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Abstract12

Alchemical free energy calculations are nowwidely used to drive ormaintain potency in small molecule lead13

optimization with a roughly 1 kcal/mol accuracy. Despite this, the potential to use free energy calculations14

to drive optimization of compound selectivity among two similar targets has been relatively unexplored in15

published studies. In the most optimistic scenario, the similarity of binding sites might lead to a fortuitous16

cancellation of errors and allow selectivity to be predicted more accurately than affinity. Here, we assess17

the accuracy with which selectivity can be predicted in the context of small molecule kinase inhibitors, con-18

sidering the very similar binding sites of human kinases CDK2 and CDK9, as well as another series of lig-19

ands attempting to achieve selectivity between the more distantly related kinases CDK2 and ERK2. Using20

a Bayesian analysis approach, we separate systematic from statistical error and quantify the correlation in21

systematic errors between selectivity targets. We find that, in the CDK2/CDK9 case, a high correlation in sys-22

tematic errors suggests free energy calculations can have significant impact in aiding chemists in achieving23

selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation in systematic error suggests24

fortuitous cancellation may even occur between systems that are not as closely related. In both cases, the25

correlation in systematic error suggests that longer simulations are beneficial to properly balance statisti-26

cal error with systematic error to take full advantage of the increase in apparent free energy calculation27

accuracy in selectivity prediction.28

29

Free energy methods have proven useful in aiding structure-based drug design by driving the optimiza-30

tion or maintenance of potency in lead optimization. Alchemical free energy calculations allow for the pre-31

diction of ligand binding free energies, including all enthalpic and entropic contributions [1]. Advances in32

atomistic molecular mechanics simulations and free energy methodologies [2–5] have allowed free energy33

methods to reach a level of accuracy sufficient for predicting ligand potencies [6]. These methods have34

been applied prospectively to develop inhibitors for Tyk2 [7], Syk [8], BACE1 [9], GPCRs [10], and HIV pro-35

tease [11]. A recent large-scale review of the use of FEP+ [12] to predict potency for 92 different projects36

and 3 021 compounds determined that predicted binding free energies had a median root mean squared37

error (RMSE) of 1.0 kcal/mol [13].38

Selectivity is an important consideration in drug design39

In addition to potency, selectivity is an important property to consider in drug development, either in the40

pursuit of an inhibitor that is maximally selective [14, 15] or possesses a desired polypharmacology [16–41
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20]. Controlling selectivity can be useful not only in avoiding off-target toxicity (arising from inhibition of42

unintended targets) [21, 22], but also in avoiding on-target toxicity (arising from inhibition of the intended43

target) by selectively targeting disease mutations [23]. In either paradigm, considering the selectivity of44

a compound is complicated by the biology of the target. For example, kinases exist as nodes in complex45

signaling networks [24, 25]with feedback inhibition and cross-talk betweenpathways. Careful consideration46

of which off-targets are being inhibited can avoid off-target toxicity due to alleviating feedback inhibition47

and inadvertently reactivating the targeted pathway [24, 25] or the upregulation of a secondary pathway48

by alleviation of cross-talk inhibition [26, 27]. Off-target toxicity can also be caused by inhibiting unrelated49

targets, such as gefitinib, an EGFR inhibitor, inhibiting CYP2D6 [21] and causing hepatotoxicity in lung cancer50

patients. In a cancer setting, on-target toxicity canbe avoidedby considering the selectivity for the oncogenic51

mutant form of the kinase over the wild type form of the kinase [28–30], exemplified by a number of first52

generation EGFR inhibitors. Selective binding tomultiple kinases can also lead to beneficial effects: Imatinib,53

initially developed to target BCR-Abl fusion proteins, is also approved for treating gastrointestinal stromal54

tumors (GIST) [31] due to its activity against receptor tyrosine kinase KIT.55

The use of physical modeling to predict selectivity is relatively unexplored56

While engineering compound selectivity is important for drug discovery, the utility of free energy methods57

for predicting this selectivity with the aim of reducing the number of compounds that must be synthesized58

to achieve a desired selectivity profile has been relatively unexplored in published studies. If there is fortu-59

itous cancellation of systematic errors for closely related systems, free energy methods may bemuchmore60

accurate than expected given the errors made in predicting the potency for each individual target. Such61

systematic errors might arise from force field parameters uncertainty, force field parameters assignment,62

protein or ligand protonation state assignment, or even from systematic errors arising in the target exper-63

imental data, where for example poor solubility of a particular compound might lead to a spuriously poor64

reported binding affinity for that compound, among other effects.65

Molecular dynamics and free energy calculations have been used extensively to investigate the biophys-66

ical origins of the selectivity of imatinib for Abl kinase over Src [32, 33] and within a family of non-receptor67

tyrosine kinases [34]. This work focused on understanding the role reorganization energy plays in the68

exquisite selectivity of imatinib for Abl over the highly related Src despite high similarity between the cocrys-69

tallized binding mode and kinase conformations, and touches on neither the evaluation of the accuracy of70

these methods nor their application to drug discovery on congeneric series of ligands. Previous work pre-71

dicting the selectivity of three bromodomain inhibitors across the bromodomain family achieved promising72

accuracy for single target potency of roughly 1 kcal/mol, but does not explicitly evaluate any selectivity met-73

rics [35] or quantify the correlation in the errors made in predicting affinities for each bromodomain. Previ-74

ous work using FEP+ to predict selectivity between pairs of phosphodiesterases (PDEs) showed promising75

performance but did not evaluate correlation in the error made in predicting affinities for each PDE [36]76

Kinases are an important and particularly challenging model system for selectivity predictions77

Kinases are a useful model system to work with for assessing the utility of free energy calculations to pre-78

dict inhibitor selectivity in a drug discovery context. With the approval of imatinib for the treatment of79

chronic myelogenous leukemia in 2001, targeted small molecule kinase inhibitors (SMKIs) have become a80

major class of therapeutics in treating cancer and other diseases. Currently, there are 52 FDA-approved81

SMKIs [37], and it is estimated that kinase targeted therapies account for as much as 50% of current drug82

development [38], with many more compounds currently in clinical trials. While there have been a num-83

ber of successful drug approvals, the current stable of FDA-approved kinase inhibitors targets only a small84

fraction of kinases implicated in disease, and the design of new selective kinase inhibitors for novel targets85

remains a significant challenge.86

Achieving selective inhibition of kinases is quite challenging, as there are more than 518 protein ki-87

nases [39, 40] sharing a highly conserved ATP binding site that is targeted by the majority of SMKIs [41].88

While kinase inhibitors have been designed to target kinase-specific sub-pockets and binding modes to89

achieve selectivity [42–47], previous work has shown that both Type I (binding to the active, DFG-in confor-90
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mation) and Type II (binding to the inactive, DFG-out conformation) inhibitors are capable of achieving a91

range of selectivities [48, 49], often exhibiting significant binding to a number of other targets in addition92

to their primary target. Even FDA-approved inhibitors—often the result of extensive drug development93

programs—bind to a large number of off-target kinases [50]. Kinases are also targets of interest for devel-94

oping polypharmacological compounds, or inhibitors that are specifically designed to inhibit multiple kinase95

targets. Resistance to MEK inhibitors in KRAS-mutant lung and colon cancer has been shown to be driven96

by ErbB3 upregulation [51], providing a rationale for dual MEK/ERBB family inhibitors. Similarly, combined97

MEK and VEGFR1 inhibition has been proposed as a combinatorial approach to treat KRAS-mutant lung98

cancer [52]. Developing inhibitors with a desired polypharmacology means navigating more complex se-99

lectivity profiles, presenting a problem where physical modeling has the potential to dramatically speedup100

drug discovery.101

The correlation coefficient measures how useful predictions are in achieving selectivity102

Since the prediction of selectivity depends on predicting the change of affinities to two or more targets103

(or the change of affinities between pairs of related molecules for multiple targets), a spectrum of possi-104

bilities exists for how accurately selectivity can be predicted even when the error in predicting individual105

target affinities is fixed. In well-behaved kinase systems, for example, free energy calculation potency pre-106

dictions have achieved root-mean-square of less than 1.0 kcal/mol [7, 12]. This residual error likely arises107

from a variety of contributions. Systematic contributions to the residual error may include forcefield pa-108

rameterization deficiencies, protein and ligand protonation assignment errors, and discrepancies between109

the crystallographic construct protein and the assay construct protein. Likewise, unbiased contributions110

to the observed residual error likely arises from incompletely converged sampling. Lastly, it should not be111

forgotten that the target experimental value will have its own systematic and random errors.112

