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Abstract12

Alchemical free energy calculations are now widely used to drive or maintain potency in small molecule lead13

optimization with a roughly 1 kcal/mol accuracy. Despite this, the potential to use free energy calculations14

to drive optimization of compound selectivity among two similar targets has been relatively unexplored in15

published studies. In the most optimistic scenario, the similarity of binding sites might lead to a fortuitous16

cancellation of errors and allow selectivity to be predicted more accurately than affinity. Here, we assess17

the accuracy with which selectivity can be predicted in the context of small molecule kinase inhibitors,18

considering the very similar binding sites of human kinases CDK2 and CDK9, as well as another series of19

ligands attempting to achieve selectivity between the more distantly related kinases CDK2 and ERK2. Using20

a Bayesian analysis approach, we separate systematic from statistical error and quantify the correlation21

in systematic errors between selectivity targets. We find that, in the CDK2/CDK9 case, a high correlation22

in systematic errors suggests free energy calculations can have significant impact in aiding chemists in23

achieving selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation in systematic24

error suggests fortuitous cancellation may even occur between systems that are not as closely related. In25

both cases, the correlation in systematic error suggests that longer simulations are beneficial to properly26

balance statistical error with systematic error to take full advantage of the increase in apparent free energy27

calculation accuracy in selectivity prediction.28

29

Free energymethods have proven useful in aiding structure-based drug design by driving the optimization30

or maintenance of potency in lead optimization. Alchemical free energy calculations allow for the prediction31

of ligand binding free energies, including all enthalpic and entropic contributions [1]. Advances in atomistic32

molecular mechanics simulations and free energy methodologies [2–5] have allowed free energy methods33

to reach a level of accuracy sufficient for predicting ligand potencies [6]. These methods have been applied34

prospectively to develop inhibitors for Tyk2 [7], Syk [8], BACE1 [9], GPCRs [10], and HIV protease [11]. A35

recent large-scale review of the use of FEP+ [12] to predict potency for 92 different projects and 3 02136

compounds determined that predicted binding free energies had a median root mean squared error (RMSE)37

of 1.0 kcal/mol [13].38

Selectivity is an important consideration in drug design39

In addition to potency, selectivity is an important property to consider in drug development, either in the40

pursuit of an inhibitor that is maximally selective [14, 15] or possesses a desired polypharmacology [16–41
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20]. Controlling selectivity can be useful not only in avoiding off-target toxicity (arising from inhibition of42

unintended targets) [21, 22], but also in avoiding on-target toxicity (arising from inhibition of the intended43

target) by selectively targeting disease mutations [23]. In either paradigm, considering the selectivity of44

a compound is complicated by the biology of the target. For example, kinases exist as nodes in complex45

signaling networks [24, 25] with feedback inhibition and cross-talk between pathways. Careful consideration46

of which off-targets are being inhibited can avoid off-target toxicity due to alleviating feedback inhibition47

and inadvertently reactivating the targeted pathway [24, 25] or the upregulation of a secondary pathway48

by alleviation of cross-talk inhibition [26, 27]. Off-target toxicity can also be caused by inhibiting unrelated49

targets, such as gefitinib, an EGFR inhibitor, inhibiting CYP2D6 [21] and causing hepatotoxicity in lung cancer50

patients. In a cancer setting, on-target toxicity can be avoided by considering the selectivity for the oncogenic51

mutant form of the kinase over the wild type form of the kinase [28–30], exemplified by a number of first52

generation EGFR inhibitors. Selective binding to multiple kinases can also lead to beneficial effects: Imatinib,53

initially developed to target BCR-Abl fusion proteins, is also approved for treating gastrointestinal stromal54

tumors (GIST) [31] due to its activity against receptor tyrosine kinase KIT.55

The use of physical modeling to predict selectivity is relatively unexplored56

While engineering compound selectivity is important for drug discovery, the utility of free energy methods57

for predicting this selectivity with the aim of reducing the number of compounds that must be synthesized58

to achieve a desired selectivity profile has been relatively unexplored in published studies. If there is59

fortuitous cancellation of systematic errors for closely related systems, free energy methods may be60

much more accurate than expected given the errors made in predicting the potency for each individual61

target. Such systematic errors might arise from force field parameters uncertainty, force field parameters62

assignment, protein or ligand protonation state assignment, or even from systematic errors arising in the63

target experimental data, where for example poor solubility of a particular compound might lead to a64

spuriously poor reported binding affinity for that compound, among other effects.65

Molecular dynamics and free energy calculations have been used extensively to investigate the biophysical66

origins of the selectivity of imatinib for Abl kinase over Src [32, 33] and within a family of non-receptor tyrosine67

kinases [34]. This work focused on understanding the role reorganization energy plays in the exquisite68

selectivity of imatinib for Abl over the highly related Src despite high similarity between the cocrystallized69

binding mode and kinase conformations, and touches on neither the evaluation of the accuracy of these70

methods nor their application to drug discovery on congeneric series of ligands. Previous work predicting the71

selectivity of three bromodomain inhibitors across the bromodomain family achieved promising accuracy72

for single target potency of roughly 1 kcal/mol, but does not explicitly evaluate any selectivity metrics [35] or73

quantify the correlation in the errors made in predicting affinities for each bromodomain. Previous work74

using FEP+ to predict selectivity between pairs of phosphodiesterases (PDEs) showed promising performance75

but did not evaluate correlation in the error made in predicting affinities for each PDE [36]76

Kinases are an important and particularly challenging model system for selectivity predictions77

Kinases are a useful model system to work with for assessing the utility of free energy calculations to predict78

inhibitor selectivity in a drug discovery context. With the approval of imatinib for the treatment of chronic79

myelogenous leukemia in 2001, targeted small molecule kinase inhibitors (SMKIs) have become a major class80

of therapeutics in treating cancer and other diseases. Currently, there are 52 FDA-approved SMKIs [37], and81

it is estimated that kinase targeted therapies account for as much as 50% of current drug development [38],82

with many more compounds currently in clinical trials. While there have been a number of successes,83

the current stable of FDA-approved kinase inhibitors targets only a small number of kinases implicated in84

disease, and the design of new selective kinase inhibitors remains a significant challenge.85

Achieving selective inhibition of kinases is quite challenging, as there are more than 518 protein ki-86

nases [39, 40] sharing a highly conserved ATP binding site that is targeted by the majority of SMKIs [41].87

While kinase inhibitors have been designed to target kinase-specific sub-pockets and binding modes to88

achieve selectivity [42–47], previous work has shown that both Type I (binding to the active, DFG-in confor-89

mation) and Type II (binding to the inactive, DFG-out conformation) inhibitors are capable of achieving a90
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range of selectivities [48, 49], often exhibiting significant binding to a number of other targets in addition91

to their primary target. Even FDA-approved inhibitors—often the result of extensive drug development92

programs—bind to a large number of off-target kinases [50]. Kinases are also targets of interest for de-93

veloping polypharmacological compounds, or inhibitors that are specifically designed to inhibit multiple94

kinase targets. Resistance to MEK inhibitors in KRAS-mutant lung and colon cancer has been shown to95

be driven by ErbB3 upregulation [51], providing a rationale for dual MEK/ERBB family inhibitors. Similarly,96

combined MEK and VEGFR1 inhibition has been proposed as a combinatorial approach to treat KRAS-mutant97

lung cancer [52]. Developing inhibitors with a desired polypharmacology means navigating more complex98

selectivity profiles, presenting a problem where physical modeling has the potential to dramatically speedup99

drug discovery.100

The correlation coefficient measures how useful predictions are in achieving selectivity101

Since the prediction of selectivity depends on predicting affinities to two or more targets (or relative affinities102

between pairs of related molecules), a spectrum of possibilities exists for how accurately selectivity can103

be predicted even when the error in predicting individual target affinities is fixed. In well-behaved kinase104

systems, for example, free energy calculation potency predictions have achieved root-mean-square of105

less than 1.0 kcal/mol [7, 12]. This residual error likely arises from a variety of contributions. Systematic106

contributions to the residual error may include forcefield parameterization deficiencies, protein and ligand107

protonation assignment errors, and discrepancies between the crystallographic construct protein and the108

assay construct protein. Likewise, unbiased contributions to the observed residual error likely arises from109

incompletely converged sampling. Lastly, it should not be forgotten that the target experimental value will110

have its own systematic and random errors.111

In the best-case scenario, correlation in the systematic errors for predicting the interactions of a given112

ligand with two related protein targets might exactly cancel out, allowing selectivity to be predicted much113

more accurately than potency. On the other hand, if the uncorrelated random error dominates the residual114

error between two protein targets, predictions of selectivity will be less accurate than potency predictions.115

