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Abstract 

Genotype-phenotype associations can be results of direct effects, genetic nurturing effects and 

population stratification confounding. Genotypes from parents and siblings of the proband can 

be used to statistically disentangle these effects. To maximize power, a comprehensive 

framework for utilizing various combinations of parents’ and siblings’ genotypes is introduced. 

Central to the approach is mendelian imputation, a method that utilizes identity by descent 

(IBD) information to non-linearly impute genotypes into untyped relatives using genotypes of 

typed individuals. Applying the method to UK Biobank probands with at least one parent or 

sibling genotyped, for an educational attainment (EA) polygenic score that has an 𝑅! of 5.7% 

with EA, its predictive power based on direct genetic effect alone is demonstrated to be only 

about 1.4%. For women, the EA polygenic score has a bigger estimated direct effect on age-

at-first-birth than EA itself.  
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Introduction 

Standard genotype-phenotype association analyses, such as those typically performed for 

genome-wide association studies (GWAS), involve only the phenotypes and the genotypes of 

the proband. However, to separate the direct genetic effects from the indirect genetic effects 

and other confounding factors, in addition to the proband’s genotypes, genotypes of family 

members such as parents and siblings are often necessary1. Even though much more family 

data can be expected in the future, either through deliberate ascertainment or as a consequence 

of a substantial fraction of the population being genotyped, family data are currently somewhat 

limited. Thus, for now and for the future, it is important to develop methods that can get the 

most out of the data available. Here we consider a model where the proband’s phenotype 

depends on the genotypes of four people --- the proband, the parents, and one sibling. When 

genotypes of one or more family members are unavailable, they are treated as missing-data, 

and imputed in an appropriate manner. This setup serves two purposes: (a) it allows different 

data types to be treated under one analytic framework, increasing flexibility and power, (b) 

statistical efficiency is increased through non-linear imputation of the missing genotypes using 

the observed genotypes. Genotyped sib-pairs with untyped parents, a common data type, 

benefit the most from this approach. Compare to standard analyses2–5, our method of imputing 

parental genotypes, which incorporates the identical-by-decent (IBD) information between 

sibs, adds information and allows for the estimation of sibling genetic nurturing effect. 

Moreover, it includes the modelling of asymmetric sib-pairs, e.g. siblings of different gender, 

and highlights the utility of the genotypes of a sibling whose phenotype is either missing or is 

not directly comparable with that of the proband.  

 

This paper is organized as follows. (i) The basic model and parameters are introduced. (ii) The 

fifteen possible genotype data patterns, one complete plus fourteen incomplete, are presented 

and (iii) the various forms of imputations, linear and IBD-based non-linear, are described and 

illustrated by examples. (iv) Provide conditions for the estimates obtained using data with 

imputations to be unbiased, i.e. the estimates, while having different standard errors, have the 

same interpretations as those obtained using complete data. We call this property estimate 

consistency. (v) Illustrate the extension from handling one phenotyped sibling (sib) to two 

phenotyped sibs and introduce a model that incorporates phenotypic asymmetry between sibs. 

A note on extension to genotyped sib-ships of size bigger than two. (vi) When the data or 
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estimates from different missing data patterns are combined, it is a form of multivariate 

(parameter) meta-analysis6. Someimtes the results are not intuitive, e.g. estimates often have 

smaller standard errors than one expects from applying univariate principles. (vii) Extension 

of analyses of individual variants to that of polygenic scores and discuss the consequences of 

assortative mating. (viii) Empirical study based on UK Biobank data. (ix) Discussion.  

 

Models and Setup 

The proband is defined as the person with known phenotype 𝑌, the response variable. We start 

with a single-locus model where 𝑌, conditional on the genotypes of the proband and the 

parents, has expectation 

𝐸(𝑌) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝛿𝐺 + 𝛼"𝐺" + 𝛼#𝐺# 							(1.1)               

where 𝐺 is the genotype of the proband, 𝐺" is the genotype of the father, 𝐺# is the genotype 

of the mother, and 𝛿 is the direct effect. Y is treated as a quantitative variable, but it does not 

have to be normally distributed and indeed can be binary. As long as the variance explained by 

the G’s is small relative to the variance of Y, results given will apply exactly or approximately.  

Note that (1.1) is in effect the same as a model previous used7 where the explanatory variables 

are the transmitted and non-transmitted alleles, as the explanatory variables this model are a 

one-to-one linear transformation of those in the other. The parameters 𝛼" and 𝛼#  can be 

written as  

𝜂" + 𝜔  and  𝜂# + 𝜔.											(1.2)          

where 𝜂"	and 𝜂# denote parent-of-origin (PO) specific genetic nurturing effect, and 𝜔 captures 

all confounding effects that have not been adjusted out, including assortative mating induced 

confounding.  Note that, following our previous work7, the genetic nurturing effects of the 

parental alleles, 𝜂" and 𝜂#, are meant to incorporate not only the genetic nurturing effects of 

the parents, but also include the contributions from older ancestors and siblings. In particular, 

when the proband has a sibling, the model is extended to  

𝐸(𝑌) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 	𝛿𝐺 + 𝜂$𝐺$ +	𝛽"𝐺" + 𝛽#𝐺# 											(1.3)                  

where 𝜂$ denote the genetic nurturing effect of the sibling’s genotype. Because a parental allele 

has ½ chance of being passed onto a sibling, 

𝛽" = 𝛼" −
%!
!

   and 𝛽# = 𝛼# −
%!
!
.																	(1.4)                                                               