In the best-case scenario, correlation in the systematic errors for predicting the interactions of a given113

ligand with two related protein targets might exactly cancel out, allowing selectivity to be predicted much114

more accurately than potency. On the other hand, if the uncorrelated random error dominates the residual115

error between two protein targets, predictions of selectivity will be less accurate than potency predictions.116

Real-world systems are likely to fall somewhere between these two extremes, and quantifying the degree to117

which error in multiple protein targets is correlated, its implications for the use of free energy calculations118

for prioritizing synthesis in the pursuit of selectivity, the ramifications for optimal calculation protocols, and119

rough guidelines governing which systems we might expect good selectivity prediction is the primary focus120

of this work.121

In particular, in this work, we investigate the magnitude of the correlation (�) in error for the predicted122

binding free energy differences between related compounds (ΔΔGij ) for two different targets, assessing123

the utility of alchemical free energy calculations for the prediction of selectivity. We employ state of the124

art relative free energy calculations [12, 13] to predict the selectivities of two different congeneric ligand125

series [53, 54], and construct simple numerical models that allow us to quantify the potential utility in se-126

lectivity optimization expected for different combinations of per target systematic errors and correlation127

coefficients. To make a realistic assessment of our confidence in this correlation coefficient derived from128

a limited number of experimental measurements, we develop a new Bayesian approach to quantify the129

uncertainty in the correlation coefficient in the predicted change in selectivity on ligand modification, incor-130

porating all sources of uncertainty and correlation in the computation to separate statistical from systematic131

error. We find that in the closely related systems of CDK2 and CDK9, a high correlation of systematic errors132

suggests that free energy methods can have a significant impact on speeding up selectivity optimization.133

Even in the more distantly related case (CDK2/ERK2), correlation in the systematic errors allows free energy134

calculations to speedup selectivity optimization, suggesting that these methodologies can impact drug dis-135

covery evenwhen comparing systems that are less closely related. We also present amodel of the impact of136

per target statistical error at different levels of systematic error correlation, suggesting that it is worthwhile137

to expend more effort sampling in systems with high correlation.138

Results139
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Alchemical free energy methods can be used to predict compound selectivity140

While the potency of a ligand i for a single target is often quantified as a free energy of binding (ΔGi,target),141

there are a number of different metrics for quantifying compound selectivity [55, 56]. Here, we consider142

the selectivity Si between one target and another (an antitarget) as the difference in free energy of binding143

for a given ligand i between the two,144

Si ≡ ΔGi,target 2 − ΔGi,target 1 (1)
While in the optimization of potency we are concerned with ΔΔGij ≡ ΔGj −ΔGi, the relative free energy145

of binding of ligands i and j to a single target, in the optimization of selectivity, we are concerned with146

ΔSij ≡ Sj − Si, which reflects the change in selectivity between ligand i and a related ligand j,147

ΔSij ≡ Sj − Si (2)
= (ΔGj, target 2 − ΔGj, target 1) − (ΔGi, target 2 − ΔGi, target 1)
= ΔΔGij, target 2 − ΔΔGij, target 1

To predict the change in selectivity, ΔSij , between two related compounds, we developed a protocol that148

uses a relative free energy calculation (FEP+) [12] to construct a map of alchemical perturbations between149

ligands in a congeneric series, as described in detail in the Methods. The calculation is repeated for each150

target of interest, with identical perturbations (edges) between each ligand (nodes). Each edge represents a151

relative alchemical free energy calculation that quantifies the ΔΔG between the ligands (nodes) for a single152

target. From these calculations, we can then compute the change in selectivity between the two targets of153

interest, ΔSij , achieved by transforming ligand i into ligand j.154

Previous work has demonstrated that FEP+ can achieve an accuracy (�target) of roughly 1 kcal/mol in155

single-target potency prediction, which reflects a combination of systematic error and random statistical156

error [12]. However, it is possible that the systematic error for a given perturbation between ligands i157

and j (�sys, ij, target) in two different systems may fortuitously cancel when computing ΔSij , resulting in the158

systematic contribution to the selectivity error (�selectivity) being significantly lower than its contribution to159

single-target potency error (�target). This systematic error may cancel between the two systems for a variety160

of reasons. For example, a ligand force field parameter assignment error might lead to an spuriously large161

solvation free energy for a particular compound, which will cancel in the selectivity analysis. Likewise, a spar-162

ingly soluble compound might have a similar experimental measurement error for the on-target protein as163

the off-target protein. Similar cancellation of systematic errors might be observed in ligand and/or protein164

protonation state assignment error, or systematic differences existing between the protein constructs used165

for crystallographic studies and biochemical or biophysical assays.166

If we presume that the systematic errors for both targets are distributed according to a bivariate nor-167

mal distribution with correlation coefficient � quantifying the degree of correlation (with � = 0 denoting no168

correlation, � = 1 denoting perfect correlation, and � = −1 denoting perfect anti-correlation), and that the169

statistical errors for both targets (�stat,ij,target ) are completely independent because the simulations for each170

target are separate, we can model the error in predicting the ΔSij as �selectivity,171

�selectivity ≡
√

�2sys,ij,1 + �2sys,ij,2 − 2� �sys,ij,1 �sys,ij,2 + �2stat,ij,1 + �2stat,ij,2 (3)
�selectivity can be split into two components: systematic error and statistical error. As more effort is spent on172

sampling, the per-target statistical error for a given transformation from ligand i to ligand j (�stat,ij, target) will173

decrease, eventually becoming zero in the regime of infinite sampling. The correlation coefficient � can be174

both negative and positive. When the correlation coefficient � is positive, the systematic error (�sys, ij, target)175

should cancel out, making �selectivity smaller than expected. When the correlation coefficient � is negative,176

the systematic error (�sys, ij, target) will be anti-correlated, making the �selectivity larger than expected. As we177

shall see below, the quantitative value of the correlation coefficient � for the systematic error component178

has important ramifications for the accuracy with which selectivity can be predicted.179
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Correlation in systematic errors can significantly enhance accuracy of selectivity predictions180

To demonstrate the potential impact the correlation coefficient � has on predicting selectivity using alchem-181

ical free energy techniques, we created a simple numerical model following Equation 3 which takes into182

account each of the per-target systematic errors (�sys,ij,1, �sys,ij,2) expected from the methodology as well as183

the correlation in those errors, while assuming infinite effort is spent on sampling to reduce the statistical184

error component (�stat) to zero. As seen in Figure 1A, if the per target systematic errors are the samemagni-185

tude (�sys,ij,1 = �sys,ij,2), �selectivity approaches 0 as the correlation coefficient � approaches 1, even though the186

single-target potency systematic error is nonzero. If the error for the free energy method is not the same187

magnitude (�sys,ij,1 ≠ �sys,ij,2), �selectivity gets smaller but approaches a non-zero value as � approaches 1.188

To quantify the expected reduction in number of compounds that must be synthesized to achieve a de-189

sired selectivity threshold (hereafter referred to as the speedup in selectivity optimization), we modeled the190

change in selectivity with respect to a reference compound for a number of compounds amedicinal chemist191

might suggest as a normal distribution centered around 0with a standard deviation of 1 kcal/mol (Figure 1B,192

black curve), reflecting the notion that most proposed modifications would not drive large changes in se-193

lectivity. This assumption—that a synthetic chemist’s proposal distribution can be modeled as a normal194

distribution—is basedondata-driven estimates fromanAbbott Laboratories analysis of potency changes [57]195

