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Abstract 
Plasmids are a foundational tool for basic and applied research across all subfields of biology. 
Increasingly, researchers in synthetic biology are relying on and developing massive libraries of 
plasmids as vectors for directed evolution, combinatorial gene circuit tests, and for CRISPR 
multiplexing. Verification of plasmid sequences following synthesis is a crucial quality control 
step that creates a bottleneck in plasmid fabrication workflows. Crucially, researchers often 
elect to forego the cumbersome verification step, potentially leading to reproducibility and—
depending on the application—security issues. In order to facilitate plasmid verification to 
improve the quality and reproducibility of life science research, we developed a fast, simple, 
and open source pipeline for assembly and verification of plasmid sequences from Illumina 
reads. We demonstrate that our pipeline, which relies on de novo assembly, can also be used to 
detect contaminating sequences in plasmid samples. In addition to presenting our pipeline, we 
discuss the role for verification and quality control in the increasingly complex life science 
workflows ushered in by synthetic biology. 

 

Introduction 
As synthetic biology programs increase in scale (1-3) workflows involving the high-throughput 
construction of dozens or even hundreds of plasmids are becoming increasingly common (4-6). 
DNA sequencing is an integral part of fabrication workflows involving the assembly of synthetic 
DNA fragments (7-10). Sequencing data can detect single point mutations (SNP) resulting from 
mistakes in the DNA synthesis processes (11-13) or from PCR. In addition, sequencing data can 
be used to detect structural issues such as inversion or duplication of genetic elements 
introduced during plasmid assembly.  
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Traditionally, plasmids have been verified using Sanger sequencing. This sequencing method 
requires a short, known sequence to initiate an up to ~1000 nucleotide read. Typically, Sanger 
sequencing is used to verify a sequence of interest that has been inserted into a plasmid 
backbone by sequencing from known universal primer binding-sites on either side of the 
multiple cloning site, providing 2x coverage of the insert. Many bioinformatics applications used 
to edit plasmid sequences have features that facilitate the visual inspection of the alignment of 
the sequence reads and the plasmid sequence. This approach is practical to verify the insert of 
a limited number of plasmids. The quality and length of Sanger sequencing reads also simplify 
sequence assembly.  

However, Sanger sequencing is not a viable quality control option for verifying sequences of a 
large number of plasmid libraries. In order to sequence whole plasmids by Sanger sequencing, 
the user must first design and order primers, which adds to the time and cost involved in 
verification. Depending on the sequence of the plasmid, it may be difficult to design primers 
that will generate ample coverage, and structural features like hairpins can result in low quality 
reads (14). In addition, the analysis of sequencing reads is time consuming and error prone.  

In order to streamline this process, we previously developed an application to automate 
assembly and sequence verification of plasmid sequences from Sanger sequencing reads (15). 
However, because this pipeline relies on reference-based assembly, it struggles to resolve 
duplications, inversions, and other rearrangements that result in structural issues.  

Recently, synthetic biologists have demonstrated the possibility of sequencing multiple 
plasmids in a single Oxford Nanopore run (16). This multiplexed approach overcomes many of 
the limitations of Sanger sequencing. Oxford Nanopore sequencing is fast, inexpensive, and 
does not require primers. However, the analysis of data still relies on a reference-based 
assembly.  

Reference-based assembly is disadvantageous for quality control workflows because it is biased 
towards a particular goal. If there are contaminating sequences present in a sample, for 
instance, the reads for those contaminants may be thrown out during the assembly process. 
Reference-based assembly also requires a full reference sequence by definition. However, 
researchers may sometimes wish to identify unknown plasmid samples, and even for known 
samples, a full reference sequence is not always available. It is very common for plasmids 
described in the literature to be accompanied only by a visual map or vague descriptions of how 
the plasmid was constructed. Without a full reference sequence, it is not possible to design 
primers for Sanger sequencing or conduct a reference-based assembly. 