The 𝛼’s are more natural parameters than the 𝛽’s, as the former are well defined regardless of 

whether the proband has any siblings. Nonetheless, the introduction of 𝜂$ and the 𝛽‘s is 

necessary when family analysis, in the absence of parental genotypes, is performed using the 
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genotypes of a sibling. While (𝛿, 𝛽" , 𝛽# , 𝜂$) is the parameter vector being directed estimated 

through fitting the model (1.3), its estimate could easily be transformed into an estimate of 

other parameters vectors such as  (𝛿, 𝛼, 𝜂# − 𝜂" , 𝜂$) where  

𝛼 =
𝛼" + 𝛼#

2 	.																																		(1.5) 

Notice that because the estimates of the four parameters are correlated, estimates of 𝛿 and 𝛼 

will change and usually have reduced standard errors if the assumptions that 𝜂" =	𝜂# and 

𝜂$ = 0	are made, a question of bias-variance trade-off. Finally, it is noted that the sum (𝛿 +

𝛼), referred to as the population effect here, corresponds to what is being estimated in a proband 

only genotype-phenotype analysis performed by most GWAS studies.  

 

Treatment of Missing Data 

Genotypes (explanatory variables) in the complete-data model (1.3) that are unobserved are 

treated as missing-data. Including the complete-data case, there are 2& − 1 = 15 complete-

missing data patterns (Fig. 1, genotyped individuals shaded). For example, Fig. 1a, 1b, 1e, 

and 1h, correspond respectively to complete data, parents-proband trios, genotyped sib-pairs, 

and the standard GWAS singletons setup with proband genotyped only. Missing genotypes 

are imputed either linearly (� or blank) or non-linearly (+ or ⨁). Linear imputation is 

predicting an unobserved genotype using a linear combination of the observed genotypes 

with coefficients that minimize mean squared error (MSE). With alleles coded 0 or 1 and 

population frequency of allele 1 denoted by p, the four genotypes (𝐺, 𝐺$, 𝐺" , 𝐺#), assuming 

random mating, have known variance-covariance matrix (Table 1a).  Even though the 𝐺’s are 

not normally distributed, the formulas for best linear predictions are the same as those 

established for multivariate normal variables. However, as illustrated below, based on the 

known non-normal joint distribution of the 𝐺’s, sometimes a missing genotype can be 

imputed as a non-linear function of the observed genotypes with higher correlation with the 

actual genotype than any linear imputation. 

 

There are seven cases in Fig. 1 where IBD-based non-linear imputations are possible. However, 

with respect to the joint distribution of the genotypes, up to symmetry, there are only 3 distinct 

equivalent classes --- (1c,1d,1j,1k), (1e), and (1f,1g). One case from each of the equivalent 

class is covered below.   
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Figure 1: Mendelian imputation for 15 different missing data patterns for nuclear families.  Proband refers 

to an individual with phenotype information. Shaded individuals are directly genotyped. � denotes linear 

imputation from observed genotypes, + denotes non-linear imputation from observed genotypes and IBD 

information, Å denotes non-linear imputation in the case where the resulting covariance matrix of the four 

genotypes (observed and imputed) is not of full rank (see Table 1). The genotypes of the blanked mother in 1n 

and blanked father in 1o are imputed by a constant, the population frequency.   

 

Genotyped

Non-linear imputation

Linear imputation
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Table 1. Mendelian imputation and resulting scaled variance-covariance matrices. Each matrix shows the 

variance-covariance structure within the nuclear family given observed and imputed genotypes. The labels a) to 

o) correspond to the those in Fig. 1. 𝐺 denotes proband’s genotype, 𝐺" denotes sibling’s genotype, 𝐺# denotes 

father’s genotype and 𝐺$ denotes mother’s genotype. * indicates an unobserved genotype that is imputed (either 

linearly or non-linearly) using observed genotypes. Displayed are Σ%" =	Σ% (2𝑝(1 − 𝑝))⁄ . It is scaled so that the 

diagonal entry corresponding to an observed genotype is 1. 

 

Mother and proband genotyped. In Fig. 1d, 𝐺 and 𝐺# are observed, but not 𝐺" and 𝐺$. Based 

on the known variance-covariance matrix of the genotypes,   

𝐺"∗( = (2 3)⁄ 𝐺 − (1 3⁄ )𝐺# + (4 3⁄ )𝑝,											(2.1) 

is the best linear predictor of 𝐺" (formula for computing linear imputations in Supplementary 

Information), with 𝐸(𝐺"∗() = 2𝑝, and 𝑐𝑜𝑟!(𝐺" , 𝐺"∗() = 	1 3⁄ . 𝐺" can be decomposed as 𝑇" and 

𝑁𝑇", denoting respectively the allele transmitted to the proband and the allele not transmitted. 

If 𝑇" is known, the best and natural prediction of 𝐺" is 

𝐺"∗ = 𝑇" + 𝑝.																	(2.2) 

satisfying 𝐸(𝐺"∗) = 2𝑝, and 𝑐𝑜𝑟!(𝐺" , 𝐺"∗ 	) = 	1/2.  𝑇" is equal to 𝐺 − 𝑇#, where 𝑇# is the 

allele transmitted from mother to proband. Given 𝐺 and 𝐺# , 𝑇# 	is known unless 𝐺 and 𝐺# are 

both heterozygotes. In that case, unless the target SNP is very close to a recombination event 

in the mother-proband meiosis, 𝑇# can be deduced through a phased neighbouring SNP which 

is homozygous for one member of the mother-proband pair and heterozygous for the other 

(Fig. 2).  
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Figure 2: How the allele shared IBD between two individuals can be determined when both are 

heterozygous at the target SNP. This applies to a parent-offspring pair, who always shared one allele IBD, and 

a sibling pair at locations where they are determined to be sharing one allele IBD. A neighbouring SNP which 

has been phased with the target SNP, and is homozygous for one sib and heterozygous for the other is employed 

to resolve the uncertainty. For the individual on the left above, the B allele must be the allele shared with the 

individual on the right. Thus through the phased haplotype A-B, it is determined that allele A, as opposed to a, 

is the shared IBD allele.  

