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Abstract 
 
Associations between genotype and phenotype derive from four sources: direct genetic effects, indirect 
genetic effects from relatives, population stratification, and correlations with other variants affecting the 
phenotype through assortative mating. Genome-wide association studies (GWAS) of unrelated individuals 
have limited ability to distinguish the different sources of genotype-phenotype association, confusing 
interpretation of results and potentially leading to bias when those results are applied – in genetic prediction 
of traits, for example. With genetic data on families, the randomisation of genetic material during meiosis can 
be used to distinguish direct genetic effects from other sources of genotype-phenotype association. Genetic 
data on siblings is the most common form of genetic data on close relatives. We develop a method that takes 
advantage of identity-by-descent sharing between siblings to impute missing parental genotypes. Compared to 
no imputation, this increases the effective sample size for estimation of direct genetic effects and indirect 
parental effects by up to one third and one half respectively. We develop a related method for imputing 
missing parental genotypes when a parent-offspring pair is observed. We provide the imputation methods in a 
software package, SNIPar (single nucleotide imputation of parents), that also estimates genome-wide direct 
and indirect effects of SNPs. We apply this to a sample of 45,826 White British individuals in the UK Biobank 
who have at least one genotyped first degree relative. We estimate direct and indirect genetic effects for ~5 
million genome-wide SNPs for five traits. We estimate the correlation between direct genetic effects and 
effects estimated by standard GWAS to be 0.61 (S.E. 0.09) for years of education, 0.68 (S.E. 0.10) for 
neuroticism, 0.72 (S.E. 0.09) for smoking initiation, 0.87 (S.E. 0.04) for BMI, and 0.96 (S.E. 0.01) for height. 
These results suggest that GWAS based on unrelated individuals provides an inaccurate picture of direct 
genetic effects for certain human traits.  
 
Introduction 
 
Genome-wide association studies (GWAS) have found thousands of associations between 
genetic variants and human traits1 and have enabled the prediction of human traits from 
genetic data through the use of polygenic scores2. GWAS typically estimate the additive 
effect of an allelic substitution at a single nucleotide polymorphism (SNP) by regression of 
individuals’ phenotypes onto the number of copies of an allele (genotype) that they carry.  
 
Multiple different phenomena can contribute to the effects estimated by GWAS applied to 
unrelated individuals3, which we refer to as ‘population effects’, since they reflect the 
overall genotype-phenotype association in the population. The causal effect of inheriting a 
particular allele, called the direct genetic effect, contributes to population effect estimates. 
However, indirect genetic effects – effects of genetic variants in one individual that affect 
the trait of another through the environment – from relatives, such as parents, can also 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185199
http://creativecommons.org/licenses/by-nc/4.0/


 2 

contribute to population effect estimates. Such effects have been shown to be important 
for educational attainment4,5. Both direct and indirect genetic effects are causal effects of 
alleles, due to their presence in the phenotyped individual and/or relatives. It is also 
possible for the causal effect of an allele to be magnified by assortative mating with respect 
to a correlated phenotype, which induces correlations between causal alleles at different 
genomic locations3,4. In addition to causal effects, non-causal associations between 
genotype and phenotype due to population stratification can contribute to population 
effect estimates6,7. Population stratification occurs when different subpopulations within 
the GWAS sample have different mean trait values, inducing correlations between SNPs that 
are differentiated between the subpopulations and the trait.  
 
Decomposing the population effects estimated by GWAS into the different components is 
important for interpreting and applying GWAS results. For example, polygenic prediction of 
educational attainment (EA) leverages indirect genetic effects from parents5,8. Thus, any 
potential application of genetic prediction of EA should take account of the fact that a 
substantial fraction of the predictive ability of the score derives from prediction of the 
family environment, rather than ‘innate’ abilities of the child. It has also been shown that 
indirect effects and assortative mating can lead to spurious inference in Mendelian 
Randomisation, and that this can be remedied by using unbiased estimates of direct genetic 
effects9. Further, subtle population stratification effects in GWAS of height resulted in 
spurious inference of selection on height in Europe7,10, highlighting the need for 
stratification free estimates of direct genetic effects on traits.  
 
Direct genetic effects can be separated from other sources of genotype-phenotype 
association by taking advantage of the randomisation of genetic material that occurs during 
meiosis, which is independent of the environment8,11–13. The offspring genotype varies 
randomly around the expectation given the genotype of the mother and father due to 
segregation of genetic material in the parents during meiosis. Thus, analysis of parent-
offspring trios can be used to estimate direct genetic effects separately from indirect 
genetic effects and confounding effects8,14. However, large samples with genetic data on 
individuals and both parents are not widely available. A less powerful approach uses genetic 
differences between siblings, which are also a consequence of random segregations in the 
parents during meiosis, to estimate direct genetic effects. This approach has been more 
widely applied due to the greater availability of large samples of genotyped sibling 
pairs5,7,15,16.  
 
Genetic data on siblings contains information about the genotypes of the parents of the 
siblings. We develop a method for imputing missing parental genotypes from sibling 
genotypes. This method takes advantage of the fact that, given knowledge of whether 
siblings inherited the same or different alleles from each parent --- i.e., given knowledge of 
the identity-by-descent (IBD) states of the siblings’ alleles --- the parental alleles that have 
been observed in the siblings can be determined. Unlike methods based on differences 
between sibling genotypes, our method can provide unbiased estimates of indirect genetic 
effects from siblings and distinguish them from direct effects and indirect genetic effects 
from parents.  
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We also show that imputing the missing parent’s genotype when genotypes are available 
for a phenotyped individual (proband) and one of the proband’s parents enables unbiased 
estimation of direct genetic effects. We provide the methods for imputing missing parental 
genotypes in a software package, SNIPar (single nucleotide imputation of parents), that can 
also infer genome-wide direct and indirect effects of SNPs. The software package models 
phenotypic correlations within-families and can also be applied to samples of probands with 
both parents genotyped.   
 