Further suppose that each compound is evaluated computationally with a free energymethodology that196

has a per-target systematic error (�sys, ij,target) of 1 kcal/mol, where we presume sufficient computational ef-197

fort has been expended to make statistical error negligible. All compounds predicted to have a 1.4 kcal/mol198

or greater improvement in selectivity (10× in ratio of affinities, or 1 log10 unit) are synthesized and exper-199

imentally tested (Figure 1B, colored curves), using an experimental technique with perfect measurement200

accuracy. The fold-change in the proportion of compounds that are made that have a true 1.4 kcal/mol201

improvement in selectivity compared to the original distribution can be calculated as a surrogate for the202

expected speedup. For this 1.4 kcal/mol selectivity improvement threshold, a correlation coefficient � = 0.5203

gives an expected speedup of 4.1×, which can be interpreted as needing to make 4.1x fewer compounds204

to achieve a tenfold improvement in selectivity. This process can be extended for the even more difficult205

proposition of achieving a hundredfold improvement in selectivity (Figure 1C), where 200–300× speedups206

can be expected, depending on the single-target systematic error (�sys,ij,target) for the free energy methodol-207

ogy.208

These estimates represent an ideal scenario, where the number of compounds scored and synthesized209

is unlimited. In a more realistic discovery project, the number of compounds scored is limited by compu-210

tational resources, and the number of compounds synthesized is limited by chemistry resources. In this211

case, the observed speedup will depend not only on the correlation coefficient � and per-target systematic212

error (�sys,ij,target), but also the number of compounds scored and the synthesis rule, defined as the selectiv-213

ity threshold a compound must be predicted to reach before being selected for synthesis. To model this214

process, suppose a given number of compounds (Figure 1D, x-axis of each panel) are profiled with a free215

energy method with a per-target systematic error (�sys,ij, target) of 1 kcal/mol and some correlation coefficient216

(�). The top compounds that are predicted to have an improvement in selectivity greater than a set "syn-217

thesis rule" threshold (100×, 500×, or 1000×, Figure 1D, each curve) are synthesized, up to a maximum of218

10 compounds. The expected speedup can then be calculated as the ratio of the number of synthesized219

compounds that have a true selectivity improvement of 2.8 kcal/mol (100× or 2 log units) to the number220

of compounds expected to have a true selectivity improvement of 2.8 kcal/mol had the same number of221

compounds as were synthesized been drawn randomly from the underlying unit normal distribution.222

As shown in Figure 1D, themore stringent synthesis rules combined with high correlation coefficients (�)223

allow free energy calculations to have the highest impact in designing selectivity inhibitors, provided enough224

compounds have been scored. Interestingly, at correlation coefficient �=0.75 and low numbers of scored225

compounds, the 500× synthesis provides a greater speedup than 1000× synthesis rule. This is because226

there is high probability no compounds meet the more 1000× stringent synthesis rule until many more227

compounds are scored. This has implications for drug discovery efforts, where time and computational228

effort may limit the number of compounds able to be profiled with free energy methods.229
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A B C

D

Figure 1. Free energy calculations can accelerate selectivity optimization. (A) The effect of correlation on expectederrors for predicting selectivity (�selectivity) in kcal/mol when statistical error is negligible due to infinite sampling. Eachcurve represents a different combination of per target systematic errors (�sys,ij,1 and �sys,ij,2). (B) The change in selectivityfor molecules proposed by medicinal chemists optimizing a lead candidate can be modeled by a normal distributioncentered on zero with a standard deviation of 1 kcal/mol (black curve). Each green curve corresponds to the distribu-tion of compounds made after screening for a 1 log10 unit (1.4 kcal/mol) improvement in selectivity with a free energymethodology with a 1 kcal/mol per target systematic error and a particular correlation, in the regime of infinite samplingwhere statistical error is zero. The shaded region of each curve corresponds to the compounds with a real 1 log10 unitimprovement in selectivity. The speedup reflects the expected reduction in compounds that must be synthesized toreach a selectivity goal, and is calculated as the ratio of the percentage of compounds made with a real 1 log10 unit im-provement to the percentage of compounds that would be expected in the original distribution. (C) The speedup (y-axis,log scale) expected for 100× (2 log10 units, or 2.8 kcal/mol) selectivity optimization as a function of correlation coefficient
�. Each curve corresponds to a different value of �sys,ij,target. (D) The speedup (y-axis) expected for 100× (2 log10 units,or 2.8 kcal/mol) selectivity optimization as a function of number of compounds scored computationally (x-axis) and cor-relation coefficient � (each panel) for a method with per-target systematic error (�sys,ij,target) of 1 kcal/mol in the regimeof infinite sampling. After profiling, the top compounds that meet or surpass the synthesis rule (the predicted selectiv-ity threshold a compound must reach to be triggered for synthesis, each curve) are synthesized, up to a maximum of10 synthesized compounds. Error bars (y-axis) represent the 95% CI for 1000 replicates at each point. The expectedspeedup is calculated as the ratio of the number of synthesized compounds that have a true selectivity improvement of2.8 kcal/mol (100× or 2 log units) divided by the expectation of a compound showing a true selectivity improvement of2.8 kcal/mol had the same number of compounds that were synthesized been drawn randomly from the underlying unitnormal distribution. If no compounds were predicted to meet or surpass the synthesis rule, the speedup was assigneda default value of 1.
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An experimental data set of CDK2/CDK9 inhibitors demonstrates the difficulty in achieving high230

selectivity231

To assess the correlation of errors in free energy predictions for selectivity, we set out to gather data sets232

that met a number of criteria. We searched for data sets that contained binding affinity data for a number233

of kinase targets and ligands in addition to crystal structures for each target with the same ligand.234

This data set contains a congeneric series of ligands with experimental data for CDK2 and CDK9, with the235

goal of potently inhibiting CDK9 and sparing CDK2. Based on a multiple sequence alignment of the 85 bind-236

ing site residues identified in the kinase–ligand interaction fingerprints and structure (KLIFS) database [58,237

59], CDK2 and CDK9 share 57% sequence identity (Table S1, Figure S1). For this CDK2/CDK9 data set [53],238

ligand 12c was cocrystallized with CDK2/cylin A (Figure 2A, left) and CDK9/cyclin T (Figure 2B, left), work that239

was published in a companion paper [60]. In both CDK2 and CDK9, ligand 12c forms relatively few hydrogen240

bond interactions with the kinase. Each kinase forms a pair of hydrogen bonds between the ligand scaffold241

and a hinge residue (C106 in CDK9 and L83 in CDK2) that is conserved across all of the ligands in this se-242

ries. CDK9, which has slightly lower affinity for ligand 12c (Figure 2C, right), forms an interaction between243

the sulfonamide of ligand 12c and residue E107. On the other hand, CDK2 forms interactions between the244

sulfonamide of ligand 12c and residues K89 and H84. The congeneric series of ligands contains a number245

of difficult perturbations, particularly at substituent point R3 (Figure 2C, left). Ligand 12i also presented a246

challenging perturbation, moving the 1-(piperazine-1-yl)ethanone from themeta to para location.247

This congeneric series of ligands also highlights two of the challenges of working from publicly avail-248

able data: First, the dynamic range of selectivity is incredibly narrow, with a mean S (CDK9 - CDK2) of -249

0.65 kcal/mol, and a standard deviation of only 0.88 kcal/mol; the total dynamic range of this data set is 2.8250

kcal/mol. Second, experimental uncertainties are not reported for the experimental measurements. This251

data set reportedKi values calculated frommeasured IC50, using theKm (ATP) for CDK2 and CDK9 and [ATP]252

from the assay using the Cheng-Prussof equations [61]. Thus, for this and subsequent sets of ligands, the253

random experimental uncertainty is assumed to be 0.3 kcal/mol based on previous work done to summa-254

rize uncertainty in experimental data, assuming there is no systematic experimental error. While Ki values255

are reported, these values are derived from IC50 measurements. A number of studies report on the re-256

producibility of intra-lab IC50 measurements. These values range from as low as 0.22 kcal/mol [62], from257

public data, to as high as 0.4 kcal/mol [6], which was estimated from internal data at Abbott Laboratories.258

The assumed value of 0.3 kcal/mol falls within this range, and agrees well with the uncertainty reported259

from Novartis for two different ligand series [63].260

An experimental data set of CDK2/ERK2 inhibitors where greater selectivity was achieved261

The CDK2/ERK2 data set from Blake et al. [54] also met the criteria described above, with the goal of262

developing a potent ERK2 inhibitor. Based on a multiple sequence alignment of the KLIFs binding site263

residues [58, 59], CDK2 and ERK2 share 52% sequence identity (Table S1, Figure S1), making them slightly264

less closely related than CDK2 and CDK9 (57%). Note that while all three kinases belong to the CMGC fam-265

ily and are closely related in the phylogenetic Manning tree, CDK2 and CDK9 belong to the CDK (Cyclin-266

dependent kinase) subfamily, while ERK2 is part of the nearby MAPK (Mitogen-activated protein kinases)267

subfamily. From a structural point of view, the two kinase pdb pairs used in this study are also very similar.268

