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1z Abstract

13 Alchemical free energy calculations are now widely used to drive or maintain potency in small molecule lead
1+ Ooptimization with a roughly 1 kcal/mol accuracy. Despite this, the potential to use free energy calculations
15 to drive optimization of compound selectivity among two similar targets has been relatively unexplored in
16 published studies. In the most optimistic scenario, the similarity of binding sites might lead to a fortuitous
1z cancellation of errors and allow selectivity to be predicted more accurately than affinity. Here, we assess
1s  the accuracy with which selectivity can be predicted in the context of small molecule kinase inhibitors, con-
10 sidering the very similar binding sites of human kinases CDK2 and CDK9, as well as another series of lig-
20 ands attempting to achieve selectivity between the more distantly related kinases CDK2 and ERK2. Using
21 a Bayesian analysis approach, we separate systematic from statistical error and quantify the correlation in
22 Systematic errors between selectivity targets. We find that, in the CDK2/CDK9 case, a high correlation in sys-
23 tematic errors suggests free energy calculations can have significant impact in aiding chemists in achieving
24 selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation in systematic error suggests
2s fortuitous cancellation may even occur between systems that are not as closely related. In both cases, the
26 Correlation in systematic error suggests that longer simulations are beneficial to properly balance statisti-
2z cal error with systematic error to take full advantage of the increase in apparent free energy calculation
2s accuracy in selectivity prediction.

29

30 Free energy methods have proven useful in aiding structure-based drug design by driving the optimiza-
31 tion or maintenance of potency in lead optimization. Alchemical free energy calculations allow for the pre-
32 diction of ligand binding free energies, including all enthalpic and entropic contributions [1]. Advances in
33 atomistic molecular mechanics simulations and free energy methodologies [2-5] have allowed free energy
2 methods to reach a level of accuracy sufficient for predicting ligand potencies [6]. These methods have
s been applied prospectively to develop inhibitors for Tyk2 [7], Syk [8], BACE1 [9], GPCRs [10], and HIV pro-
e tease [11]. A recent large-scale review of the use of FEP+ [12] to predict potency for 92 different projects
3z and 3 021 compounds determined that predicted binding free energies had a median root mean squared
ss  error (RMSE) of 1.0 kcal/mol [13].

5o Selectivity is an important consideration in drug design
s In addition to potency, selectivity is an important property to consider in drug development, either in the
a1 pursuit of an inhibitor that is maximally selective [14, 15] or possesses a desired polypharmacology [16-
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a2 20]. Controlling selectivity can be useful not only in avoiding off-target toxicity (arising from inhibition of
a3 unintended targets) [21, 22], but also in avoiding on-target toxicity (arising from inhibition of the intended
.2 target) by selectively targeting disease mutations [23]. In either paradigm, considering the selectivity of
ss a compound is complicated by the biology of the target. For example, kinases exist as nodes in complex
s signaling networks [24, 25] with feedback inhibition and cross-talk between pathways. Careful consideration
+z of which off-targets are being inhibited can avoid off-target toxicity due to alleviating feedback inhibition
«s and inadvertently reactivating the targeted pathway [24, 25] or the upregulation of a secondary pathway
s by alleviation of cross-talk inhibition [26, 27]. Off-target toxicity can also be caused by inhibiting unrelated
so targets, such as gefitinib, an EGFR inhibitor, inhibiting CYP2D6 [21] and causing hepatotoxicity in lung cancer
s1  patients. In acancer setting, on-target toxicity can be avoided by considering the selectivity for the oncogenic
s2 mutant form of the kinase over the wild type form of the kinase [28-30], exemplified by a number of first
s3 generation EGFR inhibitors. Selective binding to multiple kinases can also lead to beneficial effects: Imatinib,
sa initially developed to target BCR-Abl fusion proteins, is also approved for treating gastrointestinal stromal
ss tumors (GIST) [31] due to its activity against receptor tyrosine kinase KIT.

ss The use of physical modeling to predict selectivity is relatively unexplored

sz While engineering compound selectivity is important for drug discovery, the utility of free energy methods
ss for predicting this selectivity with the aim of reducing the number of compounds that must be synthesized
so to achieve a desired selectivity profile has been relatively unexplored in published studies. If there is fortu-
s itous cancellation of systematic errors for closely related systems, free energy methods may be much more
61 accurate than expected given the errors made in predicting the potency for each individual target. Such
ez Systematic errors might arise from force field parameters uncertainty, force field parameters assignment,
ez protein or ligand protonation state assignment, or even from systematic errors arising in the target exper-
e« imental data, where for example poor solubility of a particular compound might lead to a spuriously poor
es reported binding affinity for that compound, among other effects.

66 Molecular dynamics and free energy calculations have been used extensively to investigate the biophys-
ez ical origins of the selectivity of imatinib for Abl kinase over Src [32, 33] and within a family of non-receptor
es tyrosine kinases [34]. This work focused on understanding the role reorganization energy plays in the
e exquisite selectivity of imatinib for Abl over the highly related Src despite high similarity between the cocrys-
7o tallized binding mode and kinase conformations, and touches on neither the evaluation of the accuracy of
7= these methods nor their application to drug discovery on congeneric series of ligands. Previous work pre-
72 dicting the selectivity of three bromodomain inhibitors across the bromodomain family achieved promising
73 accuracy for single target potency of roughly 1 kcal/mol, but does not explicitly evaluate any selectivity met-
7a  rics [35] or quantify the correlation in the errors made in predicting affinities for each bromodomain. Previ-
75 0uUs work using FEP+ to predict selectivity between pairs of phosphodiesterases (PDEs) showed promising
76 performance but did not evaluate correlation in the error made in predicting affinities for each PDE [36]

7z Kinases are an important and particularly challenging model system for selectivity predictions

7s Kinases are a useful model system to work with for assessing the utility of free energy calculations to pre-
7o dict inhibitor selectivity in a drug discovery context. With the approval of imatinib for the treatment of
so Chronic myelogenous leukemia in 2001, targeted small molecule kinase inhibitors (SMKIs) have become a
e1  major class of therapeutics in treating cancer and other diseases. Currently, there are 52 FDA-approved
sz SMKIs [37], and it is estimated that kinase targeted therapies account for as much as 50% of current drug
sz development [38], with many more compounds currently in clinical trials. While there have been a num-
sa ber of successful drug approvals, the current stable of FDA-approved kinase inhibitors targets only a small
ss fraction of kinases implicated in disease, and the design of new selective kinase inhibitors for novel targets
ss remains a significant challenge.

87 Achieving selective inhibition of kinases is quite challenging, as there are more than 518 protein ki-
ss nases [39, 40] sharing a highly conserved ATP binding site that is targeted by the majority of SMKIs [41].
so  While kinase inhibitors have been designed to target kinase-specific sub-pockets and binding modes to
oo achieve selectivity [42-47], previous work has shown that both Type | (binding to the active, DFG-in confor-
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mation) and Type Il (binding to the inactive, DFG-out conformation) inhibitors are capable of achieving a
range of selectivities [48, 49], often exhibiting significant binding to a number of other targets in addition
to their primary target. Even FDA-approved inhibitors—often the result of extensive drug development
programs—bind to a large number of off-target kinases [50]. Kinases are also targets of interest for devel-
oping polypharmacological compounds, or inhibitors that are specifically designed to inhibit multiple kinase
targets. Resistance to MEK inhibitors in KRAS-mutant lung and colon cancer has been shown to be driven
by ErbB3 upregulation [51], providing a rationale for dual MEK/ERBB family inhibitors. Similarly, combined
MEK and VEGFR1 inhibition has been proposed as a combinatorial approach to treat KRAS-mutant lung
cancer [52]. Developing inhibitors with a desired polypharmacology means navigating more complex se-
lectivity profiles, presenting a problem where physical modeling has the potential to dramatically speedup
drug discovery.

