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Abstract  

 

Background: Despite the marked inter-individual variability in the clinical presentation of schizophrenia, it remains 

unclear the extent to which individual dimensions of psychopathology may be reflected in variability across the 

collective set of functional brain connections. Here, we address this question using network-based predictive 

modeling of individual psychopathology along four data-driven symptom dimensions. Follow-up analyses assess 

the molecular underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution 

patterns. 

 

Methods: We investigated resting-state fMRI data from 147 schizophrenia patients recruited at seven sites. 

Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using 

relevance vector machine based on functional connectivity within 17 meta-analytic task-networks following a 

repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent 

sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps 

of nine receptors/transporters from prior molecular imaging in healthy populations. 

 

Results: Ten-fold and leave-one-site-out analyses revealed five predictive network-symptom associations. 

Connectivity within theory-of-mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, 

and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory-of-mind and 

socio-affective-default networks. Importantly, these predictions generalized to the independent sample. 

Intriguingly, these two networks were positively associated with D1 dopamine receptor and serotonin reuptake 

transporter densities as well as dopamine-synthesis-capacity. 

 

Conclusions: We revealed a robust association between intrinsic functional connectivity within networks for 

socio-affective processes and the cognitive dimension of psychopathology. By investigating the molecular 

architecture, the present work links dopaminergic and serotonergic systems with the functional topography of 

brain networks underlying cognitive symptoms in schizophrenia.  
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Introduction 

Precise conceptualization of schizophrenia symptoms in terms of their underlying dimensional structure and 

associated neurobiology remains a challenge (1), as prior work focused on to subscales (positive, negative, and 

general symptoms) of the Positive and Negative Syndrome Scale (PANSS) (2) has not provided a clear 

understanding of underlying brain circuitry (3-5). We recently introduced a novel four-dimensional 

conceptualization of schizophrenia symptomatology which is stable and generalizable across populations and 

settings (5). As each symptom dimension captures a different clinical facet of schizophrenia (6-8), we would 

expect these to show differential relationships with functional brain networks. Identification of robust 

symptom-brain relationships (e.g., connectivity patterns and molecular substrates) is important for the 

development of reliable biomarkers for targeted treatments of different symptom dimensions. Previous studies 

proposed that abnormal brain connectivity might be a precipitating factor for schizophrenia symptoms (9,10), 

questioning region-based analyses but resonating with the dysconnection hypothesis (9-12). 

Although resting-state functional MRI (fMRI) reveals broad patterns of impaired brain function that may 

underlie the pathophysiology of schizophrenia (12-15), the link between targeted symptom dimensions and 

associated connectivity patterns within distinct functional systems remain largely unknown. Pioneering work has 

explored symptom-brain associations based on regional activity and intrinsic connectivity networks (ICNs) using 

univariate group-level correlative approaches, but the results have been largely inconsistent (16-19). The clinical 

complexity of schizophrenia together with the differences in patient populations, study settings, scanners and 

scanning protocols across sites may have led to divergent results, posing a major challenge for establishing 

generalizable network-symptom relationships. Application of multivariable machine-learning and cross-validation 

strategies to multi-site data and validation of the resulting models on independent datasets is thus needed to 

derive robust network-symptom associations (20). 
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 It needs to be cautioned, though, that ICNs cannot readily be interpreted relative to cognitive and mental 

processes due to their unconstrained and task-independent nature (21). In contrast, meta-analytic functional 

networks are derived from task-activation data, i.e., the identified networks consist of brain areas robustly 

engaged in specific tasks and therefore mental processes (22,23). Meta-analytic networks thus provide a 

promising avenue to characterize association between functionally meaningful systems and specific symptom 

dimensions. Considering these advantages, we here combined multivariable machine-learning and 

meta-analytically defined networks to explore predictive relationships between network-specific connectivity 

patterns and individual expressions of different dimensions of psychopathology. 

Functional brain systems are known to relate with molecular architecture (24-27). In order to facilitate a link 

to treatment, we also explored whether robustly symptom-related functional networks would in turn relate to the 

spatial topography of underlying molecular features. Specifically, connectivity-neurotransmitter coupling has been 

proposed and observed in healthy populations (28,29). Similarly, network dysconnectivity in schizophrenia has 

been associated with altered neurotransmission (30,31) with several pathways involving dopaminergic, 

serotonergic, gamma-aminobutyric acid(GABA)-ergic, and glutamatergic systems reported to be compromised 

(32-35). Here, it is interesting to note that current anti-psychotic drugs primarily targeting the dopamine system are 

primarily effective against positive but less so for negative or cognitive symptoms (36,37). Understanding the 

molecular substrate of specific dimensions of psychopathology may thus provide leads on new treatment 

strategies. 

We therefore assessed a broad range of meta-analytic networks relating to social, affective, executive, 

memory, language, and sensory-motor functions with respect to their predictive power for individual positive, 

negative, affective and cognitive symptom-dimensions in schizophrenia. Machine-learning approaches with a 

stringent validation sequence of 10-fold cross-validation, leave-one-site-out analyses, and generalization to an 
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independent sample was implemented to identify robust association patterns between the probed networks and 

the four dimensions of psychopathology (6). Subsequently, whole-brain density maps of nine 

receptors/transporters from prior in vivo molecular imaging studies were employed to investigate the molecular 

architecture spatially coupled to the identified predictive networks. 
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Materials and Methods  

 

Sample  

A total of 147 schizophrenia patients from seven centers located in Europe (Aachen [Aachen-1 and Aachen-2], 

Göttingen, Groningen, Lille, and Utrecht) and the USA (COBRE, Albuquerque, NM) represented the main sample 

(Table S1; Supplement). These sites differed significantly in illness duration (p<0.001)(Table S1). An independent 

sample with 117 schizophrenia patients (Table S2; Supplement) retrieved from the Bipolar-Schizophrenia Network 

on Intermediate Phenotypes (B-SNIP) database (38) was used for independent validation of the predictive models. 

For both samples, diagnosis of schizophrenia was established based on the DSM-IV, the DSM-IV-TR, or the 

ICD-10 criteria (see Supplement and [6]). These international datasets cover a broad range of clinical states, 

settings, and medical systems, facilitating identification of robust network-symptom associations. Current drug 

dosages of antipsychotic medication were olanzapine-equivalent transformed (39). For each site, subjects gave 

written informed consent and study approval was given by the respective ethics committees/institutional review 

boards. Additional approval to pool and re-analyze data was provided by the ethics committee of the University of 

Düsseldorf, Germany. 