Binding site superposition revealed that both pdb pairs align well, only a marginally lower RMSD of 0.81 A269

was obtained for the CDK2/CDK9 pair compared to 0.92 A for CDK2/ERK2 pair.270

Crystal structures for both CDK2 (Figure 3A, top) and ERK2 (Figure 3B, top) were available with ligand 22271

(according to the manuscript numbering scheme) co-crystallized. Of note, CDK2 was not crystallized with272

cyclin A, despite cyclin A being included in the affinity assay reported in the paper [54].273

CDK2 in this crystal structure (4BCK) adopts a DFG-in conformation with the �C helix rotated out, away274

from the ATP binding site and breaking the conserved salt bridge between K33 and E51 (Figure S2A), indica-275

tive of an inactive kinase [44, 64]. By comparison, the CDK2 structure from the CDK2/CDK9 data set adopts276

a DFG-in conformation with the �C helix rotated in, forming the ionic bond between K33 and E51 indicative277

of an active kinase, due to allosteric activation by cyclin A. While missing cyclins have caused problems for278

free energy calculations in prior work, it is possible that the fully active, cyclin-bound conformation con-279
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Figure 2. A CDK2/CDK9 data set illustrates selectivity optimization between closely-related kinasesExperimental IC50 data for a congeneric series of compounds binding to CDK2 and CDK9 was extracted from Shao et al.[53] and converted to free energies of binding. (A) (left) Crystal Structure (4BCK) [60] of CDK2 (gray ribbon) bound toligand 12c (yellow spheres). Cyclin A is shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK2binding site. (B) (left) Crystal structure of CDK9 (4BCI)[60] (gray ribbon) bound to ligand 12c (yellow spheres). Cyclin Tis shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK9 binding site. (C) (left) 2D structureof the common scaffold for all ligands in congeneric ligand series 12 from the publication. (right) A table summarizingall R group substitutions as well as the published experimental binding affinities and selectivities [53], derived from thereported Ki as described inMethods.
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Figure 3. A CDK2/ERK2 data set illustrates selectivity optimization among more distantly related kinases(A) (top) Crystal structure of CDK2 (5K4J) shown in gray cartoon and ligand 22 shown in yellow spheres. (bottom) 2D inter-actionmap of ligand 22 in the binding pocket of CDK2 (B) (top) Crystal structure of ERK2 (5K4I) shown in gray cartoon withligand 22 shown in yellow spheres. (bottom) 2D interaction map of ligand 22 in the binding pocket of ERK2. (C) (top) Com-mon scaffold for all of the ligands in the Blake data set [54], with R denoting attachment side for substitutions. (bottom)Table showing R group substitutions and experimentally measured binding affinities and selectivities, derived from theIC50 values as described in the methods section. Ligand numbers correspond to those used in the Blake publication [54].

tributes equally to binding affinity for all of the ligands in this series, and the high accuracy of the potency280

predictions (Figure 4, top left) is the result of fortuitous cancellation of errors.281

The binding mode for this series is similar between both kinases. There is a set of conserved hydrogen282

bonds between the scaffold of the ligand and the backbone of one of the hinge residues (L83 for CDK2 and283

M108 for ERK2). The conserved lysine (K33 for CDK2 and K54 for ERK2), normally involved in the formation284

of a ionic bond with the �C helix, forms a hydrogen bond with the scaffold (Figure 3A and 3B, bottom) in285

both CDK2 and ERK2. However, in the ERK2 structure, the hydroxyl engages a crystallographic water as well286

as N154 in a hydrogen bond network that is not present in the CDK2 structure. The congeneric ligand series287

features a single solvent-exposed substituent. This helps to explain the narrow distribution of selectivities,288

with a mean selectivity of -1.74 kcal/mol (ERK2 - CDK2) and standard deviation of 0.56 kcal/mol; the total289

dynamic range of this data set is 2.2 kcal/mol. While the small standard deviation suggests that selectivity is290

difficult to drive with R-group substitution, the total dynamic range demonstrates that R-group substitutions291

can provide significant selectivity enhancements.292

FEP+ calculations show smaller than expected errors for CDK2/CDK9 ΔSij predictions293

Three replicates of FEP+ calculations were run on each target for both experimental data sets described294

above. The FEP+ predictions of the relative free energy of binding between ligands i and a reference com-295

pound (ref) for each target (ΔΔGi,ref,target) showed good accuracy and consistent results for all three replicates.296

The results for replicate 1 are reported in Figure 4 for both the CDK2 and ERK2 data set (bottom) and the297

CDK2/CDK9 data set (top), ΔΔGi,ref ,target is defined for each ligand i using a consistent reference compound298

within data sets.299

ΔΔGi,ref,target = ΔGi,target − ΔGreference, target (4)
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The reference compounds (Compound 6 for CDK2/ERK2 and Compound 1a for CDK2/CDK9) were se-300

lected because they were the initial compounds from which the reported synthetic studies were started.301

Replicate 1 of the CDK2/ERK2 calculations is shown on the bottom of Figure 4, with an RMSE of 0.951.250.63 and302

0.971.220.70 kcal/mol to CDK2 and ERK2, respectively (where the lower and upper values indicate a 95% confi-303

dence interval). The RMSE reported here is calculated for all of the ΔΔGi,ref ,target that were predicted. All of304

the CDK2 and ERK2 ΔΔGi,ref ,targets were predicted within 1 log unit of the experimental value. The change305

in selectivity (ΔSij ) predictions show an RMSE of 1.411.751.07 kcal/mol, with all the confidence intervals of the306

predictions falling within 1 log unit of the experimental values (Figure 4, top right panel). This RMSE is com-307

parable to the expected RMSE of 1.36, assuming the error from the CDK2/ERK2 calculations behaves in an308

uncorrelated manner (Equation 3 where the correlation coefficient � is zero). This was consistent across all309

three replicates of the calculations (Figure S6).The narrow dynamic range for selectivity combined with high310

experimental and computational uncertainty highlight the challenges for predicting selectivity. When the311

error of the calculated selectivity is comparable to the dynamic range of selectivity, then the calculations312

cannot predict with statistical confidence whether any compound is more selective than the other.313

Replicate 1 of the CDK2/CDK9 calculations are shown in the top panel of Figure 4. The CDK2 and CDK9314

data sets show higher errors in ΔΔGi,ref,target predictions, with an RMSE of 1.151.590.67 and 2.102.651.47 kcal/mol re-315

spectively. This higher RMSE is driven by the reference compound, (Compound 1a) being poorly predicted,316

particularly in CDK9. There are a number of outliers that fall outside of 1 log10 unit from the experimental317

value for CDK9. While the higher per target errors make predicting potency more difficult, the selectivity318

predictions show an RMSE of 1.371.661.04 kcal/mol. This observed RMSE is lower than what would be expected if319

the error were completely uncorrelated between CDK2 and CDK9, propagated as in Equation 3 where the320

correlation coefficient � is zero to get an expected value of 2.38 kcal/mol. This suggests that some correla-321

tion in the error is leading to fortuitous cancellation of the systematic error, leading to more accurate than322

expected predictions of ΔSij . These results were consistent across all three replicates of the calculation323

(Figure S4).324

Correlation of systematic errors accelerates selectivity optimization325

To quantify the correlation coefficient (�) of the systematic error between targets, we built a Bayesian graphi-326

calmodel to separate the systematic error from the statistical error andquantify our confidence in estimates327

of � (described in depth in Methods). Briefly, we modeled the absolute free energy (G) of each ligand in328

each thermodynamic phase (ligand-in-complex and ligand-in-solvent, with G determined up to an arbitrary329

additive constant for each phase) as in Equation 15. The model was chained to the FEP+ calculations by pro-330

viding the ΔGcalcphase,ij,target for each edge from the FEP+ maps (where j is now not necessarily the reference331

compound) as observed data, as in Equation 17. As in Equation 19, the experimental data was modeled as332

a normal distribution centered around the true free energy of binding (ΔGtrue
i,target) corrupted by experimental333

error, which is assumed to be 0.3 kcal/mol from previous work done to quantify the uncertainty in publicly334

available data [6]. ΔG values derived from reported IC50s or Kis, as described in the methods section, were335

treated as data observations (Equation 19) and theΔGtrue
i,target was assigned a weak normal prior (Equation 20).336

