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Abstract

In this study, we couple intracellular signalling and cell–based mechanical properties to develop

a novel free boundary mechanobiological model of epithelial tissue dynamics. Mechanobiological

coupling is introduced at the cell level in a discrete modelling framework, and new reaction–

diffusion equations are derived to describe tissue–level outcomes. The free boundary evolves as

a result of the underlying biological mechanisms included in the discrete model. To demonstrate

the accuracy of the continuum model, we compare numerical solutions from the discrete and

continuum models relating to two different signalling pathways. First we study the Rac–Rho

pathway where cell– and tissue–level mechanics are directly related to intracellular signalling.

We then study an activator–inhibitor system which gives rise to spatial and temporal patterning

related to Turing patterns. In all cases, the continuum model and free boundary condition

accurately reflect the cell–level processes included in the discrete model.

Key words: moving boundary problem, intracellular signalling, cell–based model, continuum model,

reaction–diffusion equations, non-uniform growth

1 Introduction

Epithelial tissues consist of tightly packed monolayers of cells [1–3]. Mechanical cell properties, such

as resistance to deformation and cell size, and chemical cell properties, such as intracellular signalling,

impact the shape of epithelial tissues [2, 4]. The role of purely mechanical cell properties on tissue

dynamics has been studied using mathematical and computational models [5–10]. Other models

incorporate intracellular signalling to study its effect on tissue dynamics. [11–15]. We extend these

studies by developing a model which couples mechanical cell properties to intracellular signalling. We

refer to this as mechanobiological coupling. By including mechanobiological coupling in a discrete

computational framework, new reaction–diffusion equations are derived to describe how cell–level

mechanisms relate to tissue–level outcomes.

Epithelial tissues play important roles in cancer development, wound healing and morphogenesis

[2, 16, 17]. Temporal changes in tumour size and wound width in epithelial monolayers can be

thought of as the evolution of a free boundary [18, 19]. Many boundary models use a one–phase

Stefan condition to describe the evolution of the free boundary [20,21]. Other free boundary models,

particularly those used to study biological development, pre-specify the rate of tissue elongation to

match experimental observations [22–28]. In this study, we take a different approach by constructing

the continuum limit description of a biologically–motivated discrete model. In doing so, we derive

a novel free boundary condition that arises from the underlying biological mechanisms included
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in the discrete model. While the discrete model is suitable to describe cell–level observations and

phenomena [15,29], the continuum limit description is suitable to describe tissue–level dynamics and

is more amenable to analysis [30–32].

To confirm the accuracy of the continuum limit description, including the new free boundary

condition, we compare the solution of the discrete model with the solution of the continuum model

for a homogeneous tissue with no mechanobiological coupling, and observe good correspondence. To

investigate mechanobiological coupling within epithelial tissues, the modelling framework is applied

in two different case studies. The first case study involves the Rac–Rho pathway where diffusible

chemicals called Rho GTPases regulate mechanical cell properties [12,33–38]. We explicitly consider

how the coupling between diffusible chemical signals and mechanical properties lead to different

tissue–level outcomes, including oscillatory and non-oscillatory tissue dynamics. The second case

study involves the diffusion and reaction of an activator–inhibitor system in the context of Turing

patterns on a non-uniformly evolving cellular domain [26–28]. In both case studies, the numer-

ical solution of the continuum model provides an accurate description of the underlying discrete

mechanisms.

2 Model Description

In this section, we first describe the cell–based model, referred to as the discrete model, where

mechanical cellular properties are coupled with intracellular signalling. To provide mathematical

insight into the discrete model, we then derive the corresponding coarse–grained approximation,

which is referred to as the continuum model.

2.1 Discrete model

To represent a one dimensional (1D) cross section of epithelial tissue, a 1D chain of cells is considered

[8,9] (Figure 1). The tissue length, L(t), evolves in time, while the number of cells, N , remains fixed.

We define xi(t), i = 0, 1, . . . N , to represent the cell boundaries, such that the left boundary of cell

i is xi−1(t) and the right boundary of cell i is xi(t). The left tissue boundary is fixed at x0(t) = 0

and xN (t) = L(t) is a free boundary.
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Figure 1: Schematic of the discrete model where mechanical cell properties, ai and ki, are functions
of the family of chemical signals, Ci(t). In this schematic we consider two diffusing chemical species

where the concentration in the ith cell is Ci(t) =
{
C

(1)
i (t), C

(2)
i (t)

}
. The diffusive flux into cell i

from cells i± 1, and the diffusive flux out of cell i into cells i± 1 is shown. Cell i, with boundaries at
xi−1(t) and xi(t), is associated with a resident point, yi(t), that determines the diffusive transport

rates, T
±(j)
i .
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Each cell, which we consider to be a mechanical spring [8, 9], is assigned potentially distinct

mechanical properties, ai and ki, such that the resulting tissue is heterogeneous (Figure 1) [7].