To address these limitations, we present an alternative approach based on short read 
sequencing and de novo assembly. The costs associated with short read sequencing are rapidly 
decreasing while speed and read length are increasing (17, 18). The small amount of coverage 
needed for plasmids and various multiplexing options have also made short read sequencing a 
cost-effective option, as plasmid samples can easily be included within larger sequencing runs. 
Further, short read sequencing does not rely on primers and is less sensitive to secondary 
structures than long read sequencing. Though de novo pipelines exist for circular microbial 
genomes, these tools do not translate well to assembling plasmids, which are typically much 
smaller in size.  DNA synthesis companies routinely rely on short read sequencing workflows for 
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quality control in plasmid synthesis, but their assembly and verification tools are proprietary, 
and likely rely on reference-based assembly. Proprietary programs also exist in academic labs. 
However, our approach is the first open source, publicly available solution.  

In this manuscript, we describe a plasmid verification pipeline that uses Illumina sequencing 
reads for de novo assembly. The pipeline was tested on a library of 96 plasmids designed to 
represent a broad range of variations of a common plasmid template. The tool produced 
correct assemblies for all 96 plasmid samples even when overall read quality was very low. 
Furthermore, we demonstrate that our script can determine whether or not a pool of reads is 
likely to contain contaminating sequences. We built a contamination test into our verification 
pipeline that informs the user of the likelihood of contamination. This tool can thus be used to 
verify known plasmid sequences, identify unknown plasmid sequences, and detect 
contamination in plasmid samples. The workflow described in this manuscript relies entirely on 
open source tools, making it, to our knowledge, the first non-proprietary tool for de novo 
assembly of plasmid sequences from short sequencing reads, and the first sequence assembly 
and verification tool that also predicts the likelihood of contamination. 

 

Materials and Methods 

Plasmid preparation and sequencing 
We built and tested our pipeline using Illumina sequencing reads from 96 plasmid DNA 
samples. The sequencing dataset used to develop our workflow was generated in conjunction 
with a separate publication. Detailed explanations and plasmid reference sequences can be 
found in that manuscript (19).   

Briefly, 6-24 individual transformants of eight different plasmids (ranging in size from 2521-
3294 bp) were sequenced. Six of these plasmids are part of a family of synthetic plasmids that 
were synthesized, and sequence verified by Twist Biosciences (twistbioscience.com). Five of 
these six differ from each other by one to four SNPs which were intentionally introduced. These 
are referred to as “known-SNPs”. The sixth plasmid from Twist differs in that it lacks a 608bp 
insert present in the other five. This variant was used to analyze the impact of contaminants 
containing insertions and deletions (INDELs). The remaining two plasmids are unrelated and 
were generated by Gibson assembly (20) of parts that have not been sequence verified. These 
were, therefore, expected to contain a small and variable number of unknown SNPs and 
INDELs.  

Plasmids were isolated from E. coli cells, analyzed on an Agilent TapeStation, and submitted to 
seqWell (seqwell.com) for sequencing. seqWell uses a library prep technology called plexWell 
that enables the preparation of hundreds or thousands of multiplexed samples for Illumina 
sequencing in just 3 hours.  

Sequencing resulted in 2.9 million read pairs for the 96 samples (>1,000x coverage), with read 
lengths of 35 to 251 bases and mean per-read PHRED quality scores (21) ranging from 2.0 to 
38.8 (average of 35.3).  Optimal filtering conditions removed 93% of reads, yielding 1,682 to 
11,938 filtered read pairs per plasmid with lengths of 125 to 251 bases and mean per-read 
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quality from 36.8 to 38.8 (average of 38.0). In addition to raw reads in the form of FASTQ files, 
seqWell used their proprietary bioinformatics workflow to analyze the sequencing reads. They 
provided assembled FASTA files for 95 of the 96 samples. 

De Novo Assembly and Sequence Verification Pipeline 
Our sequence verification pipeline performs three key steps: quality filtering, plasmid assembly 
and assembly evaluation. It accepts as input, Illumina paired-end sequencing FASTQ files 
containing sequencing reads and produces as output a FASTA assembly file representing the 
predicted plasmid reference sequence, along with an estimated likelihood of contamination 
(Figure 1). Reference sequences were used to build and evaluate the pipeline; however, it is 
important to emphasize that the pipeline itself does not use a reference. 