Real-world systems are likely to fall somewhere between these two extremes, and quantifying the degree to116

which error in multiple protein targets is correlated, its implications for the use of free energy calculations117

for prioritizing synthesis in the pursuit of selectivity, the ramifications for optimal calculation protocols, and118

rough guidelines governing which systems we might expect good selectivity prediction is the primary focus119

of this work.120

In particular, in this work, we investigate the magnitude of the correlation (�) in error for the predicted121

binding free energy differences between related compounds (ΔΔGij ) for two different targets, assessing122

the utility of alchemical free energy calculations for the prediction of selectivity. We employ state of the123

art relative free energy calculations [12, 13] to predict the selectivities of two different congeneric ligand124

series [53, 54], and construct simple numerical models that allow us to quantify the potential utility in125

selectivity optimization expected for different combinations of per target systematic errors and correlation126

coefficients. To make a realistic assessment of our confidence in this correlation coefficient derived from127

a limited number of experimental measurements, we develop a new Bayesian approach to quantify the128

uncertainty in the correlation coefficient in the predicted change in selectivity on ligand modification,129

incorporating all sources of uncertainty and correlation in the computation to separate statistical from130

systematic error. We find that in the closely related systems of CDK2 and CDK9, a high correlation of131

systematic errors suggests that free energy methods can have a significant impact on speeding up selectivity132

optimization. Even in the more distantly related case (CDK2/ERK2), correlation in the systematic errors allows133

free energy calculations to speedup selectivity optimization, suggesting that these methodologies can impact134

drug discovery even when comparing systems that are less closely related. We also present a model of the135

impact of per target statistical error at different levels of systematic error correlation, suggesting that it is136

worthwhile to expend more effort sampling in systems with high correlation.137

Results138
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Alchemical free energy methods can be used to predict compound selectivity139

While the potency of a ligand i for a single target is often quantified as a free energy of binding (ΔGi,target),140

there are a number of different metrics for quantifying compound selectivity [55, 56]. Here, we consider the141

selectivity Si between one target and another (an antitarget) as the difference in free energy of binding for a142

given ligand i between the two,143

Si ≡ ΔGi,target 2 − ΔGi,target 1 (1)

While in the optimization of potency we are concerned with ΔΔGij ≡ ΔGj − ΔGi, the relative free energy144

of binding of ligands i and j to a single target, in the optimization of selectivity, we are concerned with145

ΔSij ≡ Sj − Si, which reflects the change in selectivity between ligand i and a related ligand j,146

ΔSij ≡ Sj − Si (2)

= (ΔG
j, target 2

− ΔG
j, target 1

) − (ΔG
i, target 2

− ΔG
i, target 1

)

= ΔΔG
ij, target 2

− ΔΔG
ij, target 1

To predict the change in selectivity, ΔSij , between two related compounds, we developed a protocol that147

uses a relative free energy calculation (FEP+) [12] to construct a map of alchemical perturbations between148

ligands in a congeneric series, as described in detail in theMethods. The calculation is repeated for each149

target of interest, with identical perturbations (edges) between each ligand (nodes). Each edge represents a150

relative alchemical free energy calculation that quantifies the ΔΔG between the ligands (nodes) for a single151

target. From these calculations, we can then compute the change in selectivity between the two targets of152

interest, ΔSij , achieved by transforming ligand i into ligand j.153

Previous work has demonstrated that FEP+ can achieve an accuracy (�
target

) of roughly 1 kcal/mol in154

single-target potency prediction, which reflects a combination of systematic systematic error and random155

statistical error [12]. However, it is possible that the systematic error for a given perturbation between156

ligands i and j (�
sys, ij, target

) in two different systems may fortuitously cancel when computing ΔSij , resulting in157

the systematic contribution to the selectivity error (�
selectivity

) being significantly lower than its contribution to158

single-target potency error (�
target

). This systematic error may cancel between the two systems for a variety159

of reasons. For example, a ligand force field parameter assignment error might lead to an spuriously large160

solvation free energy for a particular compound, which will cancel in the selectivity analysis. Likewise, a161

sparingly soluble compound might have a similar experimental measurement error for the on-target protein162

as the off-target protein. Similar cancellation of systematic errors might be observed in ligand and/or protein163

protonation state assignment error, or systematic differences existing between the protein constructs used164

for crystallographic studies and biochemical or biophysical assays.165

If we presume that the systematic errors for both targets are distributed according to a bivariate normal166

distribution with correlation coefficient � quantifying the degree of correlation (with � = 0 denoting no167

correlation and � = 1 denoting perfect correlation), and that the statistical errors for both targets (�stat,ij,target )168

are completely independent, we can model the error in predicting the ΔSij as �selectivity,169

�
selectivity

≡
√

�2
sys,ij,1

+ �2
sys,ij,2

− 2� �
sys,ij,1

�
sys,ij,2

+ �2
stat,ij,1

+ �2
stat,ij,2

(3)

�
selectivity

can be split into two components: systematic error and statistical error. As more effort is spent170

sampling, the per-target statistical error for a given transformation from ligand i to ligand j (�
stat,ij, target

) will171

decrease, eventually becoming zero in the regime of infinite sampling. As we shall see below, the quantitative172

value of the correlation coefficient � for the systematic error component has important ramifications for the173

accuracy with which selectivity can be predicted.174

Correlation in systematic errors can significantly enhance accuracy of selectivity predictions175

To demonstrate the potential impact the correlation coefficient � has on predicting selectivity using alchemical176

free energy techniques, we created a simple numerical model following Equation 3 which takes into account177

each of the per-target systematic errors (�
sys,ij,1, �sys,ij,2) expected from the methodology as well as the178

correlation in those errors, while assuming infinite effort is spent sampling to reduce the statistical error179

component (�
stat
) to zero. As seen in Figure 1A, if the per target systematic errors are the same magnitude180
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(�
sys,ij,1 = �sys,ij,2), �selectivity approaches 0 as the correlation coefficient � approaches 1, even though the single-181

target potency systematic error is nonzero. If the error for the free energy method is not the samemagnitude182

(�
sys,ij,1 ≠ �

sys,ij,2), �selectivity gets smaller but approaches a non-zero value as � approaches 1.183

To quantify the expected reduction in number of compounds that must be synthesized to achieve a184

desired selectivity threshold (hereafter referred to as the speedup in selectivity optimization), we modeled185

the change in selectivity with respect to a reference compound for a number of compounds a medicinal186

chemist might suggest as a normal distribution centered around 0 with a standard deviation of 1 kcal/mol187

(Figure 1B, black curve), reflecting the notion that most proposed modifications would not drive large188

changes in selectivity. This assumption—that a synthetic chemist’s proposal distribution can be modeled as189

a normal distribution—is based on data-driven estimates from an Abbott Laboratories analysis of potency190

changes [57]191

Further suppose that each compound is evaluated computationally with a free energy methodology that192

has a per-target systematic error (�
sys, ij,target

) of 1 kcal/mol, where we presume sufficient computational effort193

has been expended to make statistical error negligible. All compounds predicted to have a 1.4 kcal/mol or194

greater improvement in selectivity (10× in ratio of affinities, or 1 log10 unit) are synthesized and experimentally195

tested (Figure 1B, colored curves), using an experimental technique with perfect measurement accuracy. The196

fold-change in the proportion of compounds that are made that have a true 1.4 kcal/mol improvement in197

selectivity compared to the original distribution can be calculated as a surrogate for the expected speedup.198

For this 1.4 kcal/mol selectivity improvement threshold, a correlation coefficient � = 0.5 gives an expected199

speedup of 4.1×, which can be interpreted as needing to make 4.1x fewer compounds to achieve a tenfold200

improvement in selectivity. This process can be extended for the even more difficult proposition of achieving201

a hundredfold improvement in selectivity (Figure 1C), where 200–300× speedups can be expected, depending202

on the single-target systematic error (�
sys,ij,target

) for the free energy methodology.203

These estimates represent an ideal scenario, where the number of compounds scored and synthesized is204

unlimited. In a more realistic discovery project, the number of compounds scored is limited by computational205

resources, and the number of compounds synthesized is limited by chemistry resources. In this case, the206

observed speedup will depend not only on the correlation coefficient � and per-target systematic error207

(�
sys,ij,target

), but also the number of compounds scored and the synthesis rule, defined as the selectivity208

threshold a compoundmust be predicted to reach before being selected for synthesis. To model this process,209

suppose a given number of compounds (Figure 1D, x-axis of each panel) are profiled with a free energy210

method with a per-target systematic error (�
sys,ij, target

) of 1 kcal/mol and some correlation coefficient (�). The211

top compounds that are predicted to have an improvement in selectivity greater than a set "synthesis rule"212

threshold (100×, 500×, or 1000×, Figure 1D, each curve) are synthesized, up to a maximum of 10 compounds.213

The expected speedup can then be calculated as the ratio of the number of synthesized compounds that214

have a true selectivity improvement of 2.8 kcal/mol (100× or 2 log units) to the number of compounds215

expected to have a true selectivity improvement of 2.8 kcal/mol had the same number of compounds as216

were synthesized been drawn randomly from the underlying unit normal distribution.217