Each cell i contains a family of well mixed chemical species, Ci(t) =
{
C

(1)
i (t), C

(2)
i (t), . . . , C

(m)
i (t)

}
,

where C
(j)
i (t) represents the concentration of the jth chemical species in cell i at time t. As the

cell boundaries evolve with time, C
(j)
i (t) tends to decrease as cell i expands. Conversely, C

(j)
i (t)

tends to increase as cell i compresses. Furthermore, C
(j)
i (t) diffuses from cell i to cells i ± 1. The

mechanical properties of individual cells, such as the cell resting length, ai = a (Ci), and the cell

stiffness, ki = k (Ci), may depend on the local chemical concentration, Ci(t). We refer to this as

mechanobiological coupling.

As cells move in overdamped, viscous environments [6, 7, 39], the location of each cell boundary

i evolves as

η
dxi
dt

= fi+1 − fi, i = 1, 2, . . . , N − 1, (1)

where η > 0 is the mobility coefficient, and fi is the cell-to-cell interaction force acting on cell

boundary i from the left [6, 7]. For simplicity, we choose a linear, Hookean force law given by

fi = k (Ci) (xi(t)− xi−1(t)− a (Ci)) , i = 1, 2, . . . , N. (2)

The fixed boundary at x0(t) = 0 has zero velocity, whereas the free boundary at xN (t) = L(t) moves

due to the force acting from the left:

η
dx0

dt
= 0, η

dxN
dt

= −fN . (3)

We now formulate a system of ordinary differential equations (ODEs) that describe the rate of

change of C
(j)
i (t) due to changes in cell length and diffusive transport. A position–jump process

is used to describe the diffusive transport of C
(j)
i (t). We use T

±(j)
i to denote the rate of diffusive

transport of C
(j)
i (t) from cell i to cells i±1, respectively [40,41] (Figure 1). For a standard unbiased

position–jump process with a uniform spatial discretisation, linear diffusion at the macroscopic scale

is obtained by choosing constant T
±(j)
i [40]. As the cell boundaries evolve with time, one way to

interpret C
(j)
i (t) is that it represents a time–dependent, non-uniform spatial discretisation of the

concentration profile over the chain of cells. Therefore, care must be taken to specify T
±(j)
i on the

temporally evolving spatial discretisation if we suppose the position–jump process corresponds to

linear diffusion at the macroscopic level [41].

Yates et al. [41] show that in order for the position–jump process to lead to linear diffusion at

the macroscopic level, the length– and time–dependent transport rates must be chosen as

T
−(j)
i =

2Dj

(yi(t)− yi−1(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (4)

T
+(j)
i =

2Dj

(yi+1(t)− yi(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (5)

where Dj > 0 is the diffusion coefficient of the jth chemical species at the macroscopic level, and

yi(t) is the resident point associated with cell i (Figure 1) [41]. The resident points are a Voronoi

partition such that the left jump length for the transport of C
(j)
i (t) is yi(t)− yi−1(t), and the right

jump length for the transport of C
(j)
i (t) is yi+1(t)−yi(t) [41]. Complete details of defining a Voronoi

partition are outlined in Appendix B.1.1.
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At the tissue boundaries, we set T
−(j)
1 = T

+(j)
N = 0 so that the flux of C

(j)
1 (t) and C

(j)
N (t) across

x0(t) = 0 and xN (t) = L(t) is identically zero at all times. We follow Yates et al. [41] and choose the

inward jump length for the transport of C
(j)
1 (t) and C

(j)
N (t) as 2 (y1(t)− x0(t)) and 2 (xN (t)− yN (t)),

respectively, giving

T
+(j)
1 =

2Dj

(y2(t)− y1(t)) (y2(t) + y1(t))
, (6)

T
−(j)
N =

2Dj

(yN (t)− yN−1(t)) (xN (t)− yN (t)− yN−1(t))
. (7)

Therefore, the ODEs which describe the evolution of C
(j)
i (t) are:

dC
(j)
1

dt
= Z(j) (C1)︸ ