
A tyrosine kinase protein interaction map reveals targetable EGFR network oncogenesis in lung cancer 

Swati Kaushik1,2, Franziska Haderk2,3, Xin Zhao1,2, Hsien-Ming Hu1,2, Khyati N. Shah1,2, Gwendolyn M. Jang4, 

Victor Olivas2,3, Shigeki Nanjo2,3, John Jascur1,2, Vincent B. Masto4, Daniel Ciznadija5, Ido Sloma5, Emilie 

Gross5, Scott L. Weinrich6, Jeffery R. Johnson4,7, Trever G. Bivona2,3, Nevan J. Krogan4,8, Sourav 

Bandyopadhyay1,2,8*   

1Department of Bioengineering and Therapeutic Sciences. University of California San Francisco, San 

Francisco, California, USA.   

2 Helen Diller Family Comprehensive Cancer Center. University of California San Francisco, San Francisco, 

California, USA. 

3 Department of Medicine. University of California San Francisco, San Francisco, California, USA. 

4J. David Gladstone Institutes, San Francisco, California, USA; Department of Cellular and Molecular 

Pharmacology, University of California, San Francisco, San Francisco, California, USA. 

5 Champions Oncology. Rockville, Maryland, USA. 

6 Pfizer Inc, La Jolla, California, USA.  

7 Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 

8 QB3, California Institute for Quantitative Biosciences, San Francisco, California, USA. 

 

*Correspondence: Sourav.bandyopadhyay@ucsf.edu  

  

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185173doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185173
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUMMARY    

Signaling networks balance the activities of many physically interacting proteins and perturbations to this 

network influence downstream signaling, potentially leading to oncogenic states. Using affinity purification-

mass spectrometry we defined this network for all 90 human tyrosine kinases revealing 1,463 mostly novel 

interactions between these key cancer proteins and diverse molecular complexes. Modulation of interactor 

levels altered growth phenotypes associated with corresponding tyrosine kinase partners suggesting that 

tumors may alter the stoichiometries of interactors to maximize oncogenic signaling. We show that the levels of 

EGFR interactors delineates this form of network oncogenesis in 19% of EGFR wild-type lung cancer patients 

which were mostly otherwise oncogene negative, predicting sensitivity to EGFR inhibitors in vitro and in vivo. 

EGFR network oncogenesis occurs through mechanistically distinct network alleles often in cooperation with 

weak oncogenes in the MAPK pathway. Network oncogenesis may be a common and targetable convergent 

mechanism of oncogenic pathway activation in cancer. 

HIGHLIGHTS 

• A human tyrosine kinome protein interaction map reveals novel physical and functional associations. 

• Dependence on oncogenic tyrosine kinases is modulated through perturbation of their interactors. 

• EGFR network oncogenesis in up to 19% of EGFR wild-type lung cancers is targetable.  

• EGFR network oncogenesis cooperates with weak oncogenes in the MAPK pathway. 
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INTRODUCTION 

Tumors often exhibit mutations in functionally related genes suggesting a limited number of pathways are 

sufficient to cause tumorigenesis (Sanchez-Vega et al., 2018). However, analysis of tumor genomes have 

revealed that many tumors lack mutations in such pathways including most notably oncogene negative lung 

and triple negative breast cancers (Cancer Genome Atlas Research Network, 2014; Shah et al., 2012; Koboldt 

et al., 2012). In order to reconcile this apparent paradox it is useful to consider that there are multiple ways to 

dysregulate oncogenic proteins with mutation being the simplest to measure with current technologies (Yaffe, 

2013). Other mutation-independent routes of oncogenesis have been described (Bild et al., 2006; Popovici et 

al., 2012) albeit through mechanisms that remain unclear but could include expression of ligands (Fujimoto et 

al., 2005; Singh and Harris, 2005; Wu et al., 2007) or loss of factors involved in protein endocytosis and 

degradation (Bache et al., 2004). While such regulation is multifactorial and an aggregate over largely 

unknown inputs, proteins do not function in isolation but are rather constrained by physical association with 

other proteins in its interaction network, i.e. its network context. Hence, elucidating the network context of an 

oncogene may aid in understanding the pathogenesis of cancers with otherwise unknown disease drivers. 

Tyrosine kinases are among the most frequently altered gene families in cancer. The human genome encodes 

90 tyrosine kinases and despite their biological and therapeutic importance their unique functions in normal 

development and diseases such as cancer remain poorly understood (Robinson et al., 2000; Gschwind et al., 

2004). They are the predominant class of cancer drug targets, although only roughly 5% of cancer patients 

match to current indications for available targeted therapy (Marquart et al., 2018). For some drugs that have 

been investigated broadly, the molecular basis for anti-tumor responses cannot be explained by the presence 

of a mutation in the target or pathway as biomarker (Ferté et al., 2010; Hirai et al., 2017; Jazieh et al., 2013; 

Krejci et al., 2011; Loboda et al., 2010; Mirza et al., 2016; Moroni et al., 2005; Shao et al., 2015; Swisher et al., 

2017; Tian et al., 2013). In addition, most patient responses to targeted therapies are not durable leading to 

eventual drug resistance. Comprehensive knowledge of physical interactors for this important gene family 

could aid in understanding mechanisms of oncogene regulation and consequently delineate new factors 

important for mediating drug sensitivity and resistance. 
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One approach to delineate pathway components is through the systematic assembly of protein-protein 

interaction (PPI) maps (Krogan et al., 2006; Sowa et al., 2009; Breitkreutz et al., 2010; Behrends et al., 2010) 

Many complementary technologies to map PPIs have been developed including yeast two-hybrid and 

proteomic approaches (Rual et al., 2005; Hein et al., 2015; Huttlin et al., 2017, 2017; Yao et al., 2017a). 

Coverage of tyrosine kinases using such experimental approaches has been minimal and is largely biased 

towards a small number of tyrosine kinases that are most intensely studied. Physical interactions are often also 

co-functional (Bandyopadhyay et al., 2010) and network maps can provide insights into associations with 

distinct cellular complexes (Stuart et al., 2006; James et al., 2009), unexpected cellular localizations (Ni et al., 

2001; Carpenter, 2003; Carpenter and Liao, 2013) and transactivation partners (Paul and Hristova, 2019). 

Therefore, a systematic map of interactions associated with this important class of proteins may reveal new 

and previously unexplored biology outside of canonical signaling cascades.  

We systematically mapped physical associations with all 90 human tyrosine kinases by experimentally 

mapping protein-protein interaction networks using affinity-based proteomics. Analyses of this interactome 

revealed novel associations of tyrosine kinases with distinct protein complexes reflective of broadly diverse 

roles in cellular signaling. Mapping chemo-genetic interactions revealed that many of the interactors were also 

functional and that their perturbation could modulate dependence on oncogenic tyrosine kinase partners. This 

finding led us to test the hypothesis that measurement of the stoichiometries in protein interaction partners 

could reveal oncogene dependence and activation state in cancer cells. Applied to the EGFR network, we 

identified a network-mediated form of oncogenesis that occurs in many otherwise oncogene negative cancers 

and also co-occurs specifically with weak oncogenic alleles of regulators of the MAPK pathway such as NF1 

and BRAF class 3 mutations. This work provides a complete and unbiased interaction map for tyrosine kinases 

and a new approach to leverage such data to elucidate mechanisms of oncogene addiction. 

RESULTS 

A physical interaction map of human tyrosine kinases 

To identify physically associated proteins we performed affinity purification and mass spectrometry on all 90 

human tyrosine kinases. Kinases were expressed with a c-terminal 3xFLAG tag by transient transfection into 

HEK293T cells (Figure 1A). After confirmation of expression, each tyrosine kinase was immunoprecipitated 
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using an anti-FLAG antibody and co-immunoprecipitated proteins were eluted, trypsinized and subjected to 

mass spectrometry. We performed 419 such affinity purification – mass spectrometry (AP-MS) experiments 

using at least three biological replicates for every tyrosine kinase (Figure S1A). Overall, we observed an 

average correlation of 0.7 among replicate experiments (Figure S1B) and 50% average reproducibility in 

proteins identified (Figure S1C). 

We performed computational analysis to distinguish bonafide from non-specific interactions in the AP-MS data. 