 

Calculation of dimensional symptom scores 

Severity of psychopathology was assessed using the PANSS (2). The 30 PANSS items were compressed into 

four (negative, positive, affective, and cognitive) symptom dimensions (Figure S1A) identified in our prior 

factorization analysis on two large, multi-site schizophrenia samples as stable and well-generalizable across 

populations, settings, and medical systems (6). The original item-by-subject matrix was projected onto this 

dimensional-structure of PANSS to yield the dimensional symptom scores for each subject (as implemented in 
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DCTS: http://webtools.inm7.de/sczDCTS/). Higher scores on a dimension indicate more-severe symptoms (Figure 

S1B). 

 

Definition of functional brain networks 

Seventeen functional networks, which cover a broad range of domains reflecting cognitive, socio-affective, and 

sensory-motor functions that have been implicated in schizophrenia, were employed (Table S3). These networks 

were based on coordinate-based meta-analyses (21,22) and represent regions demonstrating convergent 

activations associated with specific functional domains across many prior task-fMRI studies. They hence provide 

the best ―a priori‖ estimate of the location of specific functional networks and hence here assessed by resting-state 

fMRI in new subjects. For convenience, we grouped these 17 networks into six broad functional domains (Figure 

1&Table S3), though it must be stressed that each network was analyzed separately.  

 

FMRI data preprocessing 

All resting-state fMRI scans (Tables S4&S5) were preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) 

(see [6] and Supplement). After excluding subjects with excessive head-motion (40) or poor image quality (details 

in Supplement), 126 and 100 schizophrenia patients were retained in the main and the B-SNIP validation sample, 

respectively (Table 1). Head motion differed significantly between the sites in the main sample (p=0.003; one-way 

ANOVA) and between the main and the B-SNIP samples (p<0.001; two-sample t-test) but did not correlate with 

the residuals of any symptom dimensions after adjusting for age/gender/site. Still, we adjusted head motion 

effects in predictive modeling as a conservative approach to rule out (any) possible predictability of symptom 

dimensions due to movement.  

White matter and CSF signals as well as 24 head-motion parameters (41,42) were regressed out from the 
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overall fMRI time-series (42) but the global mean signals were not removed given ongoing controversies (43,44). 

The first eigenvariate of the time-series from all the voxels within a 6-mm sphere around each node was extracted 

(45,46). For each network, the between-node resting-state functional connectivity (rs-FC) was then calculated as 

Fisher’s z-transformed Pearson’s correlation between the eigenvariates. 

 

Prediction of symptom dimensions using network rs-FC 

Multivariable regression via a relevance vector machine (RVM)(47) was implemented and evaluated using 500x 

repeated 10-fold cross-validation, individually for each combination of functional network and symptom dimension 

in the main sample. That is, we assessed the capability of each network’s rs-FC to predict each of the four 

symptom dimensions in held-out patients. Importantly, RVM is a sparse learning method, i.e., only a few of the 

feature weights learned by RVM are non-zero, lending interpretability as to which features (connections) are 

predictive. In keeping with the recommended strategy (48), both the symptom dimensional-scores and rs-FC 

features were adjusted for confounding effects of age, gender, site, and head-motion (DVARS). To avoid 

data-leakage within cross-validation (49), confound regression models were learned only on the training-set and 

then applied on both training and test data (50,51). The RVM model was then trained on confound-adjusted 

training data and applied to the confound-adjusted held-out test data. The folds were stratified to accommodate 

different sample sizes across sites. Prediction performance was evaluated using Pearson’s correlation between 

the (adjusted) scores and their predictions. Significantly predictive associations were further validated for their 

generalizability across sites using leave-one-site-out cross-validation following the same schematic but training on 

all sites but one and testing on the left-out site (cf. Supplement). Statistical significance of the 

cross-validation-based correlations was determined through 1000 permutations by shuffling the symptom 

dimensional-scores (lowest p=0.001, right-tailed; Supplement) (49,52). 
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Critically, we validated the associations confirmed as predictive in the leave-one-site-out cross-validation in 

the independent B-SNIP sample. For this, we trained RVM models on the significantly predictive networks in the 

entire main sample and then, without further fitting or modification, applied them to held-out B-SNIP data. Robust 

associations passing this strict three-step validation procedure were then further assessed as described below. 

In addition, we performed control analyses by repeating all validation procedures by including illness duration 

or olanzapine-equivalent dosage as confounds. For comparison, we also predicted the original three PANSS 

subscales (positive, negative, and general psychopathology) using the same three-step validation procedure. 

 

Identification of reliably predictive connections and subnetworks 

The intrinsic feature selection in RVM through its sparse modeling was leveraged to identify reliably predictive 

connections and the potential subnetworks formed by them. A connection was identified as reliably predictive 

when it had non-zero weights in: i) at least 80% of the 10-fold cross-validation repetitions, ii) at least six out of the 

seven (i.e., >80%) leave-one-site-out analyses, and iii) the models trained on the entire main sample for validation 

in B-SNIP. The cutoff of 80% is suggested as a conservative threshold to select most relevant variables in both 

real and simulated data (53). To assess the predictive capacity of the subnetworks, RVM models were trained 

using the rs-FC of the subnetworks on the main sample and tested in B-SNIP. 

 

Spatial correlation with receptor/transporter density estimates  

Finally, we evaluated the topographical relationship between network-node location and the distribution of several 

receptor/transporter systems, assessing if any receptors/transporters were highly-expressed in the identified 

networks relative to the entire brain. This was tested by comparing the average receptor/transporter density 

across all nodes within a given network against a null-distribution based on 1000 random network configurations 
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generated by re-distributing the nodes throughout the grey matter while preserving the between-node distances 

(±6mm tolerance). Seven dopamine and serotonin receptors (dopaminergic: D1 and D2/3; serotonergic: 5-HT1a, 

5-HT1b, and 5-HT2a) and transporters (dopamine transporter and 5-HTT serotonin reuptake transporter), together 

with F-DOPA (a reflection of presynaptic dopamine-synthesis-capacity) and the GABAergic receptor GABAa were 

investigated. These three neurotransmitter systems have all been implicated in schizophrenia (32,34,35), while 

here we tested for more specifically the receptors/transporters. Density estimates for these receptors/transporters 

were derived from average group maps of healthy volunteers scanned in prior multi-tracer molecular imaging 

studies (Supplement). For comparability, these maps, in MNI152 space, were all resampled to an isotropic 2mm 

spatial resolution as in our fMRI data and linearly rescaled to a minimum of 0 and a maximum of 100. 