As shown in Figure 1D, the more stringent synthesis rules combined with high correlation coefficients (�)218

allow free energy calculations to have the highest impact in designing selectivity inhibitors, provided enough219

compounds have been scored. Interestingly, at correlation coefficient �=0.75 and low numbers of scored220

compounds, the 500× synthesis provides a greater speedup than 1000× synthesis rule. This is because221

there is high probability no compounds meet the more 1000× stringent synthesis rule until many more222

compounds are scored. This has implications for drug discovery efforts, where time and computational223

effort may limit the number of compounds able to be profiled with free energy methods.224

An experimental data set of CDK2/CDK9 inhibitors demonstrates the difficulty in achieving high225

selectivity226

To assess the correlation of errors in free energy predictions for selectivity, we set out to gather data sets227

that met a number of criteria. We searched for data sets that contained binding affinity data for a number of228

kinase targets and ligands in addition to crystal structures for each target with the same ligand.229

This data set contains a congeneric series of ligands with experimental data for CDK2 and CDK9, with the230
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A B C

D

Figure 1. Free energy calculations can accelerate selectivity optimization. (A) The effect of correlation on expected
errors for predicting selectivity (�selectivity) in kcal/mol when statistical error is negligible due to infinite sampling. Each
curve represents a different combination of per target systematic errors (�sys,ij,1 and �sys,ij,2). (B) The change in selectivity
for molecules proposed by medicinal chemists optimizing a lead candidate can be modeled by a normal distribution

centered on zero with a standard deviation of 1 kcal/mol (black curve). Each green curve corresponds to the distribution

of compounds made after screening for a 1 log10 unit (1.4 kcal/mol) improvement in selectivity with a free energy

methodology with a 1 kcal/mol per target systematic error and a particular correlation, in the regime of infinite sampling

where statistical error is zero. The shaded region of each curve corresponds to the compounds with a real 1 log10 unit

improvement in selectivity. The speedup reflects the expected reduction in compounds that must be synthesized to

reach a selectivity goal, and is calculated as the ratio of the percentage of compounds made with a real 1 log10 unit

improvement to the percentage of compounds that would be expected in the original distribution. (C) The speedup
(y-axis, log scale) expected for 100× (2 log10 units, or 2.8 kcal/mol) selectivity optimization as a function of correlation
coefficient �. Each curve corresponds to a different value of �sys,ij,target. (D) The speedup (y-axis) expected for 100× (2 log10
units, or 2.8 kcal/mol) selectivity optimization as a function of number of compounds scored computationally (x-axis)

and correlation coefficient � (each panel) for a method with per-target systematic error (�sys,ij,target) of 1 kcal/mol in the
regime of infinite sampling. After profiling, the top compounds that meet or surpass the synthesis rule (the predicted

selectivity threshold a compound must reach to be triggered for synthesis, each curve) are synthesized, up to a maximum

of 10 synthesized compounds. Error bars (y-axis) represent the 95% CI for 1000 replicates at each point. The expected

speedup is calculated as the ratio of the number of synthesized compounds that have a true selectivity improvement of

2.8 kcal/mol (100× or 2 log units) divided by the expectation of a compound showing a true selectivity improvement of
2.8 kcal/mol had the same number of compounds that were synthesized been drawn randomly from the underlying unit

normal distribution. If no compounds were predicted to meet or surpass the synthesis rule, the speedup was assigned a

default value of 1.
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goal of potently inhibiting CDK9 and sparing CDK2. Based on amultiple sequence alignment of the 85 binding231

site residues identified in the kinase–ligand interaction fingerprints and structure (KLIFS) database [58, 59],232

CDK2 and CDK9 share 57% sequence identity (Supp. Table 1, Supp. Figure 1). For this CDK2/CDK9 data233

set [53], ligand 12c was cocrystallized with CDK2/cylin A (Figure 2A, left) and CDK9/cyclin T (Figure 2B, left),234

work that was published in a companion paper [60]. In both CDK2 and CDK9, ligand 12c forms relatively few235

hydrogen bond interactions with the kinase. Each kinase forms a pair of hydrogen bonds between the ligand236

scaffold and a hinge residue (C106 in CDK9 and L83 in CDK2) that is conserved across all of the ligands in this237

series. CDK9, which has slightly lower affinity for ligand 12c (Figure 2C, right), forms an interaction between238

the sulfonamide of ligand 12c and residue E107. On the other hand, CDK2 forms interactions between the239

sulfonamide of ligand 12c and residues K89 and H84. The congeneric series of ligands contains a number240

of difficult perturbations, particularly at substituent point R3 (Figure 2C, left). Ligand 12i also presented a241

challenging perturbation, moving the 1-(piperazine-1-yl)ethanone from themeta to para location.242

This congeneric series of ligands also highlights two of the challenges of working from publicly available243

data: First, the dynamic range of selectivity is incredibly narrow, with amean S (CDK9 - CDK2) of -0.65 kcal/mol,244

and a standard deviation of only 0.88 kcal/mol; the total dynamic range of this data set is 2.8 kcal/mol. Second,245

experimental uncertainties are not reported for the experimental measurements. This data set reported Ki246

values calculated from measured IC50, using the Km (ATP) for CDK2 and CDK9 and [ATP] from the assay using247

the Cheng-Prussof equations [61]. Thus, for this and subsequent sets of ligands, the random experimental248

uncertainty is assumed to be 0.3 kcal/mol based on previous work done to summarize uncertainty in249

experimental data, assuming there is no systematic experimental error. While Ki values are reported, these250

values are derived from IC50 measurements. A number of studies report on the reproducibility of intra-lab251

IC50 measurements. These values range from as low as 0.22 kcal/mol [62], from public data, to as high as252

0.4 kcal/mol [6], which was estimated from internal data at Abbott Laboratories. The assumed value of 0.3253

kcal/mol falls within this range, and agrees well with the uncertainty reported from Novartis for two different254

ligand series [63].255

An experimental data set of CDK2/ERK2 inhibitors shows greater selectivity was achieved for a256

pair of more distantly related kinases257

The CDK2/ERK2 data set from Blake et al. [54] also met the criteria described above, with the goal of258

developing a potent ERK2 inhibitor. Based on a multiple sequence alignment of the KLIFs binding site259

residues [58, 59], CDK2 and ERK2 share 52% sequence identity (Supp. Table 1, Supp. Figure 1), making them260

slightly less closely related than CDK2 and CDK9. While CDK2 and ERK2 both belong to the CMGC family of261

kinases, CDK2 is in the CDK subfamily, while ERK2 is in the MAPK subfamily.262

Crystal structures for both CDK2 (Figure 3A, top) and ERK2 (Figure 3B, top) were available with ligand 22263

(according to the manuscript numbering scheme) co-crystallized. Of note, CDK2 was not crystallized with264

cyclin A, despite cyclin A being included in the affinity assay reported in the paper [54].265

CDK2 in this crystal structure (4BCK) adopts a DFG-in conformation with the �C helix rotated out, away266

from the ATP binding site and breaking the conserved salt bridge between K33 and E51 (Supplementary267

Figure 2A), indicative of an inactive kinase [44, 64]. By comparison, the CDK2 structure from the CDK2/CDK9268

data set adopts a DFG-in conformation with the �C helix rotated in, forming the ionic bond between K33269

and E51 indicative of an active kinase, due to allosteric activation by cyclin A. While missing cyclins have270

caused problems for free energy calculations in prior work, it is possible that the fully active, cyclin-bound271

conformation contributes equally to binding affinity for all of the ligands in this series, and the high accuracy272

of the potency predictions (Figure 4, top left) is the result of fortuitous cancellation of errors.273

The binding mode for this series is similar between both kinases. There is a set of conserved hydrogen274

bonds between the scaffold of the ligand and the backbone of one of the hinge residues (L83 for CDK2 and275

M108 for ERK2). The conserved lysine (K33 for CDK2 and K54 for ERK2), normally involved in the formation276

of a ionic bond with the �C helix, forms a hydrogen bond with the scaffold (Figure 3A and 3B, bottom) in277

both CDK2 and ERK2. However, in the ERK2 structure, the hydroxyl engages a crystallographic water as well278

as N154 in a hydrogen bond network that is not present in the CDK2 structure. The congeneric ligand series279

features a single solvent-exposed substituent. This helps to explain the narrow distribution of selectivities,280

7 of 35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185132
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission— July 2, 2020

Figure 2. A CDK2/CDK9 data set illustrates selectivity optimization between closely-related kinases
Experimental IC50 data for a congeneric series of compounds binding to CDK2 and CDK9 was extracted from Shao et al.