The first step is to filter the input sequences to eliminate all but the highest-quality reads. We 
tested two filtering tools, Trimmomatic, a commonly used open source software tool (22), and 
fastp, a more recent, high-throughput method, for comparison (23). Illumina sequencing can 
produce extremely high coverage for short plasmid sequences.  Our experimental samples 
provided anywhere from 36,000 to 166,000 reads per plasmid, yielding coverage from 2,800x to 
over 12,000x.  These values are orders of magnitude higher than typical recommendations for 
de novo genome assembly, which range from 13x to 60x (24, 25). Higher coverage does not 
improve performance, and often hurts performance, sometimes yielding assemblies with 
multiple sequences (putative contigs) (26). For this reason, we used stringent criteria for 
filtering reads, retaining only the top 3% to 11% highest quality reads. 

The second step is sequence assembly, in which two FASTQ files containing trimmed, forward 
and reverse, Illumina paired-end sequencing reads are accepted as input, and a FASTA file 
containing one (or more) circular contig(s) is produced as output. For this, we considered five 
different assembly tools for our process: Unicycler (27), MIRA (28), Velvet (29), plasmidSPAdes 
(30) and Circlator (31). MIRA and Velvet are popular, general purpose assemblers that generate 
linear assemblies.  Circlator is a post-processing tool that can convert linear assemblies to 
circular assemblies, while plasmidSPAdes and Unicycler are both designed to resolve 
chromosomes and plasmids from whole bacterial genome sequencing, yielding circular plasmid 
assemblies. We used MIRA and Velvet on their own and with Circlator, and we used Unicycler 
and plasmidSPAdes by themselves.   

When assessing the quality of assembly of putative contigs, we imposed strict criteria: (1) the 
final assembly must contain only one contig that matches the correct plasmid sequence exactly, 
and (2) the pipeline should take no more than a few minutes to run.  

Assessing assembly quality and detecting contamination  
Because our pipeline is intended for use in the absence of a reference sequence, once our 
pipeline was established, it was necessary to develop additional reference-agnostic methods for 
assessing plasmid assembly. For this, we built an additional quality control step into the 
pipeline in which the filtered reads are mapped back to the assembly. The proportion of reads 
that matches the assembled contig exactly is used to assess the quality of the assembly.  
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The proportion of reads that matches the assembled contig was further used to assess the 
likelihood of contamination in the original sample. There are several scenarios by which a 
plasmid sample might become contaminated. For instance, if plasmid DNA is extracted from a 
mixed population of transformants, depending on the method of plasmid construction and 
screening, there could be sequences present that have SNPs or that lack or contain an extra 
insert. Additionally, if a contamination event occurs between different laboratory strains, 
sequences from completely unrelated plasmids may be present in the mixed sample. In each 
case, when the contaminated sample is sequenced, the resulting reads will include a 
combination of reads from the primary sample and reads from the contaminant. 

To simulate each of these possible contaminations (SNPs, INDELs, and unrelated sequences), 
we conducted a series of contamination simulation experiments by randomly sampling the 
filtered reads from distinct plasmids to create artificial contamination, and then built a 
procedure for detecting the contamination.  

In each of these contamination simulation experiments, we select one of our plasmids and label 
it the “primary” plasmid, and its filtered reads, the “primary” read set.  We then select a 
second, “contaminant” plasmid at random that has a different reference sequence from that of 
the primary plasmid. In each contamination simulation experiment, a subset of reads from the 
contaminant library is artificially combined with a subset of reads from the primary library, the 
reads are assembled, and the resulting assemblies are assessed. Different contamination levels 
(up to 50%) were assessed.  

Our contamination detection algorithm uses simple string matching to compare an output 
assembly with the filtered reads used to create it.  The algorithm iterates over all of the distinct 
high-quality reads, attempting to match them to a location in the assembly sequence.  It 
assesses the percentage of distinct reads that map exactly to a location in the assembly and 
compares it to distributions we have established experimentally.  

