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Abstract18

Here, we present Biologically Annotated Neural Networks (BANNs), a novel probabilistic framework19

that makes machine learning fully amenable for GWA applications. BANNs are feedforward models20

with partially connected architectures that are based on biological annotations. This setup yields a fully21

interpretable neural network where the input layer encodes SNP-level effects, and the hidden layer models22

the aggregated effects among SNP-sets. Part of our key innovation is to treat the weights and connections23

of the network as random variables with prior distributions that reflect how genetic effects manifest24

at different genomic scales. The BANNs software uses scalable variational inference to provide fully25

interpretable posterior summaries which allow researchers to simultaneously perform (i) fine-mapping26

with SNPs and (ii) enrichment analyses with SNP-sets on complex traits. Through simulations, we show27

that our method improves upon state-of-the-art fine mapping and enrichment approaches across a wide28

range of genetic architectures. We then further illustrate the benefits of BANNs by analyzing real GWA29

data assayed in approximately 2,000 heterogenous stock of mice from Wellcome Trust Centre for Human30

Genetics and approximately 7,000 individuals from the Framingham Heart Study. Lastly, using a subset31

of individuals of European ancestry from the UK Biobank, we show that BANNs is able to replicate32

known associations that required functional validation using statistics alone.33

Introduction34

Over the two last decades, a considerable amount of methodological research in statistical genetics has35

focused on developing and improving the utility of linear mixed models (LMMs) [1–13]. The flexibility36

and interpretability of LMMs make them a widely used tool in genome-wide association (GWA) studies,37

where the goal is to test for associations between individual single nucleotide polymorphisms (SNPs) and38

a phenotype of interest. In these cases, traditional LMMs provide a set of P -values or posterior inclusion39

probabilities (PIPs) which lend statistical evidence on how important each variant is for explaining the40

overall genetic architecture of a trait. However, this univariate SNP-level approach is underpowered41

for “polygenic” traits which are generated by many mutations of small effect [14–19]. To mitigate this42
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issue, more recent work has extended the LMM framework to identify enriched gene or pathway-level43

associations, where SNPs within a particular genomic region are combined (commonly known as a SNP-44

set) to detect biologically relevant disease mechanisms underlying the trait [20–27]. Still, the performance45

of standard SNP-set methods can be hampered by strict additive modeling assumptions; and the most46

powerful of these LMM approaches rely on algorithms that are computationally inefficient and unreliable47

for large-scale sets of data [28].48

The explosion of large-scale genomic datasets has provided the unique opportunity to move beyond49

the traditional LMM framework and integrate machine learning techniques as standard statistical tools50

within GWA analyses. Indeed, machine learning methods such as neural networks are well known to51

be most powered in settings when large training data is available [29]. This includes GWA applications52

where consortiums have data sets that include hundreds of thousands of individuals genotyped at millions53

of markers and phenotyped for thousands of traits [30]. It is also well known that these nonlinear54

statistical approaches often exhibit greater predictive accuracy than LMMs, particularly for complex55

traits with broad-sense heritability that is driven by non-additive genetic variation (e.g., gene-by-gene56

interactions) [31]. One of the key characteristics that leads to better predictive performance from machine57

learning approaches is the automatic inclusion of higher order interactions between variables being put58

into the model [32, 33]. For example, neural networks leverage nonlinear activation functions between59

layers that implicitly enumerate all possible (polynomial) interaction effects [34]. While this is a partial60

mathematical explanation for model improvement, in many biological applications, we often wish to61

know precisely which subsets of variants are most important in defining the architecture of a trait.62

Unfortunately, the classic statistical idea of variable selection and hypothesis testing is lost within machine63

learning methods since they do not naturally produce interpretable significance measures (e.g., P -values64

or PIPs) like traditional LMMs [33,35].65

In this work, we develop biologically annotated neural networks (BANNs), a novel probabilistic frame-66

work that makes machine learning amenable for fine mapping and discovery in high-dimensional genomic67

association studies (Fig. 1). BANNs are feedforward Bayesian models with partially connected architec-68

tures that are guided by predefined SNP-set annotations (Fig. 1a). Our approach produces three key69

scientific contributions. First, the partially connected network architecture yields a fully interpretable70

model where the input layer encodes SNP-level effects, and the single hidden layer models the effects71

among SNP-sets (Fig. 1b). Second, we treat the weights and connections of the network as random72

variables with sparse prior distributions, which flexibly allows us to model a wide range of sparse and73

polygenic genetic architectures (Fig. 1c). Third, we perform an integrative model fitting procedure where74

the enrichment of SNP-sets in the hidden layer are directly influenced by the distribution of associated75

SNPs with nonzero effects on the input layer. These three components make for a powerful machine76

learning strategy for conducting fine mapping and enrichment analyses simultaneously on complex traits.77

With detailed simulations, we assess the power of BANNs to identify significant SNPs and SNP-sets78

under a variety of genetic architectures, and compare its performance against multiple competing ap-79

proaches [21,23,25–27,36–39]. We also apply the BANNs framework to six quantitative traits assayed in80

a heterogenous stock of mice from Wellcome Trust Centre for Human Genetics [40], and two quantitative81

traits in individuals from the Framingham Heart Study [41]. For the latter, we include a replication study82

where we independently analyze the same traits in a subset of individuals of European ancestry from the83

UK Biobank [30].84

Results85

BANNs Framework Overview86

Biologically annotated neural networks (BANNs) are feedforward models with partially connected archi-87

tectures that are inspired by the hierarchical nature of biological enrichment analyses in GWA studies88
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(Fig. 1). The BANNs framework simply requires individual-level genotype/phenotype data and a pre-89

defined list of SNP-set annotations (Fig. 1a). The method can also take in summary statistics where90

SNP-level effect size estimates are treated as the phenotype and an estimate of the linkage disequilib-91

rium (LD) matrix is used as input data (Supplementary Fig. 1). Structurally, sequential layers of the92

BANNs model represent different scales of genomic units. The first layer of the network takes SNPs as93

inputs, with each unit corresponding to information about a single SNP. The second layer of the net-94

work represents SNP-sets. All SNPs that have been annotated for the same SNP-set are then connected95

to the same neuron in the second layer (Fig. 1b). In this work, we define SNP-sets as collections of96

functionally interacting variants that fall within a chromosomal window or neighborhood. For example,97

when studying human GWA data, we use gene annotations as defined by the NCBI’s Reference Sequence98

(RefSeq) database in the UCSC Genome Browser [42] (Methods). The BANNs framework flexibly allows99

for overlapping annotations. In this way, SNPs may be connected to multiple hidden layer units if they100

are located within the intersection of multiple gene boundaries. SNPs that are unannotated, but located101

within the same genomic region, are connected to their own units in the second layer and represent the102

intergenic region between two annotated genes. Given the natural biological interpretation of both layers,103

the partially connected architecture of the BANNs model creates a unified framework for comprehensi-104

bly understanding SNP and SNP-set level contributions to the broad-sense heritability of complex traits105

and phenotypes. Notably, this framework may be easily extended to other biological annotations and106

applications.107

We frame the BANNs methodology as a Bayesian nonlinear mixed model with which we can perform108

classic variable selection (Fig. 1c; see Methods). Here, we leverage the fact that using nonlinear activation109

functions for the neurons in the hidden layer implicitly accounts for both additive and non-additive effects110

between SNPs within a given SNP-set (Supplementary Notes). Part of our key innovation is to treat the111

weights and connections of the neural network as random variables with prior distributions that reflect112

how genetic effects are manifested at different genomic scales. For the input layer, we assume that the113

effect size distribution of non-null SNPs can take vastly different forms depending on both the degree and114

nature of trait polygenicity [28]. For example, polygenic traits are generated by many mutations of small115

effect, while other phenotypes can be driven by just a few clusters of SNPs with effect sizes much larger116

in magnitude [19]. To this end, we place a normal mixture prior on the input layer weights (θ) to flexibly117

estimate a wide range of SNP-level effect size distributions [10, 43–45]. Similarly, we follow previous118

works and assume that enriched SNP-sets contain at least one SNP with a nonzero effect on the trait of119

interest [26]. This is formulated by placing a spike and slab prior on the weights in the second layer (w).120

