Abstract
Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy). We used CCS on six proband-parent trios with NDDs that were unexplained despite extensive testing, including genome sequencing with short reads. We identified variants and created de novo assemblies in each trio, with global metrics indicating these data sets are more accurate and comprehensive than those provided by short-read data. In one proband, we identified a likely pathogenic (LP), de novo L1-mediated insertion in CDKL5 that results in duplication of exon 3, leading to a frameshift. In a second proband, we identified a de novo translocation affecting DGKB and MLLT3, which we show disrupts MLLT3 transcript levels. We consider this a variant of uncertain significance (VUS). The breadth and quality of variant detection coupled to finding variants of clinical and research interest in two of six probands with unexplained NDDs strongly support the value of long-read genome sequencing for understanding rare disease.
Competing Interest Statement
The authors have declared no competing interest.