Furthermore, the significantly higher expressed receptors/transporters were entered into a spatial correlation 

analysis (54,55) calculated as rank correlation between the node importance scores and receptor/transporter 

densities calculated for these nodes (Figure 4B). The node importance score was calculated by summing the 

selection frequency of the connections of each node derived from the repeated 10-fold cross-validation. Bootstrap 

analysis was conducted to ensure robustness. To establish the statistical significance of a spatial correlation 

against chance, spatial permutation test was employed where the null distribution was estimated based on the 

correlations between the node importance scores for a given network and the nodal receptor/transporter densities 

extracted from1000 simulated (random) networks (Supplement). 
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Results  

 

Network-based prediction of specific symptom dimensions  

Predictive modeling with a stringent three-step validation revealed specific networks associated with the four 

dimensions of psychopathology. In the first step (10-fold cross-validation), the negative, positive, and affective 

symptom dimensions could be significantly predicted using the rs-FC within the theory-of-mind (ToM), the 

cognitive emotion regulation (CER), and the mirror neuron networks, respectively, while the cognitive dimension 

was predicted by three networks, ToM, empathy and eSAD (Figure 2A, B). These six networks-symptom 

associations (Figure 2B) were then tested in the second validation step, i.e., leave-one-site-out. Except for the 

empathy-cognitive prediction, all predictive associations were validated by significant correlations between the 

observed (confound-adjusted) scores for the individual symptom-dimensions and their predictions (Figure 2C).  

As the 10-fold cross-validation and leave-one-site-out analyses were both performed in the main sample, they 

may still be optimistic with respect to the generalization to new patient populations. Therefore we added a third 

validation step for the five leave-one-site-out validated associations using a completely independent sample. 

Three of the five leave-one-site-out validated associations (ToM-negative, CER-positive, MNS-affective) were not 

confirmed in this step. Training RVM models on the entire main sample and testing it in the B-SNIP dataset 

revealed that the ToM and eSAD networks were significantly predictive of cognitive symptoms (Figure 2D). 

In complementary analyses, no significant effects of illness duration or olanzapine-equivalent dosage on the 

four symptom-dimension scores were found (all p>0.05 in the fitted general linear models with additional 

covariates of age, gender, site, and head motion). Conversely, controlling for illness duration or 

olanzapine-equivalent dosage did not alter the overall predictive patterns. Highlighting the utility of our 

four-dimensional conceptualization of schizophrenia symptomatology (6), when considering the traditional three 
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PANSS subscales, 10-fold cross-validation and leave-one-site-out experiments on the main sample only revealed 

two predictive patterns: the ToM network predicted the negative subscale, and the eSAD network predicted the 

general psychopathology subscale (Figure S2A, B). However, these two associations were not generalizable to 

B-SNIP (Figure S2C).  

 

 

Reliably predictive connections and the predictiveness of subnetworks  

Ten connections within eSAD and eight connections within ToM were identified as consistently relevant for 

predicting the cognitive symptoms (Figure 3A; Table S6), i.e., were selected in more than 80% of the different 

cross-validation runs (repeated 10-fold and leave-one-site out) and in the final models trained on the entire main 

sample for validation in B-SNIP. The ensuing ToM and eSAD subnetworks featured three spatially overlapping 

nodes located in the ventro-medial prefrontal cortex (vmPFC), left middle temporal gyrus (MTG), and posterior 

cingulate cortex (PCC)/precuneus and highlighted the vmPFC-PCC/precuneus connection (Figure 3B; Table S7). 

In turn, connections to subcortical regions including bilateral amygdala/hippocampus and the ventral striatum were 

specific to the eSAD subnetwork. 

A model based on the identified eSAD subnetwork showed almost identical prediction performance for the 

B-SNIP data compared to the aforementioned one trained on whole eSAD network (Figure 3C, note that 

subnetwork definition was only based on the main sample, i.e., there is no leakage of information about the 

B-SNIP data). Interestingly, compared to whole ToM network (Figure 2D), the ToM subnetwork demonstrated an 

improved performance (Figure 3C) in the prediction of the cognitive dimension in B-SNIP. This confirms the power 

of sparse modeling in RVM to identify the truly relevant features. 
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Relationship to molecular architecture 

Results showed that eight receptors/transporters (Figure 4A) are highly expressed in both, or in either of the ToM 

and eSAD networks than in the simulated networks with perturbed spatial configuration of nodes (histograms for 

within- and between-network distance of nodes shown in Figure S3). Spatial correlation between the node 

importance (Table S8) and the spatially corresponding density of those significant receptors/transporters revealed 

a relationship to both the dopaminergic and the serotonergic systems (Figure 4C). Specifically, the nodes of ToM 

that showed higher importance in predicting the cognitive dimension tracked with higher 

dopamine-synthesis-capacity (r=0.54, p=0.02). The prediction importance of the nodes within the eSAD network 

correlated positively with densities of D1 (r=0.66, p=0.007) and 5-HTT (r=0.53, p=0.046), as well as 

dopamine-synthesis-capacity (r=0.54, p=0.036). The significance was corroborated by bootstrapped confidence 

intervals.  
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Discussion 

By employing predictive modeling to multi-site fMRI data with a strict sequence of out-of-sample validation steps 

(repeated 10-fold, leave-one-site-out, independent dataset), two a priori, meta-analytically defined functional 

networks, theory-of-mind (ToM) and extended socio-affective default (eSAD), were identified as significantly and 

robustly predictive of the cognitive symptom dimension. In contrast, prediction using the original PANSS 

subscales failed to generalize to the independent sample, supporting the notion that these traditional dimensions 

do not correspond well to underlying neurobiology. Through the implicit feature selection of RVM, reliably 

predictive connections were identified which constituted subnetworks connecting nodes mainly distributed in the 

(medial) prefrontal cortex, PCC, temporal regions as well as subcortical structures. Moreover, higher densities of 

D1 dopamine receptor and 5-HTT serotonin transporter as well as elevated dopamine-synthesis-capacity were 

related to the node importance of the ToM and the eSAD networks in the prediction of cognitive symptomatology. 

 

Symptom dimensions were differentially predicted by different functional networks 

Schizophrenia is a disorder that is commonly proposed with global or widespread brain deficits (10-12). Our 

network-based predictive modeling, however, revealed specific networks-psychopathology relationships based on 

the predictive capacity of specific functional systems for patient-specific symptom severity along four dimensions. 

Two networks, ToM and eSAD, both predicting the cognitive dimension, passed our strict validation steps. The 

ToM network subserves social cognition while the eSAD network encompasses regions involved in socio-affective 

processes. These results provide a firm support for the previous findings indicating that the compromised ―social 

brain‖ development in schizophrenia relates to higher-level cognitive deficits (56,57). Yet it came as somewhat of 

a surprise that these two networks did not allow a robust prediction of negative or affective symptoms. However, 

other socio-affective networks, CER, which relates to the reappraisal process of emotional stimuli (58), and MNS, 
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which was proposed to represent the emotional aspect of social cognition (18), were predictive of the positive and 

affective dimensions, respectively, in the main sample. Hence, it stands to reason that different socio-affective 

networks would capture individual variance of different symptom dimensions of schizophrenia. Of note, these 

predictions did not generalize to B-SNIP, potentially due to between-sample differences in clinical characteristics 

but also highlighting that building models that generalize to completely novel cohorts remains a challenge (59). We 

also noted that the cognitive dimension was not robustly predicted by any of the cognitive networks employed, 

though the speech production network showed a trend-level prediction in 10-fold cross-validation (r=0.18, 

p=0.061). Previous work showed that task-based functional connectivity yields better predictions of cognition than 

the networks at rest (60-62). Following this line of thought, cognitive networks engaged during tasks might likewise 

be more robustly related with the individual variability in cognitive symptoms than intrinsic connectivity patterns.  