 

To avoid the phasing step, with some loss of information, one could impute 𝐺" by 2𝑝 when 𝐺 

and 𝐺# are both heterozygotes8, an event occurring with probability 𝑝(1 − 𝑝). Relative to 

linear imputation, the increased correlation between 𝐺" and 𝐺"∗  leads to increased information 

for parameter estimation. If data with this pattern are analysed on its own, as opposed to mixing 

together with other patterns, then linear imputation corresponds to no imputation at all. In 

particular, if	𝑌 is regressed on 𝐺 and 	𝐺# only, it can be shown that the fitted coefficients have 

expectations [𝛿 + (2 3⁄ )𝛼"] and [𝛼# − (1 3⁄ )𝛼"] respectively. Without the assumption that 

𝛼# =	𝛼", it is not possible to obtain an unbiased estimate of 𝛿. By contrast, by regressing 𝑌 

on 𝐺, 	𝐺# and 𝐺"∗ , in which case the fitted coefficients would have expectations 𝛿, 𝛼# and 𝛼" 

respectively, the same as if 𝐺" is observed and included in the regression. However, replacing 

𝐺" by 𝐺"∗  would not just change the variances of individual parameter estimates, it would have 

an impact on the whole variance-covariance structure of the correlated estimates. Also, if the 

assumption 𝛼# =	𝛼" is made, then 𝛿 can be estimated with or without non-linear imputations, 

but the variance of the estimate obtained with imputation is only 3 4⁄  of that of the estimate 

obtained without imputation. If data with this missing data pattern are analysed jointly with 

other data in a single regression with all four explanatory variables included,  then 𝐺$∗ =

	(𝐺# +	𝐺"∗) 2⁄ . However, even though 𝐺$∗ is a non-linear function of  𝐺 and 𝐺#, it is a linear 

function of 𝐺# and 𝐺"∗ . Thus, if data of this pattern are analysed by themselves, with 𝐺"∗  already 

A
B
a
b

A
B
a
BAllele	shared	IBD
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Phased	
neighboring	

SNP
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included in the regression, adding 𝐺$∗ would only introduce collinearity (indicated by ⨁ in Fig. 

1).  

 

Siblings genotyped only. In Fig. 1e,  𝐺 and 𝐺$ are observed, but not 𝐺" and 𝐺#. Without PO 

information, the best linear prediction of 𝐺"# = 𝐺" + 𝐺# is 

𝐺"#∗( = (2 3⁄ )𝐺 + (2 3⁄ )𝐺$ + (4 3⁄ )𝑝,													(2.3) 

with  𝐺"∗( =	𝐺#∗( =	𝐺"#∗( 2⁄ .	 At an autosomal locus, two siblings share 0, 1, or 2, alleles IBD 

with probability 1 4⁄ , 1 2⁄ , and 1 4⁄  respectively. With the large number of SNPs included in 

any of the recent genome-wide genotyping arrays, given their genotypes, the number of alleles 

shared IBD between a specific sib-pair at a specific locus can usually be determined quite 

accurately9 unless the locus is close to one of the paternal or maternal recombination events for 

the siblings, which happens infrequently. With IBD number known (Fig. 3), 𝐺"# can be non-

linear imputed as  

𝐺"#∗ = [𝑠𝑢𝑚	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑎𝑙𝑙𝑒𝑙𝑒𝑠] + 𝑝	 × [𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑎𝑙𝑙𝑒𝑙𝑒𝑠]		(2.4) 

with  𝐺"∗ = 𝐺#∗ =	𝐺"#∗ 2⁄ . The number of unobserved parental alleles is equal to four minus 

the IBD number, and observed parental alleles are summed without double counting. Similar 

to the parent-proband case (Fig. 2), when IBD = 1 and both siblings are heterozygous at the 

target SNP, there is uncertainty as to which is the IBD shared allele. This can again be resolved 

through a neighbouring phased SNP which is homozygous for one sib and heterozygous for 

the other. If phasing is not performed, with some loss of information, 𝐺"# can be imputed as 

1 + 2𝑝 in this situation8. Assuming the double-heterozygous situation is resolved through 

phasing, it can be shown that 𝑐𝑜𝑟!(𝐺"# , 𝐺"#∗ ) = (3 4)⁄ , an increase over 𝑐𝑜𝑟!(𝐺"# , 𝐺"#∗( ) =

	2 3⁄ . If sib-pair data are analysed by themselves, since  𝐺"∗ = 𝐺#∗ ,  it is natural to regress 𝑌	on 

𝐺, 𝐺$ and 𝐺"#∗ . The respective fitted coefficients are then unbiased estimates of 𝛿, 𝜂$, and 𝛽 =

	(𝛽" + 𝛽#) 2⁄ .  By contrast, if 𝑌 is regressed on 𝐺 and 𝐺$ only, the respective fitted coefficients 

have expectations [𝛿 + (2 3)𝛽]⁄  and [𝜂$ + (2 3)𝛽]⁄  respectively. By taking the difference of 

these two fitted coefficients, one can obtain an unbiased estimate for (𝛿 − 𝜂)). Without 

imputations, 𝛿 cannot be estimated without bias unless the assumption 𝜂$ = 0 is made. Even 

then this estimate is suboptimal: when only one sib is a proband, i.e. phenotyped, it has a 

variance 4 3⁄  times that of the estimate of 𝛿 obtained with imputations and conditioning on 