We evaluated two published methods for their ability to recapitulate known interactions from the raw mass 

spectrometry data, Comparative Proteomics Analysis Software Suite (CompPASS) (Sowa et al., 2009) and 

Significance Analysis of Interactomes (SAINT) (Breitkreutz et al., 2010). As the number of AP-MS experiments 

carried out for every bait varied (Figure S1A), we modified the CompPASS algorithm by including a bait 

specific normalization (CompPASS-Z, see Methods) then compared the performance of these methods in 

recapitulating known interactions using two different reference protein-protein interaction (PPI) datasets, 

HumanNet (Lee et al., 2011) and iRefWeb (Turner et al., 2010). Analysis over different AP-MS score 

thresholds using Receiver Operating Curve (ROC) analysis indicated that ComPASS-Z distinguishes known 

interactions with better sensitivity and specificity than other methods (Figure 1B, Figure S1D). We calculated 

the enrichment of known interactions identified at different ComPASS-Z score cutoffs and found a significant 

overlap with iRefWeb peaking in significance between scores of 2 and 3 (Figure 1C).  Similarly, we found 

significant enrichment of known kinase-substrate interactions, defined in the PhosphoSitePlus database 

(Hornbeck et al., 2012), at cutoff of 2.5 (Figure 1D). Therefore, we defined the tyrosine kinase network 

(TyKiNet) as 1,463 interactions with a score ≥2.5 as high confidence interactions and an additional 1,135 

interactions with a score between 2 and 2.5 as lower confidence interactors (Supplementary Table 1).  

Analysis of resulting high-confidence interactions revealed that the majority (94%) of interactions were novel 

and not previously reported in the literature (Figure 1E). This network was larger and had broader coverage of 

tyrosine kinases than other AP-MS, yeast two-hybrid or experimentally determined interaction databases 

(Figure 1F). TyKiNet contains a median of 15 interactors per kinase and is unbiased in comparison to our 

existing knowledge of interactors that is heavily focused on more intensely studied kinases such as EGFR, 

SRC and HER2 (Figure 1G). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185173doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185173
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tyrosine kinases interact with functionally diverse protein complexes 

We sought to place kinase interactors into biological context by analyzing them with respect to known protein 

complexes and pathways.  This analysis identified both known and novel associations between 69 tyrosine 

kinases and a diverse set of pathways and protein complexes (Figure 2). For example, we detected known 

interactions between ABL1 and members of the WAVE2 complex (Stuart et al., 2006), and between BTK and 

the PAF chromatin remodeling complex (Figure 2, Figure 3A,B) (James et al., 2009). A number of novel 

interactions were also identified such as specific interactions between BMX and the COP9 signalosome, ephrin 

receptors (EPHA2, EPHA4) and the MCM DNA replication complex, PDGFRB and the RNA exosome complex, 

and SRC and the Ragulator complex and lysosomal v-ATPase (Figure 3A,B). 40 tyrosine kinases interacted 

with multiple components of individual protein complexes encoded in the CORUM database in a statistically 

significant manner (Figure 3A, Supplementary Table 2).    

While receptor tyrosine kinases (RTKs) are primarily studied in the context of their localization to the plasma 

membrane, we observed that many of the protein complexes they interact with are localized in other 

organelles. Since physical interactions occur when proteins share spatial localization (Schwikowski et al., 

2000; Shin et al., 2009), we used the known subcellular localization of interactors encoded in the Gene 

Ontology to predict the cellular localization of RTKs based on a guilt-by-association principle (Figure S2A). This 

analysis predicted diverse cellular localizations for RTKs including associations with the nucleus, mitochondria 

and actin cytoskeleton which we compared to endogenous protein localization determined by 

immunofluorescence using primary antibodies from the Human Protein Atlas (Thul et al., 2017). We found a 

localization consistent with our prediction in 19 out of 33 (57%) of cases (Figure S2A). For example, we 

predicted cytoskeletal localization for DDR2 based on interactions with members of the actin cytoskeleton 

(DOCK1, MYH11, DNAH8) and which was confirmed by endogenous DDR2 staining in BJ cells (Figure S2B). 

The majority of RTKs (32/58, 55%) have a predicted nuclear localization based on associations with 

complexes known to reside in the nucleus (Figure S2A). For example, DDR1 interacts with members of the 

transcription factor 2H complex (TFIIH) and EPHB6 interacts with the P-TEFb transcription elongation and PAF 

chromatin remodeling complexes (Figure 2B). Endogenous DDR1 and EPHB6 were both nuclear in cancer cell 

lines, confirming our prediction (Figure S2B). These data are consistent with previous reports of specific RTKs 

signaling in the nucleus (Ni et al., 2001; Carpenter, 2003; Carpenter and Liao, 2013), and indicates that many 
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members of this family may have functions in the nucleus. Our systematic analysis indicates that in pathogenic 

contexts such as cancer where RTKs are often over-expressed (Du and Lovly, 2018) they can take on 

alternative cellular localizations and associate with functionally distinct protein complexes. 

We identified interactions between FLT3 and members of the P-TEFb transcription elongation complex in 

TyKiNet (Figure 3C) including an interaction between FLT3 and CDK9 (CompPAS-Z score = 2.83), the 

catalytic subunit of the P-TEFb that phosphorylates Serine 2 of carboxy-terminal domain (CTD) of RNA 

polymerase II (Marshall et al., 1996). We confirmed the interaction between FLT3 and CDK9 by co-

immunoprecipitation (Figure 3C). We next tested if this interaction was dependent on the activation state of 

FLT3, CDK9 or the entire P-TEFb complex using kinase inhibitors of FLT3 (AC220) or CDK9 (NVP-2) as well 

as the bromodomain inhibitor JQ-1 which inactivates the P-TEFb by preventing it from binding chromatin via 

BRD4 (Bartholomeeusen et al., 2012). The interaction between FLT3 and CDK9 was specifically disrupted by 

JQ1, indicating that the association between FLT3 and CDK9 occurs only in the context of a chromatin-bound, 

active P-TEFB complex and is not dependent on FLT3 or CDK9 activity (Figure 3C). Further supporting a 

functional role for this interaction, FLT3 ectopic expression specifically stimulated the activity of the P-TEFb by 

increasing the phosphorylation of Ser2 of the CTD, which was not observed with expression of control RTKs 

that do not interact with this complex, EGFR or PDGFRA (Figure 3D). These results indicate that FLT3 

promotes the activity of P-TEFb complex when it is bound to chromatin (Figure 3E). We postulate that the 

numerous novel associations delineated in this interaction map can guide the discovery of other similar 

functional relationships between tyrosine kinases and protein complexes. 

The tyrosine kinase interactome encodes functional interactions that regulate oncogenic tyrosine 

kinase dependency in cancer 

We next determined if physical interactors could modulate the function of their partner tyrosine kinases. To 

capture functional interactions between a tyrosine kinase and its physical interaction partner, we systematically 

measured chemical-genetic interactions using targeted tyrosine kinase inhibitors coupled with knockdown of 

interactors to measure synthetic enhancement or suppression of drug sensitivity (Hu et al., 2018). We 

assembled a panel of tyrosine kinase inhibitors that inhibit EGFR (osimertinib), ALK (crizotinib), MET 

(crizotinib), or ERBB2 (lapatinib) and seven matched RTK driven cancer cell lines harboring EGFR mutation 
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(H1975, H4006), MET (H1993) or ERBB2 amplification (SKBR3, H1954) or EML4-ALK fusion (H3122, H2228). 

In total, knockdown of 80% of the tested EGFR interactors could significantly modulate sensitivity to the EGFR 

inhibitor osimertinib in EGFR-mutant lung cancer cell lines (Figure 3E), indicating that loss of interactors can 

impair (sensitivity) or substitute (resistance) for EGFR signaling. In the case of ERBB2, 66% of interactors 

modified the response to lapatinib in HER2 amplified breast cancer cell lines. Similar results were also 

observed when modulating the levels of interactors of ALK in EML4-ALK expressing lung cancer cell lines 

(70%) as well as interactors of MET in MET amplified cells (33%, Figure 3E). Hence many of the physical 

interactors defined in this study are also functionally relevant since levels of interactors are important for 

mediating oncogene signaling. 