With these point mass mixture distributions, we assume that each connection in the neural network has121

a nonzero weight with: (i) probability πθ for SNP-to-SNP-set connections, and (ii) probability πw for122

SNP-set-to-phenotype connections. By modifying a widely used variational inference algorithm for neural123

networks [46], we jointly infer posterior inclusion probabilities (PIPs) for SNPs (γθ) and SNP-sets (γw).124

The PIPs are defined as the posterior probability that the weight of a given connection is nonzero. We125

use this information to prioritize statistically associated SNPs and SNP-sets that significantly contribute126

to the broad-sense heritability of the trait of interest. With biologically annotated units and the ability127

to perform statistical inference on explicitly defined parameters, our model presents a fully interpretable128

extension of neural networks to GWA applications. Details and derivations of the BANNs framework can129

be found in Methods and Supplementary Notes.130

Power to Detect SNPs and SNP-Sets in Simulation Studies131

In order to assess the performance of models under the BANNs framework, we simulated complex traits132

under multiple genetic architectures using real genotype data on chromosome 1 from ten thousand ran-133

domly sampled individuals of European ancestry in the UK Biobank [30] (see Methods and previous134

work [9, 28]). After quality control procedures, our simulations included 36,518 SNPs (Supplemen-135

tary Notes). Next, we used the NCBI’s Reference Sequence (RefSeq) database in the UCSC Genome136
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Browser [42] to annotate SNPs with the appropriate genes. Unannotated SNPs located within the same137

genomic region were labeled as being within the “intergenic region” between two genes. Altogether, this138

left a total of G = 2,816 SNP-sets to be included in the simulation study.139

After the annotation step, we assume a linear model to generate quantitative traits while varying140

the following parameters: broad-sense heritability (H2 = 0.2 and 0.6); the proportion of broad-sense141

heritability that is being contributed by additive effects versus pairwise cis-interaction effects (ρ = 1 and142

0.5); and the percentage of enriched SNP-sets that influence the trait (set to 1% for sparse and 10% for143

polygenic architectures, respectively). We use the parameter ρ to assess the neural network’s robustness144

in the presence of non-additive genetic effects between causal SNPs. To this end, ρ = 1 represents145

the limiting case where the variation of a trait is driven by solely additive effects. For ρ = 0.5, the146

additive and pairwise interaction effects are assumed to equally contribute to the phenotypic variance.147

In each scenario, we consider traits being generated with and without additional population structure148

(Methods). In the former setting, traits are simulated while also using the top ten principal components149

of the genotype matrix as covariates to create stratification. The genetic contributions of the principal150

components are fixed to be 10% of the total phenotypic variance. Throughout this section, we assess the151

performance for two versions of the BANNs framework. The first takes in individual-level genotype and152

phenotype data; while, the second models GWA summary statistics (hereafter referred to as BANN-SS).153

For the latter, GWA summary statistics are computed by fitting a single-SNP univariate linear model (via154

ordinary least squares) without any control for polygenic effects. All results are based on 100 different155

simulated phenotypes for each parameter combination (Supplementary Notes).156

The main utility of the BANNs framework is having the ability to detect associated SNPs and enriched157

SNP-sets simultaneously. Therefore, we compare the performance of BANNs to state-of-the-art SNP158

and SNP-set level approaches [21, 23, 25–27, 36–39], with the primary idea that our method should be159

competitive in both settings. For each method, we assess the empirical power and false discovery rates160

(FDR) for identifying either the correct causal SNPs or the correct SNP-sets containing causal SNPs161

(Supplementary Tables 1-8). Frequentist approaches are evaluated at a Bonferroni-corrected threshold162

for multiple hypothesis testing (e.g., P = 0.05/36518 = 1.37× 10−6 at the SNP-level and P = 0.05/2816163

= 1.78×10−5 at the SNP-set level, respectively); while, Bayesian methods are evaluated according to the164

median probability model (PIPs and posterior enrichment probability ≥ 0.5) [47]. We also compare each165

method’s ability to rank true positives over false positives via receiver operating characteristic (ROC)166

and precision-recall curves (Fig. 2 and Supplementary Figs. 2-16). Specific results about these analyses167

are given below.168

Fine Mapped SNP-Level Results. For SNP-level comparisons, we used three fine-mapping methods169

as benchmarks: CAVIAR [38], SuSiE [39], and FINEMAP [37]. Each of these methods implement170

Bayesian variable selection strategies, in which different sparse prior distributions are placed on the “true”171

effect sizes of each SNP and posterior inclusion probabilities (PIPs) are used to summarize their statistical172

relevance to the trait of interest. Notably, both CAVIAR (exhaustively) and FINEMAP (approximately)173

search over different models to find the best combination of associated SNPs with nonzero effects on174

a given phenotype. On the other hand, the software for SuSiE requires an input ` which fixes the175

maximum number of causal SNPs to include in the model. In this section, we consider results when this176

input number is high (` = 3000) and when this input number is low (` = 10). While SuSiE is applied to177

individual-level data, both CAVIAR and FINEMAP require summary statistics where marginal z-scores178

are treated as a phenotype and modeled with an empirical estimate of the LD matrix.179

Overall, BANNs, BANN-SS, and SuSiE (with high ` = 3000) consistently achieve the greatest empir-180

ical power and lowest FDR across all genetic architectures we considered. These three approaches also181

stand out in terms of true-versus-false positive rates and precision-versus-recall. Notably, the choice of182

the ` parameter largely influenced the performance of SuSiE, as it was consistently the worst performing183

method when we underestimated the number of causal SNPs with nonzero effects a priori (i.e., ` = 10).184
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Importantly, these performance gains come with a cost: the computational run time of SuSiE becomes185

much slower as ` increases (Supplementary Table 9). For more context, an analysis on just 4,000 indi-186

viduals and 10,000 SNPs takes the BANNs methods an average of 319 seconds to run on a CPU; while,187

SuSiE can take up to nearly twice as long to complete as ` increases (e.g., average runtimes of 23 and188

750 seconds for ` = 10 and 3000, respectively).189

Training BANNs on individual-level data clearly becomes the best approach when the broad-sense190

heritability of complex traits is partly made up of pairwise genetic interaction effects between causal SNPs191

(e.g., ρ = 0.5; see Supplementary Figs. 5-8 and 13-16)—particularly when traits have low heritability192

with polygenic architectures (e.g., H2 = 0.2). A direct comparison of the PIPs derived by BANNs and193

SuSiE shows that the integrative and nonlinear neural network training procedure of BANNs enables194

its ability to identify associated SNPs even in these more complex phenotypic architectures (Fig. 3 and195

Supplementary Figs. 17-23). Ultimately, this result is enabled by the ReLU activation functions in the196

hidden layers of the BANNs framework, which implicitly enumerates the interactions between SNPs within197

the a given SNP-set (Supplementary Notes). The BANN-SS, CAVIAR, and FINEMAP methods see a198

decline in performance for these same scenarios with genetic interactions. Assuming that the additive199

and non-additive genetic effects are uncorrelated, this result is also expected since summary statistics are200

often derived from simple linear additive regression models that (in theory) partition or marginalize out201

proportions of the phenotypic variance that are contributed by nonlinearities [9, 13].202

Enriched SNP-Set Level Results. For comparisons between SNP-set level methods, we consider203

six gene or SNP-set enrichment approaches including: RSS [26], PEGASUS [25], GBJ [27], SKAT [21],204

GSEA [36], and MAGMA [23]. SKAT, VEGAS, and PEGASUS fall within the same class of frequentist205

approaches, in which SNP-set GWA P -values are assumed to be drawn from a correlated chi-squared206

distribution with covariance estimated using an empirical LD matrix [48]. MAGMA is also a frequentist207

approach in which gene-level P -values are derived from distributions of SNP-level effect sizes using an208

F -test [23]. GBJ attempts to improve upon the previously mentioned methods by generalizing the Berk-209

Jones statistic to account for complex correlation structures and adaptively adjust the size of annotated210