We apply our methods to 45,826 White British individuals in the UK Biobank with at least 
one genotyped parent or sibling. We estimated direct and indirect genetic effects for ~5 
million genome-wide SNPs for educational attainment, height, body mass index (BMI), 
neuroticism, and smoking initiation. We use the resulting direct effect estimates to estimate 
the genetic correlation between direct genetic effects and population effects for each of the 
traits. Our findings suggest that for certain traits, SNP effects estimated from standard 
GWAS provide inaccurate estimates of direct genetic effects.  
 
Results 
 
Imputing parental genotypes from sibling genotypes 
 
Given genotype observations at a single SNP for a sibling pair, the number of parental alleles 
that have been observed depends upon the whether the siblings have inherited the same or 
different alleles from each parent, i.e. the IBD states of the alleles (Figure 1).  
 
 

 
Figure 1 Imputation of parental genotype from sibling genotype. Here we illustrate how, given knowledge of the IBD state 
between the siblings’ alleles, the combined maternal and paternal genotype of the parents of the siblings can be imputed. If 
the siblings do not share any alleles identical-by-descent (IBD), then all four parental alleles are observed (IBD 0). If the 
siblings share one allele by descent from their parents, then three parental alleles are observed, and one allele is 
unobserved (IBD 1). If the siblings share both alleles by descent from their parents, then only two parental alleles are 
observed and two are unobserved (IBD 2).  

Since parent-of-origin of alleles cannot be determined from sibling data alone, we impute 
the sum of maternal and paternal genotypes.  Let 𝑔par(i) =	𝑔m(i) + 𝑔p(i) be the sum of the 
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genotype of the mother (𝑔m(i)) and the genotype of the father (𝑔p(i)) in family 𝑖, and let 𝑔i1 
and 𝑔i2	be the genotypes of the two siblings. We compute E[𝑔par(i)|𝑔i1, 𝑔i2, IBD*], where 
IBD*  is the IBD state of the two siblings. Since all four alleles are observed in IBD state 0, we 
have that  

E[𝑔par(i)|𝑔i1, 𝑔i2, IBD* = 0] = 𝑔i1 + 𝑔i2. 
 

When we do not observe a parental allele, we impute it using the population allele 
frequency, 𝑓. Therefore, 

E[𝑔par(i)|𝑔i1, 𝑔i2, IBD* = 2] = 𝑔i1 + 2𝑓. 
 
When the siblings share one allele by descent from their parents, it is necessary to know 
which allele is shared to use all of information in the siblings’ genotypes. Let 𝑔*+¬- be the 
binary genotype (presence/non-presence) of the allele in sibling 2 that is not shared IBD 
with sibling 1.  We therefore have 
 

E[𝑔par(i)|𝑔i1, 𝑔i2, IBD* = 1] = 𝑔i1 + 𝑔*+¬- + 𝑓. 
 
Without phased data, it is impossible to determine which allele is shared when both siblings 
are heterozygous and in IBD state 1. However, it can be shown that with un-phased data 
(Supplementary Note) 
 

E[𝑔par(i)|𝑔i1 = 1, 𝑔i2 = 1, IBD* = 1] = 1 + 2𝑓. 
 
It is therefore possible to perform the imputation without access to phased genotypes, but 
there is a loss of information compared to imputation with phased genotypes when both 
siblings are heterozygous and in IBD state 1 (Supplementary Note). We generalise the 
imputation procedure to families with more than two observed sibling genotypes in the 
Supplementary Note.  
 
By using the population allele frequencies to impute the unobserved parental alleles, we are 
assuming that parental alleles are uncorrelated. Apart from in samples exhibiting very 
strong structure or inbreeding, the correlations between parental alleles at individual SNPs 
will be very weak, so this assumption will be approximately correct.   
 
Estimating effects using sibling and imputed parental genotypes 
 
We consider a model for the effect of a SNP on the traits of two siblings that includes both 
direct genetic effects and indirect genetic effects from parents and siblings. Let 𝑌ij be the 
phenotype of sibling 𝑗 in family 𝑖. Then 
 

𝑌i1 = 𝛿𝑔i1 + 𝜂-𝑔i2 + 𝛽/𝑔p(i) + 𝛽0𝑔m(i) + 𝜖i1; 
𝑌i2 = 𝛿𝑔i2 + 𝜂-𝑔i1 + 𝛽/𝑔p(i) + 𝛽0𝑔m(i) + 𝜖i2; 

 
where 𝛿 is the direct effect of the SNP and 𝜂- is the indirect genetic effect from the sibling. 
Offspring genotypes are conditionally independent of environmental effects given parental 
genotypes. Therefore, estimates of direct effects and indirect genetic effects from fitting 
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this model are unbiased (Supplementary Note)11. Any correlation between the siblings’ 
genotypes and other factors affecting the trait are captured by the parental genotypes. 
Thus, 𝛽/ and 𝛽0 capture indirect genetic effects from the father and mother respectively, in 
addition to any confounding due to population stratification and any magnification of direct 
and sibling indirect genetic effects due to assortative mating11 (Supplementary Note). We 
will refer to 𝛽/	 and 𝛽0 as ‘parental effects’, even though they can reflect phenomena other 
than indirect genetic effects from parents. Further, the residuals 𝜖i1 and 𝜖i2	are uncorrelated 
with the genotypes of the siblings and parents, but may be correlated with each other 
(Supplementary Note). Note that standard GWAS methods that regress proband phenotype 
onto proband genotype are expected to estimate 𝛿 + 𝜂-/2 + (𝛽/ + 𝛽0)/2, which we refer 
to as ‘population effects’.  
 