Interactor expression defines an EGFR network oncogene in NSCLC  

Since knockdown of its interacting partner often modulates kinase signaling we hypothesized that the 

abundance of interactors in a sample is reflective of the baseline signaling state of a kinase. In this scenario, 

physical interactors can be considered as allosteric regulators wherein total signaling output is a function of 

their stoichiometries. Importantly, not all physical interactors are functionally important in this manner and 

interactors could either positively or negatively influence signaling activity. Together, the levels and activity of 

proteins in this functional network constitute a form of network mediated protein regulation which we term 

network activity. Approximating the level of each interactor using gene expression data from a sample, we 

developed a computational framework to integrate physical interactors of a kinase with tumor transcriptome 

data in order to determine network activity. Tumors where signaling is known to be maximized were used to 

train the network activity model by identifying a subset of interactors of a kinase that are differentially 

expressed, positively or negatively, in cases where the kinase is known to be activated by mutation or 

amplification. Next, a signed sum of the levels of this subset of interactors is used to quantify the network 

activity of this kinase in patients (Figure 4A, see Methods). As our initial test case for this approach we 

interrogated the network of EGFR, an oncogene that is altered by mutation in approximately 12% of lung 

adenocarcinomas (LUAD) and when mutated is associated with sensitivity to EGFR tyrosine kinase inhibitors 

(Pao et al., 2004; Lynch et al., 2004; Cancer Genome Atlas Research Network, 2014). We identified physical 

interactors of EGFR derived from both TyKiNet and literature sources and integrated them with RNA-seq data 

from 576 TCGA LUAD patient samples. 26 EGFR physical interactors were differentially expressed (FDR<5%) 
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in samples harboring known activating mutations in EGFR (L858R and exon 19 deletion) (Figure 4B). 

Expression of interactors in each sample was used to calculate EGFR network activity (NA) and permutation 

analysis and information maximization criteria were used to define tumors that were EGFR network activity 

positive (EGFRn+, NA>5) (Figure S3A, Supplementary Table 3). At this cutoff, 95% of tumors with canonical 

EGFR activating mutations were classified EGFRn+ (Figure 4B). 

Non-canonical mutations in EGFR are not as recurrent and it is unclear which of these mutations are functional 

versus non-functional (Berger et al., 2016; Kohsaka et al., 2017; Ng et al., 2018). Over half (54%) of tumors 

harboring non-canonical EGFR mutations were also EGFRn+ which was more likely than background indicating 

that many non-hotspot mutations in EGFR may also be activating (Fisher Exact test p=0.002, Figure 4C). Non-

canonical EGFR mutations in the kinase domain (Wilcoxon rank-sum test p=5.3e-23), receptor L domain (RL) 

(p=0.007) and growth factor receptor domain IV (GFIV) (p=0.004) domains had significantly higher network 

activity than EGFR wild-type samples (Figure S3B). Tumors with oncogenic driver events downstream of 

EGFR such as mutations in KRAS had lower NA scores and generally were classified as network negative  

(EGFRn-) (KRAS mutant vs. wild-type, Wilcoxon rank-sum test p=5e-09, Figure 4D). 

We observed that 19% of EGFR mutation wild-type samples were network positive (EGFRwt,n+) with network 

activity scores near that of canonical EGFR-mutant samples and higher than that of those with non-canonical 

EGFR mutations (Figure 4C,E). When active, EGFR is auto-phosphorylated at Y1068, a docking site for GRB2 

that links EGFR and RAS signaling (Batzer et al., 1994; Rojas et al., 1996). EGFR network activity scores in 

tumors were significantly correlated with phospho-EGFR Y1068 levels in tumors (spearman r=0.31, p=2e-9), 

which was also true when the analysis was restricted to only EGFR wild-type samples (spearman r=0.15, 

p=4e-4, Figure 4F). Hence, EGFRn+ tumors are prevalent in EGFR wild-type NSCLC where they display 

evidence of EGFR hyper-activity. 

We next determined if EGFR network activity was predictive of response to EGFR inhibition. First, we 

evaluated 40 NSCLC cell lines and found that network activity scored from baseline gene expression was 

significantly correlated with phospho-EGFR levels (spearman r=0.48, p=4e-4) and proliferation in response to 

the EGFR inhibitor erlotinib (spearman r=0.3, p=0.05) and the dual EGFR/HER2 inhibitor lapatinib (spearman 

r=0.45, p=0.003) (Figure S3C-E). Second, we investigated the in vivo response of 25 NSCLC patient derived 
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xenograft (PDX) models treated with erlotinib in an n-of-1 mouse clinical trial format (Gao et al., 2015). PDX 

transcriptome data at baseline was used to score EGFR NA in each model. The only EGFR-mutant model in 

this cohort expresses a non-canonical EGFR S895I mutation, which also had the highest network activity and 

demonstrated tumor regression with erlotinib treatment (Figure 5A, Supplementary Table 4). In this cohort 

10/25 tumors (40%) demonstrated stable disease and 3/25 (12%) displayed a partial response according to 

RECIST criteria. EGFR network activity was strongly correlated with the percentage of tumor growth inhibition 

of each PDX model treated with erlotinib (spearman r=-0.52, p=0.007) and models with responses had a 

significantly higher network activity than those that had stable disease or progressive disease (p=0.003, 

Wilcoxon rank-sum test, Figure 5B). There was no correlation between EGFR expression and response in this 

cohort (Figure 5C). Overall the PDX models with the highest network activity (NA>5) had a significantly longer 

time to progression defined as days taken for tumor doubling in the presence of erlotinib (25.0 versus 13.1 

months, p=0.038 log-rank test, Figure 5D). In a prospective analysis, we analyzed a cohort of 17 NSCLC PDX 

models and scored them for EGFR NA. This cohort had only one EGFR mutant model (CTG-2535, exon19 del) 

which had the highest EGFR NA as expected (Figure 5E).  We selected the PDX with second highest EGFR 

NA (NA=6.6, CTG-0165), which was classified EGFRwt,n+. Erlotinib treatment in this PDX model resulted in 

significant reduction in tumor volume in comparison to vehicle (p=0.006, two-tailed t-test, Figure 5E).  

We conclude that in EGFRwt,n+  tumors, EGFR network activation and resulting dependency is distinct from 

mutation or changes in expression of the receptor itself (an effect in cis), but rather caused by an activation 

induced by changes in the balance of proteins interacting with it (trans effects). The fact that the EGFR network 

includes genes that are physically associated with EGFR is critical to the approach, as applying the same 

methods to generate a signature using a non-EGFR centric network was not as predictive of EGFR 

phosphorylation in tumor samples, responses to erlotinib in PDX models and EGFR inhibitors in cell lines 

(Figure S3F). Also compared to expression signatures derived using unbiased machine learning methods the 

EGFR network approach was more robust in prediction across the same datasets (Figure S3G,H). We 

conclude that EGFR network activation can occur independent of mutations in EGFR often activating the 

receptor and driving the growth and proliferation of NSCLCs, a hallmark of oncogenic activity.  

Distinct states reflect alleles of the EGFR network oncogene in NSCLC 
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The expression patterns of EGFR interactors were largely opposing between EGFR mutant and wild-type 

samples. Interestingly, the expression level of EGFR interactors among EGFRwt,n+ samples was considerably 

heterogeneous, suggesting the presence of distinct mechanisms of network activation (Figure 6A). To 

elucidate if there were predominant mechanisms of network activation we applied a data compression 

technique to condense the profiles of EGFRn+ tumors into distinct states using non-negative matrix factorization 

(NMF) (Figure 6B, S4A) (Kim et al., 2017). EGFRn+ tumors could be represented using seven transcriptional 

components (Figure 6B, Figure S4B-D), which can then be used to hierarchically cluster samples into six 

distinct network states (Figure 6C, Supplementary Table 5). Each state could be characterized by differential 

activation or repression of distinct genes in the network. For example, state 4 tumors (12% of EGFRn+ 

samples) often display high levels of EGFR expression as well as the EGFR ligand EGF (Figure S4E). State 5 

tumors (13% of EGFRn+ samples) harbored highest expression of PIK3R3 an effector bridging EGFR with the 

downstream PI3K pathway. State 1 tumors had the lowest levels of ABL2, a protein which promotes EGFR 

internalization by endocytosis (Tanos and Pendergast, 2006). Hence, similar to the concept of distinct 

oncogenic mutant alleles, we identified six recurrent oncogenic network alleles of EGFR promoting trans 

activation of EGFR through distinct mechanisms.  