 

Results 

Plasmid Identification and Verification  
For quality filtering, we found that Trimmomatic (22) yielded reliably good data sets when we 
applied strict quality filtering that retained only the highest-quality 3% to 11% of read pairs 
(Figure 2).  Users of our script may choose instead to use fastp (23) for quality filtering, since we 
found that both methods yielded similar results. 

For assembly, the only tools that yielded single-contig assemblies in any of our tests were 
plasmidSPAdes and Unicycler. For our filtered data, plasmidSPAdes yielded 63/96 correct 
assemblies (66%) while Unicycler resolved all 96 correctly. Thus, we settled on the Unicycler 
program because we were able to derive quality assemblies with fewer parameter adjustments. 
It is worth noting that Unicycler is really a sophisticated wrapper for SPAdes (32). 

Interestingly, none of the assembly tools we tried worked well with whole sets of Illumina reads 
even though the data for most of the samples were relatively high quality (average PHRED 
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score of 35.3, Figure 2). The most likely explanation is an overabundance of input data, a 
paradox that poses a significant challenge for de novo assembly when sequencing coverage 
exceeds 500x (26).   

Thus, we tested whether high-quality reads or the number of reads were necessary to produce 
accurate assemblies. We ran Unicycler on random samples of read pairs such that the resulting 
input data contained the same number of pairs as the quality-filtered data sets. We found that 
the randomly sampled read pairs yielded assemblies with the same fidelity as those built from 
high-quality reads (Supplemental Figure TBD or data not shown).  However, we persisted in 
using quality filtering, as it reduced read quantity to a manageable level and the high-quality 
reads became important when predicting contamination, described below and in the next 
section. Using read filtering, optimal assemblies were achieved using coverage between 113x 
and 1030x (data not shown).      

For plasmids ranging from 2.5 to 3.3kb, complete assemblies by Unicycler with our plasmid-
specific parameters required on average less than eight seconds (single processor on a Linux 
laptop with 16GB RAM), including Trimmomatic filtering. The Unicycler assembly process itself 
dominated this time, which increased approximately linearly with the number of input reads 
(Figure 3).  

For 95 of the 96 experimental samples, our pipeline’s assembled contig matched the sequence 
generated by seqWell using their proprietary plasmid assembly workflow. For the one 
exception, seqWell was unable to provide an assembly, reporting that it was due to poor read 
quality. In this case, our pipeline was able to generate an assembly successfully after the quality 
filtering step eliminated more than 95% of the total read pairs. 

72 of our 96 samples are clones derived from plasmids that were previously sequence-verified 
by Twist. It is worth noting that 48 of these 72 plasmids had the capacity to form substantial 
hairpins resulting in practically uninterpretable Sanger sequencing reads. For these previously 
sequence-verified samples, our pipeline correctly assembled all 72 plasmids, and succeeded in 
identifying all of the known SNPs that were present in 36 of these 72 samples.  

The remaining 24 samples sequenced contained plasmids that were constructed from non-
sequence-verified parts by Gibson assembly (20).  Among the 24 samples, our pipeline detected 
15 that contained unknown SNPs and/or INDELs. We validated two of the 15 variants by Sanger 
sequencing and confirmed that all 15 agreed with the assemblies provided by seqWell.  

In conclusion, our workflow resulted in the correct assembly of all 96 samples, including the 
identification of several known and unknown variants, even when overall read quality was very 
low.  

Assessing assembly quality without a reference and detecting contamination 
In the previous section, we described developing and validating our pipeline by comparing the 
resulting assemblies to a known reference sequence. However, we built our pipeline using de 
novo assembly, so that it can also be used to assemble plasmid sequences when a reference is 
not available. One reference-agnostic way to assess an assembly's potential fidelity is to map 
the input reads to the assembly. To determine if assembly quality could be reliably assessed in 
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this manner, we challenged our assemblies by artificially spiking in “contaminant” reads prior to 
assembly. We then compared the percent match between the assembled contig and the input 
reads for contaminated and uncontaminated reads to establish a baseline percent match for 
assessing assembly quality.  