Overall, we revealed that the connectivity patterns within the ToM network, even at the level of intrinsic brain 

activity, are robustly predictive of the cognitive status in individual schizophrenia patients. ToM is the cognitive 

ability of an individual to infer others’ mental states, intentions and believes (63). As these involve complex 

cognitive processes and considering that the cognitive dimension of schizophrenia psychopathology 

encompasses symptoms such as ―conceptual disorganization‖, ―lack of insight‖, and ―disturbed abstract thinking‖, 

it is not unexpected that the ToM network is predictive of the cognitive dimension. Resonating with this finding, 

ToM deficits, which are prevalent in schizophrenia and a well-established feature and vulnerability marker of this 

disorder (64), are known to associate with symptoms of disorganization (65). Abnormal neural activation in 

response to tasks targeting ToM has also been reported in schizophrenia involving temporo-parietal junction as 

well as prefrontal and temporal regions where the current ToM meta-network is distributed (66,67).  

It is interesting to note that the ToM network also predicted negative symptoms in the main sample though 

this did not generalize to the B-SNIP data. This resonates with the notion that ToM encompasses multiple 
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components (e.g., affective and cognitive)(68) and an impairment in the sub-processes of ToM may manifest as 

different consequences. And indeed, the subnetworks of ToM predicting negative and cognitive dimensions, 

respectively, were largely divergent (Figure 3B, Figure S4).  

Intriguingly, cognitive symptoms in schizophrenia were also linked to socio-affective processes via the 

prediction using the eSAD network. Recent studies consistently linked neural activity patterns in the DMN to 

cognitive abilities (69,70), and the implication of the DMN-derived eSAD network (71) in cognitive processing is 

hence unsurprising. Our finding moreover resonates well with a literature suggesting that socio-affective factors 

impact and modulate cognitive performance like working memory and attention in schizophrenia patients (72-74). 

The use of seemingly non-cognitive psychosocial methods has been proposed as a potential remediation strategy 

for cognitive deficits in schizophrenia (72), and indeed successfully applied in practice (74). Consequentially, we 

would hypothesize that the cognitive dysfunctions in schizophrenia might relate to an impaired integration of self- 

and other-related affective mental processes. Since the interaction of the DMN with other brain regions and 

networks is more reflective of schizophrenia symptoms than within-DMN connectivity (18,75,76), it is not 

surprising that the DMN was not predictive, but the eSAD was which comprises regions going beyond the DMN. 

 

Molecular architecture of the identified networks which robustly predicted cognitive dimension 

Cognitive deficits are a lifelong burden for patients with schizophrenia because there are so few effective 

medications including the mainstay anti-dopaminergic agents (37,77). In line with the notion that dopaminergic 

dysfunction alone doesn’t account for the whole picture of schizophrenia psychopathology (78,79), here we 

revealed that the networks and nodes predictive of individual cognitive symptom-load are related to both 

dopaminergic (32) and serotonergic systems (78). These data extend previous region-of-interest analyses (80,81) 

to a comprehensive topographical level and are supported by findings that cognitive deficits relate to D1 dopamine 
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receptor elevation in schizophrenia (80). The extension to a network-level investigation for the molecular 

architecturethat is related to symptomatology is important, as schizophrenia patients are characterized by 

dysconnection between distant brain regions and network connectivity-based analyses can nominate mechanisms 

of action for the development of novel pharmacological treatments (82). In line with involvement of dopamine 

functioning in cognitive deficits in schizophrenia (32), the cognitive dimension of psychopathology was associated 

with the dopamine-synthesis-capacity. Increased dopamine-synthesis-capacity in schizophrenia was not only 

reported in the striatum (32) but also cortical areas including prefrontal cortex (83,84) where multiple nodes within 

the ToM and the eSAD networks are located. 

Moreover, cognitive symptoms were linked to 5-HTT density at network level. 5-HTT plays a critical role in 

regulating serotonergic concentration and signaling. Serotonergic dysfunction and 5-HTT polymorphism (85) have 

been involved in schizophrenia pathophysiology (34,78). Previous postmortem and in vivo PET studies have 

yielded inconsistent results on the alteration of 5-HTT density in schizophrenia (34), while an over-expression of 

5-HTT mRNA in the prefrontal and temporal cortex has been demonstrated (86). We here revealed a potential role 

of 5-HTT in cognitive deficits via the networks involved in socio-affective processes, resonating with the proposed 

implication of 5-HTT in the affective domain (87,88). While atypical anti-psychotics including olanzapine and 

risperidone target also the 5-HT2a serotonin receptor (89,90), their effects on 5-HTT seems to be equivocal (91,92). 

Interestingly, anti-psychotic drugs, pimavanserin and SEP-363856 have just been introduced that preferentially 

target serotonin and not dopamine receptors (93,94), suggesting increased focus also on serotonergic pathways. 

 

Limitations and Considerations 

First, the effect sizes for the correlation between the symptom scores and their predictions were moderate. 

However, despite the clinical complexity of the population and the heterogeneities in scanners and protocols, the 
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effect sizes are similar to the previously reported for predicting, e.g., creativity (95), personality (48), and memory 

performance (96) in healthy subjects (r-values mostly around 0.2-0.35). Since olanzapine-equivalent dosage did 

not correlate with symptom scores or alter the prediction pattern after additionally controlling for the dosage in 

cross-validation, medication would be largely a source of random variation in our data and hence make our results 

more conservative. Second, although glutamatergic dysfunction has been increasingly implicated in schizophrenia 

neurocognitive deficits (79,97), there are no publicly available in vivo maps reflecting aspects of the glutamatergic 

system. Finally, within-subject (longitudinal) studies assessing symptoms, rs-FC and receptor densities are 

needed, though acquisition of molecular imaging data in large samples remains difficult. 

 

Based on rs-FC within different meta-analytic task-activation networks covering a broad range of functional 

domains and predictive modeling with strict validations, intrinsic connectivity patterns of networks implicated in 

socio-affective processing was revealed to robustly associate with the cognitive dimension of psychopathology. 