The EGFR network oncogene co-occurs with weak oncogenes in the MAPK pathway 

Since co-occurring events in cancer cells may collaborate to promote tumorigenesis, we wondered if mutations 

that present in EGFR NA high tumors might reflect the tumor selective pressures that result in a requirement 

for EGFR network oncogenesis. Of all EGFRwt,n+ samples, the most common mutation in cancer genes in 

these tumors was NF1 mutation (18%), followed by KRAS (10%) and BRAF mutations (6%) (Figure 6D). Fifty-

six percent were otherwise oncogene negative (Cancer Genome Atlas Research Network, 2014). Although 

16% of all LUADs were EGFRwt,n+, they constitute 31% of all NF1 mutant cases in this cohort indicating a 

significant enrichment (p=0.01 by hypergeometric test) (Figure 6E). Inactivating mutations in the RAS-GAP 

NF1 promote GTP-bound active RAS to activate the MAPK pathway but are generally not sufficient for 

tumorigenesis (Largaespada et al., 1996; Bollag et al., 1996; Bajenaru et al., 2002). Since different mutant 

alleles of KRAS and BRAF also variably activate the MAPK pathway (Hunter et al., 2015; Haigis, 2017; Yao et 

al., 2017b), we tested for selection of distinct oncogene alleles in EGFRn+ cases. Codons 12 and 13 encode 

the major hotspot mutations in KRAS of which G12A and G12C mutations had the highest network activity 
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(p=0.01 one-way anova; Figure S5A). Overall 19% of KRAS G12A and 11% of G12C samples were EGFRn+ 

(Figure 6E). These two alleles of KRAS are among the weakest at this codon due to reduced RAF binding and 

increased rate of intrinsic hydrolysis (Hunter et al., 2015; Haigis, 2017). BRAF mutant alleles can be 

categorized into three major classes ranging from strong and monomeric (class 1) to weak and dimeric (class 

3) kinase activity (Yao et al., 2017b). 46% of all BRAF class 3 mutant tumors were also EGFRn+ compared to 

12.5% and 20% for class 2 and class 1 tumors respectively. Hence, mutations that weakly activate MAPK 

signaling such as in NF1, KRAS G12A/C or  BRAF class3 more commonly co-occur with EGFR network 

oncogenesis in LUAD. While other known cancer associated mutations were not significantly enriched to co-

occur across all EGFRn+ samples, we observed that mutations in several tumor suppressors were associated 

with the presence of distinct network alleles of EGFR. For example, although RB1 mutant samples were not 

enriched in this cohort, 35% of EGFRn+ state 5 samples were RB1 mutant (Figure S4F). Similar findings were 

observed for NOTCH1 (state 1) and RBM10 (state 3) suggesting that EGFR network activation may be fine-

tuned based on the nature of the co-occurring secondary mutation.  

Tumors with NF1, KRAS G12A/C, and BRAF class 3 mutations leverage the EGFR network 

oncogenesis 

Although KRAS mutant tumors are currently contraindicated from receiving EGFR targeted therapy our results 

suggest that some KRAS mutant tumors identified through EGFR network activity may respond to EGFR 

inhibitors. In the 16 KRAS-mutant NSCLC cell lines available in the Cancer Cell Line Encyclopedia (Barretina 

et al., 2012), network activity was predictive of response to erlotinib (r=0.62, p=0.01) (Figure 7A). To tested if 

this trend extended to other EGFR inhibitors we experimentally determined IC50 of response to the covalent 

EGFR inhibitor dacomitinib in a panel of 9 KRAS mutant NSCLC lines and found response was significantly 

correlated with EGFR network activity (r=-0.79, p=0.012, Figure 7B, Supplementary Table 6). Three cell lines 

which harbored KRAS mutation (G12A, G12C and G13C) had IC50s below 60nM, a clinically relevant dose 

given average total plasma exposure of dacomitinib in patients is 161nM (Bello et al., 2013). Since oncogenic 

mutations in the MAPK pathway cause constitutive signaling, cells harboring such mutations are often thought 

to be non-responsive to upstream RTK signaling. To test if this was the case we investigated whether EGFR 

signals to ERK in NF1, KRAS G12A/C and BRAF class 3 mutant tumors. In 6 candidate lung cell lines 

harboring these genotypes, EGFR suppression with erlotinib led to a reduction of pERK levels similar to that in 
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EGFR-mutant lines and in contrast to that in class1 BRAF (V600E) or ALK-rearranged NSCLC lines whose 

pERK levels were unresponsive to EGFR inhibition (Figure 7C). Cell lines were sensitive to EGFR inhibition in 

long term colony formation assays (Figure 7D, Figure S5B). To validate these findings in vivo we treated H358 

KRAS G12C xenografted mice with erlotinib and observed significant reduction in tumor volume  as compared 

to vehicle (Figure 7E). These data indicate that EGFR signaling to ERK is functional in tumor cells with high 

EGFR network activity, including tumor cells harboring mutations in the MAPK pathway, leading to sensitivity to 

inhibitors of wild-type EGFR.  

Activation of the MAPK pathway by RAS and RAF mutations suppresses EGFR activity and signaling, via 

negative feedback (Li et al., 2008; van Houdt et al., 2010; Sunaga et al., 2011). Hence it is unlikely that the 

RAS/MAPK mutations we identified here directly cause EGFR network activation and suggest that EGFR 

network activation is an independent tumor-promoting event selected for during tumorigenesis. To disprove the 

null model that mutant KRAS causes EGFR network activation we used H358 NSCLC cells that are KRAS 

G12C mutant, have high EGFR network activity, respond to erlotinib with an IC50 below 1uM and respond to 

dacomitinib at 9nM indicating that they are EGFR dependent (Figure 7A,B). KRAS G12C inhibitor treatment for 

24 hours in H358 cells (Janes et al., 2018; Lou et al., 2019) results in an increase in EGFR network and 

pathway activity measured by RNAseq (Figure S5C-E) indicating that mutant KRAS does not cause network 

activation, but rather works to suppress EGFR in these cells. We conclude that the EGFR network 

oncogenesis is an independent tumor-promoting event (Figure 7F) that is unique from other oncogenic events 

in the cell that is likely the result of finely tuned selection during tumor development.    

DISCUSSION  

The network defined in this study facilitates exploration of the functions of human tyrosine kinases through their 

protein-protein interactions. In our affinity purification and mass spectrometry approach we used multiple 

biological replicates and a new metric for scoring which accounts for bait specific variability in contrast to 

related high throughput approaches (Huttlin et al., 2015, 2017). This resource delineates many new 

interactions between tyrosine kinases and diverse cellular machinery. Surprisingly, many RTKs interact with 

proteins that localize most notably in the nucleus suggesting that many RTKs may become aberrantly localized 

there when overexpressed in pathologic contexts. These data are consistent with reports of nuclear localization 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185173doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185173
http://creativecommons.org/licenses/by-nc-nd/4.0/


of various RTKs (Ni et al., 2001; Carpenter, 2003; Carpenter and Liao, 2013) and indicate that this may be a 

feature of most members of this family. Furthermore, through interactor focused genetic screens we identified 

that many of the physical interactors of tyrosine kinases were also functionally important, since the proliferative 

response of a cell to inhibition of a tyrosine kinase was often modified through the loss of its interaction partner, 

constituting genetic interaction (Zhang et al., 2016). Practically, interactors may help select drug combinations 

that may deepen initial tyrosine kinase inhibitor responses or overcome drug resistance. 

Tumors often exhibit mutations in distinct but functionally related genes suggesting a limited number of core 

pathways are sufficient to cause tumorigenesis (Cancer Genome Atlas Research Network, 2014). As a result 

of this selective pressure we propose that another mechanism to activate a core tumorigenic pathway is 

through perturbation in the levels of regulators of proteins with oncogenic potential, which we term network 

oncogenesis. 21% of oncogene-negative lung cancers were EGFR network positive, indicating that network 

oncogenesis provides a conceptual framework for understanding the pathogenesis of currently untargetable 

tumors. 