We ran this procedure using different proportions of contaminant reads, from 50% down to 5%, 
and evaluated 500 assemblies at each proportion. Each contamination simulation experiment 
yielded four possible outcomes (Figure 4a): (1) the assembly matches the primary reference, (2) 
the assembly matches the contaminant reference, (3) the assembly matches neither, or (4) the 
pipeline yields a fragmented assembly containing more than one contig.  By varying the relative 
proportions of primary and contaminant reads in the combined data sets, we assess the impact 
of SNPs, INDELs, and other forms of contamination and evaluate the assembly pipeline's 
sensitivity to contaminated data as shown in Table 1. 

In Table 1 we report the average proportions of correct, fragmented and mismatching 
assemblies.  Not surprisingly, as the proportion of contaminant reads increases, the proportion 
of assemblies correctly matching the primary reference sequences decreases. When the 
difference between the contaminant differs from the primary plasmid by one to four SNPs, fully 
90% of assemblies match the correct primary sequence at 35% contamination or less (Table 1, 
Figure 4B). 

When the contaminating sequence contains an INDEL, we observe a sizeable increase in the 
number of fragmented assemblies (Table 1).  It is worth noting that in some cases the 
fragmented assembly consists of just two sequences: the correct sequence for the smaller of 
the primary and contaminant source sequences, and a second sequence that matches the 
insertion. When the primary and contaminant sequences differed by a 608 bp INDEL, the 
pipeline failed to yield correct assemblies consistently when over 20% of reads were 
contaminating (Table 1, Figure 4C). 

When the primary and contaminant populations come from plasmids with very little sequence 
similarity, the resulting assemblies are more severely affected than with SNPs or INDELs.  As 
with INDELs, the high assembly fidelity was achieved only when contamination levels were 
below 20% of total reads (Figure 4D).  At that ratio, the assembly may be correct up to 86% of 
the time (Table 1).  Similarly, we find that fragmented assemblies nearly disappear. 

These results suggest that our pipeline produces robust results when contaminating reads are 
below 20% to 35%, depending on the type of contaminant and its similarity to the primary 
sequence. However, even when the contamination is limited enough to yield exactly one 
contig, it is still important for the user to know whether any contamination is present in the 
sample. To predict contamination likelihood in a reference agnostic way, we mapped the input 
reads back to the assembly for contaminated and uncontaminated samples. We predicted that, 
because contaminating reads will not match, this approach would provide a potential measure 
of contamination likelihood.  

We first note that, even after filtering, some reads may not map exactly even to a perfect 
assembly derived from an uncontaminated sample (33-35). However, the mismatch 
percentages were, as we predicted, higher for read data with contamination (Figure 5A, above). 
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For the 96 assemblies described above, we find that on average 11.7% of filtered input reads 
fail to map exactly to their associated assembly (Figure 5A, above).  With contaminated data we 
find that overall 15.9% of input reads fail to map to an assembly.  Interestingly, without the 
filtering step, the same percent of contaminated and uncontaminated reads mapped to the 
assembly (Figure 5A, below), suggesting that a filtering step is needed to detect contamination. 
Further, we find that the percentage of misaligned reads is highly predictive of contaminated 
data, even when the contamination is relatively subtle, as with SNPs (AUC 0.86-0.96, Figure 5B). 
The percent of mismatching reads to the assembly thus   We use this metric in our pipeline as a 
measure of the quality of the assembly and the likelihood of contamination. 

 

Discussion 
We have demonstrated the feasibility of rapidly producing highly accurate plasmid assemblies 
from short read sequencing data by de novo assembly. Our publicly available workflow relies on 
Unicycler (27), an open source tool that was developed for assembly of circular genomes. We 
identified Unicycler parameters and determined read filtering thresholds that are optimal for 
plasmid assemblies.  