[53] and converted to free energies of binding. (A) (left) Crystal Structure (4BCK) [60] of CDK2 (gray ribbon) bound to
ligand 12c (yellow spheres). Cyclin A is shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK2
binding site. (B) (left) Crystal structure of CDK9 (4BCI)[60] (gray ribbon) bound to ligand 12c (yellow spheres). Cyclin T is
shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK9 binding site. (C) (left) 2D structure of the
common scaffold for all ligands in congeneric ligand series 12 from the publication. (right) A table summarizing all R group
substitutions as well as the published experimental binding affinities and selectivities [53], derived from the reported Ki
as described inMethods.
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Figure 3. A CDK2/ERK2 data set illustrates selectivity optimization among more distantly related kinases
(A) (top) Crystal structure of CDK2 (5K4J) shown in gray cartoon and ligand 22 shown in yellow spheres. (bottom) 2D
interaction map of ligand 22 in the binding pocket of CDK2 (B) (top) Crystal structure of ERK2 (5K4I) shown in gray cartoon
with ligand 22 shown in yellow spheres. (bottom) 2D interaction map of ligand 22 in the binding pocket of ERK2. (C) (top)
Common scaffold for all of the ligands in the Blake data set [54], with R denoting attachment side for substitutions. (bottom)
Table showing R group substitutions and experimentally measured binding affinities and selectivities, derived from the

IC50 values as described in the methods section. Ligand numbers correspond to those used in the Blake publication [54].

with a mean selectivity of -1.74 kcal/mol (ERK2 - CDK2) and standard deviation of 0.56 kcal/mol; the total281

dynamic range of this data set is 2.2 kcal/mol. While the small standard deviation suggests that selectivity is282

difficult to drive with R-group substitution, the total dynamic range demonstrates that R-group substitutions283

can provide significant selectivity enhancements.284

FEP+ calculations show smaller than expected errors for ΔSij predictions285

Three replicates of FEP+ calculations were run on each target for both experimental data sets described286

above. The FEP+ predictions of the relative free energy of binding between ligands i and a reference287

compound (ref) for each target (ΔΔGi,ref,target) showed good accuracy and consistent results for all three288

replicates. The results for replicate 1 are reported in Figure 4 for both the CDK2 and ERK2 data set (bottom)289

and the CDK2/CDK9 data set (top), ΔΔGi,ref ,target is defined for each ligand i using a consistent reference290

compound within data sets.291

ΔΔGi,ref,target = ΔGi,target − ΔGreference, target (4)

The reference compounds (Compound 6 for CDK2/ERK2 and Compound 1a for CDK2/CDK9) were selected292

because they were the initial compounds from which the reported synthetic studies were started. Replicate293

1 of the CDK2/ERK2 calculations is shown on the bottom of Figure 4, with an RMSE of 0.951.250.63 and 0.97
1.22
0.70294

kcal/mol to CDK2 and ERK2, respectively. The RMSE reported here is calculated for all of the ΔΔGi,ref ,target that295

were predicted. All of the CDK2 and ERK2 ΔΔGi,ref ,targets were predicted within 1 log unit of the experimental296

value. The change in selectivity (ΔSij ) predictions show an RMSE of 1.411.751.07 kcal/mol, with all the confidence297

intervals of the predictions falling within 1 log unit of the experimental values (Figure 4, top right panel). This298

was consistent across all three replicates of the calculations (Supp. Figure 6). Despite the low RMSE for the299
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selectivity predictions, the narrow dynamic range and high uncertainty from experiment and calculation300

makes it difficult to determine which compounds are more selective than others.301

Replicate 1 of the CDK2/CDK9 calculations are shown in the top panel of Figure 4. The CDK2 and302

CDK9 data sets show higher errors in ΔΔGi,ref,target predictions, with an RMSE of 1.151.590.67 and 2.10
2.65
1.47 kcal/mol303

respectively. This higher RMSE is driven by the reference compound, (Compound 1a) being poorly predicted,304

particularly in CDK9. There are a number of outliers that fall outside of 1 log10 unit from the experimental305

value for CDK9. While the higher per target errors make predicting potency more difficult, the selectivity306

predictions show a lower than expected RMSE of 1.371.661.04 kcal/mol. This suggests that some correlation in the307

error is leading to fortuitous cancellation of the systematic error, leading to more accurate than expected308

predictions of ΔSij . These results were consistent across all three replicates of the calculation (Supp. Figure309

4).310

Correlation of systematic errors accelerates selectivity optimization311

To quantify the correlation coefficient (�) of the systematic error between targets, we built a Bayesian312

graphical model to separate the systematic error from the statistical error and quantify our confidence313

in estimates of � (described in depth in Methods). Briefly, we modeled the absolute free energy (G) of314

each ligand in each thermodynamic phase (ligand-in-complex and ligand-in-solvent, with G determined up315

to an arbitrary additive constant for each phase) as in Equation 15. The model was chained to the FEP+316

calculations by providing the ΔGcalc
phase,ij,target for each edge from the FEP+ maps (where j is now not necessarily317

the reference compound) as observed data, as in Equation 17. As in Equation 19, the experimental data was318

modeled as a normal distribution centered around the true free energy of binding (ΔGtrue
i,target) corrupted by319

experimental error, which is assumed to be 0.3 kcal/mol from previous work done to quantify the uncertainty320

in publicly available data [6]. ΔG values derived from reported IC50s or Kis, as described in the methods321

section, were treated as data observations (Equation 19) and the ΔGtrue
i,target was assigned a weak normal prior322

(Equation 20).323

The correlation coefficient � was calculated for each Bayesian sample from the model posterior accord-324

ing to equation 22. The CDK2/CDK9 calculations show strong evidence of correlation, with a correlation325

coefficient of 0.720.830.58 (Figure 5A, right) for replicate 1. The rest of the replicates showed strong agreement326

(Supp. Figure 4). The joint marginal distribution of errors is strongly diagonal, which is expected based on327

the value for � (Figure 4A, left).328

The joint marginal distribution of the error (�) for each target is more diagonal than symmetric, which is329

expected for cases in which � is 0.4 (Supp. Figure 3). To quantify the expected speedup of selectivity with330

this level of correlation in the systematic errors for CDK2/CDK9, we first calculated the per target systematic331

error �
sys,ij,target

by taking the mean of the absolute value of �ij,target where j is the reference compound 1a.332

Combining these estimates for the correlation coefficient (�) and the per target systematic errors (�
sys,ij,target

),333

we can compute �
selectivity

and the expected speedup in the regime of infinite sampling effort where there is334

no statistical error when the number of compounds scored and synthesized is unlimited. The high correlation335

in errors for the CDK2/CDK9 calculations leads to a speedup of 3x for 1 log10 unit selectivity optimization and336

10x for 2 log10 unit selectivity optimization (Figure 4A, right), despite the much high per target systematic337

errors (�
sys,ij,target

).338

The correlation coefficient � for replicate 1 of the CDK2/ERK2 calculations was quantified to be 0.440.700.12339

(where the lower and upper values indicate a 95% confidence interval), indicating that the errors are340

moderately correlated between ERK2 and CDK2 (Figure 5B, right); this was consistent with the distribution341

for � in replicate 3 (Supp. Figure 7), while the confidence interval of � for replicate 2 is much wider, indicating342

the correlation is weak.343

Considering the speedup model where the number of compounds scored and synthesized is unlimited,344

the modest correlation and low per target systematic errors for the CDK2/ERK2 calculations allow for a345

predicted 4–5x speedup for 1 log10 unit selectivity optimization, and a 30–40x speedup for 2 log10 unit346

selectivity optimization (Figure 5B, right).347

Using the correlation coefficient (�), �
stat,ij,target

, and �
sys,ij,target

quantified from the Bayesian model for each348

set of calculations, we can now calculate the y-axis error bars for the ΔS panels of Figure 4 according to the349
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Figure 4. Selectivity predictions suggest correlation in systematic error
ΔΔGi,ref,target and ΔSi,ref predictions for CDK2/CDK9 (top) from the Shao data sets and CDK2/ERK2 from the Blake data sets
(bottom). The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point corresponds
to a transformation between a ligand i to a set reference ligand (ref) for a given target. All values are shown in units of
kcal/mol. The horizontal error bars show to the �ΔΔGexpij based on the assumed uncertainty of 0.3 kcal/mol[6, 63] for each

ΔGexpi . We show the estimated statistical error (�stat,ij,target) as vertical blue error bars, which are one standard error. For
selectivity, the errors were propagated under the assumption that they were completely uncorrelated. �stat,ij,target was
estimated by calculating the standard deviation of ΔΔGFEPij, target from the Bayesian model described in depth inMethods,
where j is the reference compound. The black line indicates agreement between calculation and experiment, while the
gray shaded region represent 1.36 kcal/mol (or 1 log10 unit) error. The mean unsigned error (MUE) and root-mean squared

error (RMSE) are shown on each plot with bootstrapped 95% confidence intervals.
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proposed �
selectivity

equation (Eq 3). Shown in Supplemental Figure 9, we can see that �
selectivity

accounts for350

most of the disagreement between the predicted ΔSij and the experimental ΔSij .351

Expending more effort to reduce statistical error can be beneficial in selectivity optimization352

Up to this point, we have considered only systematic error in quantifying the speedup free energy calculations353

can enable for selectivity optimization, by assuming enough sampling is done to reduce the statistical error354

for each target to zero. To begin understanding how statistical error impacts this speedup, we modified355

the model of speedup by additionally considering the per target statistical error (�
stat, target

), which we define356

in Equation 7 such that at the baseline effort, N , �
stat,ij,target

is 0.2 kcal/mol. In this definition, it takes 4×357

the sampling, or effort, to reduce statistical error by a factor of 2×. We assume that statistical error is358

uncorrelated when propagating to two targets, and that �
sys,ij,target

is ≈ 1.0 kcal/mol for both targets [4, 62].359

As shown in Figure 6, expending effort to reduce �
stat,ij,target

when � is less than 0.5 does not change the360

expected speedup for the 100× selectivity threshold in meaningful way, suggesting that it is not worth361

running calculations longer than the default protocol in this case. However, when � > 0.5, the curves do start362

to separate, particularly the 1/4×, 1×, and 4× effort curves. This suggests that when the correlation is high,363

running longer calculations can net improvements in selectivity optimization speed. Interestingly, the 16×,364

48×, and∞ effort curves do not differ greatly from the 4× effort curve, indicating that there are diminishing365

returns to running longer calculations.366

The estimated correlation coefficient is robust to Bayesian model assumptions367

In order to better understand the statistical error in our calculations, we performed three replicates of our368

calculations, and calculated the standard deviation of the cycle closure corrected ΔΔG for each edge of369

the map, and compared that value to the cycle closure errors and Bennett errors reported for each edge370

(Supp. Figure 8). For each set of calculations, the standard deviation suggests that the statistical error is371

between 0.1 and 0.3 kcal/mol, which is in good agreement with the reported Bennett error (Supp. Figure 8).372

However, hysteresis in the closed cycles in the FEP map as reflected by the cycle closure error estimates373

indicate much larger sampling errors than those estimated by the Bennett method or standard deviations374

of multiple runs, suggesting that both the Bennett errors and standard deviation of multiple replicates are375

underestimating the statistical error for these calculations. Based on this observation, we include a scaling376

parameter � in the Bayesian error model (Eq. 16) to account for the BAR errors underestimating the cycle377

closure statistical uncertainty. We also considered using a distribution with heavier tails, such as a Student’s378

t-distribution, but found the quantification of the correlation coefficient � insensitive to the use of either a379

scaling parameter or heavier-tailed distributions (Supp. Fig. 10).380

Discussion and Conclusions381

S is a useful metric for selectivity in lead optimization382

There are a number of different metrics for quantifying the selectivity of a compound [55], which look at383

selectivity from different views depending on the information trying to be conveyed. One of the earliest384

metrics was the standard selectivity score, which conveyed the number of inhibited kinase targets in a broad385

scale assay divided by the total number of kinases in the assay [65]. The Gini coefficient is a method that386

does not rely on any threshold, but is highly sensitive to experimental conditions because it is dependent on387

percent inhibition [66]. Other metrics take a thermodynamic approach to kinase selectivity and are suitable388

for smaller panel screens [67, 68]. Here, we propose a more granular, thermodynamic view of selectivity389

that is straightforward to calculate using free energy methods: the change in free energy of binding for a390

given ligand between two different targets (S). S is a useful metric of selectivity in lead optimization once a391

single, or small panel, of off-targets have been identified and the goal is to use physical modeling to either392

improve or maintain selectivity within a lead series.393

Systematic error correlation can accelerate selectivity optimization394

We have demonstrated, using a simple numerical model that assumes unlimited synthetic and computational395

resources, the impact that free energy calculations with even weakly correlated systematic errors can have on396
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Figure 5. Correlation in systematic errors between targets can significantly accelerate selectivity optimization
(A, left) The joint posterior distribution of the prediction errors for the more distantly related CDK2 (x-axis) and CDK9
(y-axis) from the Bayesian graphical model. (A, right) Speedup in selectivity optimization (y-axis), which estimates the
reduction in compounds that must be synthesized to achieve a target selectivity when aided by free energy calculations,

using the model where the number of compounds scored and synthesized is unlimited, as a function of correlation

coefficient (x-axis). To calculate �selectivity, we calculate the per target systematic error (�sys,ij,target) by taking the mean of
�ij,target where j is the reference compound 1a. The posterior marginal distribution of the correlation coefficient (�) is
shown in gray, while the expected speedup is shown for 100× (green curve) and 10× (yellow curve) selectivity optimization.
The inserted box shows the mean and 95% confidence interval for the correlation coefficient. The marginal distribution of

speedup is shown on the right side of the plot for both 100× (green) and 10× (yellow) selectivity optimization speedups.
(B) As above, but for the more closely related CDK2/ERK2 selectivity data set using compound 6 as the reference.
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Figure 6. Reducing statistical uncertainty when systematic error correlation is high improves the speedup inselectivity optimization achievablewith free energy calculations. (left) The speedup in selectivity (Y-axis) as a function
of correlation coefficient (X-axis). Each curve represents a different per target statistical error (�stat,ij,target) for 10× (1 log10
unit) (A) and 100× (2 log10 unit) (B) thresholds (right) Table with the per target statistical error (�stat,ij,target), kcal/mol)
corresponding to each curve on the left and a rough estimate of the generic amount of computational effort it would take

to achieve that statistical uncertainty.
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speeding up the optimization of selectivity in small molecule kinase inhibitors. While the expected speedup is397

dependent on the per target systematic error of the method (�
sys,ij,target

), the speedup is also highly dependent398

on the correlation of errors made for both targets. Unsurprisingly, free energy methods have greater impact399

as the threshold for selectivity optimization goes from 10× to 100×. While 100× selectivity optimization is400

difficult to achieve, the expected benefit from free energy calculations is also quite high, with speedups of401

one or two orders of magnitude possible. In a more realistic scenario, where the number of compounds402

scored and synthesized is limited by resources, we have demonstrated using the same numerical model that403

more stringent synthesis rules results in increased speedup from free energy calculations. This holds true404

across different correlation coefficients (�), provided enough compounds are scored. As our model shows, it405

is possible for stringent synthesis rules to provide benefits similar to operating with high systematic error406

correlation coefficients (�).407

Two pairs of kinase test systems suggest systematic errors can be correlated408

To quantify the correlation of errors in two example systems, we gathered experimental data for two409

congeneric ligand series with experimental data for CDK2 and ERK2, as well as CDK2 and CDK9. These410

data sets, which had crystal structures for both targets with the same ligand co-crystallized, exemplify the411

difficulty in predicting selectivity. The dynamic range of selectivity for both systems is very narrow, with most412

of the perturbations not having a major impact on the overall selectivity achieved. Further, the data was413

reported without reliable experimental uncertainties, which makes quantifying the errors made by the free414

energy calculations difficult. This issue is common when considering selectivity, as many kinase-oriented415

high throughput screens are carried out at a single concentration and not highly quantitative.416

The CDK9 calculations contained an outlier, compound 12h, that drove much of the prediction error for417

that set. Compound 12e (R1 = F) is the most potent against CDK9 of the compounds in with a sulfonamide at418

R3 (Figure 2). The addition of a single methyl group decreases the potency against CDK9 (compound 12g)419

and while only slightly changing the affinity for CDK2. However, adding on another methyl group (compound420

12h) results in an order of magnitude decrease in Ki for both CDK9 and CDK2. Crystal structures for both421

kinases show that R1 points into a pocket formed by the backbone, and the sidechains of a Valine and422

Phenylalanine. While ethyl at R1 in compound 12h is bulkier, the magnitude of the decrease in affinity for423

both kinases is larger than might be expected, given that the pocket suggests an ethyl group would be well424

accommodated in terms of fit and the hydrophobicity of the sidechains. For both kinases, the free energy425

calculations predict that this addition should improve the potency, suggesting that it is possible that the426

model is missing a chemical detail that might explain the trend seen in the experimental data. We expect427

that these types of errors, which would be troubling when predicting potency alone, will drive the correlation428

of systematic errors and fortuitously cancel when predicting selectivity.429

Despite CDK2 and ERK2 being more distantly related than CDK2 and CDK9, the calculated correlation in430

the systematic error for two of the replicates suggests that fortuitous cancellation of errors may be applicable431

in a wider range of scenarios than closely related kinases within the same family. However, the confidence432

interval of the correlation is quite broad, including 0 for the lower bound for the third replicate, suggesting433

that errors for more distantly related proteins will have only moderate, if any, correlation.434

Reducing statistical error is beneficial when systematic errors are correlated435

In order to better understand if there are situations where it is beneficial to run longer calculations to436

minimize statistical error to achieve a larger speedup in the synthesis of selective compounds, we built437

a numerical model of the impact of statistical error in the context of different levels of systematic error438

correlation. Our results suggest that unless the correlation coefficient � > 0.5 for the two targets of interest,439

there is not much benefit in running longer calculations. However, when the systematic error is reduced440

by correlation, longer calculations can help realize large increases in speedup to achieve selectivity goals.441

Keeping a running quantification of � for free energy calculations as compounds aremade and the predictions442

can be tested will allow for decisions to be made about whether running longer calculations is worthwhile.443