The correlation coefficient measures how useful predictions are in achieving selectivity

Since the prediction of selectivity depends on predicting the change of affinities to two or more targets
(or the change of affinities between pairs of related molecules for multiple targets), a spectrum of possi-
bilities exists for how accurately selectivity can be predicted even when the error in predicting individual
target affinities is fixed. In well-behaved kinase systems, for example, free energy calculation potency pre-
dictions have achieved root-mean-square of less than 1.0 kcal/mol [7, 12]. This residual error likely arises
from a variety of contributions. Systematic contributions to the residual error may include forcefield pa-
rameterization deficiencies, protein and ligand protonation assignment errors, and discrepancies between
the crystallographic construct protein and the assay construct protein. Likewise, unbiased contributions
to the observed residual error likely arises from incompletely converged sampling. Lastly, it should not be
forgotten that the target experimental value will have its own systematic and random errors.

In the best-case scenario, correlation in the systematic errors for predicting the interactions of a given
ligand with two related protein targets might exactly cancel out, allowing selectivity to be predicted much
more accurately than potency. On the other hand, if the uncorrelated random error dominates the residual
error between two protein targets, predictions of selectivity will be less accurate than potency predictions.
Real-world systems are likely to fall somewhere between these two extremes, and quantifying the degree to
which error in multiple protein targets is correlated, its implications for the use of free energy calculations
for prioritizing synthesis in the pursuit of selectivity, the ramifications for optimal calculation protocols, and
rough guidelines governing which systems we might expect good selectivity prediction is the primary focus
of this work.

In particular, in this work, we investigate the magnitude of the correlation (p) in error for the predicted
binding free energy differences between related compounds (AAG;)) for two different targets, assessing
the utility of alchemical free energy calculations for the prediction of selectivity. We employ state of the
art relative free energy calculations [12, 13] to predict the selectivities of two different congeneric ligand
series [53, 54], and construct simple numerical models that allow us to quantify the potential utility in se-
lectivity optimization expected for different combinations of per target systematic errors and correlation
coefficients. To make a realistic assessment of our confidence in this correlation coefficient derived from
a limited number of experimental measurements, we develop a new Bayesian approach to quantify the
uncertainty in the correlation coefficient in the predicted change in selectivity on ligand modification, incor-
porating all sources of uncertainty and correlation in the computation to separate statistical from systematic
error. We find that in the closely related systems of CDK2 and CDKS9, a high correlation of systematic errors
suggests that free energy methods can have a significant impact on speeding up selectivity optimization.
Even in the more distantly related case (CDK2/ERK2), correlation in the systematic errors allows free energy
calculations to speedup selectivity optimization, suggesting that these methodologies can impact drug dis-
covery even when comparing systems that are less closely related. We also present a model of the impact of
per target statistical error at different levels of systematic error correlation, suggesting that it is worthwhile
to expend more effort sampling in systems with high correlation.

Results
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10 Alchemical free energy methods can be used to predict compound selectivity

11 While the potency of a ligand i for a single target is often quantified as a free energy of binding (AG, target),
12 there are a number of different metrics for quantifying compound selectivity [55, 56]. Here, we consider
13 the selectivity .S; between one target and another (an antitarget) as the difference in free energy of binding
1aa  for a given ligand i between the two,

Si = AGi,targetz AGL Jtarget 1 (1)

145 While in the optimization of potency we are concerned with AAG;; = AG, — AG,, the relative free energy
s Of binding of ligands i and j to a single target, in the optimization of selectivity, we are concerned with
w7 AS;;, =S, - S, which reflects the change in selectivity between ligand i and a related ligand j,

AS; = S,-5, )
= (AGj, target 2 AGJ target )= (AGi, target2 — AGi, target 1)
= AAGij, target 2 AAGU target 1
148 To predict the change in selectivity, AS,;, between two related compounds, we developed a protocol that

140 UsSes a relative free energy calculation (FEP+) [12] to construct a map of alchemical perturbations between
150 ligands in a congeneric series, as described in detail in the Methods. The calculation is repeated for each
151 target of interest, with identical perturbations (edges) between each ligand (nodes). Each edge represents a
12 relative alchemical free energy calculation that quantifies the AAG between the ligands (nodes) for a single
153 target. From these calculations, we can then compute the change in selectivity between the two targets of
s interest, AS;;, achieved by transforming ligand i into ligand ;.

155 Previous work has demonstrated that FEP+ can achieve an accuracy (o) Of roughly 1 kcal/mol in
16 Single-target potency prediction, which reflects a combination of systematic error and random statistical
157 error [12]. However, it is possible that the systematic error for a given perturbation between ligands i
158 aNd j (04 i targer) IN two different systems may fortuitously cancel when computing AS;;, resulting in the
10 Systematic contribution to the selectivity error (csecriviey) P€INg significantly lower than its contribution to
10 Single-target potency error (o ge)- This systematic error may cancel between the two systems for a variety
e Of reasons. For example, a ligand force field parameter assignment error might lead to an spuriously large
162 Solvation free energy for a particular compound, which will cancel in the selectivity analysis. Likewise, a spar-
163 iNgly soluble compound might have a similar experimental measurement error for the on-target protein as
1ea  the off-target protein. Similar cancellation of systematic errors might be observed in ligand and/or protein
165 protonation state assignment error, or systematic differences existing between the protein constructs used
16 for crystallographic studies and biochemical or biophysical assays.

167 If we presume that the systematic errors for both targets are distributed according to a bivariate nor-
1es Mal distribution with correlation coefficient p quantifying the degree of correlation (with p = 0 denoting no
10 Correlation, p = 1 denoting perfect correlation, and p = —1 denoting perfect anti-correlation), and that the
170 statistical errors for both targets (o, ;e are completely independent because the simulations for each
171 target are separate, we can model the error in predicting the AS,; as ogjecivitys

— 2 2 _ . . 2 2
Oselectivity = \/asys,ijj + Osys,ii,2 2p Osys,ij1 Osysjj2 + Ostat,ij1 + Ostat,ij,2 (3)

172 Ogelectiviey CAN b€ split into two components: systematic error and statistical error. As more effort is spent on
173 sampling, the per-target statistical error for a given transformation from ligand i to ligand j (6sat,j, targer) Will
172 decrease, eventually becoming zero in the regime of infinite sampling. The correlation coefficient p can be
175 both negative and positive. When the correlation coefficient p is positive, the systematic error (oqy i arget)
17e  should cancel out, making oecriviy SMaller than expected. When the correlation coefficient p is negative,
177 the systematic error (o jj targer) Will be anti-correlated, making the oggeciviey larger than expected. As we
17zs shall see below, the quantitative value of the correlation coefficient p for the systematic error component
1o has important ramifications for the accuracy with which selectivity can be predicted.
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Correlation in systematic errors can significantly enhance accuracy of selectivity predictions

To demonstrate the potential impact the correlation coefficient p has on predicting selectivity using alchem-
ical free energy techniques, we created a simple numerical model following Equation 3 which takes into
account each of the per-target systematic errors (o 05ys,5») €xpected from the methodology as well as
the correlation in those errors, while assuming infinite effort is spent on sampling to reduce the statistical
error component (o,) to zero. As seen in Figure 1A, if the per target systematic errors are the same magni-
tude (ogys i1 = Osysjn)s Oselectiviy aPProaches 0 as the correlation coefficient p approaches 1, even though the
single-target potency systematic error is nonzero. If the error for the free energy method is not the same
magnitude (g i # Osys,j2)s Tselectivity 8€LS Smaller but approaches a non-zero value as p approaches 1.

To quantify the expected reduction in number of compounds that must be synthesized to achieve a de-
sired selectivity threshold (hereafter referred to as the speedup in selectivity optimization), we modeled the
change in selectivity with respect to a reference compound for a number of compounds a medicinal chemist
might suggest as a normal distribution centered around 0 with a standard deviation of 1 kcal/mol (Figure 1B,
black curve), reflecting the notion that most proposed modifications would not drive large changes in se-
lectivity. This assumption—that a synthetic chemist's proposal distribution can be modeled as a normal
distribution—is based on data-driven estimates from an Abbott Laboratories analysis of potency changes [57]

Further suppose that each compound is evaluated computationally with a free energy methodology that
has a per-target systematic error (o jjarger) Of 1 kcal/mol, where we presume sufficient computational ef-
fort has been expended to make statistical error negligible. All compounds predicted to have a 1.4 kcal/mol
or greater improvement in selectivity (10x in ratio of affinities, or 1 log,, unit) are synthesized and exper-
imentally tested (Figure 1B, colored curves), using an experimental technique with perfect measurement
accuracy. The fold-change in the proportion of compounds that are made that have a true 1.4 kcal/mol
improvement in selectivity compared to the original distribution can be calculated as a surrogate for the
expected speedup. For this 1.4 kcal/mol selectivity improvement threshold, a correlation coefficient p = 0.5
gives an expected speedup of 4.1x, which can be interpreted as needing to make 4.1x fewer compounds
to achieve a tenfold improvement in selectivity. This process can be extended for the even more difficult
proposition of achieving a hundredfold improvement in selectivity (Figure 1C), where 200-300x speedups
can be expected, depending on the single-target systematic error (o arger) for the free energy methodol-
ogy.