𝜂$ = 0 (see below for the double-proband case). 
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Figure 3: Mendelian imputation of parental alleles given the IBD status of genotyped sibling pairs. Parent-

offspring pairs share one allele IBD at each locus. Siblings share 0, 1 or 2 alleles IBD with probabilities 

1 4⁄ , 1 2⁄ ., and 1 4⁄  respectively. Given array genotypes, the number of IBD alleles shared in realization can 

often be determined with little uncertainty. Illustrated is how (𝐺# + 𝐺$) is imputed given IBD number 

 

Two siblings and mother genotyped. In Fig. 1g, 𝐺, 𝐺$, and 𝐺# are observed. Similar to the 

previous two examples, if the paternal alleles transmitted to the proband and sibling are 

estimated to be non-IBD, then 𝐺"∗  is the sum of those two alleles. Otherwise, 𝐺"∗  is the common 

paternal allele plus 𝑝. By regressing 𝑌 on 𝐺, 𝐺$, 𝐺# and 𝐺"∗ , the fitted coefficients are unbiased 

estimates of 𝛿, 	𝜂$, 𝛽#, and 𝛽" , the same as with complete data. 

 

Estimate Consistency and Multivariate Meta-Analysis 

Let  �⃑� = (𝐺, 𝐺$, 𝐺" , 𝐺#) and let �⃑� = (𝑋*, … , 𝑋+), 𝑡 ≤ 4, be explanatory variables used in an 

analysis satisfying the condition that the phenotype 𝑌 is correlated with �⃑� only through �⃑�, i.e. 

𝑌 is conditional independent of �⃑� given �⃑�. Let matrices Σ, Σ, ,	and Σ-./, be respectively 

𝑣𝑎𝑟U�⃑�V, 𝑣𝑎𝑟(�⃑�), and 𝑐𝑜𝑣(�⃑�, 𝐺). The model (1.3) can be rewritten as 

𝑌	 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +	 �⃑�0𝜃 + 	ℰ.													(3.1)		 

!"# $%&∗ = )$%∗ = )$&∗

2 + + 2-

1 + + +/ − 123 4ℎ6789 6::8:8 + -

0 + + +/
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where �⃑� = (𝛿, 𝜂$, 𝛽" , 𝛽#),	and ℰ  and �⃑� are uncorrelated. If 𝑌 is regressed on �⃑� linearly, the 

corresponding model is 

𝑌	 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + �⃑�0�⃑� + 	𝜖, 													(3.2)	 

with �⃑� satisfying 

Σ,�⃑� = 	 Σ-./𝜃.                               (3.3) 

If Σ, is of full rank, then 

�⃑� = 	 Σ,1*Σ-./𝜃.																																		(3.4) 

In addition to being used in earlier examples to calculate the expectations of the fitted 

coefficients when �⃑� consists of a subset of the 𝐺’s, this formula is key to understanding the 

regressions performed with imputed genotypes. For the proposed imputations, Table 1 gives  

Σ,) =
Σ,

2𝑝(1 − 𝑝)																																(3.5) 

for the fifteen data patterns in Fig. 1. Σ,)  is a scaled version of Σ, with the property that the 

diagonal entry of an observed genotype is one, e.g. instead of 0 or 1, alleles are coded as 0 or 

1 [2𝑝(1 − 𝑝)⁄ . (Σ,)  is given for linear imputations in Supplementary Table 1.) Consider the 

Fig. 1g example studied earlier. Here �⃑� = (𝐺, 𝐺$, 𝐺"∗ , 𝐺#). Regardless of how 𝐺"∗  is 

computed, because of the overlapping variables in �⃑� and �⃑�, matrices Σ, Σ, ,	and Σ-./, are by 

definition the same apart from entries in row 3 and column 3, and Σ, and Σ-./ are the same 

except for column 3. The imputation 𝐺"∗  we proposed further ensures that Σ, = Σ for all 

entries except entry [3, 3], where Σ2[3,3] Σ[3,3]⁄ = 	3 4⁄  (equivalent relationships reflected 

by Σ,)  in Table 1a and Table 1g), and Σ, =	Σ-./	for all entries (Supplementary Information). 

It follows that	Σ,1*Σ-./ = 𝐼	and, most importantly 

�⃑� = 	 �⃑�,																																									(3.6) 

the property we call estimate consistency. With our proposed imputations, the relationships 

between the matrices extend to all fifteen patterns in Fig. 1 (Supplementary Information). In 

particular, entries of Σ, and Σ, and equivalently their scaled versions, are equal except for 

those entries where both indexes tag imputed genotypes, and 

Σ, = Σ-./ .																					(3.7)  

The latter also implies that for an imputed genotype, the corresponding diagonal element in 

Σ,$  (Table 1) is the correlation-squared between actual and imputed genotype. For example, 

in the 1g case, 
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𝑐𝑜𝑟!(𝐺"∗ , 𝐺") = 	
𝑐𝑜𝑣!(𝐺"∗ , 𝐺")

𝑣𝑎𝑟(𝐺"∗)𝑣𝑎𝑟(𝐺")
= 	

𝑣𝑎𝑟!(𝐺"∗)
𝑣𝑎𝑟(𝐺"∗)𝑣𝑎𝑟(𝐺")

= 		
𝑣𝑎𝑟(𝐺"∗)
2𝑝(1 − 𝑝) = 	

3
4.					(3.8)			 