SNP-sets to only SNPs that maximize power [49]. Lastly, RSS is a Bayesian linear mixed model enrich-211

ment method which places a likelihood on the observed SNP-level GWA effect sizes (using their standard212

errors and LD estimates), and assumes a spike-and-slab shrinkage prior on the true SNP effects to derive213

a probability of enrichment for genes or other annotated units [50]. It is worth noting that, while RSS214

and the BANNs framework are conceptually different, the two methods utilize very similar variational215

approximation algorithms for posterior inference [46] (Methods and Supplementary Notes).216

Similar to the conclusions drawn during the SNP-level assessments, both the BANNs and BANN-SS217

implementations had among the best tradeoffs between true and false positive rates for detecting enriched218

SNP-sets across all simulations—once again, including those scenarios which also considered pairwise219

interactions between causal SNPs. Since RSS is an additive model, it sees a decline in performance220

for the more complex genetic architectures that we simulated. A direct comparison between the PIPs221

from BANNs and RSS can be found in Fig. 3 and Supplementary Figs. 17-23. While RSS also performs222

generally well for the additive trait architectures, the algorithm for the model often takes twice as long223

than either of the BANNs implementations to converge (Supplementary Table 10). PEGASUS, GBJ,224

SKAT, and MAGMA are score-based methods and, thus, are expected to take the least amount of time to225

run. BANNs and RSS are hierarchical regression-based methods and the increased computational burden226

of these approaches results from their need to do (approximate) Bayesian posterior inference; however,227

the sparse and partially connected architecture of the BANNs framework allows it to scale more favorably228

for larger dimensional datasets. Previous work has suggested that when using GWA summary statistics229

to identify genotype-phenotype associations at the SNP-set level, having the ability to adaptively account230

for possibly inflated SNP-level effect sizes and/or P -values is crucial [28]. Therefore, it is understandable231

why the score-based methods consistently struggle relative to the regression-based approaches even in232
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the simplest simulation cases where traits are generated to have high broad-sense heritability, sparse233

phenotypic architectures that are dominated by additive genetic effects, and total phenotypic variance234

that is not confounded by additional population stratification (Fig. 2 and Supplementary Figs. 2-16).235

Both the BANN-SS and RSS methods use shrinkage priors to correct for potential inflation in GWA236

summary statistics and recover estimates that are better correlated with the true generative model for237

the trait of interest.238

Estimating Total Phenotypic Variance Explained in Simulation Studies.239

While our main focus is on conducting multi-scale inference of genetic trait architecture, because the240

BANNs framework provides posterior estimates for all weights in the neural network, we are able to also241

provide an estimate of phenotypic variance explained (PVE). Here, we define PVE as the total proportion242

of phenotypic variance that is explained by fixed genetic effects (both additive and non-additive) and243

random effects (e.g., population stratification), collectively [16]. Within the BANNs framework, this244

estimation can be done on both the SNP and SNP-set level while using either genotype-phenotype data245

or summary statistics (Supplementary Notes). For our simulation studies, the true PVE = H2 + 10%246

and H2 for traits generated with and without including the top ten genotypic principal components247

as covariates, respectively. We assess the ability of BANNs to recover these true estimates using root248

mean square error (RMSE) (Supplementary Figs. 24 and 25). In order to be successful at this task,249

the neural network needs to accurately estimate both the individual effects of causal SNPs in the input250

layer, as well as their cumulative effects for SNP-sets in the outer layer. BANNs and BANN-SS exhibit251

the most success with traits have additive sparse architectures (with and without additional population252

structure)—achieving PVE estimates with RMSEs as low as 4.54×10−3 and 4.78×10−3 on the SNP and253

SNP-set levels for highly heritable phenotypes, respectively. However, both models underestimate the254

total PVE in polygenic traits and traits with pairwise SNP-by-SNP interactions. Therefore, even though255

the BANNs framework is still able to correctly prioritize the appropriate SNPs and SNP-sets, in these256

more complicated settings, we misestimate the approximate posterior means for the network weights and257

overestimate the variance of the residual training error (Supplementary Notes). Similar observations258

have been noted when using variational inference [51,52]. Results from other work also suggest that the259

sparsity assumption on the SNP-level effects can lead to the underestimation of the PVE [16,53].260

Fine Mapping and Genomic Enrichment in Heterogenous Stock of Mice261

We apply the BANNs framework to individual-level genotypes and six quantitative traits in a heteroge-262

neous stock of mice dataset from the Wellcome Trust Centre for Human Genetics [40]. This data contains263

approximately 2,000 individuals genotyped at approximately 10,000 SNPs—with specific numbers varying264

slightly depending on the quality control procedure for each phenotype (Supplementary Notes). For SNP-265

set annotations, we used the Mouse Genome Informatics database (http://www.informatics.jax.org)266

[54] to map SNPs to the closest neighboring gene(s). Unannotated SNPs located within the same ge-267

nomic region were labeled as being within the “intergenic region” between two genes. Altogether, a total268

of 2,616 SNP-sets were analyzed. The six traits that we consider are grouped based on their category269

and include: body mass index (BMI) and body weight; percentage of CD8+ cells and mean corpuscular270

hemoglobin (MCH); and high-density and low-density lipoprotein (HDL and LDL, respectively). We271

choose to analyze these particular traits because their architectures represent a realistic mixture of the272

simulation scenarios we detailed in the previous section. Specifically, the mice in this study are known to273

be genetically related and these particular traits have been shown to have various levels of broad-sense274

heritability with different contributions from both additive and non-additive genetic effects [33].275

For each trait, we provide a summary table which lists the PIPs for SNPs and SNP-sets after fitting the276

BANNs model to the individual-level genotypes and phenotype data (Supplementary Tables 11-16). We277

use Manhattan plots to visually display the variant-level fine mapping results across each of the six traits,278
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where chromosomes are shown in alternating colors for clarity and associated SNPs with PIPs above the279

median probability model threshold are highlighted (Supplementary Fig. 26). Importantly, many of the280

candidate genes and intergenic regions selected by the BANNs model have been previously validated by281

past publications as having some functional relationship with the traits of interest (Table 1). For example,282

BANNs reports the genes Btbd9 and hlb156 as being enriched for the percentage of CD8+ cells in mice283

(PIP = 0.87 and 0.72, respectively). This same chromosomal region on chromosome 17 was also reported284

in the original study as having highly significant quantitative trait loci for CD8+ cells (bootstrap posterior285

probability equal to 1.00) [40]. Similarly, the X chromosome is well known to strongly influence adiposity286

and metabolism in mice [55]. As expected, in body weight and BMI, our approach identified significant287

enrichment in this region—headlined by the dystrophin gene Dmd in both cases [56]. Finally, we note288

that including intergenic regions in our analyses allows us to discover trait relevant genomic associations289

outside the immediate gene annotations provided by the Mouse Genome Informatics database. This290

proved important for BMI where BANNs reported the region between Gm22219 and Mc4r on chromosome291

18 as having a relatively high PIP of 0.74. Recently, a large-scale GWA study on individuals from the292

UK Biobank showed that variants around MC4R protect against obesity in humans [57].293

Overall, the results from this smaller GWA study highlight three key characteristics resulting from the294

sparse probabilistic assumptions underlying the BANNs framework. First, the variational spike and slab295

prior placed on the weights of the neural network will select no more than a few variants in a given LD296

block [46]. This is important since traditional näıve SNP-set methods will often exhibit high false positive297

rates due to many of these correlated regions along the genome [28]. Second, we see that our findings298

with BANNs are not biased by the sheer size of SNP-sets. The enrichment of a SNP-set is instead strictly299

determined by the relative posterior distribution of zero and nonzero SNP-level effect sizes within its300

annotated genomic window (Supplementary Tables 11-16). In other words, a SNP-set is not guaranteed301

to have a high inclusion probability just because it contains a SNP with a large nonzero effect; however,302

BANNs will report a SNP-set as insignificant if the total ratio of non-causal SNPs within the set heavily303

outweighs the number of causal SNPs that have been annotated for the same region. To this end, in304

the presence of large SNP-sets, the BANNs framework will favor preserving false discovery rates at the305

expense of having slightly more false negatives. Lastly, the careful modeling of the SNP-level effect size306

distributions enhances our ability to conduct multi-scale genomic inference. In this particular study, we307

show the power to still find trait relevant SNP-sets with variants that are not marginally strong enough308

to be detected individually, but have notable genetic signal when their weights are aggregated together309

