AI-PS conveys distinct advantages. First, the microscopic resolution of AI-PS 

is much higher than that utilized during dissociated cell sorting (Ota et al., 2018; Nitta et 

al., 2018), allowing the identification of more difficult to detect subcellular structures. 
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Specifically, the detection of minor subcellular events such as alteration in protein 

distribution, positioning and motion requires high spatial-temporal resolution image 

acquisition. Previously published methods utilized low magnification objectives (4x and 

10x) and very short exposure times (below 50 msec), which resulted in low signal-to-

noise ratios, and are not suitable for the resolution of subcellular events.  

 

Another advantage of the AI-PS platform is its wide accessibility – there is no need for 

specialized flow instrumentation, and the algorithms and code presented here can be 

adapted easily for a variety of microscope systems. AI-PS is compatible with adherent 

tissue culture cells, unlike sorting-based approaches for which cells must be in 

suspension, further allowing a more accurate examination of subcellular events in 

regular culture conditions. One current limitation of AI-PS is that the cells must be 

screened live to allow trypsinization to produce single cell suspension for FACS. 

Because some phenotypes would be better screened in fixed cells, we are developing 

methods enabling single cell release of fixed cells to allow screening of additional cell 

biology processes.  

 

Another step to improve AI-PS would be to reduce the segmentation time per image to 

speed up the screen. Fortunately, a huge improvement in cell segmentation, specifically 

the development of deep learning-based techniques, such as U-Net segmentation 

(Caicedo et al., 2019; Toth, 2018; Ronneberger et al., 2015) can be utilized in AI-PS. 

This new deep learning-based segmentation has the potential for at least a five-fold 

reduction in analysis time. Increasing the speed will make it possible to increase the 

sample size and thereby increase the sgRNA coverage in the sorted samples, 

decreasing the false discovery rate. Another strategy for increasing specificity would be 

to utilize single-cell DNA sequence analysis.  

In conclusion, our platform demonstrates novel implementation of machine learning to 

improve cell biology research and discovery and enables phenotypic-based screening 

at the subcellular level – an approach previously largely unavailable. Additionally, AI-PS 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.184390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184390
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

can be implemented for drug target exploration and may prove valuable in methods 

targeting single cells within complex human samples. 
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Methods 
Cell lines, constructs and reagents 
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U2OS and HEK293T were cultured in a humidified incubator at 37°C and 5% CO2 and 

maintained in DMEM (Life Technologies) supplemented with 10% (v/v) FBS (Gemini Bio 

Products), 10 mM HEPES (Life Technologies), 1 mM sodium pyruvate (Life 

Technologies), 1 mM non-essential amino acids (Life Technologies) and 2 mM 

glutamine (Life Technologies). Testing for mycoplasma contamination was performed 

bimonthly using the PlasmoTest kit (InvivoGen). 

 

For constituting a stably expressing dCas9-KRAB U2OS cell line we took a similar 

approach as was described here. In brief, pC13N-dCas9-BFP-KRAB (127968, 

Addgene) was integrated in the U2OS genome using F-Talen and R-Talen (pZT-C13-

R1 and pZT-C13-L1, Addgene:62196, 62197) targeting the human CLYBL intragenic 

safe harbor locus between exons 2 and 3 (as was described previously (Tian et al., 

2019)). The U2OS-dCas9 cell line was then subcloned and the dCas9 activity assessed 

to select the most potent clones for further use (Fig. S1 c).  

 

To generate the parental U2OS-dCas9-PA-mCh, photoactivatable-mCherry was PCR-

amplified from the plasmid N-PA-mCh and assembled into the retroviral vector pBABE-

puro using HiFi DNA Assembly (E5520S, NEB). To create the stable U2OS-dCas9-PA-

mCh/GFP-Parkin and U2OS-dCas9-PA-mCh/TFEB-GFP cell lines, Parkin or TFEB was 

inserted into the lentiviral pHAGE vector by HiFi DNA Assembly (E5520S, NEB). The 

cell lines were subcloned and cells expressing low levels of the GFP-tagged proteins 

were selected to prevent overexpression artifacts. For nucleus segmentation we used a 

lentiviral plasmid expressing nuclear-localized Halo-tag, hU6-bsd-NLS-Halo. Prior to the 

screen, HBSS was supplemented with 2 µM of the pa Janelia Dye 646, SE, (TOCRIS). 

For the Parkin screen, the nucleus was detected using 1000x dilution of Draq5 (62251, 

ThermoFisher).    