These estimates represent an ideal scenario, where the number of compounds scored and synthesized
is unlimited. In a more realistic discovery project, the number of compounds scored is limited by compu-
tational resources, and the number of compounds synthesized is limited by chemistry resources. In this
case, the observed speedup will depend not only on the correlation coefficient p and per-target systematic
Error (ogys jarger) DUt also the number of compounds scored and the synthesis rule, defined as the selectiv-
ity threshold a compound must be predicted to reach before being selected for synthesis. To model this
process, suppose a given number of compounds (Figure 1D, x-axis of each panel) are profiled with a free
energy method with a per-target systematic error (o ; targer) ©f 1 kcal/mol and some correlation coefficient
(p). The top compounds that are predicted to have an improvement in selectivity greater than a set "syn-
thesis rule" threshold (100x, 500x, or 1000x%, Figure 1D, each curve) are synthesized, up to a maximum of
10 compounds. The expected speedup can then be calculated as the ratio of the number of synthesized
compounds that have a true selectivity improvement of 2.8 kcal/mol (100x or 2 log units) to the number
of compounds expected to have a true selectivity improvement of 2.8 kcal/mol had the same number of
compounds as were synthesized been drawn randomly from the underlying unit normal distribution.

As shown in Figure 1D, the more stringent synthesis rules combined with high correlation coefficients (p)
allow free energy calculations to have the highest impact in designing selectivity inhibitors, provided enough
compounds have been scored. Interestingly, at correlation coefficient p=0.75 and low numbers of scored
compounds, the 500x synthesis provides a greater speedup than 1000x synthesis rule. This is because
there is high probability no compounds meet the more 1000x stringent synthesis rule until many more
compounds are scored. This has implications for drug discovery efforts, where time and computational
effort may limit the number of compounds able to be profiled with free energy methods.
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Figure 1. Free energy calculations can accelerate selectivity optimization. (A) The effect of correlation on expected
errors for predicting selectivity (osejectivity) in kcal/mol when statistical error is negligible due to infinite sampling. Each
curve represents a different combination of per target systematic errors (oqys j,1 and osys jj2)- (B) The change in selectivity
for molecules proposed by medicinal chemists optimizing a lead candidate can be modeled by a normal distribution
centered on zero with a standard deviation of 1 kcal/mol (black curve). Each green curve corresponds to the distribu-
tion of compounds made after screening for a 1 log;, unit (1.4 kcal/mol) improvement in selectivity with a free energy
methodology with a 1 kcal/mol per target systematic error and a particular correlation, in the regime of infinite sampling
where statistical error is zero. The shaded region of each curve corresponds to the compounds with a real 1 log,, unit
improvement in selectivity. The speedup reflects the expected reduction in compounds that must be synthesized to
reach a selectivity goal, and is calculated as the ratio of the percentage of compounds made with a real 1 log;, unitim-
provement to the percentage of compounds that would be expected in the original distribution. (C) The speedup (y-axis,
log scale) expected for 100x (2 log;, units, or 2.8 kcal/mol) selectivity optimization as a function of correlation coefficient
p. Each curve corresponds to a different value of oy jjarger- (D) The speedup (y-axis) expected for 100x (2 log;, units,
or 2.8 kcal/mol) selectivity optimization as a function of number of compounds scored computationally (x-axis) and cor-
relation coefficient p (each panel) for a method with per-target systematic error (osys jjtarget) Of 1 kcal/mol in the regime
of infinite sampling. After profiling, the top compounds that meet or surpass the synthesis rule (the predicted selectiv-
ity threshold a compound must reach to be triggered for synthesis, each curve) are synthesized, up to a maximum of
10 synthesized compounds. Error bars (y-axis) represent the 95% CI for 1000 replicates at each point. The expected
speedup is calculated as the ratio of the number of synthesized compounds that have a true selectivity improvement of
2.8 kcal/mol (100x or 2 log units) divided by the expectation of a compound showing a true selectivity improvement of
2.8 kcal/mol had the same number of compounds that were synthesized been drawn randomly from the underlying unit
normal distribution. If no compounds were predicted to meet or surpass the synthesis rule, the speedup was assigned
a default value of 1.
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An experimental data set of CDK2/CDK9 inhibitors demonstrates the difficulty in achieving high
selectivity

To assess the correlation of errors in free energy predictions for selectivity, we set out to gather data sets
that met a number of criteria. We searched for data sets that contained binding affinity data for a number
of kinase targets and ligands in addition to crystal structures for each target with the same ligand.

This data set contains a congeneric series of ligands with experimental data for CDK2 and CDK9, with the
goal of potently inhibiting CDK9 and sparing CDK2. Based on a multiple sequence alignment of the 85 bind-
ing site residues identified in the kinase-ligand interaction fingerprints and structure (KLIFS) database [58,
59], CDK2 and CDK9 share 57% sequence identity (Table S1, Figure S1). For this CDK2/CDK9 data set [53],
ligand 12c was cocrystallized with CDK2/cylin A (Figure 2A, left) and CDK9/cyclin T (Figure 2B, left), work that
was published in a companion paper [60]. In both CDK2 and CDK9, ligand 12c forms relatively few hydrogen
bond interactions with the kinase. Each kinase forms a pair of hydrogen bonds between the ligand scaffold
and a hinge residue (C106 in CDK9 and L83 in CDK2) that is conserved across all of the ligands in this se-
ries. CDK9, which has slightly lower affinity for ligand 12c (Figure 2C, right), forms an interaction between
the sulfonamide of ligand 12c and residue E107. On the other hand, CDK2 forms interactions between the
sulfonamide of ligand 12c and residues K89 and H84. The congeneric series of ligands contains a number
of difficult perturbations, particularly at substituent point R3 (Figure 2C, left). Ligand 12i also presented a
challenging perturbation, moving the 1-(piperazine-1-yl)ethanone from the meta to para location.

This congeneric series of ligands also highlights two of the challenges of working from publicly avail-
able data: First, the dynamic range of selectivity is incredibly narrow, with a mean S (CDK9 - CDK2) of -
0.65 kcal/mol, and a standard deviation of only 0.88 kcal/mol; the total dynamic range of this data set is 2.8
kcal/mol. Second, experimental uncertainties are not reported for the experimental measurements. This
data set reported K; values calculated from measured ICy,, using the K,, (ATP) for CDK2 and CDK9 and [ATP]
from the assay using the Cheng-Prussof equations [61]. Thus, for this and subsequent sets of ligands, the
random experimental uncertainty is assumed to be 0.3 kcal/mol based on previous work done to summa-
rize uncertainty in experimental data, assuming there is no systematic experimental error. While K; values
are reported, these values are derived from IC50 measurements. A number of studies report on the re-
producibility of intra-lab IC50 measurements. These values range from as low as 0.22 kcal/mol [62], from
public data, to as high as 0.4 kcal/mol [6], which was estimated from internal data at Abbott Laboratories.
The assumed value of 0.3 kcal/mol falls within this range, and agrees well with the uncertainty reported
from Novartis for two different ligand series [63].

An experimental data set of CDK2/ERK2 inhibitors where greater selectivity was achieved

The CDK2/ERK2 data set from Blake et al. [54] also met the criteria described above, with the goal of
developing a potent ERK2 inhibitor. Based on a multiple sequence alignment of the KLIFs binding site
residues [58, 59], CDK2 and ERK2 share 52% sequence identity (Table S1, Figure S1), making them slightly
less closely related than CDK2 and CDK9 (57%). Note that while all three kinases belong to the CMGC fam-
ily and are closely related in the phylogenetic Manning tree, CDK2 and CDK9 belong to the CDK (Cyclin-
dependent kinase) subfamily, while ERK2 is part of the nearby MAPK (Mitogen-activated protein kinases)
subfamily. From a structural point of view, the two kinase pdb pairs used in this study are also very similar.
Binding site superposition revealed that both pdb pairs align well, only a marginally lower RMSD of 0.81 A
was obtained for the CDK2/CDK9 pair compared to 0.92 A for CDK2/ERK2 pair.