The correlation coefficient � was calculated for each Bayesian sample from the model posterior accord-337

ing to equation 22. The CDK2/CDK9 calculations show strong evidence of correlation, with a correlation338

coefficient of 0.720.830.58 (Figure 5A, right) for replicate 1. The rest of the replicates showed strong agreement339

(Figure S4). The joint marginal distribution of the error (�) for each target (Figure 5A, left) is more diagonal340

than symmetric, which is expected for cases in which � is high (Figure S3).341

To quantify the expected speedup of selectivity with this level of correlation in the systematic errors for342

CDK2/CDK9, we first calculated the per target systematic error �sys,ij,target by taking the mean of the absolute343

value of �ij,target where j is the reference compound 1a. Combining these estimates for the correlation coeffi-344

cient (�) and the per target systematic errors (�sys,ij,target), we can compute �selectivity and the expected speedup345

in the regime of infinite sampling effort where there is no statistical error when the number of compounds346

scored and synthesized is unlimited. The high correlation in errors for the CDK2/CDK9 calculations leads347

to a speedup of 3x for 1 log10 unit selectivity optimization and 10x for 2 log10 unit selectivity optimization348

(Figure 5A, right), despite the much high per target systematic errors (�sys,ij,target).349
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Figure 4. Selectivity predictions suggest correlation in systematic error
ΔΔGi,ref,target and ΔSi,ref predictions for CDK2/CDK9 (top) from the Shao data sets and CDK2/ERK2 from the Blake datasets (bottom). The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point cor-responds to a transformation between a ligand i to a set reference ligand (ref) for a given target. All values are shown inunits of kcal/mol. The horizontal error bars show to the �ΔΔGexpij based on the assumed uncertainty of 0.3 kcal/mol[6, 63]for each ΔGexpi . We show the estimated statistical error (�stat,ij,target) as vertical blue error bars, which are one standard er-ror. For selectivity, the errors were propagated under the assumption that they were completely uncorrelated. �stat,ij,targetwas estimated by calculating the standard deviation of ΔΔGFEP

ij, target from the Bayesian model described in depth inMeth-
ods, where j is the reference compound. The black line indicates agreement between calculation and experiment, whilethe gray shaded region represent 1.36 kcal/mol (or 1 log10 unit) error. The mean unsigned error (MUE) and root-meansquared error (RMSE) are shown on each plot with bootstrapped 95% confidence intervals.
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The correlation coefficient � for replicate 1 of the CDK2/ERK2 calculations was quantified to be 0.440.700.12,350

indicating that the errors are moderately correlated between ERK2 and CDK2 (Figure 5B, right); this was351

consistent with the distribution for � in replicate 3 (Figure S7), while the confidence interval of � for replicate352

2 is much wider, indicating the correlation is weak.353

Considering the speedup model where the number of compounds scored and synthesized is unlimited,354

the modest correlation and low per target systematic errors for the CDK2/ERK2 calculations allow for a pre-355

dicted 4–5x speedup for 1 log10 unit selectivity optimization, and a 30–40x speedup for 2 log10 unit selectivity356

optimization (Figure 5B, right).357

Using the correlation coefficient (�), �stat,ij,target, and �sys,ij,target quantified from the Bayesianmodel for each358

set of calculations, we can now calculate the y-axis error bars for the ΔS panels of Figure 4 according to the359

proposed �selectivity equation (Eq 3). Shown in Figure S9, we can see that �selectivity accounts for most of the360

disagreement between the predicted ΔSij and the experimental ΔSij .361

Expending more effort to reduce statistical error can be beneficial in selectivity optimization362

Up to this point, we have considered only systematic error in quantifying the speedup free energy calcula-363

tions can enable for selectivity optimization, by assuming enough sampling is done to reduce the statistical364

error for each target to zero. To begin understanding how statistical error impacts this speedup, we mod-365

ified the model of speedup by additionally considering the per target statistical error (�stat, target), which we366

define in Equation 7 such that at the baseline effort, N , �stat,ij,target is 0.2 kcal/mol. In this definition, it takes367

4× the sampling, or effort, to reduce statistical error by a factor of 2×. We assume that statistical error is368

uncorrelated when propagating to two targets, and that �sys,ij,target is ≈ 1.0 kcal/mol for both targets [4, 62].369

As shown in Figure 6, expending effort to reduce �stat,ij,target when � is less than 0.5 does not change the370

expected speedup for the 100× selectivity threshold in meaningful way, suggesting that it is not worth run-371

ning calculations longer than the default protocol in this case. However, when � > 0.5, the curves do start372

to separate, particularly the 1/4×, 1×, and 4× effort curves. This suggests that when the correlation is high,373

running longer calculations can produce net improvements in selectivity optimization speed. Interestingly,374

the 16×, 48×, and ∞ effort curves do not differ greatly from the 4× effort curve, indicating that there are375

diminishing returns to running longer calculations.376

The estimated correlation coefficient is robust to Bayesian model assumptions377

In order to better understand the statistical error in our calculations, we performed three replicates of our378

calculations, and calculated the standard deviation of the cycle closure corrected ΔΔG for each edge of379

the map, and compared that value to the cycle closure errors and Bennett errors reported for each edge380

(Figure S8). For each set of calculations, the standard deviation suggests that the statistical error is between381

0.1 and 0.3 kcal/mol, which is in good agreement with the reported Bennett error (Figure S8). However,382

hysteresis in the closed cycles in the FEPmap as reflected by the cycle closure error estimates indicatemuch383

larger sampling errors than those estimated by the Bennett method or standard deviations ofmultiple runs,384

suggesting that both the Bennett errors and standard deviation of multiple replicates are underestimating385

the statistical error for these calculations. Based on this observation, we include a scaling parameter � in386

the Bayesian error model (Eq. 16) to account for the BAR errors underestimating the cycle closure statistical387

uncertainty. We also considered using a distribution with heavier tails, such as a Student’s t-distribution, but388

found the quantification of the correlation coefficient � insensitive to the use of either a scaling parameter389

or heavier-tailed distributions (Figure S10).390

Discussion and Conclusions391

S is a useful metric for selectivity in lead optimization392

There are a number of different metrics for quantifying the selectivity of a compound [55], which look at393

selectivity from different views depending on the information trying to be conveyed. One of the earliest394

metrics was the standard selectivity score, which conveyed the number of inhibited kinase targets in a broad395

scale assay divided by the total number of kinases in the assay [65]. The Gini coefficient is a method that396

does not rely on any threshold, but is highly sensitive to experimental conditions because it is dependent on397

12 of 27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.07.02.185132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185132
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — September 22, 2020

Figure 5. Correlation in systematic errors between targets can significantly accelerate selectivity optimization (A,
left) The joint posterior distribution of the prediction errors for the more distantly related CDK2 (x-axis) and CDK9 (y-axis)from the Bayesian graphical model. (A, right) Speedup in selectivity optimization (y-axis), which estimates the reductionin compounds that must be synthesized to achieve a target selectivity when aided by free energy calculations, using themodel where the number of compounds scored and synthesized is unlimited, as a function of correlation coefficient (x-axis). To calculate �selectivity, we calculate the per target systematic error (�sys,ij,target) by taking the mean of �ij,target where
j is the reference compound 1a. The posterior marginal distribution of the correlation coefficient (�) is shown in gray,while the expected speedup is shown for 100× (green curve) and 10× (yellow curve) selectivity optimization. The insertedbox shows the mean and 95% confidence interval for the correlation coefficient. The marginal distribution of speedup isshown on the right side of the plot for both 100× (green) and 10× (yellow) selectivity optimization speedups. (B) As above,but for the more closely related CDK2/ERK2 selectivity data set using compound 6 as the reference.