Many previous analyses of family data regressed the difference in sibling phenotype onto 
the difference in sibling genotype5,7,16. In our model, this corresponds to:  
 

𝑌i1 − 𝑌i2 = (𝛿 − 𝜂-)(𝑔i1 − 𝑔i2) + 𝜖i1 − 𝜖i2. 
 
This method is expected to yield unbiased estimates of 𝛿 − 𝜂-	(see our companion paper for 
further details17). The difference between sibling phenotypes forms one axis of information, 
but there is an orthogonal axis of information: the sum of the sibling phenotypes, which is 
uncorrelated with the difference between sibling phenotypes. In our model, this 
corresponds to:   
 

𝑌i1 + 𝑌i2 = (𝛿 + 𝜂-)(𝑔i1 + 𝑔i2) + 2𝛽/𝑔p(i) + 2𝛽0𝑔m(i) + 𝜖i1 + 𝜖i2. 
 
However, for this axis, regression on observed sibling genotypes alone cannot separate 
direct genetic effects from parental effects. To separate direct genetic effects from parental 
effects, the imputed parental genotypes derived above can be used. Let 𝑔@par(i) be the 
parental genotype imputed from sibling genotypes and IBD information, then, by 
performing the regression 

𝑌i1 + 𝑌i2	~(𝑔i1 + 𝑔i2) + 𝑔@par(i) 
 
one obtains estimates of 𝛿 + 𝜂- and the combined parental effect (𝛽/ + 𝛽0). These 
estimates can then be combined with the estimate of 𝛿 − 𝜂- from differences between 
siblings to produce separate estimates of 𝛿 and 𝜂-. We note that the regressions outlined 
above do not generalise well to samples with families with different numbers of siblings and 
missing phenotype observations. For applications to real data and in our software package, 
we use a more flexible linear mixed model approach that models correlations between 
siblings’ phenotypes (Methods and Supplementary Note). Further, we prove that the 
method we propose gives estimates of the effects that converge to the true values 
(Supplementary Note).  
 
While our method is able to distinguish indirect genetic effects from siblings from direct 
genetic effects, more precise estimates of direct genetic effects can be obtained by 
assuming that 𝜂- = 0 (Supplementary Note), at the cost of some bias if 𝜂- ≠ 0 (see our 
companion paper for details17). For the following results, we make the assumption that  
𝜂- = 0 unless otherwise stated.  
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By using imputed parental genotypes, more precise estimates of 𝛿 can be produced than 
from using sibling differences alone: in the Supplementary Note, we show that by using 
imputed parental genotypes derived from phased IBD data, the effective sample size for 
estimation of 𝛿 is increased by a factor of 2(2 + 𝑟)/(3 + 3𝑟), where r is the correlation of 
the siblings’ residuals, which will be approximately equal to their phenotypic correlation for 
polygenic traits. For 𝑟 > 0, this has a maximum of 4/3 at 𝑟 = 0, corresponding to an 
effective sample size gain of 1/3rd (Figure 2). 

 
Figure 2 Relative efficiency for estimation of direct and parental effects using different imputation methods. We compare 
the theoretical effective sample size for estimation of direct genetic effects and combined parental effects from three 
imputation methods: one that does not use identity-by-descent (IBD) segments (blue)18, one that uses un-phased IBD 
segments (red), and one that uses phased IBD segments (black). Effective sample size is measured relative to that from 
using sibling genotypes alone without any imputation and assuming that we have a sample of independent families with 
two genotyped and phenotyped siblings in each family (Supplementary Note). A) Effective sample size for estimation of the 
direct genetic effect of an allele with frequency 20% as a function of correlation between siblings’ residuals, which is 
approximately equal to phenotypic correlation for polygenic traits. B) Effective sample size for estimation of direct genetic 
effects as a function of allele frequency when the correlation between siblings’ residuals is zero. (Results follow a similar 
pattern for other sibling correlations.) For imputation with un-phased IBD, when both siblings are heterozygous and share 
one allele IBD, exactly which parental alleles have been observed cannot be determined (Figure 1), so the imputation 
averages over the two possibilities. When imputing without using IBD segments at all, uncertainty in inference of observed 
parental alleles increases rapidly with allele frequency. When phased IBD information is used, the parental alleles that have 
been observed can always be determined, so the relative efficiency does not depend upon allele frequency. C) The same as 
A but for average parental effects. D) The same as for B but for average parental effects.  
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For estimation of parental effects, using parental genotypes imputed from sibling genotypes 
and phased IBD data increases effective sample size by a factor of 3(2+r)/(4+4r) compared 
to using sibling genotypes alone. For estimation of both direct and parental effects, the gain 
is somewhat lower when un-phased identity-by-descent data is used, depending upon allele 
frequency and 𝑟 (Figure 2 and Supplementary Note).  
 