We incorporated into our pipeline a novel method for detecting contamination by analyzing the 
percent of input reads that map exactly to locations in the final assembly. In general, our 
pipeline can generate accurate assemblies with fewer than 1000 reads, regardless of quality; 
but if we focus on high-quality reads, we can begin to detect contamination.  We find that only 
a small fraction of high-quality reads fail to map to an assembly, while increased levels of non-
mapping reads correlate with contamination.  By applying strict filtering, we reduce the errant 
reads. We find that the resulting percent-matching metric can provide coarse information 
about whether the input data are likely to be contaminated. Despite our method’s simplicity, 
our experiments show that it is surprisingly adept at discriminating between “clean” and 
contaminated assemblies, demonstrating sensitivity even to contaminating plasmids with 
single-nucleotide mutations at relatively low levels. 

The metric we use to detect contamination in single-contig assemblies is a rudimentary first 
step.  We envision future improvements in several directions for this work.  First, our 
rudimentary metric could be replaced with a more sophisticated machine learning approach 
that incorporates features of mapped and unmapped reads, such as the number of 
mismatching bases or their associated quality scores.  Second, either this machine learning 
model or our realignment method could aid in selecting a contig that matches the correct 
plasmid sequence in cases where Unicycler produces more than one contig.  Third, we wish to 
find ways for our pipeline to provide greater detail regarding the likely nature of any 
contamination it detects.  We believe our likelihood score will be useful, but reporting the 
nature of any contamination detected would make it easier for users to assess their samples 
more fully. 

These results have important implications for basic and applied research. Contamination and 
sample misidentification are rampant problems in mammalian cell research (36-39). While 
comparably less attention has been paid to the potential for similar problems in model 
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organisms and in vitro, it has been demonstrated that many plasmids currently in circulation do 
not match their supposed references (40, 41). To ameliorate this problem, researchers can 
sequence their plasmids relatively inexpensively by coupling them to other sequencing runs at a 
local core facility and then using our pipeline to ensure that plasmid sequences are correct 
before running any experiments. seqWell has made the chemistry they use for plasmid 
sequencing available as library prep kits (~$16/sample, https://seqwell.com/products/), which 
should facilitate the process of plasmid verification by Illumina sequencing.  This small up-front 
cost could save considerable time and resources, as well as limiting reproducibility issues.  

The ability to rapidly and automatically validate plasmids by Illumina sequencing will be 
especially applicable to large-scale plasmid production projects associated with synthetic 
biology (42). The rapidly decreasing cost of DNA synthesis and sophisticated computer-aided 
design tools (43, 44) have facilitated disciplined factorial experiments involving large libraries of 
plasmids with various genetic parts (45) for applications such as improved genetic circuit design 
(46), multiplexed CRISPR-Cas (47) or metabolic engineering (48).  These workflows, which are 
often automated (49, 50), necessitate an automated sequence verification pipeline like the one 
we’ve described. 

Further, this pipeline will be an asset to another large-scale application: high-throughput 
plasmid libraries. Increasingly, high-throughput screens are being performed from libraries of 
hundreds to thousands of genes encoded on plasmids or lentiviral “transfer plasmid” genomes. 
Panels of this sort are so robust that they have made it possible to specify each gene involved in 
a molecular pathway (51-53) in a single screen, work that would have previously taken years to 
decades. Notably, plasmid libraries have been shown to perform sgRNA CRISPR/Cas9 knock-out 
(51) or shRNA knock-down (54) screening panels (Reviewed in (55)).  

Though these technologies were introduced in 2014 and 2011, respectively, they have been 
slow to be adopted, in part we believe from the difficulty of generating plasmid libraries.  
Though, the bottleneck of these types of screens is still generating a plasmid library, which 
includes the essential step of verifying plasmid sequences. The plasmid verification pipeline 
described here can solve a critical need to make generating high throughput screening libraries 
faster, cheaper, and therefore more feasible.  

This work is also relevant for data security (56, 57). There is increasing interest in using DNA as 
a medium for information storage (58, 59). Recently, researchers began experimenting with 
storing information in plasmids, as they can be rapidly replicated (60, 61). A technology for 
encrypting and securing digital information using cybersecurity techniques has also been 
developed for plasmids (62). Maintaining digital references for these sequences would defeat 
the purpose of storing the information in DNA, so these efforts will be greatly facilitated by the 
rapid de novo assembly pipeline we’ve described. 