Our investigation of the molecular architecture of the identified predictive networks implied a potential involvement 

of 5-HTT serotonin transporter, besides the dopaminergic system, in schizophrenia cognitive symptomatology, 

possibly providing hints into treatments.   

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgments: This study was supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/4-1), the 

National Institute of Mental Health (R01-MH074457), the Helmholtz Portfolio Theme "Supercomputing and 

Modeling for the Human Brain", and the European Union’s Horizon 2020 Research and Innovation Programme 

under Grant Agreement No. 720270 (HBP SGA1) and 785907 (HBP SGA2). Ji Chen has received a Ph.D 

fellowship from the Chinese Scholarship Council.  

Disclosures: The authors reported no biomedical financial interests or potential conflicts of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


References:    

1. Kirkpatrick B, Buchanan RW, Ross DE, Ros, DE, Carpenter WT Jr (2001): A separate disease within the 

syndrome of schizophrenia. Arch Gen Psychiatry 58(2): 165-171.  

2. Kay SR, Fiszbein A, Opler LA (1987): The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. 

Schizophr Bull 13: 261–276 

3. Lang FU, Walther S, Stegmayer K, Anderson-Schmidt H, Schulze TG, Becker T, Jäger M (2015): Subtyping 

schizophrenia: A comparison of positive/negative and system-specific approaches. Compr Psychiatry 61: 

115-121. 

4. Pu W, Rolls ET, Guo S, Liu H, Yu Y, Xue Z, et al. (2014): Altered functional connectivity links in neuroleptic-naïve 

and neuroleptic-treated patients with schizophrenia, and their relation to symptoms including volition. Neuroimage 

Clin 6: 463-474. 

5. Schilbach L, Derntl B, Aleman A, Caspers S, Clos M, Diederen KMJ, et al. (2016): Differential patterns of 

dysconnectivity in mirror neuron and mentalizing networks in schizophrenia. Schizophr Bull 42(5): 1135-1148. 

6. Chen J, Patil K R, Weis S, Sim K, Nickl-Jockschat T, Zhou J, et al. (2020): Neurobiological Divergence of the 

Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using 

Non-negative Factorization: An International Machine Learning Study. Biol Psychiatry 87(3): 282-293 

7. Van den Oord EJCG, Rujescu D, Robles J R, Giegling I, Birrell C, Bukszár J, et al. (2006): Factor structure and 

external validity of the PANSS revisited. Schizophr Res 82(2-3): 213-223. 

8. Marder S R, Galderisi S (2017): The current conceptualization of negative symptoms in schizophrenia. World 

Psychiatry, 16(1): 14-24. 

9. Stephan K E, Friston KJ, Frith CD (2009): Dysconnection in schizophrenia: from abnormal synaptic plasticity to 

failures of self-monitoring. Schizophr Bull 35(3): 509-527. 

10. Uhlhaas PJ (2013): Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin 

Neurobiol 23(2): 283-290. 

11. Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A (2011): Dysconnectivity in schizophrenia: where are 

we now? Neurosci Biobehav Rev 35(5): 1110-1124. 

12. Dong D, Wang Y, Chang X, Luo C, Yao D (2018): Dysfunction of large-scale brain networks in schizophrenia: a 

meta-analysis of resting-state functional connectivity. Schizophr Bull 44(1): 168-181. 

13. Baker JT, Holmes AJ, Masters GA, Yeo BTT, Krienen F, Buckner RL, Öngür D (2014): Disruption of cortical 

association networks in schizophrenia and psychotic bipolar disorder. JAMA psychiatry 71(2): 109-118. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Baker JT, Dillon DG, Patrick LM, Roffman JL, Brady RO Jr, Pizzagalli DA (2019): Functional connectomics of 

affective and psychotic pathology. Proc Natl Acad Sci U S A 116(18): 9050-9059. 

15. Mwansisya T E, Hu A, Li Y, Chen X, Wu G, Huang X (2017): Task and resting-state fMRI studies in first-episode 

schizophrenia: A systematic review. Schizophr Res 189: 9-18. 

16. Tregellas JR (2014): Neuroimaging biomarkers for early drug development in schizophrenia. Biol psychiatry 76(2): 

111-119.  

17. Giraldo-Chica M, Woodward ND (2017): Review of thalamocortical resting-state fMRI studies in schizophrenia. 

Schizophr Res 180: 58-63. 

18. Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC (2017): A review of the functional and anatomical default 

mode network in schizophrenia. Neurosci Bull 33(1): 73-84. 

19. Mehta U M, Thirthalli J, Aneelraj D, Jadhav P, Gangadhar BN, Keshavanb MS (2014): Mirror neuron dysfunction 

in schizophrenia and its functional implications: a systematic review. Schizophr Res 160(1-3): 9-19. 

20. Shen X, Finn E S, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, Constable RT (2017): Using 

connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc 12(3): 

506-518. 

21. Laird A R, Fox P M, Eickhoff S B, Turner JA (2011): Behavioral interpretations of intrinsic connectivity networks. J 

Cogn Neurosci 23(12): 4022-4037. 

22. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009): Investigating the Functional Heterogeneity of the 

Default Mode Network Using Coordinate-Based Meta-Analytic Modeling. J Neurosci 18, 14496-14505. 

23. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012): Activation likelihood estimation revisited. Neuroimage 59, 

2349-2361. 

24. Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friedericic AD (2015): Common molecular basis of 

the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63: 79-89.  

25. Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicherb A (2002): 

Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional 

neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12(6): 587-599. 

26. Richiardi J, Altmann A, Milazzo A C, Chang C, Chakravarty MM, Banaschewski T, et al. (2015): Correlated gene 

expression supports synchronous activity in brain networks. Science 348(6240): 1241-1244. 

27. Anderson K M, Collins M A, Chin R, Ge T, Rosenberg MD, Holmes AJ (2020): Transcriptional and imaging-genetic 

association of cortical interneurons, brain function, and schizophrenia risk. Nat Commun 11(1): 1-15. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Stagg C J, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C, et al. (2014): Local GABA 

concentration is related to network-level resting functional connectivity. Elife 3: e01465. 

29. Kringelbach M L, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris R, Whybrow PC, et al. (2020): Dynamic 

coupling of whole-brain neuronal and neurotransmitter systems. Proc Natl Acad Sci U S A 117(17): 9566-9576. 

30. Landek-Salgado MA, Faust TE, Sawa A (2016): Molecular substrates of schizophrenia: homeostatic signaling to 

connectivity. Mol Psychiatry 21(1): 10-28. 

31. Limongi R, Jeon P, Mackinley M, Das T, Dempster K, Théberge J, et al. (2020): Glutamate and Dysconnection in 

the Salience Network: Neurochemical, Effective-connectivity, and Computational Evidence in Schizophrenia. Biol 

Psychiatry In Press, doi: 10.1016/j.biopsych.2020.01.021. 