 

For Parkin-induced mitophagy, GFP-Parkin cells were treated with 10 µM Carbonyl 

Cyanide Chlorophenylhydrazone (CCCP) (Sigma-Aldrich) and 0.1 µM Bafilomycin A 

(Sigma-Aldrich). For TFEB screening, cells were starved in Hank’s Balanced Salt 

solution (HBSS) without calcium and magnesium (14170112, ThermoFisher).  
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Parkin-GFP and TFEB-GFP positioning classification by support vector machine 
(SVM) 
To create the classification model, we initially trained 2,234 images of each of the binary 

phenotypes: Parkin or TFEB translocation. GFP-Parkin signal was mitochondrial versus 

cytosolic while TFEB-GFP was nuclear versus cytosolic. The model was created using 

the R library e1071. In brief, we used a radial basis Kernel with a cost violation of 10 

computed for an example set of phenotypes using the radial Kernel formula: e(−γ|u−v|^2)  

For optimization of the model, we performed iterations and calculated performance by 

area under the receiver operating characteristic (ROC) curve or precision-recall curve 

(in the case of asymmetric phenotype representation). The performance values were 

plotted against iteration to prevent data overfitting.  

  

GFP-TFEB positioning classification by Convolutional neural network 
For TFEB localization classification, an ImageNet (Deng et al., 2010) architecture CNN 

model was created using TensorFlow and the KERAS library. A training set composed 

of 107,226 single-cell example images of GFP-TFEB in the nucleus or cytosol was 

produced. 80% of the data was used for training and 15% for validation. The remaining 

5% was used for testing the model performance. Image input size was 150 pixel X 150 

pixel and three steps of convolution and max pooling were conducted at a learning rate 

of 1e-4.  

Training was performed with 50 epochs and a batch size of 200. Overfitting was 

prevented by employing the built-in Keras callbacks API feature to save the model 

weights after each epoch. The selected model was chosen from the epoch* at which the 

validation and training loss curves were no longer decreasing. The variation in 

fluorescence signal intensity was accounted for by randomly applying brightness 

augmentation (10% to 90%) to the images in the training data set. 
 
Model performance 
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To assess classification model performance, we performed a precision-recall curve in 

which the curve integral was a measurement of accuracy (Fu and Yi, 2019). In brief, 5-

10% of  

images in the data set from our experiment were arbitrary selected for performance 

testing. Images were collapsed into single cells. The parameters extracted for 

constructing the precision-recall curve were the corresponding CNN prediction value 

against the ground truth class.  The curve and the AUC were plotted and calculated 

using the R package PRROC (Grau et al.). 

 
Image acquisition and model deployment 
SVM deployment live-image acquisition was done on a Nikon Ti-2 CSU-W1 spinning 

disk confocal system equipped with a high-speed electron-multiplying charge-coupled 

device camera (Evolve 512; Photometrics) using a 20X  air objective (NA 0.75) with an 

environmental control chamber (temp controlled at 370C and CO2 at 5%) operated by 

Nikon elements AR microscope imaging software. 

 

Cells were seeded at for screening at 1x105 cells per well of a 2 well Lab-Tek chamber 

slide (Thermofisher, 155360). The on-the-fly real-time capture was done using the 488 

nm laser channel for excitation and using the 520 nm emission detector to collect the 

GFP signal and the 647 nm excitation laser and 667 nm emission detector for the 

segmentation channel. Saved images were segmented live using a bash file script 

(https://github.com/gkanfer/AI-PS), and the classifications were deployed by the SVM 

model. A mask file containing the selected cells was generated and stored on the local 

computer.  The mask image was used to photoactivate the called regions by exciting 

with a 405 nm wavelength using a Bruker minscanner XY galvo photostimulation 

scanner. The process was iterated across more than 1000 fields of view (512 px by 512 

px for the Parkin screen and 2048 px by 2044 px for the TFEB screen). The Nikon 

Imaging System (NIS) elements AR microscope software was used in JOB mode to 

allow integration of the deployment code on-the-fly (the JOB file can be found on our 

https://github.com/gkanfer/AI-PS/). In brief, following capture and saving of the 488 nm 

and 647 nm channel images on the local computer, the NIS JOB module OUTPROC is 
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activated and directed to run the segmentation and deployment R script. Next, the 

region of interest mask is generated, uploaded back on the local microscope computer 

hard drive on the outproc folder path, after which the NIS-JOB continues by saving the 

mask coordinates and preforming the photoactivation of the selected regions of interest 

with a 405 nm laser. The microscope stage then moves to the next field of view to 

repeat the process.      