Among the fifteen patterns, seven involve non-linear imputations (+ or ⨁) and 	𝑟𝑎𝑛𝑘(Σ,) = 

number of genotyped (shaded) family members plus 1. For the others,  𝑟𝑎𝑛𝑘(Σ,) =	 number 

of genotyped members. Thus Σ, is of full rank for 1a, 1f and 1g. For the other twelve cases, 

if the data with any of these patterns are analysed by themselves, the number of explanatory 

variables would have to be reduced to eliminate collinearity, as demonstrated above for 1d 

and 1e. However, with data from more than one pattern, by imputing all the missing 

genotypes, with both linear and nonlinear imputations, a single regression can be performed 

with all the data mixed together. Specifically, consider data from 𝑘 different patterns indexed 

by 𝑖.	 For 𝑖 = 1,… , 𝑘, let  𝑛3 be the sample sizes,  𝑛 = ∑ 𝑛34
35* , 𝑤3 =	𝑛3 𝑛⁄ , and Σ,3 and Σ-./3 

be the Σ, and Σ-./ of pattern 𝑖. The combined data have sample size 𝑛 and variance-

covariance matrix 

Σ,-.67 =	∑ [𝑤3Σ,3] = 	∑ [𝑤3Σ-./3]4
35* 	=	4

35* 	Σ-./-.67 .																					(3.9)  

This is because Σ,3 =	Σ-./3 for each 𝑖,	and our imputations satisfy 𝐸U�⃑�V = 𝐸(�⃑�) for all data 

patterns. If Σ,-.67 is of full rank, then the combined data can be analysed by one regression 

based on the complete-data model (1.3). Notice that Σ,-.67 would be full rank as long as we 

have some data from patterns 1a, 1f or 1g. It would also be of full rank if the data include 

pattern 1e and cases from either 1b, 1c or 1d. If  Σ,-.67 is of rank 3, and the data do not 

include any genotyped sibling, then model (1.1) can be considered as the complete-data 

model. Similarly, if Σ,-.67 is of rank 3 and the parents’ genotypes are always missing, then 

fitting a model with the parental genotypes combined is appropriate. In general, individually, 

the different data patterns have different variance-covariance structures for the explanatory 

variables and through their inverses impact the variance-covariance structures of the 

parameter estimates.  

 

Both siblings are phenotyped  

 

Here we consider the case where both siblings are phenotyped and thus both are probands. 

Let 𝑌* and 𝑌! denote respectively the phenotypes of sib1 and sib2, and let 𝐺 and 𝐺$ denote 

their respective genotypes. Let		�⃑�* = (𝛿*, 𝜂$*, 𝛽"*, 𝛽#*), and 𝜗! = (𝜂$!, 𝛿!, 𝛽"!, 𝛽#!). The 

complete genotype-data model is  

𝑌* =	 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +	 �⃑�0𝜃* 	+ ℰ*	,																				(4.1𝑎) 
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and 

𝑌! =	 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +	 �⃑�0𝜗! 	+ ℰ!.																							(4.1𝑏)	 

The subscript of 1 or 2 for the parameters allows for asymmetry between the sibs. For 

example, if sib1 is male and sib2 is female, or sib1 is the younger sib, the parameters could 

take on different values. Assuming 𝑌* and 𝑌! to be each standardized to have variance one, 

under asymmetry, 𝑣𝑎𝑟(ℰ*)	and 𝑣𝑎𝑟(ℰ!)	are not necessarily equal.  For simplicity, we assume 

the difference is negligible and denote their average value as  𝜎!. The parameters (and their 

corresponding estimates) can be reparametrize as averages and differences: 

�⃑� ≝ h

𝛿
𝜂$
𝛽"
𝛽#

i	≝ *
!
	× h

𝛿* + 𝛿!
𝜂$* + 𝜂$!
𝛽"* + 𝛽"!
𝛽#* + 𝛽#!

i,  	�⃑�1 ≝ h

𝛿1
𝜂$&
𝛽"1	
𝛽#1

i		≝ 	h

𝛿* − 𝛿!
𝜂$* − 𝜂)!
𝛽"* − 𝛽"!
𝛽#* − 𝛽#!

i.						(4.2)  

From (4.2), related parameters are similarly defined, e.g. 𝛽 = 	 (𝛽" + 𝛽#) 2⁄ , 𝛼 = 𝛽 +	𝜂$ 2⁄ , 

and 𝛼1 =	 (𝛼* − 𝛼!). Assuming symmetry corresponds to conditioning on �⃑�1 = 0. Estimates 

can be obtained by performing regressions that correspond to (4.1a) and (4.1b). However, 

because ℇ* and ℇ! are correlated, determining the variance-covariance matrix of the 

parameters is more complicated. In Supplementary Information, we show how to do that by 

reparameterizing the responses to 𝑌1 ≝ 𝑌* − 𝑌!	and 𝑌8 	≝ 𝑌* + 𝑌!. Here we focus on the case 

where only the siblings are genotyped, one of the most common data-type. The variance-

covariance of the average parameters (Supplementary Information) are  

	𝑣𝑎𝑟 k
𝛿l
�̂�$
𝛼n
o ≅

⎝

⎜
⎜
⎛

2 + 𝑟 1 + 2𝑟 −t
3
2 + 𝑟u

1 + 2𝑟 2 + 𝑟 −t1 +
3
2
𝑟u

− t
3
2
+ 𝑟u −t1 +

3
2
𝑟u

3
2
+
5
4
𝑟 ⎠

⎟
⎟
⎞
	×

𝜎!