Crystal structures for both CDK2 (Figure 3A, top) and ERK2 (Figure 3B, top) were available with ligand 22
(according to the manuscript numbering scheme) co-crystallized. Of note, CDK2 was not crystallized with
cyclin A, despite cyclin A being included in the affinity assay reported in the paper [54].

CDK2 in this crystal structure (4BCK) adopts a DFG-in conformation with the aC helix rotated out, away
from the ATP binding site and breaking the conserved salt bridge between K33 and E51 (Figure S2A), indica-
tive of an inactive kinase [44, 64]. By comparison, the CDK2 structure from the CDK2/CDK9 data set adopts
a DFG-in conformation with the aC helix rotated in, forming the ionic bond between K33 and E51 indicative
of an active kinase, due to allosteric activation by cyclin A. While missing cyclins have caused problems for
free energy calculations in prior work, it is possible that the fully active, cyclin-bound conformation con-
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Figure 2. A CDK2/CDK9 data set illustrates selectivity optimization between closely-related kinases

Experimental ICy, data for a congeneric series of compounds binding to CDK2 and CDK9 was extracted from Shao et al.
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[53] and converted to free energies of binding. (A) (left) Crystal Structure (4BCK) [60] of CDK2 (gray ribbon) bound to
ligand 12c (yellow spheres). Cyclin A is shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK2

binding site. (B) (left) Crystal structure of CDK9 (4BCI)[60] (gray ribbon) bound to ligand 12c (yellow spheres). Cyclin T

is shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK9 binding site. (C) (left) 2D structure

of the common scaffold for all ligands in congeneric ligand series 12 from the publication. (right) A table summarizing

all R group substitutions as well as the published experimental binding affinities and selectivities [53], derived from the

reported K; as described in Methods.
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Figure 3. A CDK2/ERK2 data set illustrates selectivity optimization among more distantly related kinases

(A) (top) Crystal structure of CDK2 (5K4J) shown in gray cartoon and ligand 22 shown in yellow spheres. (bottom) 2D inter-
action map of ligand 22 in the binding pocket of CDK2 (B) (top) Crystal structure of ERK2 (5K4l) shown in gray cartoon with
ligand 22 shown in yellow spheres. (bottom) 2D interaction map of ligand 22 in the binding pocket of ERK2. (C) (top) Com-
mon scaffold for all of the ligands in the Blake data set [54], with R denoting attachment side for substitutions. (bottom)
Table showing R group substitutions and experimentally measured binding affinities and selectivities, derived from the
IC5, values as described in the methods section. Ligand numbers correspond to those used in the Blake publication [54].

280 tributes equally to binding affinity for all of the ligands in this series, and the high accuracy of the potency
2s1  predictions (Figure 4, top left) is the result of fortuitous cancellation of errors.

282 The binding mode for this series is similar between both kinases. There is a set of conserved hydrogen
2e3  bonds between the scaffold of the ligand and the backbone of one of the hinge residues (L83 for CDK2 and
2sa  M108 for ERK2). The conserved lysine (K33 for CDK2 and K54 for ERK2), normally involved in the formation
25 Of @ ionic bond with the «C helix, forms a hydrogen bond with the scaffold (Figure 3A and 3B, bottom) in
286 both CDK2 and ERK2. However, in the ERK2 structure, the hydroxyl engages a crystallographic water as well
27 as N154in a hydrogen bond network that is not present in the CDK2 structure. The congeneric ligand series
288 features a single solvent-exposed substituent. This helps to explain the narrow distribution of selectivities,
280 With @ mean selectivity of -1.74 kcal/mol (ERK2 - CDK2) and standard deviation of 0.56 kcal/mol; the total
200 dynamic range of this data set is 2.2 kcal/mol. While the small standard deviation suggests that selectivity is
201 difficult to drive with R-group substitution, the total dynamic range demonstrates that R-group substitutions
202 Can provide significant selectivity enhancements.

203 FEP+ calculations show smaller than expected errors for CDK2/CDK9 AS;; predictions

20« Three replicates of FEP+ calculations were run on each target for both experimental data sets described
205 above. The FEP+ predictions of the relative free energy of binding between ligands i and a reference com-
206 pound (ref) for each target (AAG, (et ,...,) Showed good accuracy and consistent results for all three replicates.
207 The results for replicate 1 are reported in Figure 4 for both the CDK2 and ERK2 data set (bottom) and the
20 CDK2/CDK9 data set (top), AAG,,, targer iS defined for each ligand i using a consistent reference compound
200 Within data sets.

AAGi,ref,target = AGi,target - AGreference, target (4)
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The reference compounds (Compound 6 for CDK2/ERK2 and Compound 1a for CDK2/CDK9) were se-
lected because they were the initial compounds from which the reported synthetic studies were started.
Replicate 1 of the CDK2/ERK2 calculations is shown on the bottom of Figure 4, with an RMSE of 0.95; 2> and
0.97,2% kcal/mol to CDK2 and ERK2, respectively (where the lower and upper values indicate a 95% confi-
dence interval). The RMSE reported here is calculated for all of the AAG, ., 1arge: that were predicted. All of
the CDK2 and ERK2 AAG,; targetS Were predicted within 1 log unit of the experimental value. The change
in selectivity (AS,;) predictions show an RMSE of 1.41}7> kcal/mol, with all the confidence intervals of the
predictions falling within 1 log unit of the experimental values (Figure 4, top right panel). This RMSE is com-
parable to the expected RMSE of 1.36, assuming the error from the CDK2/ERK2 calculations behaves in an
uncorrelated manner (Equation 3 where the correlation coefficient p is zero). This was consistent across all
three replicates of the calculations (Figure S6).The narrow dynamic range for selectivity combined with high
experimental and computational uncertainty highlight the challenges for predicting selectivity. When the
error of the calculated selectivity is comparable to the dynamic range of selectivity, then the calculations
cannot predict with statistical confidence whether any compound is more selective than the other.

Replicate 1 of the CDK2/CDKO9 calculations are shown in the top panel of Figure 4. The CDK2 and CDK9
data sets show higher errors in AAG, et arger Predictions, with an RMSE of 1.15;7) and 2.107 kcal/mol re-
spectively. This higher RMSE is driven by the reference compound, (Compound 1a) being poorly predicted,
particularly in CDK9. There are a number of outliers that fall outside of 1 log,, unit from the experimental
value for CDK9. While the higher per target errors make predicting potency more difficult, the selectivity
predictions show an RMSE of 1.37; 5 kcal/mol. This observed RMSE is lower than what would be expected if
the error were completely uncorrelated between CDK2 and CDK9, propagated as in Equation 3 where the
correlation coefficient p is zero to get an expected value of 2.38 kcal/mol. This suggests that some correla-
tion in the error is leading to fortuitous cancellation of the systematic error, leading to more accurate than
expected predictions of AS;;. These results were consistent across all three replicates of the calculation

(Figure S4).

Correlation of systematic errors accelerates selectivity optimization

To quantify the correlation coefficient (p) of the systematic error between targets, we built a Bayesian graphi-
calmodel to separate the systematic error from the statistical error and quantify our confidence in estimates
of p (described in depth in Methods). Briefly, we modeled the absolute free energy (G) of each ligand in
each thermodynamic phase (ligand-in-complex and ligand-in-solvent, with G determined up to an arbitrary
additive constant for each phase) as in Equation 15. The model was chained to the FEP+ calculations by pro-
viding the AG;‘;{sse i target for each edge from the FEP+ maps (where j is now not necessarily the reference
compound) as observed data, as in Equation 17. As in Equation 19, the experimental data was modeled as
a normal distribution centered around the true free energy of binding (AG] S oet) corrupted by experimental
error, which is assumed to be 0.3 kcal/mol from previous work done to quantify the uncertainty in publicly
available data [6]. AG values derived from reported IC,;s or K;s, as described in the methods section, were
treated as data observations (Equation 19) and the AG”{';rget was assigned a weak normal prior (Equation 20).