  

Live-cell image acquisition and deployment of the CNN-based screen were carried out 

on the Eclipse Ti2-E  (Nikon) with CSU-W1 spinning disk system equipped with an 

ORCA-FLASH 4.0 V3 sCMOS (Hamamatsu) and an Opti-Microscan XY Galvo 

Scanning Unit  and a Nikon LUN-F laser unit with 90mW 405NM, rated 90mW output at 

fiber tip, using a 20X objective (NA 0.75) and environmental control chamber (temp 

controlled at 370C and CO2 at 5%). The microscope was controlled by the NIS elements 

AR microscope imaging software.  

The on-the-fly real-time acquisition and deployment for the CNN-based screen were 

performed as described above with one major modification: the TensorFlow deployment 

script was running the backend “while-loop” throughout the acquisition 

(https://github.com/gkanfer/AI-PS/tree/master/TFEB_screen). 

 

Cell segmentation analysis and processing 
For image manipulation, the R package EBimage (Pau, 2009) was used similar to a 

previous report (Laufer et al., 2013). In brief, the two-channel images were min/max-

normalized and nuclear staining was used as a seed to identify individual cells. For 

nucleus segmentation, thresholding with a 5x5 filter map and Watershed transformation 

were applied. Then, the target channel (designated GFP), was used to identify cell 

borders and edges for segmentation, after which it was used for classification. High-

pass filtering and local thresholding followed by global thresholding were used to create 

global and local masks. Together with the nucleus mask generated in the first step, this 

mask was used for the Cellprofiler (Carpenter et al., 2006)-based EBimage propagation 

function. To handle outlier cells, several features were computed and the outlier 

features were removed. For SVM classification, preselected features were computed 
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and used for classification. For the CNN classification, single cells were extracted and 

stacked into tensor array configuration which is compatible with CNN-based prediction 

analysis.  

 

sgRNA lentiviral production 
To generate lentivirus expressing sgRNA libraries, CRISPRi sub-pooled libraries were 

used (Horlbeck et al., 2016). On day 0, 7.5 x 107 Hek293-lentiX cells (Clontech) were 

seeded on 15-cm tissue culture plates.  The next day (Day 1), 20 µg/ml subpooled 

sgRNA plasmid, 14.1 µg/ml PAX2, 4.2 mg/ml MDG2 and 1.2 µg/ml pAdvantage (3rd 

generation lentiviral vector packaging systems) were transfected using 75 µl of 

Lipofectamine 2000 (11668019, ThermoFisher) in Opti-MEM (ThermoFisher). On day 2 

media was changed, and on day 3 virus was harvested. A lentivirus precipitation kit 

(VC100, Alstem Cell Advancements) was used according to the manufacturer’s 

suggestions to concentrate the virus.    

 

To determine MOI, 0.1 x 106 cells were seeded in 24-well plates and infected with four 

titrations of the concentrated virus. Genomic DNA was isolated using QIAamp DNA 

Micro Kit (56304, Qiagen). The number of genomic viral integration sites was compared 

with the number of housekeeping genes using a ddPCR—BioRad QX200 AutoDG 

Droplet Digital PCR System (BioRad).  The volume to MOI ratio was calculated using 

the following formula:  

1) Insertion number (from ddPCR) x dilution factor = Transducing Units (TU) 

2) (Desired MOI x cell number) / Transducing Units = Virus Volume  

The ddPCR primer mix for amplifying upstream of the sgRNA integration region was 

purchased from BioRad:  

Gaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatcggcactgcgtgcgccaattct

gcagacaaatggcagtattcatccacaattttaaaagaaaagggggg (FAM) 

The house keeping probe used for comparison was EiF2C1 (Assay ID: 

dHsaCP2500349 Cat: 10031243, BioRad).  
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To conduct the screen, library expression, 5 x 106 dCas9-PA-mCh-expressing cells 

were seeded on day 0. The next day, the appropriate virus volume was added to cells to 

achieve an MOI below five. Two days after infection, sgRNA-expressing cells were 

sorted using a 407 nm Laser and 450/50 nm filters. Following four days of growth, cells 

were reseeded in 2-well screening chambers. To maintain sufficient sgRNA 

representation, cells were maintained at numbers corresponding to a coverage of at 

least 100 cells per sgRNA.  