Imputing a missing parental genotype from a parent-offspring pair 
 
Consider imputing the genotype of a father whose genotype is unobserved given 
observations of the proband and the mother’s genotype. More formally, we impute the 
missing paternal genotype as the expectation given the proband and mother’s genotype: 
𝑔@p(i)=	E[𝑔p(i)|𝑔*1, 𝑔m(i)]. It is trivial to infer which allele was inherited from the father 
except when both proband and mother are heterozygous. For example, if the parental 
genotype is AA and the proband genotype is AT, then the T allele must have been inherited 
from the missing parent. This means that one half of the paternal genotype can be inferred 
exactly, and the expectation of the other half is given by the population allele frequency. 
When both mother and proband are heterozygous, E[𝑔p(i)|𝑔*1, 𝑔m(i)] can be computed by 
averaging over the two possible inheritance patterns (Table 1 and Supplementary Note). 
 
Table 1 The imputed parental genotype as a function of the proband and maternal genotype: 𝑔"p(i)=	E[𝑔p(i)'𝑔%&, 𝑔m(i)) for 

an allele with frequency 𝑓 

   𝑔m(i)  
  0 1 2 
 0 f f - 
𝑔i1 1 1+f 2f f 

 2 - 1+f 1+f 
  
This approach is generalised to the case when multiple full-sibling offspring of the observed 
parent are genotyped in the Supplementary Note. We note that more sophisticated 
methods for phasing and determination of parent-of-origin could be applied to improve the 
imputation in the case when both parent and proband are heterozygous. However, in this 
paper, we consider this simple imputation method as it is easy to apply to un-phased 
genotype data on parent-offspring pairs for very large numbers of SNPs.   
 
Estimating direct and indirect genetic effects using proband and (imputed) parental 
genotypes 
 
Consider a sample of families where the genotype of the proband and its mother have been 
observed but the father’s genotype is unobserved.  We show that performing the regression 
 

𝑌i1~𝑔*1 + 𝑔@p(i) + 𝑔m(i) 
 
produces estimates of 𝛿, 𝛽/, and 𝛽0 that converge to their true values (Supplementary 
Note). This is a consequence of a general proof that we provide for the consistency of least 
squares estimates of regression coefficients when unobserved covariates are imputed as the 
conditional expectation given the observed covariates.  
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The effective sample size for estimation of direct genetic effects relative to complete 
observation of parental genotypes increases from a minimum of 1/6 when minor allele 
frequency (MAF) is 0.5 to a maximum of 0.5 as MAF approaches 0 (Supplementary Note and 
Supplementary Figure 1). The loss in precision compared to complete information is greater 
when the heterozygosity is higher due to an inability to infer which allele has been inherited 
from the missing parent when both parent and proband are heterozygous.  
 
Imputing missing parental genotypes in UK Biobank 
 
We applied our methods to the subsample of the UK Biobank with predominantly white 
British ancestry19. Using KING20, we identified 17,296 families with at least two genotyped 
full siblings but no parents genotyped, giving a total of 19,329 sibling pairs. We inferred un-
phased IBD segments for these sibling pairs using KING (Methods). We chose to use un-
phased IBD segments as the computational costs of inferring phase for millions of SNPs are 
high.  
 
We validated the IBD inference using 31 families with two siblings and both parents 
genotyped, where the IBD state can be determined exactly except when both siblings are 
heterozygous, finding that the IBD state at 98.4% of SNPs was called correctly (Methods and 
Supplementary Table 1). We imputed the missing parental genotypes using the IBD 
segments produced by KING and the procedure outlined above for ~5 million SNPs with 
INFO>0.99 and MAF>1% (Methods). We validated that the imputed parental genotypes 
were approximately unbiased estimates of parental genotypes by comparing imputed to 
observed genotypes in 31 families with two siblings and both parents genotyped, where the 
imputation was performed ignoring the observed parental genotypes (Methods).   
 
We identified a further 4,418 families with one parent and at least one offspring genotyped, 
and imputed the missing parental genotypes for each family. We validated that the 
imputations were approximately unbiased by comparing observed to imputed parental 
genotypes for 893 families with both parents genotyped, where the imputation was 
performed ignoring one of the observed parents’ genotypes (Methods).  
 
Simulations in UK Biobank 
 
We simulated traits for the 17,296 families in the UK Biobank with at least two genotyped 
siblings but no genotyped parents. We chose 10,000 SNPs randomly from the SNPs with 
INFO>0.99 and MAF>1% to use as causal SNPs. Let ℎ2+  be the proportion of phenotypic 
variance explained by direct genetic effects. We simulated a trait affected by only direct 
genetic effects and noise, with ℎ2+ = 40% (Methods).  
 
Let ℎ3+  be the proportion of phenotypic variance due to parental effects. For a trait affected 
by direct and parental effects, the fraction of phenotypic variance explained by population 
effects, ℎ4+ , depends on ℎ2+,  ℎ3+ , and 𝑟23, the correlation between direct and parental 

effects: ℎ4+ = ℎ2+ + ℎ3+ + 2𝑟23Hℎ2+ℎ3+ . This is because population effects are the sum of 

direct and average parental effects.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185199
http://creativecommons.org/licenses/by-nc/4.0/


 9 

 
We simulated 40 independent replicates of a trait affected by both direct genetic effects 
and parental effects (Methods), with ℎ2+ ≈ 14.4%,  ℎ3+ ≈ 14.4%,  𝑟23 = 0.5, so that ℎ4+ ≈
43.2%. Since there are only a small number of families where both parents are genotyped 
in the UK Biobank, we used the imputed parental genotypes in place of observed parental 
genotypes for this simulation.  In expectation, this should give the same estimated parental 
effects as using observed parental genotypes (Supplementary Note). The correlation 
between direct and population effects, 𝑟24 , is equal to 

𝑟24 = H5!
"

5#"
+ 𝑟23H

5$
"

5#"
, 

implying a correlation of 0.866 between direct and population effects for the simulated 
trait.  
 