𝑛 × 𝜋		,								(4.3) 

where 𝜋 = 2𝑝(1 − 𝑝), 𝑟 = 𝑐𝑜𝑟(ℇ*, ℇ!), and 𝑛 is the number of sib-pairs. The variance-

covariance matrix of the estimates of the difference parameters, which are uncorrelated with 

the estimates of the average parameters, are given in the Supplementary Information.  Here, if 

we condition on 𝜂$ = 0,	then estimate of (𝛿, 𝛼)	is 

t�̈�
�̈�
u = 	 t𝛿l

𝛼n
u +	h

−(1 + 2𝑟)
2 + 𝑟

1 + 3𝑟 2⁄
2 + 𝑟

i �̂�$																																									(4.4) 

with variance 

t 3(1 − 𝑟) −2(1 − 𝑟)
−2(1 − 𝑟) (2 − 𝑟) u ×		

1 + 𝑟
2 + 𝑟 		×

𝜎!

𝑛 × 𝜋	.																(4.5) 
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Note that 𝑣𝑎𝑟(𝛿l) is an increasing function of 𝑟, but 𝑣𝑎𝑟(�̈�) is a decreasing function of 𝑟. 

Thus, for estimating 𝛿, one positively correlated double-proband sib-pair is less informative 

than two single proband sib-pairs without assuming 𝜂$ equal to zero, but the opposite if 𝜂$ is 

assumed to be zero. By contrast, without imputations, by regressing 𝑌_ on (𝐺 − 𝐺$) and (𝐺 +

𝐺$), the fitted coefficient for (𝐺 − 𝐺$), denoted by 𝜕}, has expectation (𝛿 − 𝜂$). When 𝑌8 is 

regressed on (𝐺 − 𝐺$) and (𝐺 + 𝐺$), the fitted coefficient of (𝐺 + 𝐺$), denoted by 𝜑� , has 

expectation 𝛿 +	𝜂$ + (4 3⁄ )𝛽. It follows that 𝜕} is an unbiased estimate of (𝛿 − 𝜂$), and 

(3 4⁄ )(𝜑� − 𝛿�	)is an unbiased estimate of 𝛽 + (3 2⁄ )𝜂$ = 𝛼 +	𝜂$. The variance-covariance of 

(	𝜕}, (3 4⁄ )(𝜑� − 𝛿�	) is approximately 

t
2(1 − 𝑟) − (3 2)⁄ (1 − 𝑟)

−(3 2⁄ )(1 − 𝑟) (3 2⁄ ) − (3 4⁄ )𝑟u ×
𝜎!

𝑛 × 𝜋.											(4.6) 

Thus, if 𝜂$ 	≠ 0, using 𝜕} to estimate 𝛿 has a bias of −𝜂$. By comparison, using �̈� to estimate 

𝛿, the bias shrinks to − [(1 + 2𝑟) (2 + 𝑟)]𝜂$⁄ . Even if 𝜂$ is actually zero, �̈� is more efficient, 

as measured by the inverse of the variance, than 𝜕}. Assuming 𝜂$ = 0,	Fig. 4 shows the 

efficiency of estimating 𝛿, as a function of 𝑟, using 𝑛	double-proband sibpairs. Solid black 

line is without imputation of parental genotypes and solid red line is with imputations. The 

efficiency presented is relative to 2𝑛	single proband genotyped sibpairs without imputations. 

Notably, if 𝑟 = 0, the efficiency of 𝑛	double-proband sibpairs is statistically equivalent to 

2𝑛	single probands. Comparing the solid red line with the solid black line shows that, for 𝑟 =

(0, 0.1, 0.2, 0.3), �̈� is (33, 27, 22, 18)% more efficient than 𝜕}.  

 

While data from singletons (Fig. 1h), by themselves, cannot provide an unbiased estimate of 

𝛿, as an augmentation to the sibpair data, they can increase the efficiency of estimating 𝛿 and 

other parameters, a characteristic of multivariate meta-analysis. Without imputations, for 𝑟 =

(0, 0.1, 0.2, 0.3), adding 16𝑛 singletons to 𝑛 genotyped-phenotyped sibpairs increases the 

efficiency respectively from  (1.0, 1.11, 1.25, 1.43) to (1.29, 1.37, 1.49, 1.66) (broken black 

line in Fig. 4), a percentage increase of (29, 24, 20, 16). With imputations, efficiency increases 

from (1.33, 1.41, 1.53, 1.68) to (1.89, 1.93, 2.01, 2.13) (broken red line in Fig. 4), a 

percentage increase of (42, 37, 31, 27). As a consequence, when augmented by the singletons, 

for	𝑟 = (0, 0.1, 0.2, 0.3),  imputing parental genotypes increases efficiency by a percentage of 

(47, 31, 34, 29) respectively (by comparing the broken red line with the broken black line). 

The 16-fold singletons versus double-proband sibpairs chosen for demonstration here is 

approximately the ratio seen in the UK Biobank samples. In Fig. 4, the broken black line is just 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.02.185181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185181
http://creativecommons.org/licenses/by-nc/4.0/


 14 

below the solid red line. Indeed, if the sibpairs are augmented by an infinite number of 

singletons, then the two lines would coincide, i.e. the efficiency gain for estimating 𝛿 through 

IBD-based imputation of parental genotypes is the same as augmenting by practically an 

infinite number of singletons.  

 

 
Figure 4: Efficiency of 𝒏	double-proband genotyped sibpairs in estimating 𝜹, under the assumption of 𝜂' =

0.	The parental genotypes are assumed missing, i.e. the case in Fig 1e. Efficiency is displayed relative to 2𝑛 

single-proband genotyped sibpairs and as a function of 𝑟 = 𝑐𝑜𝑟(ℇ(, ℇ)). Black solid line (�) represents 

efficiency without imputation of parental genotypes. Red solid line (⊕) is efficiency with imputations. Black 

broken line (�∗) is without imputation and augmented by 16𝑛 singletons. Red broken line (⊕∗) is with 

imputations and augmented by 16𝑛 singletons. 
 