 
Activated sample isolation 
After screening, cells were detached using trypsin (Sigma), washed once with PBS and 

filtered using a 50 micron sieve (Corning) to obtain a single-cell suspension. The 

volume was adjusted to obtain up to 10 million cells per ml using PBS. Cells were kept 

in the dark on ice until sorting, which was done using a BD FACS Aria cell sorter 

equipped with 355 nm, 407 nm, 532 nm, and 640 nm laser lines and BD FACSDIVA 

software to perform aseptic cell sorting. Physical properties (FSC and SSC parameters) 

of cells were used to identify and exclude debris, dead cells and doublets.  All single 

cells were then selected for GFP expression using the signal from the 488 nm laser line 

515/30 nm filters. mCherry signal was identified using the 532 nm laser line and 610/25 

nm filter and BFP signal was identified using signal from the 407 nm Laser and 450/50 

nm filters. Cells were purified into two populations, which were either GFP+/BFP+/RFP+ 

or GFP+/BFP+/RFP- for downstream analysis. 

 

Illumina library construction and sequencing 
Following FACS sorting, samples were pelleted by centrifugation and subjected to 

genomic DNA isolation using the QIAamp DNA Micro Kit (56304, Qiagen). To construct 

the sequencing library, genomic DNA was amplified by two-step PCR. In the first step, 

Unique Modifier Identifiers (UMI) fused with lentiviral vector integration site (step 1 Fw 

primer) were mixed with 7i adaptor primer fused with lentiviral vector integration 3’prime 

integration site (step 1 Rev primer). The mixture was amplified using 5-10 PCR cycles. 

The second amplification step included a forward primer complementary to the UMI 

primer fused to 5i (step 2 Fw primer) Illumina adaptor primers and 7i (step 2 Rev primer) 
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and amplified using 25 PCR cycles. DNA concentration were measured using the 

NEBNext® Library Quant Kit for Illumina (E7630L, NEB). Each 50 µl PCR reaction was 

composed of 0.5 µM primers, 0.5 µl of Phusion hot-start DNA polymerase (F549S, 

ThermoFisher) and 2.5 µM dNTPs (N0447S, NEB). After 25 cycles (second PCR step), 

the PCR products were cleaned using AMPure beads (A63880, Beckman Coulter) 

according to the manufacturer’s protocol. 

 

Fragment size and purity was determined using Agilent TapeStation 2200 and 4200 

models, and the desired fragment size of 300 bp was extracted and eluted using a 

Pippin instrument (Sage Science) with HT 2% Agarose Gel, 100-600 bp (HTC2010). For 

the Parkin screen, we used 300 v2 Cassettes (15 million reads) on MiSeq ( MS-102-

2002), whereas, for the TFEB screen, Illumina pair-end sequencing was performed on a 

NextSeq 550 instrument using a sequencing chip of 300 Mid Output Kit v2.5 (120 million 

reads, cat 20024905, Illumina). The read length was 200 bp and 7 bp for the indexing 

primers. Custom sequencing primer were used: (UMI sequence- N, Index sequence- n). 

 

Primer set for step 1: 

Fw: 5’-

AAGCAGTGGTATCAACGCAGAGTACNNNTNNNTNNNTNNNNNNNNGCACAAAAGG

AAACTCACCCT-3’ 

Rev: 5’-CAAGCAGAAGACGGCATACGAGATnnnnnnnCGACTCGGTGCCACTTTTTC-

3’ 

 

Primer set for step 2: 

Fw: 5’-

AATGATACGGCGACCACCGAGATCTACACAAGCAGTGGTATCAACGCAGAGTAC-3’ 

Rev: 5’-CAAGCAGAAGACGGCATACGAGATnnnnnnn-3’ 
Sequencing primer: 5’-TTATCAACTTGAAAAAGTGGCACCGAGTCG-3’ 

 
UMI extraction and read count generation 
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The sgRNA abundance analysis was split into four parts: first, the fastq file was 

demultiplexed according to the run sample sheet using the FASTX Barcode Splitter. 

Second, using UMI-tools the sequences were extracted and low-quality sequences 

were trimmed using trimmomatic. Sequences were aligned and mapped to the library 

data set using Bowtie and Tryhard modules as described previously (Horlbeck et al., 

2016). Finally, deduplication grouping and counting were conducting using UMI-tools. 

The complete Unix based bash file is available on Github. 

 

Differential sgRNA abundance analysis 
The differential abundance of sgRNAs between photoactivated-sorted samples and 

control untreated samples were assessed using the EdgeR package. First, samples 

were log2- and count-per-million normalized. Sample variation was determined by 

covariance-based PCA analysis and read count flooring was established by modeling 

the noise using coverage as a function of read count. sgRNA enrichment is defined as 

two standard deviations from the mean of the distribution of non-target-sgRNA controls. 

For gene aggregation analysis, similarly to a previous paper (Tian et al., 2019), the 

highest enrichment sgRNA sets were selected by bootstrapping the entire data set. 