13 of 27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.07.02.185132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185132
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — September 22, 2020

Figure 6. Reducing statistical uncertainty when systematic error correlation is high improves the speedup in se-
lectivity optimization achievable with free energy calculations. (left) The speedup in selectivity (Y-axis) as a functionof correlation coefficient (X-axis). Each curve represents a different per target statistical error (�stat,ij,target) for 10× (1 log10unit) (A) and 100× (2 log10 unit) (B) thresholds (right) Table with the per target statistical error (�stat,ij,target), kcal/mol) cor-responding to each curve on the left and a rough estimate of the generic amount of computational effort it would taketo achieve that statistical uncertainty.
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percent inhibition [66]. Other metrics take a thermodynamic approach to kinase selectivity and are suitable398

for smaller panel screens [67, 68]. Here, we propose a more granular, thermodynamic view of selectivity399

that is straightforward to calculate using free energy methods: the change in free energy of binding for a400

given ligand between two different targets (S). S is a useful metric of selectivity in lead optimization once a401

single, or small panel, of off-targets have been identified and the goal is to use physical modeling to either402

improve or maintain selectivity within a lead series.403

Systematic error correlation can accelerate selectivity optimization404

We have demonstrated, using a simple numerical model that assumes unlimited synthetic and computa-405

tional resources, the impact that free energy calculations with even weakly correlated systematic errors406

can have on speeding up the optimization of selectivity in small molecule kinase inhibitors. While the ex-407

pected speedup is dependent on the per target systematic error of the method (�sys,ij,target), the speedup is408

also highly dependent on the correlation of errors made for both targets. Unsurprisingly, free energy meth-409

ods have greater impact as the threshold for selectivity optimization goes from 10× to 100×. While 100×410

selectivity optimization is difficult to achieve, the expected benefit from free energy calculations is also quite411

high, with speedups of one or two orders of magnitude possible. In a more realistic scenario, where the412

number of compounds scored and synthesized is limited by resources, we have demonstrated using the413

same numerical model that more stringent synthesis rules results in increased speedup from free energy414

calculations. This holds true across different correlation coefficients (�), provided enough compounds are415

scored. As our model shows, it is possible for stringent synthesis rules to provide benefits similar to oper-416

ating with high systematic error correlation coefficients (�).417

Two pairs of kinase test systems suggest systematic errors can be correlated418

To quantify the correlation of errors in two example systems, we gathered experimental data for two con-419

generic ligand series with experimental data for CDK2 and ERK2, as well as CDK2 and CDK9. These data420

sets, which had crystal structures for both targets with the same ligand co-crystallized, exemplify the diffi-421

culty in predicting selectivity. The dynamic range of selectivity for both systems is very narrow, with most422

of the perturbations not having a major impact on the overall selectivity achieved. Further, the data was423

reported without reliable experimental uncertainties, which makes quantifying the errors made by the free424

energy calculations difficult. This issue is common when considering selectivity, as many kinase-oriented425

high throughput screens are carried out at a single concentration and not highly quantitative.426

The CDK9 calculations contained an outlier, compound 12h, that drove much of the prediction error for427

that set. Compound 12e (R1 = F) is the most potent against CDK9 of the compounds in with a sulfonamide428

at R3 (Figure 2). The addition of a single methyl group decreases the potency against CDK9 (compound 12g)429

andwhile only slightly changing the affinity for CDK2. However, adding on anothermethyl group (compound430

12h) results in an order of magnitude decrease in Ki for both CDK9 and CDK2. Crystal structures for both431

kinases show that R1 points into a pocket formed by the backbone, and the sidechains of a Valine and432

Phenylalanine. While ethyl at R1 in compound 12h is bulkier, the magnitude of the decrease in affinity for433

both kinases is larger than might be expected, given that the pocket suggests an ethyl group would be well434

accommodated in terms of fit and the hydrophobicity of the sidechains. For both kinases, the free energy435

calculations predict that this addition should improve the potency, suggesting that it is possible that the436

model is missing a chemical detail that might explain the trend seen in the experimental data. We expect437

that these types of errors, whichwould be troublingwhenpredicting potency alone, will drive the correlation438

of systematic errors and fortuitously cancel when predicting selectivity.439

Despite CDK2 and ERK2 belonging to different kinase subfamilies, the calculated correlation in the sys-440

tematic error for two of the replicates suggests that fortuitous cancellation of errors may be applicable in a441

wider range of scenarios than closely related kinases within the same subfamily. This may be driven by rela-442

tively high binding site sequence identity between CDK2 and ERK2 (52% compared for 57% for CDK2/CDK9).443

However, the confidence interval of the correlation is quite broad, including 0 for the lower bound for the444

third replicate, suggesting that errors for more distantly related proteins will have only moderate, if any,445

correlation.446
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Reducing statistical error is beneficial when systematic errors are correlated447

In order to better understand if there are situations where it is beneficial to run longer calculations to mini-448

mize statistical error to achieve a larger speedup in the synthesis of selective compounds, we built a numer-449

ical model of the impact of statistical error in the context of different levels of systematic error correlation.450

Our results suggest that unless the correlation coefficient � is highly positive for the two targets of interest,451

there is not much benefit in running longer calculations. However, when the systematic error is reduced by452

correlation, longer calculations can help realize large increases in speedup to achieve selectivity goals. Keep-453

ing a running quantification of � for free energy calculations as compounds are made and the predictions454

can be tested will allow for decisions to be made about whether running longer calculations is worthwhile.455

It will also allow for an estimate of �selectivity, which is useful for estimating expected systematic error for456

prospective predictions. Importantly, we expect that correlation will be modeling protocol dependent and457

any changes to theway the system ismodeled over the course of discovery program are expected to change458

the observed correlation in the systematic error.459

Larger data sets with a wide range of protein targets will enable future work460

The data sets gathered here were limited by the total number of compounds, the small dynamic range for461

selectivity (S), and the lack of reliable experimental uncertainties. The small size of the data set makes it462

difficult to draw broad conclusions about the correlation in systematic errors. Understanding the degree463

of correlation a priori based on structural or sequence similarity requires study on a larger range of targets464

than the two pairs presented in this study. A larger data set that contained many protein targets, crystal465

structures, and quantitative binding affinity data would be ideal to draw conclusions about the broader466

prevalence of systematic error correlation.467

This work demonstrates that correlation in the systematic errors can allow free energy calculations to468

facilitate significant speedups in selectivity optimization for drug discovery projects. This is particularly im-469

portant in kinase systems, where considering multiple targets is an important part of the development470

process. The results suggest that free energy calculations can be particularly helpful in the design of kinase471

polypharmacological agents, especially in cases where there is high correlation in the systematic errors472

between multiple targets.473

Methods474

Numerical model of selectivity optimization speedup475

To model the impact correlation of systematic error would have on the expected uncertainty for selectivity476

predictions, �selectivity was calculated using Equation 3 for 1000 evenly spaced values of the correlation coef-477

ficient (�) from 0 to 1, for a number of combinations of per target systematic errors (�sys,ij,1 and �sys,ij,2). In478

the regime of infinite sampling and zero statistical error, the second term reduces to zero.479

�selectivity =
√

�2sys,ij,1 + �2sys,ij,2 − 2� �sys,ij,1 �sys,ij,2 + �2stat,ij,1 + �2stat,ij,2 (3)
The speedup in selectivity optimization that could be expected from using free energy calculations of a par-480

ticular per target systematic error (�sys,ij,target) was quantified as follows using NumPy (v 1.14.2). An original,481

true distribution for the change in selectivity of 200 000 000 new compounds proposed with respect to a482

reference compound wasmodeled as a normal distribution centered around 0 with a standard deviation of483

1 kcal/mol. This assumption was made on the basis that the majority of selectivity is driven by the scaffold,484

and R group modifications will do little to drive changes in selectivity. The 1 kcal/mol distribution is sup-485

ported by the standard deviations of the selectivity in the experimental data sets referenced in this work,486

which are all less than, but close to, 1 kcal/mol.487

In this model, we suppose that each of proposed compound is triaged by a free energy calculation and488

only proposed compounds predicted to increase selectivity by ΔSij ≥1.4 kcal/mol (1 log10 unit) with respect489

to a reference compound would be synthesized. Based on reported estimates in the literature, we pre-490

sume that relative free energy calculations have a per-target systematic error �sys,ij,target ≈1 kcal/mol [4], and491

explore the impact of the correlation coefficient � governing the correlation of these predictions between492
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targets. The standard error in predicted selectivity, �selectivity, is given by Equation 3. When sampling is infi-493

nite and �stat,ij,target is zero, �selectivity is driven entirely by the systematic error component (�sys,ij,target), resulting494

in the error in predicted change in selectivity ΔSij modeled as a normal distribution centered around 0 with495

a standard deviation of �sys,ij,target and added to the "true" ΔSij ,496

ΔSij, predicted = ΔSij,true
(

true(� = 0, �2 = 1)
)

+ ΔSsystematic error
(

error(� = 0, �2sys,ij,target(�)
) (5)