We estimated direct and average parental effects by regressing the phenotype onto the 
proband and imputed parental genotype using our mixed model approach to model 
phenotypic correlations between siblings (Methods). We did this for each trait replicate for 
~5 million SNPs with INFO>0.99 and MAF>1%. We confirmed that direct effect estimates 
were approximately unbiased for the trait affected by direct genetic effects alone, obtaining 
a regression coefficient of 0.988 (S.E. 0.015) for regression of direct effect estimates onto 
direct effects. For the trait affected by both direct and parental effects, we obtained a 
regression coefficient of 0.994 (S.E. 0.003) from regressing direct effect estimates onto 
direct effects; and a regression coefficient of 1.001 (S.E. 0.003) from regressing parental 
effect estimates onto parental effects. These results indicate that our method produces 
approximately unbiased estimates of direct and parental effects for each SNP.  
 
For the trait affected by both direct and parental effects, we used LD-score regression 
(LDSC)21 to estimate the genetic correlation between direct and parental effects and 
between direct and population effects (Methods). Across the 40 replicates, our average 
estimate of the genetic correlation between direct and parental effects was 0.497 (S.E. 
0.028), very close to the true value of 0.5; the average estimate of the genetic correlation 
between direct and population effects was 0.888 (S.E. 0.004). These results indicate that LD-
score regression can give approximately unbiased estimates of the genetic correlation 
between direct and parental effects, and between direct and population effects. This is 
despite the fact that estimates of the variance explained by direct and parental effects 
showed bias (Supplementary Table 2). This is similar to other reports indicating that LDSC 
produces more reliable estimates of genetic correlations than of variance components22.  
 
Genome-wide estimation of direct and indirect genetic effects for five traits 
 
We used a sample of 45,826 White British individuals with at least one genotyped sibling or 
parent, where missing parental genotypes were imputed, to estimate direct and indirect 
(sibling, paternal, maternal, and average parental) genetic effects of ~5 million SNPs 
(MAF>1%) on height, BMI, educational attainment (years), neuroticism score, and whether 
an individual has ever smoked (“ever-smoked”) (Methods). Traits were adjusted for 40 
genetic principal components before SNP effects were estimated.  
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From the genome-wide estimates of SNP effects, we did not find evidence for a substantial 
contribution from indirect genetic effects from siblings (Supplementary Table 3), but power 
for this analysis was limited. In our companion paper, we found no evidence for substantial 
indirect genetic effects from siblings using a more powerful analysis of polygenic scores17. 
Therefore, in order to increase precision of estimates of direct and parental effects, we 
estimated effects assuming that indirect genetic effects from siblings were zero.  
 

 
Figure 3. Estimates of genetic correlation between direct effects and population effects. The estimate is given along with 
the 95% confidence interval. Population effects include direct effects, indirect effects from relatives, magnification due to 
assortative mating, and bias due to population stratification. Estimates were derived from applying LD-score regression to 
direct and population effect estimates, derived from a sample of White British individuals from the UK Biobank, for ~5 
million SNPs with MAF>1% (Methods). Traits were adjusted for 40 genetic principal components prior to analysis.  
 
At these sample sizes, power is limited for analysis of direct and indirect genetic effects of 
individual SNPs. We therefore focused on estimating the genome-wide correlation between 
direct genetic effects and population effects using LD-score regression (LDSC) (Methods). 
This measures the degree to which population effect estimates are biased by indirect 
genetic effects and population stratification. This correlation reflects the relative amount of 
signal in population effects coming from direct genetic effects and the correlation between 
direct and average parental effects. The correlation can also be expressed in terms of the 
ratio 𝑅23 = ℎ2+/ℎ3+: 

𝑟24 =
67!$89!$

:187!$8+9!$67!$
. 

We plot 𝑟24 as a function of 𝑅23  for various values of 𝑟23  in Figure 4. This shows that, in 
order for the correlation between direct and GWAS effects to be substantially below one, 
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the correlation between direct and parental effects must be substantially below one, and 
that the phenotypic variance explained by direct effects cannot be many times larger than 
the variance explained by parental effects.  
 

 
Figure 4 The correlation between direct and population effects. The correlation between direct and population effects 

(estimated from GWAS on unrelated individuals), 𝑟𝛿𝑎, can be expressed as a function of 𝑅𝛿𝛽 = ℎ
𝛿
2/ℎ𝛽

2, the ratio between 

the phenotypic variance explained by direct effects and by parental effects, and 𝑟𝛿𝛽, the correlation between direct and 

parental effects (see above). Here we plot 𝑟𝛿𝑎 as a function of 𝑅,- for various values of 𝑟,-. 

The estimated genetic correlation between direct and population effects ranged from 0.61 
(S.E. 0.093) for EA to 0.96 (S.E. 0.015) for height (Supplementary Table 4 and Figure 3). All of 
the genetic correlation estimates were statistically significantly below 1 (P<0.005, one-sided 
Z-test). We also estimated genetic correlations between direct and parental effects, but 
these estimates had low precision (Supplementary Table 4). We obtained consistent results 
from estimates of the genetic correlation between direct effect estimates and publicly 
available GWAS summary statistics (Supplementary Table 5).  
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Figure 5 Relative effective sample size for estimation of direct genetic effects for five traits. We show the effective 
sample size for estimation of direct genetic effects when using parental genotypes imputed from sibling genotypes and un-
phased identity-by-descent (IBD) information relative to the effective sample size when using genetic differences between 
siblings alone (Methods). We show the relative effective sample size for SNPs with minor allele frequency (MAF) between 
1% and 2% (squares), and for SNPs with MAF between 49% and 50% (triangles). As expected from theory (Supplementary 
Note and Figure 2), the relative effective sample size diminishes with increasing phenotypic correlation between siblings. 
For SNPs with MAF between 1% and 2%, the gain in effective sample size is slightly below the gain that would be expected 
given access to phased IBD data (Supplementary Note), shown by the solid black curve. For SNPs with MAF between 49% 
and 50%, the relative effective sample size as a function of the phenotypic correlation between siblings fits well our 
theoretical result for a SNP with MAF 49.5% (dashed black curve). The gap between the points for MAF 1-2% and MAF 49-
50% is due to increased heterozygosity in the more common SNPs, which results in ambiguity in imputation without access 
to phased IBD data. Trait Abbreviations: BMI, body mass index; EA, educational attainment (years).  