Using EdgeR (Robinson et al., 2010; Dai et al., 2019), the FDR-corrected p-value was 

calculating by the roast function (Rotation Gene Set Test (Robinson et al., 2010)) 

following the exactTest function of EdgeR (n = 3 or 4 replicates). Gene set analysis was 

performed using GSEA 4.0.3 and our whole genome list was ranked according to FC 

and p-value. The pathway annotation used are the MSigDB Collections (C2:C5) 

(Reimand et al., 2019).  

 
Experimental approach for validation 
For the secondary validation, the best two sgRNA with FC higher than two standard 

deviations from the non-targeting-sgRNA controls and roast test FDR < 15%.  

128 sgRNAs targeting 64 high-scoring hits (See also Supplementary Table 2) identified 

from the primary pooled screen (two sgRNAs per gene) and 2 nontargeting control 

sgRNAs were individually cloned into the lentiviral mU6-BstXI-BlpI-BFP sgRNA vector 

(Horlbeck et al., 2016) and confirmed via sequencing. 
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Nontargeting sgRNA sequences :  

Non-targeting control sgRNA 1 - 5’ GCTGCATGGGGCGCGAATCA 3’ 

Non-targeting control sgRNA 2 - 5’ GTGCACCCGGCTAGGACCGG 3’ 

 

To generate virus, 2 x 106 Lenti-X 293T cells (Clontech) were seeded in 6-well plates in 

1.5 ml DMEM (Life Technologies) supplemented with 10% (v/v) FBS (Gemini Bio 

Products), 10 mM HEPES (Life Technologies), 1 mM sodium pyruvate (Life 

Technologies), 1 mM non-essential amino acids (Life Technologies) and 2 mM 

glutamine (Life Technologies). Cells were transfected the next day in the following 

manner using Lipofectamine 3000 (Thermofisher): 1.2 µg lentiviral sgRNA plasmid, 0.8 

µg psPAX2 packaging vector, 0.3 µg pMD2G packaging vector, 0.8 µg pAdvantage 

packaging vector, and 5 µl P3000 Reagent were dilute in 150 µl Opti-MEM and 

incubated 5 minutes at RT; 3.75 µL Lipofectamine 3000 Transfection Reagent 

(Thermofisher) was diluted into 150 µl Opti-MEM and incubated at room temperature for 

5 min, after which the diluted DNA was added, mixed via pipetting, incubated at RT for 

40 minutes, then added dropwise to cells. Media was replaced the next day and 

harvested after two days and centrifuged at 4°C for 10 min at 10,000 x g to pellet cell 

debris. The supernatant was aliquoted and frozen at -80°C to ensure consistency 

throughout the validation process. 

 

U2OS cells expressing dCas9 and PA-mCherry were seeded at 20,000 cells per well in 

96-well plates on day 0, excluding all exterior wells. On day 1, cells were transduced 

with virus for 24 hours with 8 µg/ml polybrene at 2 concentrations with 3 replicates per 

concentration, allowing 10 different viruses, including a control nontargeting sgRNA, to 

be tested per plate. Cells were checked visually on days 2 and 3 for confluency and 

blue nuclear signal indicating expression of the sgRNA. If crowded, cells were 

trypsinized and split to 1-2 96-well plates. Cells were split again on days 4 or 5 as 

needed into a 96-well imaging plate (Perkin Elmer). A half media change was performed 

every other day if cells were not being split. On day 7, media was removed, cells were 

washed 3 times and then left in warm PBS without calcium and magnesium 

(Thermofisher). Cells were imaged every 60 minutes for 20 hours using a 20X air 
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objective (NA 0.75) on a Nikon Ti-2 CSU-W1 spinning disk system with a photometrics 

95B camera operated by Nikon Elements software equipped with temperature 

regulation and CO2 control. For every sgRNA, 9 images per well in 3 replicate were 

acquired. For TFEB translocation response compression, a fixed number of single cell 

images (n=360) per guide RNA per time per biological repeat were normalized to  

nontargeted control mean value. To determine if there is a significant difference 

between the difference values generated for the control replicates on the same plate 

and the difference values for a guide’s replicates on the same plate, we used repeated-

measures ANOVA.      

 

Sample size power calculation 

To estimate the necessary screening sample size, we conducted power calculations 

using t-tests of means (pwr.t.test function in R). First the pooled group sample standard 

deviation was calculated for each sgRNA (Cohen's d): d=sqrt((n1-1)*s1^2+(n2-

1)*s2^2)/(n1+n2-2)) where n1 designated the observed number of controls and n2 the 

observed number of photoactivated and sorted samples. Then, d was passed into the 

pwr.t.test function with a p-value of 0.05 and increasing power set from 0.2 to 0.8. The 

pwr.t.test function yields the sample size require for detect a significant deferential 

abundance.    