It will also allow for an estimate of �selectivity, which is useful for estimating expected systematic error for444

prospective predictions. Importantly, we expect that correlation will be modeling protocol dependent and445
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any changes to the way the system is modeled over the course of discovery program are expected to change446

the observed correlation in the systematic error.447

Larger data sets with a wide range of protein targets will enable future work448

The data sets gathered here were limited by the total number of compounds, the small dynamic range for449

selectivity (S), and the lack of reliable experimental uncertainties. The small size of the data set makes it450

difficult to draw broad conclusions about the correlation in systematic errors. Understanding the degree of451

correlation a priori based on structural or sequence similarity requires study on a larger range of targets452

than the two pairs presented in this study. A larger data set that contained many protein targets, crystal453

structures, and quantitative binding affinity data would be ideal to draw conclusions about the broader454

prevalence of systematic error correlation.455

This work demonstrates that correlation in the systematic errors can allow free energy calculations to456

facilitate significant speedups in selectivity optimization for drug discovery projects. This is particularly457

important in kinase systems, where considering multiple targets is an important part of the development458

process. The results suggest that free energy calculations can be particularly helpful in the design of kinase459

polypharmacological agents, especially in cases where there is high correlation in the systematic errors460

between multiple targets.461

Methods462

Numerical model of selectivity optimization speedup463

To model the impact correlation of systematic error would have on the expected uncertainty for selectivity464

predictions, �
selectivity

was calculated using Equation 3 for 1000 evenly spaced values of the correlation465

coefficient (�) from 0 to 1, for a number of combinations of per target systematic errors (�
sys,ij,1

and �
sys,ij,2

). In466

the regime of infinite sampling and zero statistical error, the second term reduces to zero.467

�
selectivity

=
√

�2
sys,ij,1

+ �2
sys,ij,2

− 2� �
sys,ij,1

�
sys,ij,2

+ �2
stat,ij,1

+ �2
stat,ij,2

(3)

The speedup in selectivity optimization that could be expected from using free energy calculations of a468

particular per target systematic error (�
sys,ij,target

) was quantified as follows using NumPy (v 1.14.2). An original,469

true distribution for the change in selectivity of 200 000 000 new compounds proposed with respect to a470

reference compound was modeled as a normal distribution centered around 0 with a standard deviation of 1471

kcal/mol. This assumption was made on the basis that the majority of selectivity is driven by the scaffold, and472

R group modifications will do little to drive changes in selectivity. The 1 kcal/mol distribution is supported by473

the standard deviations of the selectivity in the experimental data sets referenced in this work, which are all474

less than, but close to, 1 kcal/mol.475

In this model, we suppose that each of proposed compound is triaged by a free energy calculation and476

only proposed compounds predicted to increase selectivity by ΔS
ij
≥1.4 kcal/mol (1 log10 unit) with respect477

to a reference compound would be synthesized. Based on reported estimates in the literature, we presume478

that relative free energy calculations have a per-target systematic error �
sys,ij,target

≈1 kcal/mol [4], and explore479

the impact of the correlation coefficient � governing the correlation of these predictions between targets.480

The standard error in predicted selectivity, �
selectivity

, is given by Equation 3. When sampling is infinite and481

�
stat,ij,target

is zero, �
selectivity

is driven entirely by the systematic error component (�
sys,ij,target

), resulting in the482

error in predicted change in selectivity ΔSij modeled as a normal distribution centered around 0 with a483

standard deviation of �
sys,ij,target

and added to the "true" ΔSij ,484

ΔS
ij, predicted

= ΔS
ij,true

(


true
(� = 0, �2 = 1)

)

+ ΔS
systematic error

(


error

(� = 0, �2
sys,ij,target

(�)
)

(5)

We ignore the potential complication of finite experimental error in this thought experiment, presuming the485

experimental uncertainty is sufficiently small as to be negligible.486

The speedup in synthesizing molecules that reach this 10× selectivity gain threshold is calculated, as a487

function of �, as the ratio of the number of compounds that exceed the selectivity threshold in the case that488
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molecules predicted to fall below this threshold by free energy calculations were triaged and not synthesized,489

divided by the number of compounds that exceeded the selectivity threshold without the benefit of free490

energy triage. This process was repeated for a 100× (2.8 kcal/mol, 2 log10 unit) selectivity optimization and491

50 linearly spaced values of the correlation coefficient (�) between 0 and 1, for four values of �
selectivity

, using492

a sample size of 4×107 compounds.493

The abovemodel assumes that the number of compounds scored and synthesized is essentially unlimited.494

To assess the impact these methods might have on real drug discovery projects, where the number of495

compounds scored and synthesized are limited by computational and chemistry resources, we altered496

the above model to consider the number of compounds scored, the number of compounds triggered for497

synthesis, and the threshold a compound needed to reach in order to be considered for synthesis.498

We repeated the mode detailed above, this time scoring only the following numbers of compounds: 10,499

50, 100, 200, 500, the range from 1000 to 10000 in steps of 1000, and the range from 10000 to 100 000 in500

steps of 2000. Compounds were drawn from a true distribution of ΔSij,true
(


true
(� = 0, �2 = 1)

)

and triaged501

using a free energy method as detailed above with a per-target systematic error (�
sys,ij,target

) of 1 kcal/mol.502

The top predicted compounds that meet or surpass a synthesis rule, up to a maximum of 10 compounds,503

are selected for synthesis. Here, we consider synthesis rules of 100×, 500× and 1000× when trying to design504

100× (2.8 kcal/mol, 2 log10 unit) improvements in selectivity. The speedup was calculated as the number of505

synthesized compounds whose ΔSij,true reaches the desired 100× threshold divided by the expected value506

(Eselective) for a selective compound given the number of synthesized compounds. This expectation can be507

calculated as,508

Eselective = P (ΔSij > threshold |true) ∗ nsynthesized (6)

Where P (ΔSij > threshold |true) is the probability ΔSij,true for some compound is better than a particular509

selectivity threshold given the distribution of ΔSij,true
(

true(� = 0, �2 = 1)
)

for 100 000 000 compounds, and510

n
synthesized

is the number of compounds synthesized. If no compounds were predicted to meet or surpass511

the synthesis rule, the speedup was assigned a default value of 1. We performed 1000 replicates of each512

condition and report the mean and 95 % CI in Figure1D.513

Numerical model of impact of statistical error on selectivity optimization514

To model the impact of finite statistical error in the alchemical free energy calculations, a similar scheme was515

used with the following modifications: Each proposed compound was triaged by a free energy calculation516

with a per target systematic error (�
sys,ij,target

) of 1.0 kcal/mol [4] and a specified correlation coefficient �. A517

�
selectivity

was calculated according to Equation 3, this time considering the statistical terms as non-negligible.518

The per target statistical error (�
stat,ij,target

) was defined as,519

�
stat,ij,target

=
�
stat,base

√

N
(7)

where N is the relative effort put into running sampling the calculation and �
stat,base

is such that when N = 1,520

�
stat,ij,target

= 0.2 kcal/mol. The statistical error is propagated assuming it is uncorrelated, as independent sets521

of calculations are used for each target, giving us the second set of terms in 3. This gives an updated model522

for the error in predicted change in selectivity ΔSij . The systematic and statistical errors were modeled as523

Gaussian noise added to the true distribution,524

ΔS
ij,predicted

= ΔS
ij,true

(


true
(� = 0, �2 = 1)

)

+ ΔS
systematic error

(


systematic

(� = 0, �2
sys,ij,target

(�))
)

(8)

+ ΔS
statistical error

(


statistical

(� = 0, �2
stat,ij,target

)
)

Any compound predicted to have an improvement in selectivity of above the threshold (either 1.4 kcal/mol525

(1 log10 units) or 2.8 kcal/mol (2 log10 units)) would then be made and have its selectivity experimentally526

measured, using an experimental method with perfect accuracy. The speedup value for each value of � is527

calculated as previously described.528
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Binding Site Similarity analysis529

To quantify the similarity between the different kinase pairs, a structure-informed binding site sequence530

comparison was performed. In the KLIFS database, the binding site of typical human kinases is defined531

by 85 residues, comprising known kinase motives (DFG, hinge, G-loop, aC-helix, ...), which cover potential532

interactions with type I-IV inhibitors [58, 59]. KLIFS provides a multiple sequence alignment in which each533

kinase sequence is mapped to these 85 binding site residues. This mapping was used to calculate the534

sequence identify between the three kinases CDK2, CDK9, and ERK2 used in this study (Supp. Figure 1 and535

Supp. Table 1). The score shows the percentage of identical residues between two kinases with respect to536

the 85 positions.537

Extracting the binding free energy ΔG from reported experimental data538

Ki values were derived from IC50 measurements reported for the ERK2/CDK2 data set (Figure 3), assuming539

Michaelis-Menten binding kinetics for an ATP-competitive inhibitor,540

Ki =
IC50
1 + [S0]

Km

(9)

Where the Michaelis-Menten constant for ATP (Km (ATP)) is much larger than the initial concentration of ATP,541

S0, so that IC50 ≈ Ki.542

These Ki values were then used to calculate a ΔG (Equation 10),543

ΔG = −kBT lnKi (10)