The correlation coefficient p was calculated for each Bayesian sample from the model posterior accord-
ing to equation 22. The CDK2/CDK9 calculations show strong evidence of correlation, with a correlation
coefficient of 0.720% (Figure 5A, right) for replicate 1. The rest of the replicates showed strong agreement
(Figure S4). The joint marginal distribution of the error (¢) for each target (Figure 5A, left) is more diagonal
than symmetric, which is expected for cases in which p is high (Figure S3).

To quantify the expected speedup of selectivity with this level of correlation in the systematic errors for
CDK2/CDK9, we first calculated the per target systematic error o j arger Oy taking the mean of the absolute
value of ¢;; ,rgec Where j is the reference compound 1a. Combining these estimates for the correlation coeffi-
cient (p) and the per target systematic errors (o j target): W€ CaN COMPULE 0gjecivity aNd the expected speedup
in the regime of infinite sampling effort where there is no statistical error when the number of compounds
scored and synthesized is unlimited. The high correlation in errors for the CDK2/CDK9 calculations leads
to a speedup of 3x for 1 log,, unit selectivity optimization and 10x for 2 log,, unit selectivity optimization

(Figure 5A, right), despite the much high per target systematic errors (o target)-
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Figure 4. Selectivity predictions suggest correlation in systematic error

AAG; reftarget aNd AS; e predictions for CDK2/CDK9 (top) from the Shao data sets and CDK2/ERK2 from the Blake data
sets (bottom). The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point cor-
responds to a transformation between a ligand i to a set reference ligand (ref) for a given target. All values are shown in
units of kcal/mol. The horizontal error bars show to the aAAGf;‘” based on the assumed uncertainty of 0.3 kcal/mol[6, 63]
for each AG;™. We show the estimated statistical error (os,j target) @s vertical blue error bars, which are one standard er-
ror. For selectivity, the errors were propagated under the assumption that they were completely uncorrelated. o, j target
was estimated by calculating the standard deviation of AAGFE rarget from the Bayesian model described in depth in Meth-
ods, where j is the reference compound. The black line |nd|cates agreement between calculation and experiment, while
the gray shaded region represent 1.36 kcal/mol (or 1 log,, unit) error. The mean unsigned error (MUE) and root-mean
squared error (RMSE) are shown on each plot with bootstrapped 95% confidence intervals.
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The correlation coefficient p for replicate 1 of the CDK2/ERK2 calculations was quantified to be 0.44)75,
indicating that the errors are moderately correlated between ERK2 and CDK2 (Figure 5B, right); this was
consistent with the distribution for p in replicate 3 (Figure S7), while the confidence interval of p for replicate
2 is much wider, indicating the correlation is weak.

Considering the speedup model where the number of compounds scored and synthesized is unlimited,
the modest correlation and low per target systematic errors for the CDK2/ERK2 calculations allow for a pre-
dicted 4-5x speedup for 1 log,, unit selectivity optimization, and a 30-40x speedup for 2 log,, unit selectivity
optimization (Figure 5B, right).

Using the correlation coefficient (p), ogjarget aNd Gy i rarger qUantified from the Bayesian model for each
set of calculations, we can now calculate the y-axis error bars for the AS panels of Figure 4 according to the
proposed ogejecriviy €quation (Eq 3). Shown in Figure S9, we can see that ogjeqiviy @Ccounts for most of the
disagreement between the predicted AS;; and the experimental AS,;.

Expending more effort to reduce statistical error can be beneficial in selectivity optimization

Up to this point, we have considered only systematic error in quantifying the speedup free energy calcula-
tions can enable for selectivity optimization, by assuming enough sampling is done to reduce the statistical
error for each target to zero. To begin understanding how statistical error impacts this speedup, we mod-
ified the model of speedup by additionally considering the per target statistical error (o targer) Which we
define in Equation 7 such that at the baseline effort, N, o4 targer IS 0.2 kcal/mol. In this definition, it takes
4x the sampling, or effort, to reduce statistical error by a factor of 2x. We assume that statistical error is
uncorrelated when propagating to two targets, and that o arget is & 1.0 kcal/mol for both targets [4, 62].
As shown in Figure 6, expending effort to reduce oy, jjarger When p is less than 0.5 does not change the
expected speedup for the 100x selectivity threshold in meaningful way, suggesting that it is not worth run-
ning calculations longer than the default protocol in this case. However, when p > 0.5, the curves do start
to separate, particularly the 1/4x%, 1x, and 4x effort curves. This suggests that when the correlation is high,
running longer calculations can produce net improvements in selectivity optimization speed. Interestingly,
the 16x%, 48%, and o effort curves do not differ greatly from the 4x effort curve, indicating that there are
diminishing returns to running longer calculations.

The estimated correlation coefficient is robust to Bayesian model assumptions

In order to better understand the statistical error in our calculations, we performed three replicates of our
calculations, and calculated the standard deviation of the cycle closure corrected AAG for each edge of
the map, and compared that value to the cycle closure errors and Bennett errors reported for each edge
(Figure S8). For each set of calculations, the standard deviation suggests that the statistical error is between
0.1 and 0.3 kcal/mol, which is in good agreement with the reported Bennett error (Figure S8). However,
hysteresis in the closed cycles in the FEP map as reflected by the cycle closure error estimates indicate much
larger sampling errors than those estimated by the Bennett method or standard deviations of multiple runs,
suggesting that both the Bennett errors and standard deviation of multiple replicates are underestimating
the statistical error for these calculations. Based on this observation, we include a scaling parameter « in
the Bayesian error model (Eq. 16) to account for the BAR errors underestimating the cycle closure statistical
uncertainty. We also considered using a distribution with heavier tails, such as a Student's t-distribution, but
found the quantification of the correlation coefficient pinsensitive to the use of either a scaling parameter
or heavier-tailed distributions (Figure S10).

Discussion and Conclusions

S is a useful metric for selectivity in lead optimization

There are a number of different metrics for quantifying the selectivity of a compound [55], which look at
selectivity from different views depending on the information trying to be conveyed. One of the earliest
metrics was the standard selectivity score, which conveyed the number of inhibited kinase targets in a broad
scale assay divided by the total number of kinases in the assay [65]. The Gini coefficient is a method that
does notrely on any threshold, but is highly sensitive to experimental conditions because it is dependent on
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Figure 5. Correlation in systematic errors between targets can significantly accelerate selectivity optimization (A,
left) The joint posterior distribution of the prediction errors for the more distantly related CDK2 (x-axis) and CDK9 (y-axis)
from the Bayesian graphical model. (A, right) Speedup in selectivity optimization (y-axis), which estimates the reduction
in compounds that must be synthesized to achieve a target selectivity when aided by free energy calculations, using the
model where the number of compounds scored and synthesized is unlimited, as a function of correlation coefficient (x-
axis). To calculate ogejecriviry: We calculate the per target systematic error (oys j target) by taking the mean of ¢;; 15rger Where
Jj is the reference compound 1a. The posterior marginal distribution of the correlation coefficient (p) is shown in gray,
while the expected speedup is shown for 100x (green curve) and 10x (yellow curve) selectivity optimization. The inserted
box shows the mean and 95% confidence interval for the correlation coefficient. The marginal distribution of speedup is
shown on the right side of the plot for both 100x (green) and 10x (yellow) selectivity optimization speedups. (B) As above,
but for the more closely related CDK2/ERK2 selectivity data set using compound 6 as the reference.
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Figure 6. Reducing statistical uncertainty when systematic error correlation is high improves the speedup in se-
lectivity optimization achievable with free energy calculations. (/eft) The speedup in selectivity (Y-axis) as a function
of correlation coefficient (X-axis). Each curve represents a different per target statistical error (o, jjtarget) for 10x (1 10g;,
unit) (A) and 100x (2 log,, unit) (B) thresholds (right) Table with the per target statistical error (osat,jtarget). kCal/mol) cor-
responding to each curve on the left and a rough estimate of the generic amount of computational effort it would take

to achieve that statistical uncertainty.
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percent inhibition [66]. Other metrics take a thermodynamic approach to kinase selectivity and are suitable
for smaller panel screens [67, 68]. Here, we propose a more granular, thermodynamic view of selectivity
that is straightforward to calculate using free energy methods: the change in free energy of binding for a
given ligand between two different targets (). S is a useful metric of selectivity in lead optimization once a
single, or small panel, of off-targets have been identified and the goal is to use physical modeling to either
improve or maintain selectivity within a lead series.