Shiny AI-PS Application 

We created a graphic user interface (GUI) in Shiny (by Rstudio) that performs each step 

(image segmentation and classification, and creation and testing of model) required to 

build and test an SVM-based classification model for AI- Photoswitchable Screening. 

This application can be accessed directly through the website: https://hab-gk-

app.shinyapps.io/gk_shiny_app/. Alternatively, the app can be run locally from the 

source code found at https://github.com/hbaldwin07/GK_shiny_app. Performance is 

better on local machines than on the network server, so this is the recommended 

method for those using particularly large datasets or data files (> 10 MB per image). All 

instructions for running/using the program can be found on the GitHub website.  
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Figure 1. Machine learning genetic screening platform for Parkin localization - 
proof of principle screen (a) Pooled sgRNAs infecting target cells. (b) GFP-Parkin 

U2OS cells treated with DMSO or CCCP (2 hr). Scale bar, 5 µm . (c) Percent of 

cytosolic Parkin over time after CCCP 10 µM treatment supplemented with 100 nM 

Bafilomycin A. (d, e) Single-cell image examples for the training set of phenotypes used 

for SVM classification. Cutoff determined by classification model accuracy (y axis).  

Cutoff used in this screen is a prediction score of 0.8 (also known as decision value), 

scale bar, 5 µm (f, g) Representative Field Of View (FOV) of GFP-Parkin U2OS cell 

screening procedure. i, Images were captured and saved on local computer. ii, Cells 

borders were identified (green circle surrounding cell border, red circle nucleus) 

following Nucleus segmentation (color labeled nuclei). SVM classification model was 

deployed and masked (red circle). iii, photoactivation of the SMV identified cell; scale 

bar, 10 µm    
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Figure. 2 Shiny AI-PS Application and output files. (a) AI-PS GUI interface example. 

https://hab-gk-app.shinyapps.io/gk_shiny_app/ (b) Three deployment output files 

integrated with Nikon elements software. 
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Figure 3. Validation of the platform with a Parkin localization screen, targeting 

Kinases, Phosphatases, and Drug Targets - gRNA pooled library (12,500 sgRNAs 

targeting 2774 genes). (a) Schematic representation of AI-PS platform (b) Flow 

cytometry scatterplot representing the separation of the post-screen photoactivated 

(mCherry florescence signal x-axis in red) from the inactivated cell population (BFP 

florescence signal y-axis in cyan). (c) Enrichment plot comparing sgRNA abundance in 

the photoactivated sample follow CCCP treatment to sgRNA abundance prior to 

treatment. Vertical red line set on log2-fold change threshold; horizontal red line 

indicating the Benjamini-Hochberg corrected p-value set on 5%. See also Table S1. 
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Figure 4. Deep learning genetic screening platform for TFEB localization. (a) 
Pooled sgRNAs infecting target cells. (b) Nuclear TFEB-GFP in cells treated with HBSS 

(1 hr) or cytosolic in cells in complete medium (cm); scale bar, 5 µm. (c, d) Learning set 

composed of 100,000 single-cell images was used for convolutional neural network 

(CNN) classification. ImageNet like CNN architecture is composed of four sets of 

convoluted processes followed by the max pooling procedure. The phenotype decision 

is based on probability value. Low probability value is assigned to cells with cytosolic 

TFEB-GFP and high probability values for cells containing nuclear TFEB-GFP. (e) 
Illustration of optical decision making coupled with photoactivation. (f) Representative 

Field Of View (FOV) of the TFEB-GFP U2OS cell screening procedure. Images were 

captured and saved on a local computer. i. Cell borders were identified (green circle 

surrounding cell border, red circle nucleus) following ii nuclear segmentation (color 

labeled nuclei). iii CNN classification model was deployed and masked (red circle) and 

photoactivation of the CNN identified cell; scale bar, 10 µm. 
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Figure 5. Whole-genome TFEB-GFP localization screen. (a) Screen workflow, TFEB-

GFP cells were transduced with pooled sgRNA libraries targeting the whole genome for 

seven days.  Following eight hours of starvation, AI-PS screening platform was initiated. 