Here, kB is the Boltzmann constant and T is absolute temperature (taken to be room temperature, T ∼ 300K).544

For the CDK2/CDK9 data set, the authors note that the assumption Km (ATP) ≫ S0 does not hold, and545

report Kis derived from their IC50 measurements using the Km (ATP) for each kinase, as well as the S0 from546

their assay. These values were then converted to ΔG using Equation 10. For both data sets, these derived547

ΔG were used to calculate ΔΔG between ligands for each kinase target.548

As mentioned above, the assumption that Km (ATP)≫ S0 may not always hold, and changes in IC50 may be549

driven by factors other than changes in ligand binding affinity. However, these assumptions have been used550

successfully to estimate relative free energies previously [62, 69]. Further, data was taken from the same lab551

and assay for each target. By using assays with the same kinase construct and ATP concentration, the relative552

free energies (ΔΔGij ) should be well determined for compounds within the assay. Even if the absolute free553

energies (ΔGi) are off due to uncertainties in Km (ATP) or S0, they will be off by the same constant, which will554

cancel when calculating ΔΔGij .555

Structure Preparation556

Structures from the Shao [53] (CDK2/CDK9), Hole [60] (CDK2/CDK9), and Blake [54] (CDK2/ERK2) papers were557

downloaded from the PDB [70], selecting structures with the same co-ligand crystallized.558

For the Shao (CDK2/CDK9) data set, PDB IDs 4BCK (CDK2) and 4BCI (CDK9) were selected, which have559

ligand 12c cocrystallized. For the Blake data set (ERK2/CDK2), 5K4J (CDK2) and 5K4I (ERK2) were selected,560

cocrystallized with ligand 21. The structures were prepared using Schrodinger’s Protein Preparation Wiz-561

ard [71] (Maestro, Release 2017-3). This pipeline modeled in internal loops and missing atoms, added562

hydrogens at the reported experimental pH (7.0 for the Shao data set, 7.3 for the Blake data set) for both the563

protein and the ligand. All crystal waters were retained. The ligand was assigned protonation and tautomer564

states using Epik at the experimental pH±2, and hydrogen bonding was optimized using PROPKA at the565

experimental pH±2. Finally, the entire structure was minimized using OPLS3 with an RMSD cutoff of 0.3Å.566

Ligand Pose Generation567

Ligands were extracted from the publication entries in the BindingDB as 2D SMILES strings. 3D conformations568

were generated using LigPrep with OPLS3 [4]. Ionization state was assigned using Epik at experimental pH±2.569

Stereoisomers were computed by retaining any specified chiralities and varying the rest. The tautomer570

and ionization state with the lowest Epik state penalty was selected for use in the calculation. Any ligands571

predicted to have a positive or negative charge in its lowest Epik state penalty was excluded, with the572
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exception of Compound 9 from the Blake data set. This ligand was predicted to have a +1 charge for its573

lowest state penalty state. The neutral form the ligand was include for the sake of cycle closure in the FEP+574

map, but was ignored for the sake any analysis afterwards. Ligand poses were generated by first aligning575

to the co-crystal ligand using the Largest Common Bemis-Murcko scaffold with fuzzy matching (Maestro,576

Release 2017-3). Ligands that were poorly aligned or failed to align were then aligned using Maximum577

Common Substructure (MCSS). Finally, large R-groups conformaitons were sampled with MM-GBSA using a578

common core restraint, VSGB solvation model, and OPLS3 force field. No flexible residues were defined for579

the ligand.580

Free Energy Calculations581

The FEP+ panel (Maestro, Release 2017-3) was used to generate perturbation maps. FEP+ calculations582

were run using the FEP+ panel from Maestro release 2018-3 in order to take advantage of the newest force583

field (OPLS3e) parameters available at the time. Any missing ligand torsions were fit using the automated584

FFbuilder protocol [7]. Custom charges were assigned using the OPLS3e force field using input geometries,585

according to the automated FEP+ workflow in Maestro Release 2018-3. Neutral perturbations were run for586

15 ns per replica, using an NPT ensemble and water buffer size of 5Å. The SPC water model was used. A587

GCMC solvation protocol was used to sample buried water molecules in the binding pocket prior to the588

calculation, which discards any retained crystal waters.589

Statistical Analysis of FEP+ calculations590

To quantify the overall errors in the FEP+ calculations, we computed the mean unsigned error (MUE),591

MUE =

∑n
0 ∣ ΔΔG

calc

i,ref,target
− ΔΔGexp

i,ref,target
∣

n
(11)

and the root mean squared error (RMSE)592

RMSE =

√

∑n
0(ΔΔ G

calc

i,ref,target
− ΔΔ Gexp

i,ref,target
)2

n
(12)

MUE and RMSE were computed for ΔΔGij,target. For each ligand i, ΔΔGi,ref ,target is defined where ref is a593

reference compound.594

ΔΔGi,ref,target = ΔGi,target − ΔGreference, target (13)

For the CDK2/CDK9 data set, compound 1a was used as the reference compound, as it was the first595

compound from which the others in the series were derived. For the CDK2/ERK2 data set, compound 6 was596

used as the reference compound, since it was the compound from which the investigation was launch. A597

metabolite of compound 6 (not included in the data set here) was used as the starting compound from598

which the rest were derived. To account for the finite ligand sample size, we used 10 000 replicates of599

bootstrapping with replacement to estimate 95% confidence intervals. The code used to bootstrap these600

values is available on GitHub [https://github.com/choderalab/selectivity].601

To compute the per-target statistical error (�
stat,ij,target

) for each i,ref pair of ligands, we used the standard602

deviation of ΔΔGFEPij, target, where j is the reference compound, from the Bayesian model described in depth603

below in the Methods section. To compute the per target systematic error (�
sys,ij,target

), we calculated the604

mean of �ij,target, where j is the reference compound, described in equation 21 in the Bayesian Model section605

of theMethods.606

Quantification of the correlation coefficient �607

To quantify �, we built a Bayesian graphical model using pymc3 3.5 [72] and theano 1.0.3 [73]. All code for608

this model is available on GitHub [https://github.com/choderalab/selectivity].609

For each phase (complex and solvent), the prior for the absolute free energy (G) of ligand i (up to an610

arbitrary additive constant for each thermodynamic phase, ligand-in-complex or ligand-in-solvent), was611

treated as a normal distribution (Equation 15).612

Gpℎase
i,target ∼ (� = 0, � = 25.0 kcal/mol) (14)
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To improve sampling efficiency, for each phase, one ligand was chosen as the reference, and pinned to an613

absolute free energy of G = 0, with a standard deviation of 1 kcal/mol.614

Gpℎase
1,target ∼ (� = 0, � = 1.0 kcal/mol) (15)

For each edge of the FEP map (ligand i –> ligand j), there is a contribution from dummy atoms, that was615

modeled as in Equation 16. Note that here, unlike what was done in Figure 4, ligand j is not necessarily a616

reference compound.617

ci,j ∼ (� = 0, � = 25.0 kcal/mol) (16)

The model was conditioned by including data from the FEP+ calculation.618

ΔGcalc
phase, ij, target ∼ (Gphasej,target − G

phase

i,target, ��
2ΔGBAR

phase, ij, target) (17)

where �2ΔGBAR
phase, ij, target is the reported BAR uncertainty from the calculation, and ΔG

calc

phase, ij, target is the BAR619

estimate of the free energy for the perturbation between ligands i and j in a given phase. � is a scaling620

parameter shared by all ΔGcalc
phase, ij, target for each target. Such scaling is necessary to account for the BAR621

statistical uncertainty underestimating cycle closure statistical uncertainty of our calculations, shown by622

Supp. Figure 8.623

From this, we can calculate the ΔGFEPi, target for each ligand and target,624

ΔGFEPi, target = G
complex

i,target − G
solvent

i,target (18)

From ΔGFEPi, target, we calculated ΔΔG
FEP

ij, target for each pair of ligands, filtering out pairs where i and j are the625

same ligand and where the reciprocal was already included.626

The experimental binding affinity was treated as a true value (ΔGtruei,target) corrupted by experimental627

uncertainty, which is assumed to be 0.3 kcal/mol [6]. There are a number of studies that report on the628

reproducibility and uncertainty of intra-lab IC50 measurements, ranging from as small as 0.22 kcal/mol [62]629

to as high as 0.4 kcal/mol [6]. The assumed value falls within this range and is in good agreement with the630

uncertainty reported from multiple replicate measurements in internal data sets at Novartis [63].631

The values reported in the papers (ΔGobsi,target) were treated as observations from this distribution (Equa-632

tion 19),633

ΔGobsi,target ∼ (� = ΔGtrue
i,target, � = 0.3 kcal/mol) (19)

ΔGtruei,target was assigned a weak normal prior, as in Equation 20,634

ΔGtruei,target = (� = 0, � = 50 kcal/mol) (20)