It is noted that our approach to sib-pairs can be extended naturally to incorporate sib-ships with 

three or more genotyped sibs8. In particular, with 𝑘 genotyped sibs, on average 4(1 − 214) of 

the parental alleles can be deduced.  

 

 

 

⊕∗

⊕

○

○*
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Polygenic Scores and Assortative Mating 

 

Consider a polygenic score of 𝑇 SNPs: 

𝑃𝐺𝑆 = 	�𝑤+𝐺+	,
9

+5*

																														(5.1) 

where 𝐺+ and 𝑤+ denote respectively genotype and weight of SNP 𝑡. When a person is not 

genotyped, the imputed polygenic score is 

𝑃𝐺𝑆∗ =	�𝑤+𝐺+∗	,																											(5.2)
9

+5*

 

where each 𝐺+∗ is imputed as before. Assuming the 𝑇 SNPs are in linkage equilibrium with each 

other, then essentially all the previous results apply. For example, if the observed and imputed 

𝑃𝐺𝑆s are jointly scaled so that 𝑣𝑎𝑟(𝑃𝐺𝑆) = 1, then Table 1 gives the variance-covariance 

matrix of the observed and imputed 𝑃𝐺𝑆 for various missing data patterns. Most importantly, 

if (3.7) holds for individual SNP genotypes, then it also holds for the polygenic scores since 

the variance-covariance matrix of the 𝑃𝐺𝑆s is just a weighted average of the variance-

covariance matrixes of the individual SNP genotypes. If model (1.3) is generalized as						               

𝐸(𝑌) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 	𝛿𝑃𝐺𝑆 + 𝜂$𝑃𝐺𝑆$ +	𝛽"𝑃𝐺𝑆" + 𝛽#𝑃𝐺𝑆# ,										(5.3) 
then estimate consistency will continue to apply with analysis performed with imputed 

polygenic scores. In practice, correlations, i.e. linkage disequilibrium (LD), between some of 

the SNPs are expected. However, as long as many SNPs contribute to the polygenic score and 

only a small fraction of the SNP pairs have non-negligible correlation, the effect on the 

imputations and estimates would be negligible. The phenomenon that requires consideration is 

assortative mating (ASM). For a trait with substantial assortative mating,  contributing SNPs 

can become correlated regardless of their relative physical positions, an effect that is reduced, 

but usually not eliminated, by principal component (PC) adjustments1. Effects of ASM on 

genotype-phenotype associations are in general subtle and complicated, and have to be treated 

on a case by case basis. With imputations of parental genotypes based on genotypes of sib-

pairs, ASM would lead to deviations between Σ, and Σ-./, i.e. violation of (3.7) and estimate 

consistency. However, as long as the trait is highly polygenic, i.e. the genetic component not 

dominated by a few variants, the estimates of 𝛿 and 𝜂$ remain essentially unbiased. The 

estimate of 𝛽 or 𝛼 will be magnified by a multiplicative factor, but the degree of magnification 

is small unless the case is extreme. For example, if couples’ trait correlation is 0.30 and trait-

PGS 𝑅! is 0.35, the multiplicative factor is around 1.05. By contrast, if imputations are not 
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performed and 𝑌 is regressed on 𝑃𝐺𝑆 and 𝑃𝐺𝑆$ only, the fitted coefficient of 𝑃𝐺𝑆$ has 

expectation 𝜂$ + (2 3)𝛽⁄  under random mating. With ASM as described, the fitted coefficient 

has expectation around 𝜂$ +	 .71 × 𝛽 = 	𝜂$ + (1.065) × (2 3⁄ ) × 𝛽. Thus IBD-based 

imputations actually reduce bias relative to no imputations. Most importantly, if deemed 

necessary, observed correlation of 𝑃𝐺𝑆 and 𝑃𝐺𝑆$, which would go substantially above 0.5 with 

strong ASM, can be used to adjust the parameter estimates. It is noted that the bias referred to 

here is about using imputed data relative to having complete data. Even with complete data, as 

described previously7, as a consequence of ASM, estimates of 𝛼 or 𝛽 would capture, in addition 

to indirect effects, some confounding effects due to the parental PGSs being correlated with 

the part of the genetic component of the traits that is not captured by the PGS studied.  

 

Empirical Study 

Using the developed methods, the effects of a EA polygenic score on EA, age-at-first-birth 

(AAFB)10, height (HT) and body-mass-index (BMI) are examined. The weights of 510,290 

SNPs underlying this polygenic score are calculated (Supplementary Information) based on a 

GWAS meta-analysis that includes 608,402 samples, a subset of a larger set2, and includes 

350,000 samples from UKB. A set of more than 39,000 probands from UKB with at least one 

sibling/parent genotyped is used to estimate the various effects of the polygenic score. The 

350,000 individuals do not include any of the 39,000 probands or any third degree or higher 

relatives of the probands. Phenotypes are standardized for males and females separately to have 

variance one after adjusting for year-of-birth and 40 principal components. The number of 

probands for AAFB is about 40% of that for the other traits because AAFB information is only 

available for women from UKB and only applies to those who have children. This reduces 

sample size, but, in contrast to other sib-pair analyses that required both siblings to be 

phenotyped, our AAFB analysis includes 5216 probands, one-third of the total, with only 

genotyped male siblings.   