(b) GSEA pathway analysis annotated using the gene sets derived from the GO Cellular 

Component database of the Molecular Signatures Database. On the x-axis is the GSEA 

normalised enrichment score and the color of the bars represents the GSEA calculated 

FDR probabilities. (c) Volcano sgRNA plot comparing sgRNA abundance in the 

photoactivated samples following eight hours of starvation to sgRNA abundance in the 

unsorted sample. Vertical red line is set at the log2-fold change threshold; horizontal red 

line is set at the Benjamini-Hochberg corrected p-value of 15%. Genes selected for 

secondary screening are shown in green. See also Supplementary Table 2. (d) Top 

candidates from the primary screen were selected for secondary screening. The TFEB-

GFP localization CNN model probability value was used for measuring the perturbation 

effect on TFEB-GFP localization over time during starvation. Heat map including all 

genes included in secondary screen; low probability values are shown in green for 

cytosolic TFEB-GFP, high probability values (red) for nuclear TFEB-GFP. n=3, *p < 

0.05, **p < 0.01, or ***p < 0.0001 obtained using repeated measures Anova test. p 

value, one sgRNA was significant. e. TFEB-GFP translocation dynamics observed 

during starvation for selected gene candidates, non-targeted sgRNA in black, gRNA 

target the designated protein in red. Quantification is displayed as mean ± s.e.m. from 3 

independent experiments. 
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Figure 6. Selected sgRNA targeting genes validated in the TFEB-GFP secondary 
screening.  low probability values are shown in green for cytosolic TFEB-GFP, high 

probability values (red) for nuclear TFEB-GFP. TFEB-GFP-expressing U2OS cells 

treated with the designated sgRNA were starved in HBSS for 18 hours, and images 

acquired every hour. scale bar 5 µm.    
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Figure S1.  Support vector machine classification build for Parkin screen. (a) PCA 

analysis of 18 feature-predictors calculated using the R function computeFeatures from 

the EBImage library. (b) 2D representation of non-linear hyperplane separation of 

mitochondrial Parkin phenotype vs. cytosolic phenotype. Mitochondrial Parkin predicted 

cells in red, Cytosolic Parkin in black. The variable o for correct classification, and x for 

misclassification.  (c) dCas9-expressing U2OS cells treated with sgRNA targeting either 

TRANS or CDH2 and immunostained using TRANS or CDH2 antibodies, scale bar 20 

µm.    
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Figure S2.  AI-PS processing stages and model assessments. (a) AI-PS procedure 

iteration on-the-fly. i. Three-channel images are acquired and available for Image 

processing and analysis. ii. The Draq5 channel is used for nuclear detection and the 

GFP-Parkin image is used to identify cell borders (right panel, red circle masks nucleus 

and the green circle masks the cell borders). Post-training single-cell phenotypes are 

scored by the SVM model (bottom left panel, decision value in yellow), where the mask 

is marking the predicted cells (bottom right panel, white circle). iii. Mask images are 

uploaded back to Nikon Elements software and converted to ROI (left panel, red circle). 

The ROI is stimulated by 405 nm laser for 50 ms with 100% laser power (right panel, 

568 nm detector).  (b) For proof-of-principle screening, the cell population expressing 

GFP-Parkin contains 10% of cells infected with sgRNA targeting Pink1 (sgRNA in blue 

for BFP) and treated with 1 µM CCCP; upper panel, representative GFP-Parkin images; 

middle panel, single-cell phenotype prediction score (decision value in yellow), score < 

0.8  for cytosolic GFP-Parkin, score > 0.8 for mitochondrial GFP-Parkin; right panel, 

SVM-called positive cells shown on 568 nm emission detector. (c) Precision-Recall 

curve from 9,546 single cell images obtained during 12 hours live-image acquisition with 

1-min intervals with 1 µM CCCP treatment supplemented with 100 nM Bafilomycin A. 

The accuracy is computed from the integral area under the Precision-Recall curve 

(AUC, Area Under the Curve). (d) The sample size was estimated for observing a 

significant effect for a log2-fold change of 1.5. The log2-fold change was modeled based 

on the non-targeting negative control distribution. The sample size was estimated from 

the GFP-Parkin screen. The effect size is estimated by the log2-fold change of the 

photoactivated sample vs. the control sample. The estimation is made using data 

gathered from 4 biological repeats of the GFP-Parkin screen. For more details see 

Methods. 
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Figure S3.  TFEB-GFP screen performance.  (a) TFEB-GFP phenotype classification 

performance by SVM, Precision-Recall curve from 7,848 single cell images obtained 

from HBSS starved cells. Images collection began 8 hours after starvation initiated and 

continued for another 10 hours. Accuracy is computed from the integral area under the 

Precision-Recall Curve (AUC, Area Under the Curve). (b) Flow cytometry scatterplot 

representing the separation of the post-screening photoactivated mCherry signal (x-axis 

in red) from the inactivated cell population (BFP fluorescence signal, y-axis in cyan). (c) 
TFEB-GFP phenotype classification performance by SVM.  Precision-Recall Curve from 