32. Howes OD, Kapur S (2009): The dopamine hypothesis of schizophrenia: version III—the final common pathway. 

Schizophr Bull 35(3): 549-562. 

33. Poels E MP, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA, et al. (2014): Imaging glutamate in 

schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 19(1): 20-29. 

34. Selvaraj S, Arnone D, Cappai A, Howes, O (2014): Alterations in the serotonin system in schizophrenia: a 

systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 45: 

233-245. 

35. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforteb JE (2012): GABAergic interneuron origin of 

schizophrenia pathophysiology. Neuropharmacology 62(3): 1574-1583. 

36. Fusar-Poli P, Papanastasiou E, Stahl D, Rocchetti M, Carpenter W, Shergill S, McGuire P (2015): Treatments of 

negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull 

41(4): 892-899. 

37. Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005): Treatments for schizophrenia: A critical Review of 

pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10: 79–104. 

38. Tamminga CA, Ivleva EI, Keshavan MS, Pearlson GD, Clementz BA, Witte B, et al. (2013): Clinical phenotypes of 

psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry 170(11): 

1263-1274. 

39. Gardner DM, Murphy AL, O’Donnell H, Centorrino F, Baldessarini RJ (2010): International consensus study of 

antipsychotic dosing. Am J Psychiatry 167: 686–693 

40. Power JD, Barnes KA, Snyder AZ, et al. (2012): Spurious but systematic correlations in functional connectivity 

MRI networks arise from subject motion. Neuroimage 59(3): 2142-2154. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, et al. (2013): An improved 

framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state 

functional connectivity data. Neuroimage 64: 240-256. 

42. Varikuti DP, Hoffstaedter F, Genon S, Schwender H, Reid AT, Eickhoff SB (2017): Resting-state test–retest 

reliability of a priori defined canonical networks over different preprocessing steps. Brain Struct Funct 222(3): 

1447-1468. 

43. Murphy K, Fox MD (2017): Towards a consensus regarding global signal regression for resting state functional 

connectivity MRI. Neuroimage 154: 169-173.  

44. Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, et al. (2014): Altered global brain signal in 

schizophrenia. Proc Natl Acad Sci U S A 111(20): 7438-7443.  

45. Nostro AD, Müller VI, Varikuti DP, Pläschke RN, Hoffstaedter F, Langner R, et al. (2018): Predicting personality 

from network-based resting-state functional connectivity. Brain Struct Funct 223(6): 2699-2719. 

46. Pläschke R N, Cieslik E C, Müller VI, Hoffstaedter F, Plachti A, Varikuti DP, et al. (2018): On the integrity of 

functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from 

connectivity-based single-subject classification. Hum Brain Mapp 39(11): 4633. 

47. Tipping ME (2001): Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1: 211-244. 

48. Pervaiz U, Vidaurre D, Woolrich MW, Smith SM (2020): Optimising network modelling methods for fMRI. 

NeuroImage 211, 116604. 

49. Dubois J, Galdi P, Paul LK, Adolphs R (2018): A distributed brain network predicts general intelligence from 

resting-state human neuroimaging data. Philos Trans R Soc Lond B Biol Sci 373: 20170284. 

50. Snoek L, Miletić S, Scholte HS (2019): How to control for confounds in decoding analyses of neuroimaging data. 

NeuroImage 184: 741-760 

51. More S, Eickhoff SB, Julian C, Patil, KR (2020): Confound Removal and Normalization in Practice: A 

Neuroimaging Based Sex Prediction Case Study. Preprint available at https://juser.fz-juelich.de/record/877721; 

Accepted in the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery 

in Databases (ECML PKDD; https://ecmlpkdd2020.net/programme/accepted/#ADSTab). 

52. Combrisson E, Jerbi K (2015): Exceeding chance level by chance: the caveat of theoretical chance levels in brain 

signal classification and statistical assessment of decoding accuracy. J Neurosci Methods 250: 126-136.  

53. Meinshausen N, Bühlmann P (2010): Stability selection. J R Stat Soc Ser B Stat Methodol 72(4): 417-473. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://ecmlpkdd2020.net/programme/accepted/#ADSTab
https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


54. Dukart J, Holiga Š, Chatham C, Hawkins P, Forsyth A, McMillan R, et al. (2018): Cerebral blood flow predicts 

differential neurotransmitter activity. Sci Rep 8(1): 1-11.  

55. Dukart J, Holiga S, Rullmann M, Lanzenberger R, Hawkins PCT, Mehta MA, et al. (2020): JuSpace: A tool for 

spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter 

maps. bioRxiv doi: 10.1101/2020.04.17.046300. 

56. Addington J, Addington D (1999): Neurocognitive and social functioning in schizophrenia. Schizophr Bull 25(1): 

173-182. 

57. Cohen AS, Forbes CB, Mann MC, Blanchard JJ (2006): Specific cognitive deficits and differential domains of 

social functioning impairment in schizophrenia. Schizophr Res 81(2-3): 227-238. 

58. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. (1991): Cognitive reappraisal of emotion: 

a meta-analysis of human neuroimaging studies. Cereb Cortex 24(11): 2981-2990.  

59. Bzdok D, Meyer-Lindenberg A (2018): Machine learning for precision psychiatry: opportunities and challenges. 

Biol Psychiatry Cogn Neurosci Neuroimaging 3: 223-230.  

60. Greene AS, Gao S, Scheinost D, Constable RT (2018): Task-induced brain state manipulation improves prediction 

of individual traits. Nat Commun 9(1): 1-13. 

61. Gao S, Greene AS, Constable RT, Scheinost D (2019): Combining multiple connectomes improves predictive 

modeling of phenotypic measures. Neuroimage 201: 116038 

62. Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, et al. (2020): Task-induced brain connectivity promotes the 

detection of individual differences in brain-behavior relationships. NeuroImage 207: 116370. 

63. Baron-Cohen S (1995): Mindblindness: An Essay on Autism and Theory of Mind. The MIT Press/Bradford: 

Cambridge, pp 1–7. 

64. Bora E, Pantelis C (2013): Theory of mind impairments in first-episode psychosis, individuals at ultra-high risk for 

psychosis and in first-degree relatives of schizophrenia: systematic review and meta-analysis. Schizophr Res 

144(1-3): 31-36. 

65. Fretland R A, Andersson S, Sundet K, Andreassen OA, Melle I, Vaskinn A (2015): Theory of mind in schizophrenia: 

error types and associations with symptoms. Schizophr Res 162(1-3): 42-46. 

66. Benedetti F, Bernasconi A, Bosia M, Cavallaro R, Dallaspezia S, Falini A, et al. (2009): Functional and structural 

brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophr Res 114(1-3): 154-160. 