(again see Table 1 and Supplementary Fig. 26).310

Analyzing Lipoproteins in the Framingham Heart Study311

Next, we apply the BANNs framework to two continuous plasma trait measurements — high-density312

lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol — assayed in 6,950 individuals from313

the Framingham Heart Study [41] genotyped at 394,174 SNPs genome-wide. Following quality control314

procedures, we regressed out the top ten principal components of the genotype data from each trait to315

control for population structure (Supplementary Notes). Next, we used the gene boundaries listed in the316

NCBI’s RefSeq database from the UCSC Genome Browser [42] to define SNP-sets. Similar to the previous317

sections, unannotated SNPs located within the same genomic region were labeled as being within the318

“intergenic region” between two genes. This resulted in a total of 18,364 SNP-sets to be analyzed.319

For each trait, we again fit the BANNs model to the individual-level genotype-phenotype data and320

used the median probability model threshold as evidence of statistical significance for all weights in the321

neural network (Supplementary Tables 17-18). In Fig. 4, we show Manhattan plots of the variant-level322

fine mapping results, where each significant SNP is color coded according to its SNP-set annotation.323

As an additional validation step, we took the enriched SNP-sets identified by BANNs in each trait324

and used the gene set enrichment analysis tool Enrichr [58, 59] to identify the categories that they325

overrepresent in the database of Genotypes and Phenotypes (dbGaP) and the NHGRI-EBI GWAS Catalog326
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(Supplementary Fig. 27). Similar to our results in the previous section, the BANNs framework identified327

many SNPs and SNP-sets that have been shown to be associated with cholesterol-related processes in328

past publications (Table 2). For example, in HDL, BANNs identified an enriched intergenic region329

between the genes HERPUD1 and CETP (PIP = 1.00) which has been also replicated in multiple330

GWA studies with multiethnic cohorts [60–63]. The Enrichr analyses were also consistent with published331

results (Supplementary Fig. 27). For example, the top ten significant enriched categories in the GWAS332

Catalog (i.e., Bonferroni-correct threshold P -value < 1 × 10−5 or Q-value < 0.05) for HDL-associated333

SNP-sets selected by the BANNs model are either directly related to lipoproteins and cholesterol (e.g.,334

“Alpolipoprotein A1 levels”, “HDL cholesterol levels”) or related to metabolic functions (e.g., “Lipid335

metabolism phenotypes”, “Metabolic syndrome”).336

As in the previous analysis, the results from this analysis also highlight insight into complex trait337

architecture enabled by the variational inference used in the BANNs software. SNP-level results re-338

main consistent with the qualitative assumptions underlying our probabilistic hierarchical model. For339

instance, previous studies have estimated that rs599839 (chromosome 1, bp: 109822166) and rs4970834340

(chromosome 1, bp: 109814880) explain approximately 1% of the phenotypic variation in circulating341

LDL levels [64]. Since these two SNPs are physically closed to each other and sit in a high LD block342

(r2 ≈ 0.63 with P < 1× 10−4 [65]), the spike and slab prior in the BANNs framework will maintain the343

nonzero weight for one and penalize the estimated effect of the other. Indeed, in our analysis, rs4970834344

was reported to be associated with LDL (PIP = 0.947), while the effect size of rs599839 was shrunk345

towards 0 (PIP = 1 × 10−4). Due to the variational approximations utilized by BANNs (Methods and346

Supplementary Notes), if two SNPs are in strong LD, the model will tend to select just one of them [26,46].347

Replication Study using the UK Biobank348

To further validate our results from the Framingham Heart Study, we also independently apply BANNs349

to analyze HDL and LDL cholesterol traits in ten thousand randomly sampled individuals of European350

ancestry from the UK Biobank [30]. Here, we filter the imputed genotypes from the UK Biobank to keep351

only the same 394,174 SNPs that were used in the Framingham Heart Study analyses from the previous352

section. We then apply BANNs to the individual-level data using the same 18,364 SNP-set annotations353

based on the NCBI’s RefSeq database from the UCSC Genome Browser [42]. In Supplementary Fig. 28,354

we show the variant-level Manhattan plots for the independent UK Biobank cohort with significant SNPs355

color coded according to their SNP-set annotation. Once again, we use the median probability model356

threshold to determine statistical significance for all weights in the neural network (Supplementary Tables357

19-20).358

Despite the UK Biobank being a completely independent dataset, we found that BANNs was able to359

replicate many of the findings that we observed in the Framingham Heart Study analysis (see specially360

marked rows in Table 2). For example, in HDL, both the variants rs1800775 (PIP = 1.00) and rs17482753361

(PIP = 1.00) were replicated. BANNs also identified the corresponding intergenic region between the362

genes HERPUD1 and CETP as being enriched (PIP = 1.00). In our analysis of LDL, BANNs replicated363

two out of the four associated SNPs: rs693 within the APOB gene, and rs10402271 which falls within the364

intergenic region between genes BCAM and PVRL2. There were a few scenarios where a given SNP-set365

was replicated but the leading SNP in that region differed between the two studies. For instance, while366

the intergenic region between LIPG and ACAA2 was enriched in both cohorts, the variant rs7240405367

was found to be most associated with HDL in the Framingham Heart Study; a different SNP, rs7244811,368

was identified in the UK Biobank (Fig. 4 and Supplementary Fig. 28). These discrepancies at the variant369

level are likely due to: (i) the sparsity assumption imposed by BANNs, which lead the model to select370

one of two variants in high LD; and (ii) ancestry differences among individuals from the two studies likely371

also generate different LD structures in the same genomic region.372

As a final step, we took the enriched SNP-sets identified by BANNs in the UK Biobank and used373

Enrichr [58, 59] to ensure that we were still obtaining trait relevant results (Supplementary Fig. 29).374
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Indeed, for both HDL and LDL, the most overrepresented categories in dbGaP and the GWAS Catalog375

(i.e., Bonferroni-correct threshold P -value < 1 × 10−5 or Q-value < 0.05) was consistently the trait of376

interest—followed by other functionally related gene sets such as “Metabolic syndrome” and “Cholesterol377

levels”. Overall, demonstrating the ability to statistically replicate results for both fine mapping on the378

variant-level and enrichment analyses on the SNP-set level in two different independent datasets, only379

further enhances our confidence about the potential impact of the BANNs framework in GWA studies.380

Discussion381

Recently, machine learning approaches have been applied in biomedical genomics for prediction-based382

tasks, particularly using GWA datasets with the objective of predicting phenotypes [66–69]. However,383

since the classical idea of variable selection and hypothesis testing is lost within machine learning algo-384

rithms, they have not been used for association mapping where the goal is to identify significant SNPs or385

genes underlying complex traits. Here, we present Biologically Annotated Neural Networks (BANNs): a386

class of feedforward probabilistic models that overcome this central limitation by incorporating partially387

connected architectures that are guided by predefined SNP-set annotations. This creates a fully inter-388

pretable framework where the first layer of the neural network encodes SNP-level effects and the neurons389

within the hidden layer represent the different SNP-set groupings. We frame the BANNs methodology390

as a Bayesian nonlinear mixed model and use sparse prior distributions to perform variable selection on391

the network weights. By implementing a novel and integrative variational inference algorithm, we are392

able to derive posterior inclusion probabilities (PIPs) which allows researchers to carry out SNP-level393

fine-mapping and SNP-set enrichment analyses, simultaneously. While we focus on genomic motivations394

in this study, the concept of partially connected neural networks may extend to any scientific application395

where annotations can help guide the groupings of variables.396

Through extensive simulation studies, we demonstrate the utility of the BANNs framework on individual-397

level data (Fig. 1) and GWA summary statistics (Supplementary Fig. 1). Here, we showed that both398

implementations consistently outperform commonly used SNP-level fine-mapping methods and state-of-399

the-art SNP-set enrichment methods in a wide range of genetic architectures (Figs. 2-3, Supplementary400

Figs. 2-23, and Supplementary Tables 1-8). This advantage was most clear when the broad-sense her-401

itability of the complex traits included pairwise genetic interactions. In two real GWA datasets, we402

demonstrated the ability of BANNs to prioritize trait relevant SNPs and SNP-sets that have been identi-403

fied by previous publications and functional validation studies (Fig. 4, Supplementary Figs. 26-27, Tables404