After standardizing the polygenic scores so that those computed from observed genotypes have 

variance one, estimates of 𝛿, 𝜂$, 𝛽# , and 𝛽" are obtained. After reparametrization, values of 𝛿l, 

�̂�$, 𝛼n 	≝ 	 (𝛼n# +	𝛼n") 2⁄ , and (𝛼n# −	𝛼n") are displayed in Supplementary Table 2. For all four 

traits, �̂�$ and (𝛼n# −	𝛼n")	are not significantly different from zero. This does not mean 𝜂$ is 

zero or that there are no parent-of-origin effects, only that they are not large enough to detect 

at our sample size. To simplify and to reduce variance, accepting the possibility of introducing 
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some small bias, estimates �̈�, �̈� 	≝ 	 (�̈�# 	+ 	 �̈�") 2⁄ , and (�̈�# −	�̈�") are computed conditioning 

on 𝜂$ = 0	 (Table 2). For all four traits, �̈� and �̈� are highly significant (absolute effect size at 

least 5 times standard error (SE)). For EA, AAFB, BMI and HT, the estimated direct-

population effect ratio, �̈� (�̈� +	 �̈�)⁄ , is 0.49, 0.66, 0.63 and 0.44 respectively. By comparison, 

for a different but related EA polygenic score applied to Icelandic data7, the corresponding 

ratio estimates are 0.70, 0.64, 0.72, and 0.42. The estimates are broadly consistent with the 

exception of EA. As 𝑅!, or variance explained is proportional to effect2, �̈� U�̈� +	 �̈�V = 0.49�  

means the variance explained by the direct effect alone is only 0.49! = 0.24 of the variance 

explained by the direct effect. In absolute terms, the population effect is estimated to explain 

(0.118 + 0.121)! = 5.7% of the variance of EA, while it is only 0.118! = 1.4% for the direct 

effect alone. Another striking result with the EA polygenic score is that its estimated direct 

effect for AAFB, �̈� = 0.135, is higher than that for EA itself, �̈� = 0.118. To make a more 

direct comparison, analysis for EA is recalculated using the same AAFB probands, and the 

estimated direct effect is 0.114. For these probands, correlation of EA and AAFB is 0.24, 

significant but not extremely high, indicating the polygenic score influences EA and AAFB 

mainly through separate causal paths, not purely affecting one trait through the other.  

 
trait �̈� (SE) �̈� (SE) �̈�# − �̈�" (SE) 
EA 0.118 (0.008) 0.121 (0.007) -0.017 (0.026) 
AAFB 0.135 (0.014) 0.069 (0.011) 0.033 (0.044) 
BMI -0.068 (0.009) -0.041 (0.007) 0.027 (0.027) 
HT 0.04 (0.007) 0.052 (0.007) -0.017 (0.027) 

 

Table 2. Estimated effects of an EA polygenic scores. Estimates of direct effect (�̈�), average parental effect 

(�̈�), and the difference of the parental effects (�̈�$ − �̈�#), for the traits educational attainment (EA), age at first 

birth (AAFB), body mass index (BMI), and height (HT). Sibling effect 𝜂' is assumed to be zero. SE denotes 

standard error. Descriptions of the polygenic score and the UKB samples used are in the Supplementary 

Information.  

It is noted that the singleton probands in the UKB data set cannot be used to augment the family 

analysis here because these singletons are part of the GWAS sample used to obtian the weights 

of the polygenic score.  
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Discussion 

We introduce Mendelian imputations as a tool to perform family-based association analysis. 

Conceptually, this is similar to multipoint linkage analysis performed with pedigrees that 

include deceased members.  It is also related to familial imputations (also called in silico 

genealogy-based genotyping)11,12 and association by proxy13,14 where genotypes of relatives 

are used to associate with phenotypes of un-genotyped probands. Even though our general 

framework can also incorporate association by proxy, e.g. Fig. 1i to 1o, the main focus here is 

to disentangle various effects that contribute to the associations between a proband’s genotypes 

and phenotypes. As such, Mendelian imputations should also be applicable to family-based 

Mendelian randomization studies using genotyped sib-pairs15. 

Mendelian imputations allow us to combine data with different missing data patterns in a single 

analysis, maximizing power. Moreover, even with one data type, Mendelian imputation 

increases flexibility and power. Specifically, for genotyped sib-pairs, it is shown that a 

genotyped sibling of the proband, even without phenotype, can be used. When both sibs are 

phenotyped, we can examine whether the genotypes have different effects on the sibs with 

respect to birth order or gender through direct or indirect effects. Non-linear imputations of 

parents not only increase power, but allow for the estimation of sibling nurturing effect, and 

enable unbiased estimation of the direct effect when the sibling nurturing effect is present. A 

recent manuscript16 proposed an imputation method that imputes each SNP without using IBD 

information inferred from neighbouring SNPs, e.g. when the two siblings are discordant 

homozygotes, then all four parental alleles can be inferred. While this method improves on not 

imputing at all, the gain is small relative to our method8, analogous to the difference between 

single-point and multipoint linkage analyses.  

By applying the proposed method to UKB data, in addition to replicating observations 

previously reported based on Icelandic data, there are two thought provoking results. The low 

direct-associate effect ratio of the EA polygenic score on EA might be because many UK 

samples are included in the GWAS being used to construct the PGS, and thus part of the PGS’s 

predictive power with EA in other UKB samples could be population stratification effects that 

have not been eliminated by PC adjustments. It is known that the genetic components underling 

EA and AAFB have substantial overlap17, and the genetic component to EA was shown to have 

a stronger effect on AAFB of women than that of men in Iceland18. Despite that, the fact that 

the EA polygenic has a higher estimated direct effect on AAFB than EA is surprising. This 

highlights the complexity of the nature of the genetic variants influencing EA and reproductive 
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traits. The issues raised here have important implications for how to interpret the population 

effects of a polygenic score, its portability and policy use. Family based analysis with more 

data and improved methodology could play a major role in the future research in this area.   
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