We chose EGFR in lung cancer because of the availability of enough patient samples with mutations to train 

our models and sufficient cell line and PDX models to qualify our approach. As more tumor –omics datasets 

and models become available, we anticipate this approach will be more broadly applicable. We estimate that 

the EGFR network oncogenesis occurs in approximately 19% of EGFR wild-type tumors. Historical clinical 

trials with EGFR TKIs have observed a 6-10% objective response rate in EGFR wild-type tumors (Popovici et 

al., 2012; Osarogiagbon et al., 2015; Hirai et al., 2017) providing a starting point for patient selection. At 

present, KRAS mutant tumors are contra-indicated from receiving EGFR TKIs. Surprisingly, many EGFR 

network positive tumors harbored specific alleles of KRAS, BRAF and mutations in NF1 thus calling for a more 

nuanced approach to target EGFR in tumors with mutations that activate the MAPK pathway. In support, 

previous work has shown the importance of pan-ERBB signaling in KRAS-mediated tumorigenesis in mouse 

models (Kruspig et al., 2018; Moll et al., 2018), exceptional responses to EGFR TKIs have been observed in 

KRAS G12C mutant lung cancers  (Ferté et al., 2010; Krejci et al., 2011) and SHP2 inhibitors which impair 

RTK signaling to RAS are reported to have activity in many of the same MAPK-related genotypes as in our 

study (Nichols et al., 2018). We predict that in many cases both network and mutant oncogenes cooperate as 

the tumor driver. While in these cases single agent EGFR TKIs may inhibit tumor growth, one might anticipate 
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a stronger anti-tumor response in combination with an inhibitor that also targets the mutant oncoprotein directly 

or downstream such as with KRASG12C or MEK inhibitors. Our results call for clinical trials testing EGFR TKIs in 

select NSCLC patients harboring the EGFR network oncogenesis and demonstrate the utility of protein-protein 

interaction approaches toward realizing network medicine. 
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FIGURE LEGENDS 
 
Figure 1: Generation of unbiased tyrosine kinase interactome map. (A) Pipeline of Affinity-Purification and 

Mass Spectrometry (AP-MS) experiments to generate tyrosine kinase interactome in HEK293T cells. (B) ROC 

analysis of enrichment of known tyrosine kinase interactions from HumanNet with AP-MS data scored using 

CompPASS, CompPASS-Z and SAINT scoring methods. Gray line depicts random prediction. (C) Enrichment 

of known interactions from the iRefWeb database at different CompPASS-Z cutoffs. P-values of enrichment 

were calculated using hypergeometric test. Black dashed line indicates cutoff used to include high (>2.5) 

confidence interactors. (D) Enrichment of known substrates of tyrosine kinases from the PhosphoSitePlus 

database at various CompPASS-Z scores. Dashed line indicates a score of 2.5. P-value of enrichment was 

calculated using hypergeometric test. (E) Fraction of novel and known interactions (iRefWeb, Bioplex, MINT 

database) of tyrosine kinases found in this study.  (F) Comparison of number of tyrosine kinase interactors 

found in different datasets. Red, green and black bubbles indicate AP-MS studies, experimentally identified 

and yeast two-hybrid studies respectively. (G) Number of known and new interactions overlaid onto a tyrosine 

kinase sequence similarity tree. Size of the bubble represents the number of interactors identified for every 

tyrosine kinases in TyKiNet. Color represents the number of associated interactions found in the iRefWeb 

database.  

Figure 2: Tyrosine kinases are associated with diverse protein complexes. Network representation of 

physical interactions in TyKiNet between tyrosine kinases and known protein complexes and functional groups 

mapped using CORUM and iRefWeb databases. Network connections were identifyed by searching for 

triangular relationships among tyrosine kinases and multiple members of the complex or pathway (see 

Methods). Orange and green rectangles indicate receptor and non-receptor tyrosine kinases, respectively. Red 

interaction edges represent interactions observed in TyKiNet while blue edges indicates known interactions 

mapped from CORUM or iRefWeb database. Members of the same complex or pathway are grouped in grey. 

Figure 3: Tyrosine kinase interactome reveals functional relationships in cancer cells. (A) Heatmap 

representation of enrichment of tyrosine kinase interactors with known protein complexes from the CORUM 

database. Statistical significance of the overlap of interactors of tyrosine kinase with a known protein complex 

was calculated using hypergeometric test at a 5% FDR cutoff. (B) Network representation of protein complex 

coverage achieved in TyKiNet for selected CORUM complexes. Dark and light blue shades represent bait and 
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prey proteins respectively, while grey circles indicates proteins that were not captured in this study. Black 

edges from TyKiNet and gray edges from CORUM. P-values of complex coverage based on each tyrosine 

kinase were calculated as in (A). (C) Co-immunoprecipitation of FLT3 tyrosine kinase with CDK9. Cells were 

exposed to vehicle, 10nM ACC220, 300nM JQ1 or 300nM NVP-2 for 24 hours before harvest. (D) Immunoblot 

of phosphorylation of Ser2 of CTD of the RNA polymerase II after transfection with the indicated empty or flag 

tagged constructs and untreated or treated with various inhibitors at the indicated dose for 24hours before 

harvest. Quantification of relative p-Ser2 level relative to untreated empty vector is shown. (E) Model of role of 

FLT3 binding and promotion of the activity of the P-TEFb complex. (F) Heatmap representing chemical-genetic 

interactions involving EGFR, ALK, ERBB2 and MET in cancer cell lines. Interactors of the selected tyrosine 

kinase oncogene were knocked down using siRNAs in the indicated cell lines. Proliferation after knockdown in 

the presence and absence of the indicated inhibitor was normalized and compared to determine a P-value of 

significance (see Methods). Knockdowns were scored for their ability to impart drug resistance (blue) or drug 

sensitivity (red). 

Figure 4: Tyrosine kinase interactome enables identification of EGFR network activity in lung 

adenocarcinoma. (A) Algorithm to map network activity by integration of physical interactors and gene 

expression data from TCGA. For a given kinase, expression of its interactors was compared between mutant 

and wild-type samples to identify positively or negatively differentially expressed interactors (5% FDR). In a 

single sample the network activity is calculated by a signed sum of all such interactors (see methods). (B) 

Heatmap of network activity and constituent EGFR interactors in lung adenocarcinoma patients (LUAD). 

Columns represent LUAD patients (n=576) and rows represent expression of interactors of EGFR that are 

either positively or negatively associated with EGFR activity. Samples are sorted from network activity low to 

high. The mutation status of EGFR and KRAS in each sample is shown above. EGFR interactors from TyKiNet 

are in bold. (C) The fraction of samples with EGFR canonical (L858R or Ex19del) or non-canonical mutation or 

otherwise EGFR wild-type and EGFR network positive (EGFRn+). (D) Comparison of EGFR network activity 

between EGFR and KRAS wild-type versus mutant samples. (E) Comparison of EGFR network activity 

between various groups based on EGFR or KRAS mutation and network activity scores. * = p<0.001 by rank 

sum test. (F) Comparison of EGFR network activity with pEGFR Y1068 levels in LUAD samples. EGFR mutant 

samples are shown in red. Correlation and p-value are based on Spearman rank correlation. P-values 
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calculated using two-tailed Wilcoxon rank-sum test in (D) and (E). Boxes represent the inter quartile range, and 

whiskers indicate 1.5 times the interquartile range. 

 Figure 5. Tyrosine kinase network state predicts targeted therapy response. (A) Comparison of baseline 

EGFR network activity with percent change in tumor volume from the beginning of treatment across 25 

different NSCLC PDX models treated with erlotinib in a n-of-1 study from Gao et al. (Gao et al., 2015). P-

values are calculated using Spearman correlation coefficient. EGFR and KRAS mutant models are shown in 

red and blue circles, respectively. Shading corresponds to different response groups. Partial or complete 

response (PR/CR) corresponds reduction of <-20%, stable disease (SD) corresponds to  <30% growth, 

progressive disease (PD) corresponds to >30% tumor growth compared to initial tumor volume over treatment. 