1-2, and Supplementary Tables 11-18). Lastly, using a third real dataset, we then showed the ability of405

BANNs to statistically replicate these findings in an independent cohort (Supplementary Figs. 28-29 and406

Supplementary Tables 19-20).407

The current implementation of the BANNs framework offers many directions for future development408

and applications. Perhaps the most obvious limitation is that ill-annotated SNP-sets can bias the in-409

terpretation of results and lead to misplaced scientific conclusions (i.e., might cause us to highlight the410

“wrong” gene [70, 71]). This is a common issue in most enrichment methods [28]; however, similar to411

other hierarchical methods like RSS [26], BANNs is likely to rank SNP-set enrichments that are driven by412

just a single SNP as less reliable than enrichments driven by multiple SNPs with nonzero effects. Another413

current limitation for the BANNs model comes from the fact that it uses variational inference to estimate414

its parameters. While the current implementation is scalable for large datasets (Supplementary Tables415

9 and 10), we showed that the variational algorithm can lead to underestimated approximations of the416

PVE (Supplementary Figs. 24 and 25) and will occasionally miss causal SNPs if they are in high LD with417

other non-causal SNPs in the dataset. For example, in the application to the Framingham Heart Study,418

BANNs estimates the PVE for HDL and LDL to be 0.11 and 0.04, respectively. Similarly, in the UK419

Biobank replication study, BANNs estimates the PVE for HDL and LDL to be 0.12 and 0.06, respectively.420

In general, these values are lower than what is typically reported in the literature for these complex phe-421
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notypes (PVE ≥ 27% for HDL and PVE ≥ 21% for LDL, respectively) [72]. Exploring alternative ways422

to carry out approximate Bayesian inference is something to consider for future work [73].423

There are several other potential extensions for the BANNs framework. First, in the current study,424

we only consider a single hidden layer based on the annotations of gene boundaries and intergenic region425

between genes. One natural direction for future work would be to a take more of a deep learning426

approach by including additional hidden layers to the neural network where genes are grouped based427

on signaling pathways or other functional ontologies. This would involve integrating information from428

curated databases such as MSigDB [74, 75]. Second, the current BANNs model only takes in genetic429

information and ignores other sources of variation (e.g., population structure). In the future, we would430

like to expand the framework to also take in covariates as fixed effects in the model. Third, we have431

only focused on analyzing one phenotype at a time in this study. However, many previous studies432

have extensively shown that modeling multiple phenotypes can often dramatically increase power [76].433

Therefore, it would be interesting to extend the BANNs framework to take advantage of phenotype434

correlations to identify pleiotropic epistatic effects. Modeling strategies based on the multivariate linear435

mixed model (mvLMM) [77] and matrix variate Gaussian process (mvGP) [78] could be helpful here.436

As a final avenue for future work, we only focused on applying BANNs to quantitative traits. For437

studies interested in extending this approach to binary traits (i.e., case-control studies), one might be438

tempted to simply place a sigmoid or logistic link function on the penultimate layer of the neural network.439

Indeed, this would allow the BANNs framework to be expressed as a (nonlinear) logistic mixed model440

which is an approach that has been well-established in the statistics literature [79–81]. Unfortunately, it441

is not straightforward to define broad-sense heritability under the traditional logistic mixed model and442

controlling for additional confounders that can occur within case-control studies (e.g., ascertainment)443

can be difficult. As one alternative, we could implement a penalized quasi-likelihood approach [82] which444

has been shown to enable effective heritability estimation and differential analyses using the generalized445

linear mixed model framework. As a second alternative, the liability threshold mixed model avoids issues446

by assuming that binary traits can be modeled via continuous latent liability scores [83–85]. Therefore,447

a potentially effective way to extend BANNs to case-control studies would be to develop a two-step448

algorithmic procedure where: in the first step, we find the posterior mean of the liability scores be449

using existing software packages and then, in the second step, treat those empirical liability estimates450

as observed traits in the neural network. Regardless of the modeling strategy, new algorithms are likely451

needed to maximize the appropriateness of BANNs for non-continuous phenotypes.452

URLs453

Biologically annotated neural networks (BANNs) software, https://github.com/lcrawlab/BANNs; UK454

Biobank, https://www.ukbiobank.ac.uk; Database of Genotypes and Phenotypes (dbGaP), https:455

//www.ncbi.nlm.nih.gov/gap; Framingham Heart Study (FHS), https://www.ncbi.nlm.nih.gov/456

gap; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/; UCSC Genome Browser, https:457

//genome.ucsc.edu/index.html; Enrichr software, http://amp.pharm.mssm.edu/Enrichr/; Wellcome458

Trust Centre for Human Genetics, http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml; Mouse459

Genome Informatics database, http://www.informatics.jax.org; CAusal Variants Identification in460

Associated Regions (CAVIAR) software, http://genetics.cs.ucla.edu/caviar/; Efficient variable se-461

lection using summary data from GWA studies (FINEMAP) software, http://www.christianbenner.462

com; Generalized Berk-Jones (GBJ) test for set-based inference software, https://cran.r-project.463

org/web/packages/GBJ/; Gene Set Enrichment Analysis (GSEA) software, https://www.nr.no/en/464

projects/software-genomics; SNP-set (Sequence) Kernel Association Test (SKAT) software, https:465

//www.hsph.harvard.edu/skat; Sum of Single Effects (SuSiE) variable selection software, https://466

github.com/stephenslab/susieR; Multi-marker Analysis of GenoMic Annotation (MAGMA) software,467

https://ctg.cncr.nl/software/magma; Precise, Efficient Gene Association Score Using SNPs (PE-468

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.02.184465doi: bioRxiv preprint 

https://github.com/lcrawlab/BANNs
https://www.ukbiobank.ac.uk
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ebi.ac.uk/gwas/
https://genome.ucsc.edu/index.html
https://genome.ucsc.edu/index.html
https://genome.ucsc.edu/index.html
http://amp.pharm.mssm.edu/Enrichr/
http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml
http://www.informatics.jax.org
http://genetics.cs.ucla.edu/caviar/
http://www.christianbenner.com
http://www.christianbenner.com
http://www.christianbenner.com
https://cran.r-project.org/web/packages/GBJ/
https://cran.r-project.org/web/packages/GBJ/
https://cran.r-project.org/web/packages/GBJ/
https://www.nr.no/en/projects/software-genomics
https://www.nr.no/en/projects/software-genomics
https://www.nr.no/en/projects/software-genomics
https://www.hsph.harvard.edu/skat
https://www.hsph.harvard.edu/skat
https://www.hsph.harvard.edu/skat
https://github.com/stephenslab/susieR
https://github.com/stephenslab/susieR
https://github.com/stephenslab/susieR
https://ctg.cncr.nl/software/magma
https://doi.org/10.1101/2020.07.02.184465
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

GASUS) software, https://github.com/ramachandran-lab/PEGASUS; and Regression with Summary469

Statistics (RSS) enrichment software, https://github.com/stephenslab/rss.470
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Methods496

Annotations497

We used the NCBI’s Reference Sequence (RefSeq) database in the UCSC Genome Browser [42] to annotate498

SNPs with appropriate SNP-sets. In the main text, we consider a SNP being “inside” a gene using the499

UCSC gene boundary definitions directly. Genes with only one SNP within their boundary were excluded500

from either analysis. Unannotated SNPs located within the same genomic region are labeled as being501

within the “intergenic region” between two genes. Altogether, with annotated genes and labeled intergenic502

regions, a total of 28,644 SNP-sets were analyzed.503

Biologically Annotated Neural Networks504

Consider a genome-wide association (GWA) study with N individuals. We have an N -dimensional vector505

of quantitative traits y, an N×J matrix of genotypes X, with J denoting the number of single nucleotide506

polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference allele at each locus, and a list of G-507

predefined SNP-sets {S1, . . . ,SG} (Fig. 1a). Let each SNP-set g represent a known collection of annotated508

SNPs j ∈ Sg with cardinality |Sg|. For example, Sg may include SNPs within the regulatory region of a509

gene. The BANNs framework assumes a partially connected Bayesian neural network architecture based510

on SNP-set annotations to learn the phenotype of interest for each observation in the data (Fig. 1b).511