~5,000 single cell images obtained from starved cells. Image collection began 8 hours 

after starvation initiated and continued for another 10 hours. The accuracy was 

computed from the integral area under the Precision-Recall Curve (AUC, area under the 

curve). The AUC was calculated per subpooled library (designated by color), from a 

pool of 3 biological repeats.  
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Figure S4. Live-cell images of TFEB-GFP U2OS cells under starvation conditions. 
TFEB-GFP-expressing U2OS cells were starved for 18 hours and images acquired 

every hour. low probability values are shown in green for cytosolic TFEB-GFP, high 

probability values (red) for nuclear TFEB-GFP. sgNTC, nontargeting sgRNA control, 

scale bar 5 µm  
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Figure S5. Gene-set clustering of 64 candidates enriched in TFEB-GFP 
translocation screen. Cytoscape analysis of enriched genes, the circle size represents 

fold-change enrichment and p-value is color-coded inside the circle. The dashed lines 

indicate cluster overlap.   
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Video 1 | Example of AI-PS platform Parkin screen proof of principle, Nikon NIS 

elements JOB module screen capture during GFP-Parkin (in Green) acquisition.  

Machine learning deployed for automatic detection of sgRNA targeting PINK-1 (in blue) 

according to cell phenotype (red circle on top of GFP-Parkin Image). The detected cell 

is photoactivated (in yellow-red).  

 

Video 2 | Live-cell images of TFEB-GFP U2OS cells under starvation conditions. 
TFEB-GFP-expressing U2OS cells were starved for 18 hours and images acquired 

every hour. Single-cell CNN prediction scores are marked in red for nuclear TFEB and 

in green for cytosolic TFEB. Dynamic Bar chart indicates the cumulative distribution of 

TFEB translocation in the represented cell population.   

 

Video 3 | Example of AI-PS platform for TFEB screen, Nikon NIS elements JOB 

module screen capture during TFEB-GFP (in green) acquisition. Top Image TFEB-GFP 

in green, red circle for the phenotype automatic detected cells. Bottom left corner, R 

based image segmentation, machine learning prediction and Mask generation. Bottom 

right, photoactivation in red (pa-mCh). Three examples are shown here. 

 

Video 4 | Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting 
TGFBR1 under starvation conditions. sgTGFBR1-TFEB-GFP-expressing U2OS cells 

were starved for 18 hours and images acquired every hour. Single cell CNN prediction 

scores are marked in red for nuclear TFEB and in green for cytosolic TFEB. Dynamic 

Bar chart indicates the cumulative distribution of TFEB translocation in the represented 

cell population.  

 

 

Video 5 | Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting 
CREB5b under starvation conditions. sgCREB5b-TFEB-GFP-expressing U2OS cells 

were starved for 18 hours and images acquired every hour. Single cell CNN prediction 

scores are marked in red for nuclear TFEB and green for cytosolic TFEB. Dynamic Bar 
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chart indicates the cumulative distribution of TFEB translocation in the represented cell 

population.   

  

 

Video 6 | Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting 
PPP1R1B under starvation conditions. sgPPP1R1B-TFEB-GFP-expressing U2OS 

cells were starved for 18 hours and images acquired every hour. Single cell CNN 

prediction scores are marked in red for nuclear TFEB and in green for cytosolic TFEB. 

Dynamic Bar chart indicates the cumulative distribution of TFEB translocation in the 

represented cell population.  

 

 

Video 7 | Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting 
mTOR under starvation conditions. Sg-mTOR-TFEB-GFP-expressing U2OS cells 

were starved for 18 hours and images acquired every hour. Single cell CNN prediction 

scores are marked in red for nuclear TFEB and in green for cytosolic TFEB. Dynamic 

Bar chart indicates the cumulative distribution of TFEB translocation in the represented 

cell population.   

  

Table S1. Parkin translocation screen using an sgRNA library subpool targeting 
all kinases, phosphatases and the druggable genome. The rows in the Parkin 

screen gene enrichment spreadsheet are the proteins selected by the screen. Log2 fold 

change and corresponded p-values calculated from the gene abundance analysis as 

described in Methods and related to Figure 3.  

  

Table S2. TFEB translocation whole genome screen. The rows in the TFEB screen 

gene enrichment spreadsheet are the proteins selected by the screen. Log2 fold change 

and corresponded p-values calculated from the gene abundance analysis as described 

in Methods and related to Figure 5.  

 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.184390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184390
http://creativecommons.org/licenses/by-nc-nd/4.0/