We estimated the gain in effective sample from using parental genotypes imputed from 
sibling genotypes and un-phased IBD information (Figure 5). In the families with at least two 
genotyped siblings but no genotyped parents, we estimated direct genetic effects using 
genetic differences between siblings (Methods). In the same sample of families, we 
compared the standard errors for direct genetic effect estimates from using genetic 
differences between siblings and from using our method. The gain in effective sample size 
depends upon both allele frequency and correlation between sibling residuals 
(Supplementary Note and Figure 2), so varies from SNP to SNP and from trait to trait. For 
example, the median gain for SNPs with MAF between 1% and 2% was 25.5% for 
neuroticism, where the sibling correlation is 0.14; whereas the median gain for SNPs with 
MAF between 49% and 50% was 6.8% for height, where the sibling correlation is 0.52.   
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Discussion 
 
Many datasets contain genotype information on siblings but not on the parents of the 
siblings, and many studies have used genetic differences between siblings to estimate direct 
genetic effects and to remove bias due to population stratification7,16,23. However, these 
methods do not use all of the information in sibling genotypes. We have shown that, by 
imputing parental genotypes using IBD information, one can substantially increase the 
information available for estimation of direct and indirect genetic effects (Figure 2 and 
Supplementary Note), and one can separately identify direct genetic effects and indirect 
effects from siblings. While it is possible to impute parental genotypes without using IBD 
information18, we showed that this gains little compared to using IBD information in nearly 
all scenarios. We also developed a method for imputing the genotype of the missing parent 
from a parent-offspring pair and showed that one can thereby obtain unbiased estimates of 
direct genetic effects (Supplementary Note).   
 
We imputed missing parental genotypes from siblings and un-phased IBD information and 
from parent-offspring pairs in a sample of 45,826 White British individuals from the UK 
Biobank. Using the imputed parental genotypes, we estimated direct and indirect genetic 
effects of ~5 million SNPs on educational attainment, BMI, height, neuroticism, and 
whether an individual has ever smoked. We did not use phased IBD information due to 
computational costs of phasing millions of SNPs. However, the methods and software we 
developed could be easily adapted to phased data, thereby gaining additional information 
for estimation of direct and indirect genetic effects (Figure 2 and Supplementary Note). 
Furthermore, our method can be applied to analyse polygenic scores, as we show in our 
companion paper17.  
 
Population effects, estimated from GWAS in unrelated individuals, capture direct effects 
and indirect effects from relatives, population stratification effects, and magnification of 
effects due to assortative mating3. While recent studies have indicated that population 
stratification has affected GWAS studies even after correction for genetic principal 
components7,10, questions remain about the overall magnitude of bias. One way to quantify 
how large the bias in population effect estimates is relative to the signal from direct genetic 
effects is through measuring the correlation between direct and population effects.  
 
Our results show that population effects are biased estimates of direct effects for all five 
traits analysed. Any bias in effects on height is likely to be small, but the bias could be 
substantial for EA, BMI, neuroticism, and whether an individual has ever smoked. It is 
unlikely that indirect genetic effects alone could explain this for a trait like EA, where the 
parental phenotype that affects offspring EA is likely to be substantially genetically 
correlated with offspring EA, leading to correlation between direct and parental effects. 
Population stratification effects are more likely to be uncorrelated with direct effects, so are 
a more likely explanation for these results. Nevertheless, our results are consistent with 
near zero correlations between direct and non-direct components, along with substantial 
non-direct components (Figure 4 and Supplementary Table 4). Further studies including 
large numbers of first-degree relative pairs will be needed to see if this result holds in other 
datasets and to get more precise estimates. Larger sample sizes would also enable 
decomposition of genetic relations between traits into direct and non-direct components3.  
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If population effects are not highly correlated with direct effects, this has important 
implications for the potential of genetic prediction in different scenarios. For example, 
prediction of trait differences between embryos relies on genetic variation within a family, 
where only direct genetic effects are relevant. If direct genetic effects are not highly 
correlated with population effect estimates, then embryo selection based on population 
effect estimates will perform poorly relative to using direct effects24. Other implications may 
depend upon the source of the bias in population effect estimates. If it is primarily 
population stratification, then this may affect portability of genetic prediction both across 
populations25,26 and within populations16. If it is primarily indirect genetic effects, then this 
implies that substantial gains in predictive ability could be obtained from models that 
incorporate direct and indirect genetic effects along with genotypes of parents and siblings.  
 