Systematic error correlation can accelerate selectivity optimization

We have demonstrated, using a simple numerical model that assumes unlimited synthetic and computa-
tional resources, the impact that free energy calculations with even weakly correlated systematic errors
can have on speeding up the optimization of selectivity in small molecule kinase inhibitors. While the ex-
pected speedup is dependent on the per target systematic error of the method (o i arget) the speedup is
also highly dependent on the correlation of errors made for both targets. Unsurprisingly, free energy meth-
ods have greater impact as the threshold for selectivity optimization goes from 10x to 100x. While 100x
selectivity optimization is difficult to achieve, the expected benefit from free energy calculations is also quite
high, with speedups of one or two orders of magnitude possible. In a more realistic scenario, where the
number of compounds scored and synthesized is limited by resources, we have demonstrated using the
same numerical model that more stringent synthesis rules results in increased speedup from free energy
calculations. This holds true across different correlation coefficients (p), provided enough compounds are
scored. As our model shows, it is possible for stringent synthesis rules to provide benefits similar to oper-
ating with high systematic error correlation coefficients (p).

Two pairs of kinase test systems suggest systematic errors can be correlated

To quantify the correlation of errors in two example systems, we gathered experimental data for two con-
generic ligand series with experimental data for CDK2 and ERK2, as well as CDK2 and CDK9. These data
sets, which had crystal structures for both targets with the same ligand co-crystallized, exemplify the diffi-
culty in predicting selectivity. The dynamic range of selectivity for both systems is very narrow, with most
of the perturbations not having a major impact on the overall selectivity achieved. Further, the data was
reported without reliable experimental uncertainties, which makes quantifying the errors made by the free
energy calculations difficult. This issue is common when considering selectivity, as many kinase-oriented
high throughput screens are carried out at a single concentration and not highly quantitative.

The CDKO9 calculations contained an outlier, compound 12h, that drove much of the prediction error for
that set. Compound 12e (R1 = F) is the most potent against CDK9 of the compounds in with a sulfonamide
at R3 (Figure 2). The addition of a single methyl group decreases the potency against CDK9 (compound 12g)
and while only slightly changing the affinity for CDK2. However, adding on another methyl group (compound
12h) results in an order of magnitude decrease in K, for both CDK9 and CDK2. Crystal structures for both
kinases show that R1 points into a pocket formed by the backbone, and the sidechains of a Valine and
Phenylalanine. While ethyl at R1 in compound 12h is bulkier, the magnitude of the decrease in affinity for
both kinases is larger than might be expected, given that the pocket suggests an ethyl group would be well
accommodated in terms of fit and the hydrophobicity of the sidechains. For both kinases, the free energy
calculations predict that this addition should improve the potency, suggesting that it is possible that the
model is missing a chemical detail that might explain the trend seen in the experimental data. We expect
that these types of errors, which would be troubling when predicting potency alone, will drive the correlation
of systematic errors and fortuitously cancel when predicting selectivity.

Despite CDK2 and ERK2 belonging to different kinase subfamilies, the calculated correlation in the sys-
tematic error for two of the replicates suggests that fortuitous cancellation of errors may be applicable in a
wider range of scenarios than closely related kinases within the same subfamily. This may be driven by rela-
tively high binding site sequence identity between CDK2 and ERK2 (52% compared for 57% for CDK2/CDK9).
However, the confidence interval of the correlation is quite broad, including 0 for the lower bound for the
third replicate, suggesting that errors for more distantly related proteins will have only moderate, if any,
correlation.
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sz Reducing statistical error is beneficial when systematic errors are correlated

aas  In order to better understand if there are situations where it is beneficial to run longer calculations to mini-
a0 Mize statistical error to achieve a larger speedup in the synthesis of selective compounds, we built a numer-
a0 ical model of the impact of statistical error in the context of different levels of systematic error correlation.
a1 Our results suggest that unless the correlation coefficient p is highly positive for the two targets of interest,
«s2  there is not much benefitin running longer calculations. However, when the systematic error is reduced by
a3 correlation, longer calculations can help realize large increases in speedup to achieve selectivity goals. Keep-
s iNg a running quantification of p for free energy calculations as compounds are made and the predictions
a5 can be tested will allow for decisions to be made about whether running longer calculations is worthwhile.
ass It will also allow for an estimate of 6y, Which is useful for estimating expected systematic error for
a7 prospective predictions. Importantly, we expect that correlation will be modeling protocol dependent and
a8 any changes to the way the system is modeled over the course of discovery program are expected to change
a0 the observed correlation in the systematic error.

a0 Larger data sets with a wide range of protein targets will enable future work

w1 The data sets gathered here were limited by the total number of compounds, the small dynamic range for
a2 selectivity (), and the lack of reliable experimental uncertainties. The small size of the data set makes it
a6z difficult to draw broad conclusions about the correlation in systematic errors. Understanding the degree
a2 Of correlation a priori based on structural or sequence similarity requires study on a larger range of targets
a5 than the two pairs presented in this study. A larger data set that contained many protein targets, crystal
a6 Structures, and quantitative binding affinity data would be ideal to draw conclusions about the broader
a7 prevalence of systematic error correlation.

268 This work demonstrates that correlation in the systematic errors can allow free energy calculations to
a0 facilitate significant speedups in selectivity optimization for drug discovery projects. This is particularly im-
a70  portant in kinase systems, where considering multiple targets is an important part of the development
a1 process. The results suggest that free energy calculations can be particularly helpful in the design of kinase
a2 polypharmacological agents, especially in cases where there is high correlation in the systematic errors
a3 between multiple targets.

2« Methods

azs - Numerical model of selectivity optimization speedup

a76  To model the impact correlation of systematic error would have on the expected uncertainty for selectivity
a7z predictions, ogeeciviey Was calculated using Equation 3 for 1000 evenly spaced values of the correlation coef-
a7s ficient (p) from 0 to 1, for a number of combinations of per target systematic errors (o ;1 and o ;-). In
a7o  the regime of infinite sampling and zero statistical error, the second term reduces to zero.

— 2 2 _ = = 2 2
Oselectivity = \/asys,ij,1 + Osys,ii2 2p Osys,ij1 Osysjij2 T Otat,ij,1 + Ostatj,2 )

a0 The speedup in selectivity optimization that could be expected from using free energy calculations of a par-
a1 ticular per target systematic error (o i arger) Was quantified as follows using NumPy (v 1.14.2). An original,
«s2 true distribution for the change in selectivity of 200 000 000 new compounds proposed with respect to a
a3 reference compound was modeled as a normal distribution centered around 0 with a standard deviation of
«sa 1 kcal/mol. This assumption was made on the basis that the majority of selectivity is driven by the scaffold,
sss  and R group modifications will do little to drive changes in selectivity. The 1 kcal/mol distribution is sup-
«ss  ported by the standard deviations of the selectivity in the experimental data sets referenced in this work,
ss7 Which are all less than, but close to, 1 kcal/mol.

ass In this model, we suppose that each of proposed compound is triaged by a free energy calculation and
ass  ONly proposed compounds predicted to increase selectivity by AS; >1.4 kcal/mol (1 log,, unit) with respect
w0 to a reference compound would be synthesized. Based on reported estimates in the literature, we pre-
a1 sume thatrelative free energy calculations have a per-target systematic error o i 1argee ~1 kcal/mol [4], and
202 explore the impact of the correlation coefficient p governing the correlation of these predictions between
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targets. The standard error in predicted selectivity, ogjectivity, iS 8iven by Equation 3. When sampling is infi-
Nite and oay j target 1S ZErO, Oselectivity 1S Ariven entirely by the systematic error component (o j target), resulting
in the error in predicted change in selectivity AS;; modeled as a normal distribution centered around 0 with
a standard deviation of o i 1argec and added to the "true" AS;,

ASU predicted = ASU true <Mrue(/4 =0, o’ = 1)) + ASsystematic error(Nerror(ﬂ =0, Gszys,ij,target(p)> (5)

We ignore the potential complication of finite experimental error in this thought experiment, presuming
the experimental uncertainty is sufficiently small as to be negligible.