(B) EGFR network activity in tumors separated by response group. P-value based on two-tailed Wilcoxon rank-

sum test. (C) EGFR expression in tumors separated by response group. P-values were calculated using two-

tailed Wilcoxon rank-sum test. (D) Kaplan-Meier plot of progression free survival of erlotinib treated PDX with 

EGFR NA>5 (n=5) compared with EGFR NA<5 (n=20). P-value was calculated using log-rank test. (E) 

RNAseq data from an untreated NSCLC PDX cohort was used to score EGFR network activity (n=17). Model 

with second highest EGFR network activity was EGFR wild-type and network positive (EGFRwt,n+) and treated 

with erlotinib (50 mg/kg/d) and tumor volumes compared to vehicle treatment *p<0.001 two-tailed t-test.   

Figure 6: EGFR network state defines distinct mechanism of EGFR activation and is associated with 

weak oncogenes. (A) Representation of EGFR network components in EGFR mutant (L858R), wild-type and 

EGFR wild-type but network positive (EGFRwt,n+) LUAD samples from the TCGA. Node color corresponds to 

relative mRNA expression of an interactor in a sample. Interactors are separated by positive (left side, red 

background) and negative (right side, blue background) components. NA = network activity. (B) NMF of EGFR 

network positive samples (EGFRn+) indicates seven transcriptional components that cluster into six distinct 

states. (C) Heatmap of the mean expression of interactors of EGFR in six distinct states of EGFRn+ patients. 

Difference in mean expression between samples in each state is shown (color) and significance (size of circle) 

was calculated using Wilcoxon rank-sum test. (D) Occurrence of mutations in known oncogenes and NF1 

(Cancer Genome Atlas Research Network, 2014) in EGFR mutation wild-type, network positive (EGFRwt,n+) 

samples (n=94). (E) Enrichment of frequency of mutations for specific genes in EGFRwt,n+ samples compared 

to EGFRn- samples. P-value of mutation enrichment was derived from hypergeometric distribution. * = p<0.05.  
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Right barplot represents fraction of all samples with mutation in NF1, or listed alleles of KRAS and BRAF that 

are also EGFRn+. Dashed line indicates the background proportion of all KRAS or BRAF mutants that are 

EGFRn+. X=any amino acid substitution.  

Figure 7: Tumors harboring weak oncogenes are dependent on EGFR signaling. (A) Comparison of 

EGFR network activity (NA) in KRAS mutant NSCLC cell lines with published erlotinib sensitivity (defined as 

activity area in the CCLE dataset). (B) Comparison of dacomitinib sensitivity (IC50, determined in this study) 

with EGFR NA in nine KRAS mutant NSCLC lines. For (A) and (B) colors represent the type of KRAS mutation 

and correlation, p-value determined using spearman correlation. (C) Immunoblot of pEGFR and ERK levels in 

lysates from NF1, BRAF-class3 and KRAS G12C and G12A mutant cell lines before and after treatment with 

erlotinib (1 µm) or 72 hours. PC9 (EGFR del), HCC827 (EGFR del), HCC364 (class1 BRAF) and STE-1 (ALK 

fusion) cell lines were used as a control. (D) Colony formation assay of NF1, BRAF and KRAS mutant lung 

cancer cell lines grown in the presence or absence of erlotinib for 7 days. (E) Growth of H358 (KRAS G12C) 

mouse xenograft treated with erlotinib (80-100mg/kg/d). * p <0,05, t- statistics. (F) A model showing the 

mutation frequency of NF1, weak oncogenes (class3 BRAF, KRAS G12C, G12A) in patients with EGFR 

mutant oncogenes and EGFRwt,n+ LUAD patients.   
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EXPERIMENTAL PROCEDURES 
 
Cell culture and reagents 
All cell lines were cultured in RPMI supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. 
Erlotinib, Lapatinib, AZD9291, TAE684, JQ1, AC220, and Crizotinib was purchased from Selleck Chemicals,. 
Dacomitinib is available from Sigma. Primary antibodies against phospho-EGFR (#3777, Tyr1068, 1:1000), 
EGFR (#4267, 1:1000), phospho-ERK (#9101, Thr202, Tyr204, 1:1000), beta-actin (#A2228, 1:2000) and ERK 
(#9102, 1:1000) were obtained from Cell Signaling Technologies. The antibody against V5 (#SC-
81594,1:1000) was purchased from Santa Cruz, Flag (#F1804,1:1000) from Sigma and Phospho-PolI (#5095, 
Ser2,1:5000) from Abcam. 
  
 
Affinity purification  

All ORFs were cloned as Gateway entry clones in the pDONR223 vector and subsequently transferred into c-
terminal 3xFLAG expression vectors (pcDNA4/TO 3x FLAG). Each vector was confirmed via western blot in 
HEK293T cells and relative expression levels were determined. All constructs were verified by sequencing. For 
affinity purification, cells were grown in 15 cm plates and next day transfected with between 3-10 µg of plasmid 
depending on relative expression levels using calcium phosphate. Each clone was transiently transfected into 
HEK293T cells. 42 h after transfection, cells were detached and washed with PBS. For Affinity Purification 
(AP), 2.5x108 cells were induced with 1 µg/ml doxycyclin for 16 h. Cells were lysed in 1 ml cold lysis buffer (50 
mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Nonidet P40, complete protease inhibitor (Roche) and 
phosphostop (Roche). Cells were dounced 20x on ice and spun at 2800xg for 20 min. The supernatant was 
incubated with 60 µl preclearing beads (mouse IgG agarose, SIGMA or Sepharose 4FF, GE Healthcare) for 2 
h. The precleared lysate was incubated with 30 µl IP beads over night. FLAG APs were performed with anti-
FLAG M2 Affinity Gel (SIGMA) and Strep APs with StrepTactin Sepharose (IBA). The beads were washed 5x 
with lysis buffer containing 0.05% Nonidet P40 followed by one wash with lysis buffer without detergent. 
Proteins were eluted with 40 µl 50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA containing either 100µg/ml 
3xFLAG peptide (ELIM) and 0.1% RapiGest (Waters), or 2.5 mM Desthiobiotin (IBA). 4 µl of the eluate was 
analyzed by 4-20% SDS PAGE (Biorad) and silver staining. For co-immunoprecipitations the same procedure 
was performed on 106 cells and samples were boiled in sample buffer prior to immunoblot.  

Sample preparation for mass spectrometry 

For gel-free Mass Spectrometry (MS) analysis 10 µl of the IP eluate were reduced with 2.5 mM DTT at 60ºC 
for 30 minutes followed by alkylation with 2.5 mM iodoacetamide for 40 minutes at room temperature. 100 ng 
sequencing grade modified trypsin (Promega) was then added to the sample and incubated overnight at 37ºC. 
The resulting peptides were concentrated on ZipTip C18 pipette tips (Millipore) and eluted in a final 20 ul 
solution of 0.1% formic acid. For gel-based analysis, 20 µl IP eluate was separated by 4-20% SDS-PAGE and 
stained with GelCode Blue (Thermo Scientific). Each lane was cut into 15 pieces. Each gel piece was diced 
into small (1 mm2) pieces and washed 3x with 25 mM NH4HCO3/50% ACN. Gel pieces were dehydrated and 
incubated with 10 mM DTT in 25 mM NH4HCO3 and incubated for 1 hour at 56ºC. The supernatant was 
removed and the gel pieces were incubated with 55 mM iodoacetamide and incubated for 40 minutes. Gel 
pieces were washed with 25 mM NH4HCO3, then 25 mM NH4HCO3/50% can and were then dehydrated. 10 
ng/µl trypsin in 25 mM NH4HCO3 was then added to the gel pieces and incubated overnight at 37ºC. Finally, 
peptides were extracted from the gel pieces with 50% ACN/5% formic acid and the solvent evaporated. The 
final peptide sample was resuspended in 20 µl 0.1% formic acid. 