Collection of genetic data on large numbers of families is inevitable as sample sizes grow 
larger. However, the size of these samples is dwarfed by the samples of distantly related 
individuals. We see individual level data as one possible pattern of missing data in a vision 
for human genetic analysis that treats the nuclear family as the fundamental unit of analysis 
rather than the individual17. Individual level data, along with other missing data patterns, 
can be used to increase the precision of estimates of direct and indirect/parental effects 
using a form of multivariate meta-analysis17 (Supplementary Note). We see such methods as 
the start of a suite of methods that can powerfully analyse and combine information from 
different patterns of observed genetic data from families to build a richer and more 
accurate picture of the role of genetics in human trait variation.  
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Software 
 
The software used in this paper is available as a Python package with command line tools at 
https://github.com/AlexTISYoung/SNIPar with documentation at 
https://sibreg.readthedocs.io/en/master/. We recommend reading the guide 
(https://sibreg.readthedocs.io/en/master/guide.html) and working through the tutorial 
(https://sibreg.readthedocs.io/en/master/tutorial.html). 
 
The code is written in C/Python and is multi-threaded. To give a sense of runtime, we give 
runtimes for analysing the genotyping array SNPs on chromosome 1 in the UK Biobank 
using a single thread for computation. To impute all of the SNPs on chromosome 1 on the 
UK Biobank array (~58,000) for around 20,000 families took around 40 minutes. To estimate 
the effects for ~50,000 SNPs and a sample of around ~40,000 individuals, it took around 18 
minutes. These runtimes could be reduced substantially by increasing the number of threads.  
 
Data  
 
Full summary statistics for direct and indirect effects will be released on publication.  
 
Methods  
 
UK Biobank sample 
 
We used the UK Biobank sample that had been identified by UK Biobank to have 
predominantly White British ancestry19. We filtered out individuals identified by UK Biobank 
to have excess relatives, excess heterozygosity, or sex chromosome aneuploidy. We used 
the kinship coefficients computed by UK Biobank to identify individuals with a first degree 
relative, where a first degree relation is defined as a kinship coefficient of 0.177 and 
above20.  
 
We extracted the genotypes for that subsample of the UK Biobank, removing SNPs with 
missingness above 5%. We used KING20 with the '--related --degree 1' options  to infer the 
sibling and parent-offspring relations within that set of individuals. We identified 157 
duplicates/monozygotic twins and removed one from each pair from further analyses. We 
identified 17,296 families with at least two siblings, giving a total of 19,329 sibling pairs. The 
maximum number of siblings in a family was 6, and 913 families had more than two siblings. 
We used age and sex information to determine the father/mother in each inferred parent-
offspring relation, requiring parents to have a reported age at least 12 years higher than 
their inferred child; parent-offspring relations with a lower reported age difference were 
removed from further analyses. We identified 4,418 families with at least one parent and 
one child genotyped; 736 families had at least one child and the father genotyped but not 
the mother genotyped; 2,798 families had at least one child and the mother but not the 
father genotyped; 893 families had at least one child and both parents genotyped. We 
identified 31 families with two children and both parents genotyped, ‘quads’.  
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UK Biobank phenotypes 
 
We performed family based GWAS on educational attainment (EA); standing height (Data 
Field 50); body mass index (BMI) (Data Field 21001); neuroticism score (Data Field 20127); 
and whether an individual answered that they had ever smoked or not (Data Field 20160), 
encoded as a binary variable. For EA, we converted the answers to the qualifications 
question (Data Field 6138) to years of education according to the method used in previous 
GWAS of EA23. For all traits, we regressed out age, age2, age3, sex, and interactions between 
sex and age, age2, age3, along with the 40 genetic principal components provided by UK 
Biobank. For quantitative traits measured on a continuous scale (height and BMI), we 
performed an inverse normal transformation on the residuals separately for males and 
females and then combined the male and female samples.  
 
IBD inference and imputation in UK Biobank 
 
We inferred IBD segments between all first degree relatives using the KING --ibdsegs option. 
We confirmed the accuracy of the IBD segment inference by using the 31 white British 
families where two siblings and both of their parents have been genotyped. When both 
parents are heterozygous, the IBD state of the siblings is equal to 2 minus the absolute 
difference in the siblings’ genotypes, except when both siblings are heterozygous 
(Supplementary Note). We smoothed the true IBD inferred from the quads to account for 
genotyping errors: if the IBD state at a SNP differed from its two immediately adjacent 
neighbours, and both adjacent neighbours had the same IBD state, we changed the IBD 
state of the SNP to be the same as its neighbours. We computed the fraction of sites 
inferred to be IBD 0, 1, and 2 given the true IBD state (Supplementary Table 1). The overall 
probability of inferring the correct IBD state was estimated to be 98.4%.  
 
We imputed missing parental genotypes for the bi-allelic SNPs with INFO>0.99 and 
MAF>1%. We used hard-call genotypes with a stringent INFO threshold so that any influence 
of genotype errors on the imputation procedure would be minimal.  We examined the bias 
in the imputed parental genotypes by performing the imputation for the 31 families with 
two genotyped siblings and both parents genotyped (ignoring the parental genotypes), 
allowing us to compare the imputed parental genotypes to the observed parental 
genotypes. If the imputation is unbiased, then the regression coefficient of the imputed 
parental genotypes onto the observed parental genotypes should be 1. This is because the 
covariance between the imputed parental genotypes and the observed parental genotypes 
should be equal to the variance of the imputed parental genotypes (Supplementary Note). 
Using 166,587,490 SNP observations, we estimated the regression coefficient to be 0.996. 
This shows the imputation from the siblings based upon the imputed genotypes is very close 
to unbiased genome-wide.  
 