Formally, we specify this network as a nonlinear regression model (Fig. 1c)512

y =
G∑
g=1

h(Xgθg + 1b(1)g )wg + 1b(2), (1)513

where Xg = [x1, . . . ,x|Sg|] is the subset of SNPs annotated for SNP-set g; θg = (θ1, . . . , θ|Sg|) are the514

corresponding inner layer weights; h(•) denotes the nonlinear activations defined for neurons in the515

hidden layer; w = (w1, . . . , wG) are the weights for the G-predefined SNP-sets in the hidden layer;516

b(1) = (b
(1)
1 , . . . , b

(1)
G ) and b(2) are deterministic biases that are produced during the network training517

phase in the input and hidden layers, respectively; and 1 is an N -dimensional vector of ones. For518

convenience, we assume that the genotype matrix (column-wise) and trait of interest have been mean-519

centered and standardized. In the main text, h(•) is defined as a Leaky rectified linear unit (Leaky ReLU)520

activation function [86], where h(x) = x if x > 0 and 0.01x otherwise. Note that Eq. (1) can be seen as521

a nonlinear take on classic integrative and structural regression models [22, 26, 87–90] frequently used in522

GWA analyses.523

Part of the key methodological innovation in the BANNs framework is to treat the weights of the input524

(θj) and hidden layers (wg) as random variables. This enables us to perform interpretable association525

mapping on both SNPs and SNP-sets, simultaneously. For the weights on the input layer, our goal is to526

approximate a wide range of possible SNP-level effect size distributions underlying complex traits. To527

this end, we assume that SNP-level effects follow a K-mixture of normal distributions [10,43–45]528

θj ∼
K∑
k=1

πθkN (0, σ2
θk), log(πθk) ∼ U(−log(J), log(1)), σ2

θk ∼ Inv-Gamma(uθ, vθ) (2)529

where πθ = (πθ1, . . . , πθK) represents the marginal (unconditional) probability that a randomly selected530

SNP belongs to the k-th mixture component (with
∑
k πθk = 1). The prior in Eq. (2) models distinct531

types of nonzero SNP-level effects through the K different variance components σ2
θ = (σ2

θ1, . . . , σ
2
θK).532

We allow sequential fractions of SNPs (πθ1, . . . , πθK) to correspond to distinctly smaller effects (σ2
θ1 >533

· · · > σ2
θK = 0) [44]. Intuitively, specifying a larger K allows the neural network to learn general SNP534

effect size distributions spanning over a diverse class of trait architectures. For results in the main text,535
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we fix K = 3 for computational reasons. This corresponds to the hypothesis that SNPs can have large,536

moderate, and small effects on phenotypic variation [28]. We place a uniform prior on log πθk to coincide537

with the observation that the number of SNPs in each of these categories can vary greatly depending538

on how heritability is distributed across the genome [16, 53]. Similarly, because we do not know the539

magnitude for SNP effects in each category, we place relatively diffuse inverse-gamma priors on each of540

the variance components to allow the posterior of θ to be primarily driven by information contained541

within the genotype data at hand (see Supplementary Notes).542

For inference on the hidden layer, we assume that enriched SNP-sets contain at least one SNP with a543

nonzero effect. This criterion is formulated by placing a spike and slab prior on the hidden layer weights544

wg ∼ πwN (0, σ2
w) + (1− πw)δ0, log(πw) ∼ U(−log(G), log(1)), σ2

w ∼ Inv-Gamma(uw, vw) (3)545

where, in addition to previous notation, δ0 is a point mass at zero, and πw denotes the total proportion546

of annotated SNP-sets that are enriched for the trait of interest. Given the structural form of the joint547

likelihood in Eq. (1), the magnitude of association for a SNP-set will be directly influenced by the effect548

size distribution of the SNPs it contains.549

We use a scalable variational Bayesian algorithm to estimate all model parameters (Supplemental550

Note). As the BANNs network is trained, the posterior mean for the weights of non-associated SNP and551

SNP-sets are set to zero, leaving only a sparse subset of trait relevant neurons to predict the phenotype.552

We use posterior inclusion probabilities (PIPs) as a general summaries of evidence for SNPs and SNP-sets553

being associated with phenotypic variation. Here, we respectively define554

γθj = Pr[θj 6= 0 |y,X], γwg = Pr[wg 6= 0 |y,X,θg] (4)555

where, again for the latter, the enrichment of SNP-sets is conditioned on the association of individual556

SNPs. The goal of the sparse shrinkage priors in Eqs. (2)-(3) is similar to that of regularization via557

“dropout” in the machine and deep learning literature where the connections between units in a neural558

network are dropped according to a penalized loss function [91]. The Bayesian formulation in the BANNs559

framework makes network sparsity more targeted for GWA applications through contextually motivated560

prior distributions. Moreover, posterior inference on γθ = (γθ1, . . . , γθJ) and γw = (γw1, . . . , γwG) detail561

the degree to which nonzero weights occur.562

Posterior Computation with Variational Inference563

We combine the likelihood in Eq. (1) and the prior distributions in Eqs. (2)-(4) to perform Bayesian564

inference. With the size of high-throughput GWA datasets, it is less feasible to implement traditional565

Markov Chain Monte Carlo (MCMC) algorithms due to the large dimensionality of the parameter space.566

For scalable model fitting we modify a previously established variational expectation-maximization (EM)567

algorithm for integrative network parameter estimation [46]. The overall goal of variational inference is568

to approximate the true posterior distribution for network parameters with a “best match” distribution569

from an approximating family [51]. The EM algorithm we use aims to minimize the Kullback-Leibler570

divergence between the exact and approximate posterior distributions.571

To compute the variational approximations, we make the mean-field assumption that the true pos-572

terior can be “fully-factorized” [92]. The algorithm then follows three general steps. First, we assign573

exchangeable uniform hyper-priors over a grid of values on the log-scale for πθ and πw [46]. Next, we it-574

erate through each combination of hyper-parameter values and compute variational updates for the other575

parameters using co-ordinate ascent. Lastly, we empirically compute (approximate) posterior values for576

the network connections (θ,w) and their corresponding inclusion probabilities (γθ,γw) by marginalizing577

over the different hyper-parameter combinations. This final step can be viewed as an analogy to Bayesian578

model averaging where marginal distributions are estimated via a weighted average of conditional dis-579

tributions multiplied by importance sampling weights [93]. Throughout the model fitting procedure, we580
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assess two different lower bounds for the input and hidden layers to check convergence of the algorithm.581

The first lower bound is maximized with respect to the SNP-level effects on the observed trait of interest;582

while, the second lower bound on the SNP-set level enrichments. The software code iterates between the583

“inner” lower bound and the “outer” lower bound each step of the algorithm until convergence. Detailed584

steps in the variational EM algorithm and explicit co-ordinate ascent updates for network parameters are585

given in Supplementary Notes.586

Parameters in the variational EM algorithm are initialized by taking a random draws from their587

assumed prior distributions. Iterations in the algorithm are terminated when either one of two stopping588

criteria are met: (i) the difference between the lower bound of two consecutive updates are within some589

small range (specified by argument ε), or (ii) a maximum number of iterations is reached. For the590

simulations and real data analyses ran in this paper, we set ε = 1× 10−4 for the first criterion and used591

a maximum of 10,000 iterations for the second.592

Extensions to Summary Statistics593

The BANNs framework also models summary statistics in the event that individual-level genotype and594

phenotype data are not accessible. Here, the software takes alternative inputs: GWA marginal effect size595

estimates θ̂, and an empirical linkage disequilibrium (LD) matrix R. In the main text, we refer to this596

version of the method as the BANN-SS model. We assume that GWA summary statistics are derived597

from the following generative linear model for complex traits598

y = Xθ + e, e ∼ N (0, τ2I) (5)599

where e is a normally distributed error term with mean zero and scaled variance τ2, and I is an N ×N600

identity matrix. For every j-th SNP, the ordinary least squares (OLS) estimates are based on the601

generative model θ̂j = (xᵀ
jxj)