The described pipeline was built using open source tools and is available to the community 
through the supplement. 
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Supplemental Information 
The bioinformatics pipeline is licensed open-source can be found here:  
https://bitbucket.org/genofabinc/oss/src/master/denovo/ 
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Figure 1. Schematic of pipeline. Illumina reads in the form of FASTQ files are filtered using 
Trimmomatic and assembled using Unicycler with parameters that have been specifically 
optimized for plasmid assembly. If a single assembly results, the unfiltered reads are compared 
with the assembled sequence and sorted according to whether or not they match 100%. 
Assembled sequences are returned as FASTA files. The percentage of matched reads is used to 
calculate the likelihood of contamination. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.185421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185421
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 2. Filtering for high quality reads. Distributions of read qualities for original raw reads 
(cyan) and reads after strict filtering (7.1% of the original reads, magenta) show the dramatic 
increase in quality consistency in the reads provided to the assembler. 
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Figure 3. Unicycler assembly time as a function of read count. Experiments using up to 50,000 
input reads show that Unicycler runtime increases approximately linearly with the number of 
input reads. 
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Figure 4. Determining the reliability of assemblies in the presence of contaminating reads. (A) 
Workflow for creating a set of reads (“primary”) with a specific proportion of contaminating 
reads to simulate how the pipeline is affected by contamination. Datasets of reads with 5-50% 
contaminating reads were created, assembled, and verified against the reference sequence. (B) 
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Percentage of correct assemblies when contaminating reads contained 1-4 SNPs. Percentage of 
correct and fragmented assemblies when (C) a 608 bp INDEL was introduced into 
contaminating reads, or (D) contaminating read sequences are completely unrelated to primary 
sequence.  

 
Figure 5. Misalignment of reads to the assembly can be used as a marker of contamination.  
(A) Input reads aligned back to their associated de novo assembly for contaminated and clean 
samples for filtered (top) and unfiltered (bottom) reads. (B) Receiver operating characteristic 
(ROC) curve demonstrating that, using the percent of mismatching reads alone, we can predict 
contamination with high accuracy.  Here, true positives are assemblies correctly predicted as 
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contaminated, and false positives are clean assemblies incorrectly predicted as contaminated. 
AUC: Area under the curve. 
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Variant Type %Contamination %Correct %Fragmented %Mismatches 

none 0 100% 0% 12.29% 

1 SNP 20% 100% 0% 13.38% 

  35% 96% 0% 14.41% 

  50% 44% 0% 14.68% 

2 SNPs 20% 100% 0% 14.35% 

  35% 96% 0% 14.82% 

  50% 32% 0% 15.96% 

3 SNPs 20% 100% 0% 14.04% 

  35% 96% 0% 15.21% 

  50% 35% 0% 16.58% 

4 SNPs 20% 100% 0% 14.85% 

  35% 90% 0% 16.83% 

  50% 18% 0% 17.99% 

608bp indel 10% 99% 1% 13.49% 

  20% 89% 11% 14.78% 

  35% 16% 84% 17.28% 

  50% 2% 95% 21.00% 

unrelated  10% 86% 4% 18.24% 

  20% 28% 72% 23.96% 

  35% 0% 100% NA 

  50% 0% 100% NA 

Table 1: Contamination Test Summary. Each row of this table represents the average result 
from a single simulation experiment (repeated 500 times). Each experiment differed by the 
amount and type of contamination simulated. Variant Type denotes by what metric the 
“contaminating” sequence (reads from a different sample that were artificially spiked) differs 
from the “primary” sequence (the reference sample). %Contamination refers to the percentage 
of the read library derived from contaminating reads. %Correct denotes the percentage of 
correct assemblies yielded. %Fragmented denotes the percentage of fragmented assemblies 
yielded. %Mismatches denotes the percentage of assemblies that did not exactly match the 
reference.  
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