We ignore the potential complication of finite experimental error in this thought experiment, presuming497

the experimental uncertainty is sufficiently small as to be negligible.498

The speedup in synthesizing molecules that reach this 10× selectivity gain threshold is calculated, as a499

function of �, as the ratio of the number of compounds that exceed the selectivity threshold in the case that500

molecules predicted to fall below this threshold by free energy calculations were triaged and not synthe-501

sized, divided by the number of compounds that exceeded the selectivity threshold without the benefit of502

free energy triage. This process was repeated for a 100× (2.8 kcal/mol, 2 log10 unit) selectivity optimization503

and 50 linearly spaced values of the correlation coefficient (�) between 0 and 1, for four values of �selectivity,504

using a sample size of 4×107 compounds.505

The above model assumes that the number of compounds scored and synthesized is essentially unlim-506

ited. To assess the impact these methods might have on real drug discovery projects, where the number507

of compounds scored and synthesized are limited by computational and chemistry resources, we altered508

the above model to consider the number of compounds scored, the number of compounds triggered for509

synthesis, and the threshold a compound needed to reach in order to be considered for synthesis.510

We repeated the mode detailed above, this time scoring only the following numbers of compounds: 10,511

50, 100, 200, 500, the range from 1000 to 10000 in steps of 1000, and the range from 10000 to 100 000 in512

steps of 2000. Compounds were drawn from a true distribution of ΔSij,true
(

true(� = 0, �2 = 1)
) and triaged513

using a free energy method as detailed above with a per-target systematic error (�sys,ij,target) of 1 kcal/mol.514

The top predicted compounds that meet or surpass a synthesis rule, up to a maximum of 10 compounds,515

are selected for synthesis. Here, we consider synthesis rules of 100×, 500× and 1000×when trying to design516

100× (2.8 kcal/mol, 2 log10 unit) improvements in selectivity. The speedup was calculated as the number of517

synthesized compounds whose ΔSij,true reaches the desired 100× threshold divided by the expected value518

(Eselective) for a selective compound given the number of synthesized compounds. This expectation can be519

calculated as,520

Eselective = P (ΔSij > threshold |true) ∗ nsynthesized (6)
Where P (ΔSij > threshold |true) is the probabilityΔSij,true for some compound is better than a particular521

selectivity threshold given the distribution of ΔSij,true
(

true(� = 0, �2 = 1)
) for 100 000 000 compounds, and522

nsynthesized is the number of compounds synthesized. If no compounds were predicted to meet or surpass523

the synthesis rule, the speedup was assigned a default value of 1. We performed 1000 replicates of each524

condition and report the mean and 95 % CI in Figure1D.525

Numerical model of impact of statistical error on selectivity optimization526

Tomodel the impact of finite statistical error in the alchemical free energy calculations, a similar schemewas527

used with the following modifications: Each proposed compound was triaged by a free energy calculation528

with a per target systematic error (�sys,ij,target) of 1.0 kcal/mol [4] and a specified correlation coefficient �. A529

�selectivity was calculated according to Equation 3, this time considering the statistical terms as non-negligible.530

The per target statistical error (�stat,ij,target) was defined as,531

�stat,ij,target =
�stat,base
√

N
(7)

whereN is the relative effort put into running sampling the calculation and �stat,base is such that whenN = 1,532

�stat,ij,target = 0.2 kcal/mol. The statistical error is propagated assuming it is uncorrelated, as independent sets533

of calculations are used for each target, giving us the second set of terms in 3. This gives an updatedmodel534
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for the error in predicted change in selectivity ΔSij . The systematic and statistical errors were modeled as535

Gaussian noise added to the true distribution,536

ΔSij,predicted = ΔSij,true
(

true(� = 0, �2 = 1)
)

+ ΔSsystematic error
(

systematic(� = 0, �2sys,ij,target(�))
) (8)

+ ΔSstatistical error
(

statistical(� = 0, �2stat,ij,target)
)

Any compound predicted to have an improvement in selectivity of above the threshold (either 1.4 kcal/mol537

(1 log10 units) or 2.8 kcal/mol (2 log10 units)) would then be made and have its selectivity experimentally538

measured, using an experimental method with perfect accuracy. The speedup value for each value of � is539

calculated as previously described.540

Binding Site Similarity analysis541

To quantify the similarity between the different kinase pairs, a structure-informed binding site sequence542

comparison was performed. In the KLIFS database, the binding site of typical human kinases is defined543

by 85 residues, comprising known kinase motives (DFG, hinge, G-loop, aC-helix, ...), which cover potential544

interactions with type I-IV inhibitors [58, 59]. KLIFS provides a multiple sequence alignment in which each545

kinase sequence is mapped to these 85 binding site residues. This mapping was used to calculate the546

sequence identify between the three kinases CDK2, CDK9, and ERK2 used in this study (Figure S1 and Table547

S1). The score shows the percentage of identical residues between two kinases with respect to the 85548

positions.549

For structural comparison, the respective pdbs of the two kinaseswere downloaded from the pdb (CDK2-550

4bci/CDK9-4bck) and CDK2-5k4j/ERK2-5k4i). PyMol v.2.3.0 was used for preprocessing and alignment of the551

structures. For all structures only chain A was kept. Additionally, for structure 4bck alternate location C552

was chosen only. Next, binding sites were selected as all residues withing 10 A of the co-crystallized ligand,553

yielding. Finally, the respective binding site pairs were aligned using PyMol’s default align function and the554

RMSD was returned. The following is an example command: create [pdb]_bs, byres [pdb]_A within 10555

of ([pdb]_A and resn [lig_name])556

Extracting the binding free energy ΔG from reported experimental data557

Ki values were derived from IC50 measurements reported for the ERK2/CDK2 data set (Figure 3), assuming558

Michaelis-Menten binding kinetics for an ATP-competitive inhibitor,559

Ki =
IC50
1 + [S0]

Km

(9)
Where theMichaelis-Menten constant for ATP (Km (ATP)) is much larger than the initial concentration of ATP,560

S0, so that IC50 ≈ Ki.561

These Ki values were then used to calculate a ΔG (Equation 10),562

ΔG = −kBT lnKi (10)
Here, kB is the Boltzmann constant and T is absolute temperature (taken to be room temperature, T ∼563

300K).564

For the CDK2/CDK9 data set, the authors note that the assumption Km (ATP) ≫ S0 does not hold, and565

report Kis derived from their IC50 measurements using the Km (ATP) for each kinase, as well as the S0 from566

their assay. These values were then converted to ΔG using Equation 10. For both data sets, these derived567

ΔG were used to calculate ΔΔG between ligands for each kinase target.568

As mentioned above, the assumption that Km (ATP)≫ S0 may not always hold, and changes in IC50 may569

be driven by factors other than changes in ligand binding affinity. However, these assumptions have been570

used successfully to estimate relative free energies previously [62, 69]. Further, data was taken from the571

same lab and assay for each target. By using assays with the same kinase construct and ATP concentration,572

the relative free energies (ΔΔGij ) should be well determined for compounds within the assay. Even if the573

absolute free energies (ΔGi) are off due to uncertainties in Km (ATP) or S0, they will be off by the same574

constant, which will cancel when calculating ΔΔGij .575

18 of 27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.07.02.185132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185132
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — September 22, 2020

Structure Preparation576

Structures from the Shao [53] (CDK2/CDK9), Hole [60] (CDK2/CDK9), and Blake [54] (CDK2/ERK2) papers577

were downloaded from the PDB [70], selecting structures with the same co-ligand crystallized.578

For the Shao (CDK2/CDK9) data set, PDB IDs 4BCK (CDK2) and 4BCI (CDK9) were selected, which have579

ligand 12c cocrystallized. For the Blake data set (ERK2/CDK2), 5K4J (CDK2) and 5K4I (ERK2) were selected,580

cocrystallized with ligand 21. The structures were prepared using Schrodinger’s Protein Preparation Wiz-581

ard [71] (Maestro, Release 2017-3). This pipeline modeled in internal loops and missing atoms, added hy-582

drogens at the reported experimental pH (7.0 for the Shao data set, 7.3 for the Blake data set) for both the583

protein and the ligand. All crystal waters were retained. The ligand was assigned protonation and tautomer584

states using Epik at the experimental pH±2, and hydrogen bonding was optimized using PROPKA at the585

experimental pH±2. Finally, the entire structure was minimized using OPLS3 with an RMSD cutoff of 0.3Å.586