The speedup in synthesizing molecules that reach this 10x selectivity gain threshold is calculated, as a
function of p, as the ratio of the number of compounds that exceed the selectivity threshold in the case that
molecules predicted to fall below this threshold by free energy calculations were triaged and not synthe-
sized, divided by the number of compounds that exceeded the selectivity threshold without the benefit of
free energy triage. This process was repeated for a 100x (2.8 kcal/mol, 2 log,, unit) selectivity optimization
and 50 linearly spaced values of the correlation coefficient (p) between 0 and 1, for four values of ogecivitys
using a sample size of 4x107 compounds.

The above model assumes that the number of compounds scored and synthesized is essentially unlim-
ited. To assess the impact these methods might have on real drug discovery projects, where the number
of compounds scored and synthesized are limited by computational and chemistry resources, we altered
the above model to consider the number of compounds scored, the number of compounds triggered for
synthesis, and the threshold a compound needed to reach in order to be considered for synthesis.

We repeated the mode detailed above, this time scoring only the following numbers of compounds: 10,
50, 100, 200, 500, the range from 1000 to 10000 in steps of 1000, and the range from 10000 to 100 000 in
steps of 2000. Compounds were drawn from a true distribution of AS;; (./\/true(ﬂ =0,62 = 1)) and triaged
using a free energy method as detailed above with a per-target systematic error (o j arger) Of 1 kcal/mol.
The top predicted compounds that meet or surpass a synthesis rule, up to a maximum of 10 compounds,
are selected for synthesis. Here, we consider synthesis rules of 100x, 500x and 1000x when trying to design
100x (2.8 kcal/mol, 2 log,, unit) improvements in selectivity. The speedup was calculated as the number of
synthesized compounds whose AS,; ., reaches the desired 100x threshold divided by the expected value
(Eoreerive) TOr a selective compound given the number of synthesized compounds. This expectation can be
calculated as,

E

selective

= P(AS); > threshold | V,,,,,) = Asynthesized (6)

Where P(AS,; > threshold | N,,,, ' true
selectivity threshold given the distribution of AS,; ., <J\f,me(;4 =0,02 = 1)) for 100 000 000 compounds, and
Rsynthesized 1S the number of compounds synthesized. If no compounds were predicted to meet or surpass
the synthesis rule, the speedup was assigned a default value of 1. We performed 1000 replicates of each

condition and report the mean and 95 % Cl in Figure1D.

)is the probability AS;, .. for some compound is better than a particular

Numerical model of impact of statistical error on selectivity optimization

To model the impact of finite statistical error in the alchemical free energy calculations, a similar scheme was
used with the following modifications: Each proposed compound was triaged by a free energy calculation
with a per target systematic error (o jarger) Of 1.0 kcal/mol [4] and a specified correlation coefficient p. A
Cselectivity WS calculated according to Equation 3, this time considering the statistical terms as non-negligible.
The per target statistical error (g jarger) Was defined as,

Ostat,base
O'stat,ijtarget — (7)
VN

where N is the relative effort put into running sampling the calculation and o, pase is such thatwhen N =1,
Ostatjtarget = 0-2 Kcal/mol. The statistical error is propagated assuming it is uncorrelated, as independent sets
of calculations are used for each target, giving us the second set of terms in 3. This gives an updated model
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for the error in predicted change in selectivity AS,;. The systematic and statistical errors were modeled as
Gaussian noise added to the true distribution,

ASij,predicted = ASij,true <Mrue(” =0, o’ = 1)> + ASsystematic error(Nsystematic(ﬂ =0, o-szys,ij,target(p))) (8)

_ 2
+ ASstatistical error <Nstatistical(ﬂ =0, Gstat,ij,target))

Any compound predicted to have an improvement in selectivity of above the threshold (either 1.4 kcal/mol
(1 log,, units) or 2.8 kcal/mol (2 log,, units)) would then be made and have its selectivity experimentally
measured, using an experimental method with perfect accuracy. The speedup value for each value of p is
calculated as previously described.

Binding Site Similarity analysis

To quantify the similarity between the different kinase pairs, a structure-informed binding site sequence
comparison was performed. In the KLIFS database, the binding site of typical human kinases is defined
by 85 residues, comprising known kinase motives (DFG, hinge, G-loop, aC-helix, ...), which cover potential
interactions with type I-IV inhibitors [58, 59]. KLIFS provides a multiple sequence alignment in which each
kinase sequence is mapped to these 85 binding site residues. This mapping was used to calculate the
sequence identify between the three kinases CDK2, CDK9, and ERK2 used in this study (Figure S1 and Table
S1). The score shows the percentage of identical residues between two kinases with respect to the 85
positions.

For structural comparison, the respective pdbs of the two kinases were downloaded from the pdb (CDK2-
4hci/CDK9-4bck) and CDK2-5k4j/ERK2-5k4i). PyMol v.2.3.0 was used for preprocessing and alignment of the
structures. For all structures only chain A was kept. Additionally, for structure 4bck alternate location C
was chosen only. Next, binding sites were selected as all residues withing 10 A of the co-crystallized ligand,
yielding. Finally, the respective binding site pairs were aligned using PyMol's default align function and the
RMSD was returned. The following is an example command: create [pdb]_bs, byres [pdb]_A within 10
of ([pdb]l_A and resn [lig_name])

Extracting the binding free energy AG from reported experimental data
K, values were derived from IC5, measurements reported for the ERK2/CDK2 data set (Figure 3), assuming
Michaelis-Menten binding kinetics for an ATP-competitive inhibitor,

ICy,

5]
K,

m

K, =

9)
1+
Where the Michaelis-Menten constant for ATP (K,, (ATP)) is much larger than the initial concentration of ATP,
Sy, so that IC,, ~ K.
These K, values were then used to calculate a AG (Equation 10),

AG = —k,T InK, (10)

Here, k, is the Boltzmann constant and T is absolute temperature (taken to be room temperature, T ~
300K).

For the CDK2/CDK9 data set, the authors note that the assumption K, (ATP) > S, does not hold, and
report K;s derived from their IC5, measurements using the K,, (ATP) for each kinase, as well as the S, from
their assay. These values were then converted to AG using Equation 10. For both data sets, these derived
AG were used to calculate AAG between ligands for each kinase target.

As mentioned above, the assumption that K,, (ATP) > S, may not always hold, and changes in IC5, may
be driven by factors other than changes in ligand binding affinity. However, these assumptions have been
used successfully to estimate relative free energies previously [62, 69]. Further, data was taken from the
same lab and assay for each target. By using assays with the same kinase construct and ATP concentration,
the relative free energies (AAG;;) should be well determined for compounds within the assay. Even if the
absolute free energies (AG,) are off due to uncertainties in K,, (ATP) or S,, they will be off by the same
constant, which will cancel when calculating AAG;;.
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s7e  Structure Preparation

s77  Structures from the Shao [53] (CDK2/CDK9), Hole [60] (CDK2/CDK?9), and Blake [54] (CDK2/ERK2) papers
s7e were downloaded from the PDB [70], selecting structures with the same co-ligand crystallized.