Mass spectrometry primary data analysis 

All samples were analyzed by LC-MS/MS on a Velos Pro dual linear ion trap mass spectrometer (Thermo) 
equipped with a nanoACQUITY UPLC (Waters) chromatography system and a nanoelectrospray source. 5 µl 
of each sample was injected onto a a nanoACQUITY Symmetry C18 trap (5 µm particle size, 180 µm x 20 mm) 
in buffer A (0.1% formic acid in water) at a flow rate of 4 µl/min and then separated over a nanoACQUITY BEH 
C18 analytical column (1.7 µm particle size, 100 µm x 100 mm) over one hour with a gradient from 2% to 25% 
buffer B (99.9% ACN/0.1% formic acid) at a flow rate of 0.4 µl/min. Raw mass spectrometric data were 
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converted into peak lists using Bioworks 3.3.1 SP1. The spectra were searched using Prospector v.5.3 
(http://prospector.ucsf.edu)

 
against a human-restricted UniProt database. Protein Prospector results were 

filtered by applying a minimum Protein Score of 22.0, a minimum Peptide Score of 15.0, a maximum Protein E-
Value of 0.01 and a maximum Peptide E-Value of 0.05. A total of 419 AP-MS experiments were performed 
using each of the 90-tyrosine kinases as affinity-tagged bait. Preprocessing of IPs was carried out by mapping 
protein count obtained in individual replicate experiments corresponding to a bait. Based on the distribution of 
protein counts of all experiments we removed the samples where protein counts were less than 30. 19 AP-MS 
experiments fall under this category and they were removed from further analysis. Pull-down experiments 
where tyrosine kinase was not seen as bait in the mass spectra were discarded. Reproducibility of interactions 
of tyrosine kinases was defined as total number of preys picked by a kinase in at least two biological replicate 
experiments by the total number of preys picked by bait in experiments.  

Mass spectrometry data scoring  

To distinguish true from non-specific interactions MS data was scored using two available scoring methods - 
Comparative Proteomics Analysis Software Suite (CompPASS) (Sowa et al., 2009) and Significance Analysis 
of Interactome (SAINT) (Choi et al., 2011). CompPASS scoring was performed as described by (Sowa et al. 
2009). As the number of biological replicate experiments carried out for tyrosine kinases varied we modified 
the current CompPASS WD scores by adding the bait specific Z-normalization (CompPASS-Z). For every bait 
CompPASS WD scores were Z-scored to obtain modified CompPASS-Z scores as follows: 

!"#$%&''!!" =  !!!" − !_!"!!_!!!
 

where !"!" represents the comPASS WD score for interaction between bait (b) and prey (i) and !"! 
represents all WD scores associated with bait b.  

SAINT was also used to identify interactors from AP-MS data using SAINTexpress software (version 3, Teo et 
al). Performance of CompPASS, CompPASS-Z and SAINT scored AP-MS data was compared in scoring 
known interactions of HumanNet (Lee et al., 2011) and iRefWeb (Turner et al., 2010) databases as reference.  
The HumanNet v1 network was downloaded (10/27/2015) from http://www.functionalnet.org/humannet,  
iRefWeb v13.0 network was downloaded (7/23/2014) from http://www.irefindex.org, Bioplex was downloaded 
from http://bioplex.hms.harvard.edu/downloadInteractions.php (BioPlex_2.3_interactionList.tsv, 5/3/2018) 
(Huttlin et al., 2015, 2017), MINT database (Licata et al., 2012) was downloaded (8/11/2015) from 
https://mint.bio.uniroma2.it/ and had 1457 tyrosine kinase interactions. Statistical significance of overlap was 
obtained using hypergeometric test where background distribution was based on a random interaction network 
of uniquely identified preys in entire AP-MS with all 90 tyrosine kinases as baits. Similarly, we compared the 
overlap of CompPASS-Z scored AP-MS data with known kinase-substrate information downloaded from 
PhosphoSitePlus (Hornbeck et al., 2012) (downloaded on 8/5/2016, 699 tyrosine kinase substrates) at different 
CompPASS-Z cutoffs. A cutoff of CompPASS-Z scores was derived using a highest peak of enrichment using 
known interactors and substrates (Figure 1C). The number of high confidence interactors per kinase was not 
correlated with the number of replicates carried out per kinase (Pearson r = 0.05).  

Western blotting 

Cell lysates were subjected to SDS-PAGE and transferred to nitrocellulose membranes. For signaling analysis 
by immunoblot in lung cancer cell lines, 2x106 cells were seeded per 10cm dish for 24 hours after which cells 
were serum-starved for 18 hours and treated with either vehicle (DMSO) or Erlotinib (1µM) for one hour and 
stimulated with 100 ng/mL human recombinant EGF for five minutes prior to lysis. 
 
Cellular localization prediction 

Protein subcellular localization were examined using the GO cellular components downloaded from Ensembl 
using R BioMart package (Durinck et al., 2005). To predict the cellular localization of a tyrosine kinase first 
degree (direct) interactors were used for enrichment analysis using Fisher’s Exact test. All the cellular 
localization terms were manually condensed to thirteen core localizations: Nucleus, Cytoplasm, Vesicles, 
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Plasma membrane, ECM, Golgi, Endosomes, Cell junctions, Vacuoles, Cytoskeleton, Endoplasmic reticulum 
and exosomes. A tyrosine kinase was considered associated with a cellular localization when its interactors 
were significantly more likely to be annotated with the same cellular term as compared to human proteome 
(background). To focus on the most significant results, we used only cellular terms where enrichment scores 
were significant with an adjusted FDR of 10%. 

Network mapping of tyrosine kinases with protein complexes  

To map the association of tyrosine kinases with known protein complexes we used known protein complex 
information from CORUM and iRefWeb databases. CORUM database (Giurgiu et al., 2019) was downloaded 
(3/18/2019) from http://mips.helmholtz-muenchen.de/corum/ with 6859 core complexes. Network 
representation was generated using Cytoscape version 3.2 (Shannon et al., 2003). Interaction coverage was 
defined as the number of interactors of a kinase which are a part of a protein complex over the total number of 
members of a protein complex. Statistical significance of the interaction overlap of a protein complexes was 
calculated using hypergeometric test and represents the enrichment of tyrosine kinase interactors to form a 
protein complex. All P values were FDR adjusted and a cutoff of 5% was used to identify tyrosine kinase-
protein complex associations. 

Cell viability assay 
 
Cells were seeded in 12-well format at 5,000 cells/well and treated with vehicle (DMSO) or erlotinib (1µM) on 
the following day. Media containing vehicle or drug, respectively, was replaced every 3-4 days and cells were 
maintained until full confluency of vehicle-treated control wells. Cells were fixed with 10% formalin for 30 
minutes at room temperature and stained with 0.05% crystal violet solution. Pictures were taken using an 
ImageQuant LAS 4000 (GE Healthcare Life Sciences). For quantification, stained cells were dissolved with 1% 
SDS solution, and absorbance at 470 nm was measured using a Spectramax spectrophotometer (Molecular 
Devices). Values were normalized to vehicle-treated controls. For dacomitinib cell viability experiments a total 
of 2500-5000 cells were seeded per well, depending on their growth rates. After overnight incubation at 37°C, 
drugs were added to the culture wells to achieve a final drug concentration from 10 µM to 152 pM. After drug 
addition, the cells were incubated for an additional 3 days to allow cells to reach 70-90% confluency. Readout 
of cell viability was determined with 20 µL of 1 mg/mL resazurin salt (Sigma) using an Envision multi-reader. 
Cell counts were first adjusted by subtracting the average of the baseline cell counts from untreated cells 
assessed 1 day after cell seeding. A four-parameter logistic model was used to fit the dose response curves 
and infer the IC50, slope, and upper and lower limits.  
 
RNAi screening 

Top high confidence interactors were selected for EGFR, ERBB2, ALK and MET tyrosine kinases based on the 
CompPASS-Z scores of the interactions. Cells were reverse transfected in quadruplicate in 384-well plates 
with 20nM of siRNA (Sigma) using RNAiMax as transfection reagent. Cells were transfected for 24 hr, and then 
the entire plate was treated with either one drug at a half maximal inhibitory concentration (IC50) concentration 
or DMSO for 72 hr, after which cells were stained with Hoescht 33342 and counted using a Thermo CellInsight 
high-content microscope. Both drug and DMSO plates for every cell line were median centered to normalize 
the proliferation rates.  Next, four normalized replicate values in the DMSO plate were compared to the same 
gene in the drug plate and P value of the significance of this difference in medians were calculated using t-
statistics. A P value of 0.05 was considered significant. The genetic interactions was defined by the negative 
log10 of the P value of t-test and signed with either positive (knockdown causes drug sensitivity) or negative 
(knockdown causes drug resistance).  