Ligand Pose Generation587

Ligands were extracted from the publication entries in the BindingDB as 2D SMILES strings. 3D conforma-588

tions were generated using LigPrep with OPLS3 [4]. Ionization state was assigned using Epik at experimen-589

tal pH±2. Stereoisomers were computed by retaining any specified chiralities and varying the rest. The590

tautomer and ionization state with the lowest Epik state penalty was selected for use in the calculation. Any591

ligands predicted to have a positive or negative charge in its lowest Epik state penalty was excluded, with592

the exception of Compound 9 from the Blake data set. This ligand was predicted to have a +1 charge for its593

lowest state penalty state. The neutral form the ligand was include for the sake of cycle closure in the FEP+594

map, but was ignored for the sake any analysis afterwards. Ligand poses were generated by first aligning595

to the co-crystal ligand using the Largest Common Bemis-Murcko scaffold with fuzzy matching (Maestro,596

Release 2017-3). Ligands that were poorly aligned or failed to align were then aligned using Maximum597

Common Substructure (MCSS). Finally, large R-groups conformations were sampled with MM-GBSA using a598

common core restraint, VSGB solvation model, and OPLS3 force field. No flexible residues were defined for599

the protein.600

Free Energy Calculations601

The FEP+ panel (Maestro, Release 2017-3) was used to generate perturbation maps. FEP+ calculations were602

run using the FEP+ panel from Maestro release 2018-3 in order to take advantage of the newest force603

field (OPLS3e) parameters available at the time. Any missing ligand torsions were fit using the automated604

FFbuilder protocol [7]. Custom charges were assigned using the OPLS3e force field using input geometries,605

according to the automated FEP+ workflow in Maestro Release 2018-3. Neutral perturbations were run for606

15 ns per replica, using an NPT ensemble and water buffer size of 5Å. The SPC water model was used. A607

GCMC solvation protocol was used to sample buried water molecules in the binding pocket prior to the608

calculation, which discards any retained crystal waters.609

Statistical Analysis of FEP+ calculations610

To quantify the overall errors in the FEP+ calculations, we computed the mean unsigned error (MUE),611

MUE =

∑n
0 ∣ ΔΔG

calci,ref,target − ΔΔG
exp
i,ref,target ∣

n
(11)

and the root mean squared error (RMSE)612

RMSE =

√

∑n
0(ΔΔ G

calci,ref,target − ΔΔ G
exp
i,ref,target)2

n
(12)

MUE and RMSE were computed for ΔΔGij,target. For each ligand i, ΔΔGi,ref ,target is defined where ref is a613

reference compound.614

ΔΔGi,ref,target = ΔGi,target − ΔGreference, target (13)
For the CDK2/CDK9 data set, compound 1a was used as the reference compound, as it was the first com-615

pound from which the others in the series were derived. For the CDK2/ERK2 data set, compound 6 was616
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used as the reference compound, since it was the compound from which the investigation was launch. A617

metabolite of compound 6 (not included in the data set here) was used as the starting compound from618

which the rest were derived. To account for the finite ligand sample size, we used 10 000 replicates of boot-619

strapping with replacement to estimate 95% confidence intervals. The code used to bootstrap these values620

is available on GitHub [https://github.com/choderalab/selectivity].621

To compute the per-target statistical error (�stat,ij,target) for each i,ref pair of ligands, we used the standard622

deviation of ΔΔGFEP
ij, target, where j is the reference compound, from the Bayesian model described in depth623

below in the Methods section. To compute the per target systematic error (�sys,ij,target), we calculated the624

mean of �ij,target, where j is the reference compound, described in equation 21 in the BayesianModel section625

of theMethods.626

Quantification of the correlation coefficient �627

To quantify �, we built a Bayesian graphical model using pymc3 3.5 [72] and theano 1.0.3 [73]. All code for628

this model is available on GitHub [https://github.com/choderalab/selectivity].629

For each phase (complex and solvent), the prior for the absolute free energy (G) of ligand i (up to an arbi-630

trary additive constant for each thermodynamic phase, ligand-in-complex or ligand-in-solvent), was treated631

as a normal distribution (Equation 15).632

Gpℎase
i,target ∼ (� = 0, � = 25.0 kcal/mol) (14)

To improve sampling efficiency, for each phase, one ligand was chosen as the reference, and pinned to an633

absolute free energy of G = 0, with a standard deviation of 1 kcal/mol.634

Gpℎase
1,target ∼ (� = 0, � = 1.0 kcal/mol) (15)

For each edge of the FEP map (ligand i –> ligand j), there is a contribution from dummy atoms, that was635

modeled as in Equation 16. Note that here, unlike what was done in Figure 4, ligand j is not necessarily a636

reference compound.637

ci,j ∼ (� = 0, � = 25.0 kcal/mol) (16)
The model was conditioned by including data from the FEP+ calculation.638

ΔGcalcphase, ij, target ∼ (Gphase
j,target − Gphase

i,target, ��2ΔGBARphase, ij, target) (17)
where �2ΔGBARphase, ij, target is the reported BAR uncertainty from the calculation, and ΔGcalcphase, ij, target is the BAR639

estimate of the free energy for the perturbation between ligands i and j in a given phase. � is a scaling640

parameter shared by all ΔGcalcphase, ij, target for each target. Such scaling is necessary to account for the BAR641

statistical uncertainty underestimating cycle closure statistical uncertainty of our calculations, shown by642

Figure S8.643

From this, we can calculate the ΔGFEP
i, target for each ligand and target,644

ΔGFEP
i, target = Gcomplex

i,target − Gsolvent
i,target (18)

From ΔGFEP
i, target, we calculated ΔΔGFEP

ij, target for each pair of ligands, filtering out pairs where i and j are the645

same ligand and where the reciprocal was already included.646

The experimental binding affinity was treated as a true value (ΔGtrue
i,target) corrupted by experimental un-647

certainty, which is assumed to be 0.3 kcal/mol [6]. There are a number of studies that report on the re-648

producibility and uncertainty of intra-lab IC50 measurements, ranging from as small as 0.22 kcal/mol [62]649

to as high as 0.4 kcal/mol [6]. The assumed value falls within this range and is in good agreement with the650

uncertainty reported from multiple replicate measurements in internal data sets at Novartis [63].651

The values reported in the papers (ΔGobs
i,target) were treated as observations from this distribution (Equa-652

tion 19),653

ΔGobs
i,target ∼ (� = ΔGtrue

i,target, � = 0.3 kcal/mol) (19)
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ΔGtrue
i,target was assigned a weak normal prior, as in Equation 20,654

ΔGtrue
i,target = (� = 0, � = 50 kcal/mol) (20)

ΔΔGtrue
ij, target for each pair of ligands was calculated from ΔGtrue

i,target, filtering out pairs where i and j are the655

same ligand and where the reciprocal was already included as above.656

The error for a given ligand was calculated as657

�ij,target = ΔΔGFEP
ij, target − ΔΔGtrue

ij, target (21)
From these � values, we calculated the correlation coefficient, �, from the sampled errors for the finite set658

of molecules for which measurements were available,659

� =
cov(�target1, �target2)
�� target 1 �� target 2

(22)
where �� target 2 is the standard deviation of �ij,target.660

To quantify � from these calculations, the default NUTS sampler with jitter+adapt_diag initialization,661

3 000 tuning steps, and the default target accept probability was used to draw 20 000 samples from the662

model.663

Calculating the marginal distribution of speedup664

To quantify the expected speedup from the calculations we ran, we utilized 104 replicates of the scheme665

detailed above to calculate the speedup given parameters �, �sys,ij,1, and �sys,ij,2, in the regime of infinite666

effort and zero statistical error. Using Numpy 1.14.2, � was drawn from a normal distribution with the667

mean and standard deviation from the posterior distribution of � from the Bayesian Graphical model. The668

per-target systematic errors, �sys,ij,1 and �sys,ij,2, were estimated from the mean of the absolute value of �ij,1669

and �ij,2, which are the magnitude of errors from the Bayesian graphical model. �selectivity was calculated670

using Equation 3. 106 molecules were proposed from true normal distribution, as above. The error of the671

computational method was modeled as in Equation 5.672
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Data Availability673

All curated starting structures, FEP+ results, and data analysis scripts and notebooks are available onGitHub:674

https://github.com/choderalab/selectivity675
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