−1xᵀ
jy, where xj is the j-th column of the genotype matrix X and θ̂j is602

the j-th entry of the vector θ̂. We assume the LD matrix R is empirically estimated from external603

data (e.g., directly from GWA study data, or using an LD map from a population with similar genomic604

ancestry to that of the samples analyzed in the GWA study). The BANN-SS model treats the observed605

OLS estimates and LD matrix as “proxies” for the unobserved phenotype and genotypes, respectively.606

Specifically, for large sample size N , we consider the asymptotic relationship between the expectation of607

the observed GWA effect size estimates θ̂ and the true coefficient values θ is [28, 38,44,94]608

E[θ̂j ] =
J∑

j′=1

r(xj ,xj′)θj′ (6)609

where r(xj ,xj′) denotes the correlation coefficient between SNPs xj and xj′ . The above resembles a high-610

dimensional regression model with the OLS effect sizes θ̂ as the response variables, the LD matrix R as the611

design matrix, and the true coefficients θ being the SNP-level effects that generated the phenotype. With612

this relationship in mind, the BANN-SS framework implements the following sparse nonlinear regression613

for inferring multi-scale genomic effects from summary statistics (Supplementary Fig. 1)614

θ̂ =
G∑
g=1

h(Rgθg + 1b(1)g )wg + 1b(2), (7)615

where, in addition to previous notation, Rg is the subset of the LD matrix involving all SNPs annotated616

for the g-th SNP-set. Using the rewritten joint likelihood in Eq. (7), posterior Bayesian inference for617

the parameters in the BANN-SS model directly mirrors the procedure used when we have access to618

individual-level data (i.e., as described previously in Eqs. (2)-(4); Supplementary Note). Again, we use619

PIPs γθ and γw to summarize whether the true SNP-level effects and aggregated effects on the SNP-set620

level are statistically associated with the trait of interest.621
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Simulation Studies622

We used a simulation scheme to generate quantitative traits under multiple genetic architectures using623

real genotype data on chromosome 1 from individuals of European ancestry in the UK Biobank. First,624

we randomly select a subset of associated SNP-sets (i.e., collections of genomic regions) and assume that625

complex traits are generated via the linear mixed model626

y = Zµ+
∑
c∈C

xcθc + Wϕ+ ε, ε ∼ N (0, τ2I), (8)627

where y is an N -dimensional vector containing all the phenotypes; C represents the set of causal SNPs628

contained within the associated SNP-sets; xc is the genotype for the c-th causal SNP encoded as 0,629

1, or 2 copies of a reference allele; θc is the additive effect size for the c-th SNP; W is an N × E630

matrix which holds all pairwise interactions between the causal SNPs with corresponding effects ϕ;631

Z is an N × M matrix of covariates representing additional population structure (e.g., the top ten632

genotype principal components from the genotype matrix) with corresponding fixed effects µ; and ε is633

an N -dimensional vector of environmental noise. The phenotypic variance is assumed V[y] = 1. The634

additive and interaction effect sizes of SNPs in associated SNP-sets are randomly drawn from standard635

normal distributions and then rescaled so they explain a fixed proportion of the broad-sense heritability636

V[
∑

xcθc] + V[Wϕ] = H2. Together with the centered and scaled genetic random effects, we get a total637

phenotypic variance explained for each trait PVE = H2+V[Zµ]. Lastly the environment noise is rescaled638

such that V[ε] = 1 − PVE. The full genotype matrix and phenotypic vector are given to the BANNs639

model and all other competing methods that require individual-level data. For the BANN-SS model and640

other competing methods that take GWA summary statistics, we fit a single-SNP univariate linear model641

via ordinary least squares (OLS) to obtain: coefficient estimates θ̂j = (xᵀ
jxj)

−1xᵀ
jy, standard errors642

ŝ2j = J−1(y−xj θ̂j)
ᵀ(y−xj θ̂j)/x

ᵀ
jxj , and P -values for all SNPs in the data. We also obtain an empirical643

estimate of the linkage disequilibrium (LD) matrix for these methods R, which we compute directly from644

the full genotype matrix. Given different model parameters, we simulate data mirroring a wide range of645

genetic architectures (Supplementary Notes).646

Data and Software Availability647

Source code (with versions in both R and Python 3) and tutorials for implementing biologically annotated648

neural networks (BANNs) is publicly available online at https://github.com/lcrawlab/BANNs. All649

software for competing methods were fit using the default settings, unless otherwise stated in the main650

text. Links to competing methods, WTCHG mice data, and other relevant sources are also provided (See651

URLs). Data from the UK Biobank Resource [30] (https://www.ukbiobank.ac.uk) was made available652

under Application Number 22419. The FHS genotype and phenotype data is available in dbGaP [41]653

(https://www.ncbi.nlm.nih.gov/gap) with accession number phs000007.654
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Figures and Tables655
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S2 1 3685973676581 x4, x5, x6

S# 6 35135529200 x101, x102, x103

S#+1 6 411443391751 x104, x105, x106

SG-1 22 5123793451195513 xJ-5, xJ-4, xJ-3

SG 22 51222087 xJ-2, xJ-1, xJ51205919
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Figure 1. Biologically annotated neural networks (BANNs) allow for efficient multi-scale genotype-phenotype analyses
in a unified probabilistic framework by leveraging the hierarchical nature of enrichment studies to define network
architecture. (a) The BANNs framework requires an N × J matrix of individual-level genotypes X = [x1, . . . ,xJ ], an N -dimensional
phenotypic vector y, and a list of G-predefined SNP-sets {S1, . . . ,SG}. In this work, SNP-sets are defined as genes and intergenic regions
(between genes) given by the NCBI’s Reference Sequence (RefSeq) database in the UCSC Genome Browser [42]. (b) A partially connected
Bayesian neural network is constructed based on the annotated SNP groups. In the first hidden layer, only SNPs within the boundary
of a gene are connected to the same node. Similarly, SNPs within the same intergenic region between genes are connected to the same
node. Completing this specification for all SNPs gives the hidden layer the natural interpretation of being the “SNP-set” layer. (c) The
hierarchical nature of the network is represented as nonlinear mixed model. The corresponding weights in both the SNP (θ) and SNP-set
(w) layers are treated as random variables with biologically motivated sparse prior distributions. Posterior inclusion probabilities (PIPs)
γθ and γw summarize associations at the SNP and SNP-set level, respectively. The BANNs framework uses variational inference for
efficient network training and incorporates nonlinear processing between network layers for accurate estimation of phenotypic variance
explained (PVE).
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Figure 2. Receiver operating characteristic (ROC) curves comparing the performance of
the BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations. Here, quantitative traits are simulated to have broad-sense heritability
of H2 = 0.6 with only contributions from additive effects set (i.e., ρ = 1). We show power versus
false positive rate for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are
enriched for the trait; and (c, d) polygenic where 10% of SNP-sets are enriched. We set the number of
causal SNPs with nonzero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. To derive results, the full genotype matrix and phenotypic vector are given to the BANNs
model and all competing methods that require individual-level data. For the BANN-SS model and other
competing methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes
and P -values (estimated using ordinary least squares). (a, c) Competing SNP-level mapping approaches
include: CAVIAR [38], SuSiE [39], and FINEMAP [37]. The software for SuSiE requires an input ` which
fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (` = 3000) and when this input number is low (` = 10). (b, d) Competing SNP-set mapping
approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [36], and MAGMA [23]. Note
that the upper limit of the x-axis has been truncated at 0.1. All results are based on 100 replicates (see
Supplementary Note, Section 8).
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(a) SNP-Level Methods (Sparse Traits) (b) SNP-Set Methods (Sparse Traits)

(c) SNP-Level Methods (Polygenic Traits) (d) SNP-Set Methods (Polygenic Traits)