ΔΔGtrueij, target for each pair of ligands was calculated from ΔGtruei,target, filtering out pairs where i and j are the635

same ligand and where the reciprocal was already included as above.636

The error for a given ligand was calculated as637

�ij,target = ΔΔGFEPij, target − ΔΔG
true

ij, target (21)

From these � values, we calculated the correlation coefficient, �, from the sampled errors for the finite set of638

molecules for which measurements were available,639

� =
cov(�

target1
, �
target2

)
�� target 1 �� target 2

(22)

where �� target 2 is the standard deviation of �ij,target.640

To quantify � from these calculations, the default NUTS sampler with jitter+adapt_diag initialization,641

3 000 tuning steps, and the default target accept probability was used to draw 20 000 samples from the642

model.643
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Calculating the marginal distribution of speedup644

To quantify the expected speedup from the calculations we ran, we utilized 104 replicates of the scheme645

detailed above to calculate the speedup given parameters �, �
sys,ij,1

, and �
sys,ij,2

, in the regime of infinite646

effort and zero statistical error. Using Numpy 1.14.2, � was drawn from a normal distribution with the647

mean and standard deviation from the posterior distribution of � from the Bayesian Graphical model. The648

per-target systematic errors, �
sys,ij,1

and �
sys,ij,2

, were estimated from the mean of the absolute value of �
ij,1

649

and �
ij,2
, which are the magnitude of errors from the Bayesian graphical model. �

selectivity
was calculated650

using Equation 3. 106 molecules were proposed from true normal distribution, as above. The error of the651

computational method was modeled as in Equation 5.652
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Data Availability653

All curated starting structures, FEP+ results, and data analysis scripts and notebooks are available on GitHub:654

https://github.com/choderalab/selectivity655
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Supplemental Information859

Supplemental Table. 1. The CDK2 and CDK9 binding sites are more similar than the CDK2 and ERK2 binding sites
Sequence based similarity of the binding sites based on multiple sequence alignments of the 85 residues annotated by

the KLIFS. Upper triangle shows the ratio of sequence identity, lower triangle, the number of matching residues out of 85

binding site residues. database [58, 59]

Kinase CDK2 CDK9 ERK2

CDK2 1.0 0.57 0.52

CDK9 47 1.0 0.52

ERK2 43 43 1.0

Supplemental Figure. 1. Sequence identity of the kinase pairs by binding site motif
Binding site sequence identity for CDK2/CDK9 and CDK2/ERK2 by binding site motif, as defined by the KLIFs database [58,

59]. Identical residues between the pairs are shown in blue.
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Supplemental Figure. 2. CDK2 adopts an inactive conformation in the crystal structure used for the CDK2/ERK2calculations
(A) CDK2 (5K4J) adopts an inactive conformation in the absence of its cyclin. The DFG motif is in a DFG-in conformation,
with the �C helix rotated outwards, breaking the salt bridge between K33 and E51 (Uniprot numbering) that is typically a
marker of an active conformation. Notably, the Phe in the DFG motif does not completely form the hydrophobic spine due

to the rotation of the �C helix [74] (B) The CDK2 structure used for the CDK2/CDK9 calculations (4BCK) contains cyclin A
and adopts a DFG-in/�C helix-in conformation that forms the salt bridge between K33 and E51. This is typically indicative
of a fully active kinase [44, 64].

Supplemental Figure. 3. Correlation coefficient � controls the shape of the joint marginal distribution of errors
As � increases, the joint marginal distribution of errors become more diagonal. Each panel shows 10000 samples drawn
from a multivariate normal distribution centered around 0 kcal/mol, where the per target error was set to 1 kcal/mol and

� to the value indicated in bold over the plot.
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Supplemental Figure. 4. Each replicate of the CDK2/CDK9 calculations yields a consistent RMSE and MUE
Three replicates of the CDK2/CDK9 calculations with different random seeds, but otherwise the same input structures,

files, and parameters. The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data

point corresponds to a transformation between a ligand i to a set reference ligand j (Compound 1a) for a given target.
All values are shown in units of kcal/mol. The blue vertical error bars are �stat,ij,target, which was estimated by calculating
the standard deviation of ΔΔGFEPij, target from the Bayesian model described in depth in Methods. The horizontal error
bars show �ΔΔGexpij based on the assumed uncertainty of 0.3 kcal/mol[6, 63] for each ΔGexpi expanded assuming no

correlation between each measurement. For selectivity, the errors were propagated under the assumption that they were

completely uncorrelated. The black line indicates agreement between calculation and experiment, while the gray shaded

region represent 1.36 kcal/mol (or 1 log unit) error. The MUE and RMSE are shown on each plot with bootstrapped 95%
confidence intervals. (A) Replicate 1 (B) Replicate 2 (C) Replicate 3
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Supplemental Figure. 5. Each replicate of the CDK2/CDK9 calculations yields consistent errors and correlationcoefficient
(A) (left) The joint posterior distribution of the prediction errors for CDK2 (X-axis) and CDK9 (Y-axis) from the Bayesian
graphical model for replicate 1. (right) The posterior marginal distribution of the correlation coefficient (�) is shown in gray
for replicate 1. The inserted box shows the mean and 95% confidence interval for the correlation coefficient. (B) and (C)
The same as above, but for replicates 2 and 3, respectively
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Supplemental Figure. 6. Each replicate of the CDK2/ERK2 calculations yields a consistent RMSE and MUE
Three replicates of the CDK2/ERK2 calculations with different random seeds, but otherwise the same input structures,

files, and parameters. The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data

point corresponds to a transformation between a ligand i to reference ligand j (Compound 6) for a given target. All
values are shown in units of kcal/mol. The blue vertical error bars are �stat,ij,target, which was estimated by calculating
the standard deviation of ΔΔGFEPij, target from the Bayesian model described in depth in Methods. The horizontal error
bars show �ΔΔGexpij based on the assumed uncertainty of 0.3 kcal/mol[6, 63] for each ΔGexpi expanded assuming no

correlation between each measurement. For selectivity, the errors were propagated under the assumption that they were

completely uncorrelated. The black line indicates agreement between calculation and experiment, while the gray shaded

region represent 1.36 kcal/mol (or 1 log unit) error. The MUE and RMSE are shown on each plot with bootstrapped 95%
confidence intervals. (A) Replicate 1 (B) Replicate 2 (C) Replicate 3
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Supplemental Figure. 7. Each replicate of the CDK2/ERK2 calculations yields consistent errors and correlationcoefficient
(A) (left) The joint posterior distribution of the prediction errors for CDK2 (X-axis) and ERK2 (Y-axis) from the Bayesian
graphical model for replicate 1. (right) The posterior marginal distribution of the correlation coefficient (�) is shown in gray
for replcicate 1. The inserted box shows the mean and 95% confidence interval for the correlation coefficient. (B) and (C)
The same as above, but for replicates 2 and 3, respectively
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Supplemental Figure. 8. The standard deviation and Bennett error for each edge is smaller than the estimatedcycle closure uncertainties
Pairwise Comparisons of the cycle closure uncertainty, the Bennett uncertainty, and the standard deviation of three

replicate calculations, reported in kcal/mol. Each point corresponds to an edge of the FEP map. The edges for all three

replicates are pooled and shown together. (A and B) CDK2/CDK9 calculations from the Shao data set (C and D) CDK2/ERK2
calculations from the Blake data set
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Supplemental Figure. 9. The statistical and systematic error explain deviation fromexperimentalmeasurements
ΔΔGij,target andΔSij predictions for CDK2/ERK2 from the Blake data sets (top), and CDK2/CDK9 (bottom) from the Shao data
sets. The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point corresponds to

a transformation between a ligand i to a set reference ligand j for a given target. All values are shown in units of kcal/mol.
The horizontal error bars show the �ΔΔGexpij based on the assumed uncertainty of 0.3 kcal/mol[6, 63] for each ΔG

exp
i . We

show the estimated error (�stat,ij,target + �sys,ij,target) as vertical blue error bars, which are one standard error. �stat,ij,target was
estimated by calculating the standard deviation of ΔΔGFEPij, target from the Bayesian model described in depth inMethods.
�sys,ij,target was estimated from the mean of �ij,target described in equation 21. For the ΔS panels, �selectivity (vertical blue
error bars) was calculated according to Equation 3 using the estimated correlation coefficients from Figure 5.The black line

indicates agreement between calculation and experiment, while the gray shaded region represent 1.36 kcal/mol (or 1 log

unit) error. The MUE and RMSE are shown on each plot with bootstrapped 95% confidence intervals.
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Supplemental Figure. 10. Estimates of correlation coefficient � are insensitive to use of scaling term � or Stu-dent’s t-distribution
(left) Estimate of correlation coefficient � for replicate 1 of the CDK2/CDK9 (top) and CDK2/ERK2 (bottom) calculations using
a scaling term (�) to account for the BAR error underestimating the cycle closure statistical error, shown in greater detail
in the Methods section Equation 17. (right) Estimate of correlation coefficient � for CDK2/CDK9 (top) and CDK2/ERK2
(bottom) using a Student’s t-distribution instead of a Normal distribution and scaling term in Equation 17
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