 
TCGA, cancer cell line and PDX datasets 

Following datasets from TCGA and cancer cell lines (CCLE) were used to analyze the network activity of 
EGFR. 
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Table 1 
TCGA datasets 

Tumor type Data type # of samples 
LUAD 

 
mRNA Expression 575 
Mutation (EGFR) 66 

Reverse Phase Protein Array 
(EGFR) 

360 

 
Table 2 

 
 
 
 

 

 
LUAD patients mRNA, RPPA, CNV and mutation datasets were downloaded from TCGA data portal 
(https://portal.gdc.cancer.gov/). CCLE datasets were downloaded from 
(https://www.synapse.org/#!Synapse:syn10463688/wiki/463140). Gene expression datasets were log 
transformed and z-normalized across the NSCLC cell lines and patient samples. RPPA data of protein 
expression of EGFR in NSCLC cell lines was obtained from (https://bioinformatics.mdanderson.org/public-
software/mclp/). PDX data was obtained from (Gao et al., 2015) and included baseline gene expression and 
tumor responses to erlotinib. Gene expression data was log transformed and normalized across all 25 NSCLC 
PDX models.   
 
Description of network activity scoring 

To map the network activity of tyrosine kinases we developed a computational algorithm to integrate 
proteomics data (protein-protein interactors) of a tyrosine kinase with mRNA expression of tumor samples. 
This algorithm is based on the hypothesis that cellular activity of a kinase is dependent on its neighboring 
protein interactors and the levels of direct interactors of a kinase can influence the activity of the kinase itself. 
We refer to this interactome-based mapping of transcriptional levels as network activity and used this to 
classify tumors as network positive or negative. 

To calculate network activity we first used mRNA expression of interactors of a tyrosine kinase in a specific 
tumor type. Here we focused on lung cancer where EGFR is a common mutational driver (~12% frequency). 
To identify the key interactors on which kinase activity is highly dependent, patients were separated into 
mutationally altered vs. non altered groups and mRNA expression of interactors was compared to identify 
interactors whose mean expression was significantly different between groups. Statistical significance of 
expression of interactors was achieved using a two-sided t-test with a FDR cutoff of 5%. Positive component 
(pc) comprises interactors whose expression was elevated when the tyrosine kinase is altered, while negative 
component (nc) includes interactors whose expression was reduced when the kinase was altered (i.e higher in 
wild type samples). To generate the network activity score for sample k (NAk) we sum up the expression of 
interactors of positive and negative components and calculate the difference in combined expression of two 
components as follows: 

!!!  = !"! − !"!
!

!!!

!

!!!
 

where, PC and NC represent the expression of interactors in pc and nc respectively. l and m represents the 
number of interactors in positive and negative components respectively. 

Interactors of EGFR obtained through our AP-MS study at CompPASS-Z cutoff of 2 and other experimentally 
known interactors of EGFR from iRefWeb database (total n = 181) were used to calculate network activity. Out 

CCLE datasets 
   Tissue type Data type # of cell lines 

NSCLC  mRNA Expression 51 
Mutation (EGFR) 5 

 Reverse Phase Protein Array 
(EGFR) 

51 

Drug response (Erlotinib/Lapatinib) 29 
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of 181 direct interactors of EGFR, 27 interactors passed the FDR threshold of 5% and were used for NA 
calculations of EGFR in LUAD. A cutoff for NA score was calculated by precision-recall analysis by considering 
canonical mutations of EGFR as true positives and KRAS mutations as false positives. A recall of 95% was 
considered to derive a NA cutoff in LUAD patients  

Comparison of EGFR network activity with other methods 

Performance of EGFR NA was compared to either random gene networks or other gene expression signature 
approaches. To compare to random gene networks we selected 27 genes at random whose expression was 
differentially expressed in samples with an EGFR mutation, as above. This process was performed 10,000 
times and the predictive capacity of each trial was compared to the real EGFR NA. The percent of random 
trials where the prediction was stronger than the real EGFR NA was used to calculate a P value. 

To compare to other gene expression signatures approaches we first identified which of all 20,000 genes were 
differentially expressed genes (n =3299) between EGFR wild-type and mutant samples at a 5% FDR 
threshold. The gene expression signature (GES) was calculated by a signed sum of differentially expressed 
genes. LASSO, ElasticNet and Random Forest classifier models were generated by applying these methods to 
the 20,000 gene set trained on EGFR mutant versus wild-type samples. LASSO was run with ∝ =0.01 and 
maximum iterations = 10e5 where ∝ was chosen by gridsearch during training. ElasticNet was run with l1_ratio 
=0.5 and ∝ =0.01, which was chosen based on internal cross validation. Random Forest model was built with 
100 estimators and gini criterion. For Random Forest average expression of the most predictive genes was 
used to calculate EGFR gene expression signature. EGFR activity using these methods was compared to 
pEGFR and drug response data from CCLE and PDX models.  

NMF and mutation enrichment analysis of EGFRwt,n+ patients 

Mutations enrichment in patients with high activity of EGFR was calculated by measuring the fraction of 
mutations in samples with high NA as compared to background (total mutant samples of a gene) mutation 
frequency of a gene in all LUAD samples. Significance of the mutation enrichment was calculated using 
Hypergeometric test. Mutation enrichment analysis for genes except EGFR was performed in EGFR null sa-
mples. Similarly, mutation frequency of specific alleles of KRAS and BRAF was calculated in EGFRwt,n+ 
patients. Background mutation frequency represents total KRAS and BRAF mutation frequency in patients with 
high EGFR NA over background. EGFR NA high patient samples (n=148) were decomposed using Non-
Negative Matrix Factorization (NMF) (Brunet et al., 2004; Kim et al., 2017; Tamayo et al., 2007). Matrix (A) 
contains n rows (expression of EGFR interactors which are part of NA, n=27) and m samples (EGFR mutant 
and EGFRwt,n+ samples, n=148) and is represented as AnXM. NMF was implemented as in (Kim et al., 2017). 
The optimal number of components was defined using cophenetic correlation (Brunet et al. 2004). Mutation 
enrichment analysis was performed in every state to identify correspondence between the present of a somatic 
mutation and EGFR network state. Enrichment analysis was performed in every state by considering other 
states as background and genes which are significantly mutated were identified using Fischer’s Exact test (p 
<0.01).  

Mouse xenograft study 

Six- to seven-week-old female nude mice were purchased from the Jackson Laboratory and housed with ad 
libitum food and water on a 12-hour light cycle at the UCSF Preclinical Therapeutics Core vivarium. All animal 
studies were performed in full accordance with UCSF Institutional Animal Care and Use Committee. H358 
xenografts were established by subcutaneous injection into the left and right flanks of mice with H358 cells (5 × 
106 cells in 100 µl of serum-free medium mixed 1:1 with Matrigel). Tumor xenografts were allowed to establish 
until they reached about 700 to 900 mm3 in donor mice and then reimplanted into receiver mice to achieve 
higher engraftment rate. Briefly, established H538 tumor xenografts from donor mice were resected, cut into 
even-size fragments (15 mm × 15 mm), embedded in Matrigel, and reimplanted via subcutaneous implantation 
into receiver mice. H538 tumor-bearing mice were randomized into control and treatment groups when tumors 
reached a size range of 100 to 120 mm3, and single or dual dosing of erlotinib (80-100 mg/kg in 0.5% 
(hydroxypropyl) methyl cellulose, 0.2% Tween 80 (HPMT)] or vehicle control (Labrasol) was administered daily 
by oral gavage. Tumor volume and body weight were assessed biweekly for the duration of the study. The 
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percentage change in tumor growth was based on volumes calculated from the size on day 1 at the beginning 
of treatment.  For PDX studies, patient-derived tumor cells were engrafted subcutaneously into the flank of 
C.B-17 SCID mice. Tumors were allowed to grow until they reached a minimum volume of 200 mm3; then, 
animals were randomly placed into control or treatment groups. Animals were treated daily for 30 d via oral 
gavage, and tumor volume was calculated daily using caliper measurements.  

Data availability  

Network data is deposited in Biogrid (Accession Code XXXXX).  Source code for Compass-Z, Non-negative 
matrix factorization and Network Activity analysis are available at 
https://github.com/BandyopadhyayLab/Tyrosine_kinase_interactome  
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