We imputed the missing parent’s genotype from the observed parent and full sibling 
offspring using the procedure outlined above and in the Supplementary Note. To check the 
imputation, we set one parent missing from the 893 families with both parents genotyped, 
and we imputed the missing parent using the observed parent and offspring genotypes. The 
coefficient from regression of the observed parental genotype onto the imputed parental 
genotype was 0.995, indicating the imputation was approximately unbiased.  
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Linear Mixed Model  
 
Phenotype observations from the same family are correlated through both shared genetic 
factors and shared environmental factors. In order to obtain efficient estimates of SNP 
effects from phenotypic observations from multiple members of the same family, the 
phenotypic correlations between members of the same family should be modelled. One 
way to do this is within a linear mixed model where the mean phenotype within each family 
is modelled as a random effect. Let 𝑌*;  be the mean-centred phenotype of individual 𝑗 in 
family 𝑖, then 

 
𝑌*; = 𝑋*;𝛼 + 𝜇* + 𝜖*;;  𝜇*~𝑁(0, 𝜎<+);  𝜖*;~𝑁(0, 𝜎=+); 

 
where 𝑋*;  are the mean-centered observed/imputed genotypes of individual 𝑗 in family 𝑖; 𝛼 
is the vector of effects; 𝜇*  is the mean in family 𝑖, which we model as a mean-zero normally 
distributed random effect with variance 𝜎<+, independent for each family; and 𝜖*;  is the 
residual for individual 𝑗 in family 𝑖, independent for each individual. This implies that, 
conditional on 𝑋, the correlation between individuals in the same family is 𝜎<+/(𝜎<+ + 𝜎=+). 
 
For estimation of the effects of genome-wide SNPs, we first infer the variance components 
𝜎<+ and 𝜎=+ by maximum likelihood for a null model without any SNP effects (Supplementary 
Note). We then fix the variance components at their maximum likelihood estimate for 
estimation of the SNP effects. Given the variance components, the maximum likelihood 
estimate of the vector of effects for a SNP can be obtained analytically in O(n) computations 
by summing over n families (Supplementary Note). Our software package, SNIPar, performs 
genome-wide estimation of direct and indirect effects from observed proband and sibling 
genotypes and observed/imputed parental genotypes.  
  
Estimation of Effects 
 
We estimated effects for all variants with INFO>0.99 and MAF>1% using the above linear 
mixed model. Note that although ‘ever-smoked’ was a binary variable, we used a linear 
model, as in previous GWAS of smoking behaviour27. To enable estimation under different 
models from one analysis of the data, for each SNP, we formed summary statistics from 
fitting the linear mixed model corresponding to the 𝑋>𝑋 matrix and 𝑋>𝑌 vector in standard 
multivariate linear regression. For the subsample of families with at least two genotyped 
siblings and no parents genotyped, the 𝑋 matrix had columns corresponding to the 
proband's genotype, the mean genotype of the proband's siblings, and the imputed 
parental genotype. Let	𝑌 be the vector of phenotype observations and let Σ = Var(𝑌) be 
the phenotypic covariance matrix, then the estimate of the parameters under the full model 
with direct, sibling, and parental effects is the solution to the linear system: 
 

𝑋>Σ?1𝑋𝛼@ = 𝑋>Σ?1𝑌 
 
The estimate under the model without sibling effects is obtained by dropping the rows and 
columns corresponding to the genotype of the proband's sibling from 𝑋>Σ?1𝑋 and 𝑋>Σ?1𝑌. 
Standard GWAS estimates are obtained by using only the rows and columns corresponding 
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to the proband genotype. Note that this method assumes that the variance contribution of 
each SNP is a very small fraction of the phenotypic variance, so that the residual variance 
changes only negligibly when certain effects are dropped from the model for each SNP.  
 
For the subsample of families with one parent genotyped, the 𝑋 matrix has columns 
corresponding to proband genotype, (imputed) paternal, and (imputed) maternal 
genotypes. For the subsample with both parents genotyped, the 𝑋 matrix has columns 
corresponding to proband genotype, paternal genotype, and maternal genotype. We did 
not fit indirect genetic effects from siblings for these subsets of families because only a 
small fraction of these families had more than one genotyped sibling.  
 
Direct effect estimates from the different subsamples were combined using fixed effects 
meta-analysis. Indirect sibling effects were estimated from the subsample of families with at 
least two siblings genotyped and no parents genotyped. For parental effects, we used the 
multivariate meta-analysis method outline in the Supplementary Note to get meta-analysis 
estimates of maternal and paternal effects separately, and we took the average of those 
estimates to give meta-analysis estimates of the average parental effect.  
 
For the subset of families with at least two siblings genotyped but no parents genotyped, we 
also implemented the difference in sibling genotypes method. We computed the mean 
genotype of the siblings in each family gU *, and fit the linear mixed model:  
 

𝑌*; = 𝛿(g*; − gU *) + 𝑏gU* + 𝜇* + 𝜖*;, 
 
where 𝑏 captures both direct and parental effects.  
 
LD Score Regression Analysis 
 
To apply LD-score regression to direct, indirect, and population effects, we adjusted the 
sample size input to LD-score regression to reflect the effective sample size for each effect 
at each SNP. Note that the effective sample size is considerably smaller for estimation of 
direct and indirect effects than for population effects. Let 𝛽W	be the effect estimate for a SNP 
with allele frequency 𝑓 and with sampling variance	Var(𝛽W). We estimated the effective 
sample size, 𝑁eff, to be 

𝑁eff =	
B"

+C(1?C)Var(3E)
, 

where 𝜎+ is the phenotypic variance.  
 
For the genetic correlation analysis, we used direct effects and parental effects estimated 
assuming that indirect effects from siblings are absent.   
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