67. Das P, Lagopoulos J, Coulston C M, Henderson AF, Malhi GS (2012): Mentalizing impairment in schizophrenia: a 

functional MRI study. Schizophr Res 134(2-3): 158-164. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


68. Shamay-Tsoory S G, Shur S, Barcai-Goodman L, Medlovich S, Harari H, Levkovitz Y (2007): Dissociation of 

cognitive from affective components of theory of mind in schizophrenia. Psychiatry Res 149(1-3): 11-23. 

69. Vatansever D, Menon D K, Stamatakis EA (2017): Default mode contributions to automated information 

processing. Proc Natl Acad Sci U S A 114(48): 12821-12826. 

70. Sormaz M, Murphy C, Wang H, Hymers M, Karapanagiotidis T, Poerio G, et al. (2018): Default mode network can 

support the level of detail in experience during active task states. Proc Natl Acad Sci U S A 115(37): 9318-9323. 

71. Amft M, Bzdok D, Laird AR, Fox PT, Schilbach L, Eickhoff SB (2015): Definition and characterization of an 

extended social-affective default network. Brain Struct Funct 220(2): 1031-1049. 

72. Silverstein SM, Spaulding WD, Menditto AA, Savitz A, Liberman RP,  Berten S,  Starobin H (2009): Attention 

shaping: a reward-based learning method to enhance skills training outcomes in schizophrenia. Schizophr Bull 

35(1): 222-232. 

73. Schweizer S, Satpute A B, Atzil S, Field AP, Hitchcock C, Black M, et al. (2019): The impact of affective information 

on working memory: A pair of meta-analytic reviews of behavioral and neuroimaging evidence. Psychological Bull 

145(6): 566. 

74. Park S, Gibson C, McMichael T (2006): Socioaffective factors modulate working memory in schizophrenia patients. 

Neuroscience 139(1): 373-384.  

75. Jardri R, Thomas P, Delmaire C, Delion P, Pins D (2013): The neurodynamic organization of modality-dependent 

hallucinations. Cereb Cortex 23(5): 1108-1117. 

76. Whitfield-Gabrieli S, Thermenos H W, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. (2009): 

Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons 

with schizophrenia. Proc Natl Acad Sci U S A 106(4): 1279-1284. 

77. Sinkeviciute I, Begemann M, Prikken M, Oranje B, Johnsen E, Lei WU, et al. (2018): Efficacy of different types of 

cognitive enhancers for patients with schizophrenia: a meta-analysis. NPJ Schizophr 4(1): 22. 

78. Stahl SM (2018): Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: 

dopamine, serotonin, and glutamate. CNS Spectr 23(3): 187-191. 

79. Uno Y, Coyle JT (2019): Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 73(5): 204-215. 

80. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. (2002): Prefrontal dopamine D1 

receptors and working memory in schizophrenia. J Neurosci 22:3708–3719  

81. Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N, et al. (2012): Increased prefrontal cortical D1 

receptors in drug naive patients with schizophrenia: a PET study with [11C] NNC112[J]. J Psychopharmacol 26(6): 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


794-805. 

82. De Rossi P, Chiapponi C, Spalletta G (2015): Brain functional effects of psychopharmacological treatments in 

schizophrenia: a network-based functional perspective beyond neurotransmitter systems. Curr Neuropharmacol 

13(4): 435-444. 

83. Lindström L H, Gefvert O, Hagberg G, Lundberg T, Bergström M, Hartvig P, Långström B (1999): Increased 

dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(β-11C) DOPA 

and PET. Biol Psychiatry 46(5): 681-688. 

84. Elkashef AM, Doudet D, Bryant T, Cohen RM, Li SH, Wyatt RJ (2000): 6-(18)F-DOPA PET study in patients with 

schizophrenia. Positron emission tomography. Psychiatry Res 100: 1-11. 

85. Malhotra A K, Goldman D, Mazzanti C, Clifton A, Breier A, Pickar D (1998): A functional serotonin transporter 

(5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics. Mol Psychiatry 3(4): 

328-332. 

86. Hernandez I, Sokolov BP (1997): Abnormal expression of serotonin transporter mRNA in the frontal and temporal 

cortex of schizophrenics. Mol Psychiatry 2: 57–64. 

87. Golimbet VE, Alfimova MV, Shchebatykh TV, Abramova LI, Kaleda VG, Rogaev EI (2004): Serotonin transporter 

polymorphism and depressive-related symptoms in schizophrenia. Neuropsychiatr Genet 126(1): 1-7. 

88. Peitl V, Štefanović M, Karlović D (2017): Depressive symptoms in schizophrenia and dopamine and serotonin 

gene polymorphisms. Prog Neuro Psychopharmacol Biol Psychiatry 77: 209-215. 

89. Radhakrishnan R, Matuskey D, Nabulsi N, Gaiser E, Gallezot J, Henry S, et al. (2020): In vivo 5-HT6 and 5-HT2A 

receptor availability in antipsychotic treated schizophrenia patients vs. unmedicated healthy humans measured 

with [11C] GSK215083 PET. Psychiatry Res Neuroimaging 295: 111007. 

90. Mauri MC, Paletta S, Maffini M, Colasanti A, Dragogna F, Pace CD, Altamura AC (2014): Clinical pharmacology of 

atypical antipsychotics: an update. EXCLI J 13: 1163. 

91. Barkan T, Peled A, Modai I, Weizman A, Rehavi M (2006): Characterization of the serotonin transporter in 

lymphocytes and platelets of schizophrenia patients treated with atypical or typical antipsychotics compared to 

healthy individuals. Eur Neuropsychopharmacol 16(6): 429-436. 

92. Lian J, Pan B, Deng C (2016): Early antipsychotic exposure affects serotonin and dopamine receptor binding 

density differently in selected brain loci of male and female juvenile rats. Pharmacological Rep 68(5): 1028-1035. 

93. Sahli ZT, Tarazi FI (2018): Pimavanserin: novel pharmacotherapy for Parkinson's disease psychosis. Expert Opin 

Drug Discov 13(1): 103-110. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


94. Koblan KS, Kent J, Hopkins SC, Krystal JH, Cheng H, Goldman R,  Loebel A (2020): A 

Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N Engl J Med 382(16): 1497-1506. 

95. Beaty RE, Rosenberg MD, Benedek M, Chen Q, et al. (2018): Robust prediction of individual creative ability from 

brain functional connectivity. Proc Natl Acad Sci U S A 115: 1087-1092. 

96. Persson J, Stening E, Nordin K, Söderlund H (2018): Predicting episodic and spatial memory performance from 

hippocampal resting-state functional connectivity: Evidence for an anterior-posterior division of function. 

Hippocampus 28: 53-66. 