Figure 3. Scatter plots comparing how the integrative neural network training procedure
enables the ability to identify associated SNPs and enriched SNP-sets in simulations. Quan-
titative traits are simulated to have broad-sense heritability of H2 = 0.6 with only contributions from
additive effects set (i.e., ρ = 1). We consider two different trait architectures: (a, b) sparse where only
1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10% of SNP-sets are enriched. We
set the number of causal SNPs with nonzero effects to be 0.125% and 3% of all SNPs located within the
enriched SNP-sets, respectively. Results are shown comparing the posterior inclusion probabilities (PIPs)
derived by the BANNs model on the x-axis and (a, c) SuSiE [39] and (b, d) RSS [26] on the y-axis,
respectively. Here, SuSie is fit while assuming a high maximum number of causal SNPs (` = 3000). The
blue horizontal and vertical dashed lines are marked at the “median probability criterion” (i.e., PIPs for
SNPs and SNP-sets greater than 0.5) [47]. True positive causal variants used to generate the synthetic
phenotypes are colored in red, while non-causal variants are given in grey. SNPs and SNP-sets in the
top right quadrant are selected by both approaches; while, elements in the bottom right and top left
quadrants are uniquely identified by BANNs and SuSie/RSS, respectively. Each plot combines results
from 100 simulated replicates (see Supplementary Notes).
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Trait SNP-Set Chr PIP (γθ) Rank Top SNP PIP (γw) Biological Relevance to Trait Ref(s)

BMI

Dmd X 0.900 1 rs3090667 0.600 Dystrophin loss has integrative effects on metabolic function [56]

Mir466q-Slc2a2 3 0.816 3 rs6269713 0.477 Encodes GLUT2 and shown to vary with BMI in humans [95]

Gm22219 -Mc4r 18 0.740 5 rs3696955 0.039 MC4R variants protect against obesity in humans [57]

CD8+

Gm46177 -Gm30088 1 0.968 1 mhcCD8a3 1.000
Intergenic region containing lupus related QTL that are linked to

CD8+ T cell differentiation
[96–98]

Btbd9 17 0.866 7 CEL-17 31069801 1.000
Contains SNPs associated with restless leg syndrome and is
positioned within a QTL associated with iron concentration

[99,100]

hlb156 17 0.720 8 CEL-17 31069801 1.000 Heart, lung, and blood functionally related gene [54]

HDL

Pphc2 4 0.976 3 rs3724711 1.000 Involved in cholesterol metabolic processes [101]

Ctnna2 6 0.886 8 rs3710419 1.000
Shown to be associated with the abnormality of cholesterol

metabolism in different GWA studies
[102]

hlb156 17 0.589 8 CEL-17 31069801 1.000 Heart, lung, and blood functionally related gene [54]

LDL

Btbd9 17 0.983 1 CEL-17 31069801 1.000
Mutations in this gene have been linked to Bardet-Biedl

syndrome, for which truncal obesity is a cardinal symptom
[103,104]

Pphc2 4 0.941 3 rs3724711 1.000 Involved in cholesterol metabolic processes [101]

Syt14 1 0.852 7 rs3654706 0.001
Also known as the RIKEN gene and involved in processes dealing

with lipid binding
[105–108]

MCH

Btbd9 17 0.905 2 CEL-17 31069801 1.000
Contains SNPs associated with restless leg syndrome and is
positioned within a QTL associated with iron concentration

[99,100]

Picalm 7 0.648 8 rs3704554 0.070
Mutations in this gene are responsible for the hematopoietic and

iron metabolism abnormalities in mice
[109]

Ebf1 11 0.500 10 rs3693846 0.009
Knockout experiments with this gene have been linked to B-cell

deficiency and other hematopoietic system changes in mice
[110]

Weight

Wdpcp 11 0.969 1 rs13481023 1.000
Mutations in this gene have been linked to Bardet-Biedl

syndrome, for which truncal obesity is a cardinal symptom
[103,104]

Chrm2 6 0.882 3 rs3676478 0.012
The genotypic variance of this gene has been shown to be

predictive of longitudinal BMI and obesity status
[111,112]

Csmd1 8 0.759 5 rs3709567 0.001
Knockout experiments with this gene have been linked to weight

gain in mice
[113]

Table 1. Notable enriched SNP-sets after applying the BANNs framework to six quantitative traits in heterogenous
stock of mice from the Wellcome Trust Centre for Human Genetics. [40]. The traits include: body mass index (BMI), percentage
of CD8+ cells, high-density lipoprotein (HDL), low-density lipoprotein (LDL), mean corpuscular hemoglobin (MCH), and body weight.
Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome Informatics database (see URLs). Unannotated
SNPs located within the same genomic region were labeled as being within the “intergenic region” between two genes. These regions are
labeled as Gene1 -Gene2 in the table. Posterior inclusion probabilities (PIP) for the input and hidden layer weights are derived by fitting
the BANNs model on individual-level data. A SNP-set is considered enriched if it has a PIP γw ≥ 0.5 (i.e., the “median probability model”
threshold [47]). We also report the “top” associated SNP within each region and its corresponding PIP γθ. The reference column details
literature sources that have previously suggested some level of association between the each genomic region and the traits of interest. See
Supplementary Tables 11-16 for the complete list of SNP and SNP-set level results. *: Multiple SNP-sets were tied for this ranking.
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(a) High-Density Lipoprotein (HDL)

(b) Low-Density Lipoprotein (LDL)

Figure 4. Manhattan plot of variant-level fine mapping results for high-density and low-
density lipoprotein (HDL and LDL, respectively) traits in the Framingham Heart Study [41].
Posterior inclusion probabilities (PIP) for the neural network weights are derived from the BANNs model
fit on individual-level data and are plotted for each SNP against their genomic positions. Chromosomes
are shown in alternating colors for clarity. The black dashed line is marked at 0.5 and represents the
“median probability model” threshold [47]. SNPs with PIPs above that threshold are color coded based
on their SNP-set annotation. Here, SNP-set annotations are based on gene boundaries defined by the
NCBI’s RefSeq database in the UCSC Genome Browser [42]. Unannotated SNPs located within the same
genomic region were labeled as being within the “intergenic region” between two genes. These regions
are labeled as Gene1 -Gene2 in the legend. Gene set enrichment analyses for these SNP-sets can be
found in Supplementary Figure 27. Results for a replication study using ten thousand randomly sampled
individuals of European ancestry from the UK Biobank [30] can be found in Supplementary Figures 28
and 29.
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Trait SNP-Set Chr PIP (γw) Rank Top SNP PIP (γθ) Biological Relevance to Trait Ref(s)

HDL

HERPUD1 -CETP♣ 16 0.999 1* rs7240405♣ 0.923
Previously found to be associated with HDL in multiple

multiethnic GWA studies
[60–63]

ST18 -FAM150A 8 0.999 1* rs6990075 1.000
Suppression of mouse ortholog has been shown facilitate high

glucose-induced cell death
[114]

TCEA3 1 0.989 2 rs1767141 0.868
Found to be commonly associated with total cholesterol

measurement across multiple cohorts
[115]

LDL

CELSR2 1 0.989 1 rs4970834 0.948
Member of the cadherin superfamily and commonly found to be

associated with LDL across multiple multiethnic cohorts
[116–118]

BCAM -PVRL2♣ 19 0.987 2 rs10402271♣ 0.998
BCAM encodes a Lutheran blood group glycoprotein, while

PVRL2 is a cholesterol-responsive gene. Both have been linked to
LDL response

[119–121]

APOB♣ 2 0.976 3 rs693♣ 0.999
This gene produces the main apolipoprotein of chylomicrons and

low density lipoproteins (LDL), and is the ligand for the LDL
receptor

[119,122,123]

Table 2. Top three enriched SNP-sets after applying the BANNs framework to high-density and low-density lipoprotein
(HDL and LDL, respectively) traits in the Framingham Heart Study [41]. Here, SNP-set annotations are based on gene
boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [42]. Unannotated SNPs located within the same
genomic region were labeled as being within the “intergenic region” between two genes. These regions are labeled as Gene1 -Gene2 in
the table. Posterior inclusion probabilities (PIP) for the input and hidden layer weights are derived by fitting the BANNs model on
individual-level data. A SNP-set is considered enriched if it has a PIP γw ≥ 0.5 (i.e., the “median probability model” threshold [47]). We
also report the “top” associated SNP within each region and its corresponding PIP (γθ). The reference column details literature sources
that have previously suggested some level of association between the each genomic region and the traits of interest. See Supplementary
Tables 17 and 18 for the complete list of SNP and SNP-set level results. *: Multiple SNP-sets were tied for this ranking. ♣: SNPs
and SNP-sets replicated in an independent analysis of ten thousand randomly sampled individuals of European ancestry from the UK
Biobank [30].
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