570 For the Shao (CDK2/CDK9) data set, PDB IDs 4BCK (CDK2) and 4BCl (CDK9) were selected, which have
sso  ligand 12c cocrystallized. For the Blake data set (ERK2/CDK2), 5K4) (CDK2) and 5K4I (ERK2) were selected,
ss1  cocrystallized with ligand 21. The structures were prepared using Schrodinger’s Protein Preparation Wiz-
ss2 ard [71] (Maestro, Release 2017-3). This pipeline modeled in internal loops and missing atoms, added hy-
ss3 drogens at the reported experimental pH (7.0 for the Shao data set, 7.3 for the Blake data set) for both the
ssa protein and the ligand. All crystal waters were retained. The ligand was assigned protonation and tautomer
sss  States using Epik at the experimental pH+2, and hydrogen bonding was optimized using PROPKA at the
sss  experimental pH+2. Finally, the entire structure was minimized using OPLS3 with an RMSD cutoff of 0.3A.

ss7  Ligand Pose Generation

sss Ligands were extracted from the publication entries in the BindingDB as 2D SMILES strings. 3D conforma-
sso  tions were generated using LigPrep with OPLS3 [4]. lonization state was assigned using Epik at experimen-
soo tal pH+2. Stereoisomers were computed by retaining any specified chiralities and varying the rest. The
so1 tautomer and ionization state with the lowest Epik state penalty was selected for use in the calculation. Any
s02 ligands predicted to have a positive or negative charge in its lowest Epik state penalty was excluded, with
so3 the exception of Compound 9 from the Blake data set. This ligand was predicted to have a +1 charge for its
sea lOWest state penalty state. The neutral form the ligand was include for the sake of cycle closure in the FEP+
ses mMap, but was ignored for the sake any analysis afterwards. Ligand poses were generated by first aligning
so6 tO the co-crystal ligand using the Largest Common Bemis-Murcko scaffold with fuzzy matching (Maestro,
soz Release 2017-3). Ligands that were poorly aligned or failed to align were then aligned using Maximum
ses Common Substructure (MCSS). Finally, large R-groups conformations were sampled with MM-GBSA using a
s90 COMmMonN core restraint, VSGB solvation model, and OPLS3 force field. No flexible residues were defined for
s00 the protein.

s01 Free Energy Calculations

s The FEP+ panel (Maestro, Release 2017-3) was used to generate perturbation maps. FEP+ calculations were
e03 run using the FEP+ panel from Maestro release 2018-3 in order to take advantage of the newest force
s0a field (OPLS3e) parameters available at the time. Any missing ligand torsions were fit using the automated
sos FFbuilder protocol [7]. Custom charges were assigned using the OPLS3e force field using input geometries,
s0s according to the automated FEP+ workflow in Maestro Release 2018-3. Neutral perturbations were run for
eoz 15 ns per replica, using an NPT ensemble and water buffer size of 5A. The SPC water model was used. A
s0s GCMC solvation protocol was used to sample buried water molecules in the binding pocket prior to the
s00 Calculation, which discards any retained crystal waters.

s0  Statistical Analysis of FEP+ calculations
e11  TO quantify the overall errors in the FEP+ calculations, we computed the mean unsigned error (MUE),

Yo | AAGE — AAGTP |

i,ref target i,ref target
MUE = £ g

an

n

s12 and the root mean squared error (RMSE)

n | exp
RMSE = \/ZO(AA Gf?e?’target AA GI reftarget)2
n

(12)

613 MUE and RMSE were computed for AAG,; is defined where refis a

s1a reference compound.

For each ligand i, AAG,

ijtarget* iref.target

AAGi,ref,target = AGi,target - AGrefer(-:‘nce, target (1 3)

e1s  For the CDK2/CDK9 data set, compound 1a was used as the reference compound, as it was the first com-
s16 pound from which the others in the series were derived. For the CDK2/ERK2 data set, compound 6 was
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used as the reference compound, since it was the compound from which the investigation was launch. A
metabolite of compound 6 (not included in the data set here) was used as the starting compound from
which the rest were derived. To account for the finite ligand sample size, we used 10 000 replicates of boot-
strapping with replacement to estimate 95% confidence intervals. The code used to bootstrap these values
is available on GitHub [https://github.com/choderalab/selectivity].

To compute the per-target statistical error (o jarger) fOr each i,ref pair of ligands, we used the standard
deviation of AAG,F,EPtargev where j is the reference compound, from the Bayesian model described in depth
below in the Methods section. To compute the per target systematic error (o jtarget), We calculated the
mean of €;; ,rger» Where j is the reference compound, described in equation 21 in the Bayesian Model section

of the Methods.

Quantification of the correlation coefficient p
To quantify p, we built a Bayesian graphical model using pymc3 3.5 [72] and theano 1.0.3 [73]. All code for
this model is available on GitHub [https://github.com/choderalab/selectivity].

For each phase (complex and solvent), the prior for the absolute free energy (G) of ligand i (up to an arbi-
trary additive constant for each thermodynamic phase, ligand-in-complex or ligand-in-solvent), was treated
as a normal distribution (Equation 15).

Gphase N(M =0, 6 =250 kcal/mol) (14)

itarget
To improve sampling efficiency, for each phase, one ligand was chosen as the reference, and pinned to an

absolute free energy of G = 0, with a standard deviation of 1 kcal/mol.

Gphase N'(# =0,0=1.0 kca|/m0|) (1 5)

1target

For each edge of the FEP map (ligand i -> ligand j), there is a contribution from dummy atoms, that was
modeled as in Equation 16. Note that here, unlike what was done in Figure 4, ligand j is not necessarily a
reference compound.

¢;;~N(u=0, o =250kcal/mol) (16)

The model was conditioned by including data from the FEP+ calculation.

| phase phase 2 BAR
AG;?\;se ij, target N(G] target G: Jtarget” as AGphase ij, target) (1 7)
where §2AGEAR is the reported BAR uncertainty from the calculation, and AG®'_ is the BAR

phase, ij, target phase, ij, target
estimate of the free energy for the perturbation between ligands i and j in a given phase. «a is a scaling

parameter shared by all AG<_ for each target. Such scaling is necessary to account for the BAR
phase, ij, target

statistical uncertainty underestimating cycle closure statistical uncertainty of our calculations, shown by

Figure S8.
From this, we can calculate the AGTY, ., for each ligand and target,
FEP complex Ivent
AG: target Gi,target - Gis,?atgrelt (18)

From AGY, .., we calculated AAGTF, ., for each pair of ligands, filtering out pairs where i and j are the
same ligand and where the reciprocal was already included.

The experimental binding affinity was treated as a true value (A G”tg‘ﬁget) corrupted by experimental un-
certainty, which is assumed to be 0.3 kcal/mol [6]. There are a number of studies that report on the re-
producibility and uncertainty of intra-lab ICy, measurements, ranging from as small as 0.22 kcal/mol [62]
to as high as 0.4 kcal/mol [6]. The assumed value falls within this range and is in good agreement with the
uncertainty reported from multiple replicate measurements in internal data sets at Novartis [63].

The values reported in the papers (AGf’gsrget) were treated as observations from this distribution (Equa-
tion 19),

AG®®  ~ N(u=AG™ . o=03kcal/mol) (19)

itarget itarget’
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654 AG}rtgfget was assigned a weak normal prior, as in Equation 20,
T — —

Gft‘;‘;‘get N(u = 0,6 =50 kcal/mol) (20)
655 AAG};”tearget for each pair of ligands was calculated from AGtrt‘;‘;‘get, filtering out pairs where i and j are the
ess Same ligand and where the reciprocal was already included as above.
657 The error for a given ligand was calculated as

= AAG™F  _ AAGTU® 21
€ijtarget = ij, target ij, target

ess From these e values, we calculated the correlation coefficient, p, from the sampled errors for the finite set
eso Of molecules for which measurements were available,

Cov(etargeﬂ ’ etargetz)

p = Ctargett: Carger2) (22)
O¢ target 1 Oc target 2

ss0  Where o, (e, i the standard deviation of e ;ger-

661 To quantify p from these calculations, the default NUTS sampler with jitter+adapt_diag initialization,

e 3 000 tuning steps, and the default target accept probability was used to draw 20 000 samples from the

e6s model.

esa Calculating the marginal distribution of speedup

ees TO quantify the expected speedup from the calculations we ran, we utilized 10* replicates of the scheme
esss detailed above to calculate the speedup given parameters p, oq;,1, and o>, in the regime of infinite
es7 effort and zero statistical error. Using Numpy 1.14.2, p was drawn from a normal distribution with the
sss Mean and standard deviation from the posterior distribution of p from the Bayesian Graphical model. The
sso per-target systematic errors, o1 and oy, o, were estimated from the mean of the absolute value of ¢,
e70 and e;,, Which are the magnitude of errors from the Bayesian graphical model. oggeciviy Was calculated
e72  Using Equation 3. 10° molecules were proposed from true normal distribution, as above. The error of the
672 computational method was modeled as in Equation 5.
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s Data Availability
674 All curated starting structures, FEP+ results, and data analysis scripts and notebooks are available on GitHub:
e7s  https://github.com/choderalab/selectivity
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