97. Kaminski J, Gleich T, Fukuda Y, Katthagen T, Gallinat J, Heinz A, Schlagenhauf F (2020): Association of cortical 

glutamate and working memory activation in patients with schizophrenia: A multimodal proton magnetic 

resonance spectroscopy and functional magnetic resonance imaging study. Biol Psychiatry 87(3): 225-233.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185124
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table1. Demographic and clinical characteristics of schizophrenia patients used for 

predictive analysis 

 

Characteristics 
Main sample 

(N=126, seven 

sites) 

The independent B-SNIP 

sample for validation 

(N=100, two sites) 

p-value 

Demographic    

Age (years) 34.19 (11.45) 34.28 (12.31) 0.948 

Gender (male/female) 92/34 71/29 0.767 

Illness during (years) 10.48 (9.87) 12.35 (11.13) 0.187 

PANSS subscales  

Positive 14.86 (5.35) 14.91 (5.72) 0.945 

Negative 14.76 (5.85) 

30.25 (10.13) 

15.01 (5.64) 

27.98 (7.46) 

0.743 

General 0.062 

Illness severity (total 

PANSS)
 

Scores on the dimensions 

of PANSS 

59.87 (18.11) 

 

57.90 (15.78) 

 

0.390 

 

Negative 2.76 (2.44) 2.81 (2.23) 0.859 

Positive 3.26 (2.36) 3.28 (2.55) 0.954 

Affective 3.33 (2.33) 2.69 (1.71) 0.022 

Cognitive 2.49 (1.92) 2.72 (1.79) 0.357 

Medication    

Atypical antipsychotics 97 (75.8%) 71 (71.0%)  

Typical antipsychotics 5 (3.9%) 4 (4.0%)  

Both A & T 7 (5.5%) 13 (13.0%)  

None or unknown 19 (14.8%) 12 (12.0%)  

Current antipsychotic 

medication
e
 

19.23 (11.91) 18.96 (13.47)  

 

Data are mean (SD), or n (%). p Values in bold indicate a significance of p<0.05. Except for gender, which was 

based on chi-square test, other statistics were all based on two-sample t test. Of note, because the detailed 

medication information was missing for several patients in different proportions for the three datasets, statistical 

comparisons were not conducted. 

PANSS, Positive and Negative Syndrome Scale; 

e
Demonstrated in olanzapine-equivalent dosage (mg/day). 
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Figures: 

 

Figure 1. Overview of the 17 functional networks derived from prior coordinate-based meta-analytical 

studies.  

 

Networks were assigned to six broad domains according to their main functional roles, as implicated in the tasks 

included in the source publications of these meta-analytical networks, in multiple neuro-cognitive and 

socio-affective processes. We also note that networks such as the task-deactivation default-mode (DMN) network 

(22) and the extended socio-affective-default (eSAD) network which is derived from DMN regions (71) can be 

engaged during multiple processes (69,70). Details can be found in Supplementary Table S3.  

Yellow nodes represent the spheres created from the coordinates with 6mm radius and blue lines denote the 

pair-wise connections between the nodes. Connections within each network were used separately in our 

predictive modeling to investigate network-specific relationships with individual dimensions of psychopathology. 
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Figure 2. Multivariable prediction of the four symptom dimensions from within-network resting-state 

functional connectivity using relevant vector machine.  

 

A) Circos plot shows the 500x repeated 10-fold cross-validation results for the main sample. Correlations between 

the actual (confound-adjusted) dimensional symptom scores and their predictions are color-coded from light grey 

(0) to dark red (0.35), *p<0.05, **p<0.01.  

B) Scatter plots show the six significant predictions identified by 10-fold cross-validation in main sample. 

C) Scatter plots show the leave-one-site-out cross-validation results for the six significant predictions identified by 

10-fold cross-validation in main sample. Apart from the prediction of cognitive dimension from the rs-FC within the 

empathy network, other predictions were all confirmed by leave-one-site-out with significant correlations identified. 

D) Scatter plots show the significant predictions in the independent B-SNIP sample. Models trained within the 

main sample were used for this validation analysis in B-SNIP. Shaded areas represent 95% confidence intervals.  

Abbreviations: EmoSF, emotional scene and face processing; Rew, reward-related decision making; CER, 

cognitive emotion regulation; ToM, theory-of-mind; MNS, minor neuron system; DMN, default mode network; 

eSAD, extended socio-affective default; VigAtt, vigilant attention; CogAC, cognitive action control; eMDN, the 

extended multi-demand networks; SM, semantic memory; SP, speech production; WM, working memory; AM, 

autobiographical memory; APN, auditory processing network. 
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Figure 3. Reliably predictive connections for the two networks that robustly predicted the cognitive 

dimension and validation of the formed subnetworks in the independent sample 

 

 

A) Reliably predictive connections selected in more than 80% of the different cross-validation runs (repeated 

10-fold and leave-one-site out) and in the final models trained on the entire main sample for validation in B-SNIP. 

B) Overlapping between the two subnetworks.  

C) Scatter plots show the significant correlations in B-SNIP using the models trained within the main sample. 

 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default; CER, cognitive emotion regulation, 

MNS, mirror neuron system. Amy, amygdala; Hipp, hippocampus; vmPFC, ventro-medial prefrontal cortex; 

dmPFC, dorso-medial prefrontal cortex; mFG, medial frontal cortex; aMTG, anterior middle temporal gyrus, IFG, 

inferior frontal gyrus; TPJ, temporo-parietal junction, PCC, posterior cingulated cortex, PrC, precuneus; SGC, 

subgenual cingulate cortex, vBG, ventral basal ganglia; ACC, anterior cingulated cortex. 
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Figure 4. Significantly highly-expressed receptors and transporters at the nodes of the robustly predictive 

networks relative to the entire brain, as well as the schematic and results for the spatial correlation 

analysis with receptor/transporter density maps  

 

A) Histograms show the null distributions for the receptor/transporter densities of the 1000 simulated (random) 

networks. Red lines indicate the true averaged receptor/transporter densities across the different nodes within real 

networks. 

B) Procedure for conducting the spatial correlation analysis between network nodes and receptor/transporter 

density maps.  

C) Bootstrapped Spearman correlations (repeated 10,000 times) between the node importance score and the 

nodal receptor/transporter density estimates for the two identified networks which robustly predicted the cognitive 

symptom dimension. Bootstrap nodes were drawn with replacement from the real networks, and then the 

correlation analysis was done on them. Boxes refer to the Spearman rho values. The red line depicts the median, 

the green diamond depicts the mean, and the whiskers represent the 5th and 95th percentiles. Significant 

correlations derived from spatial-level permutation tests are marked with an asterisk (*p<0.05, **p<0.01). 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default; Cog, cognitive dimension. 
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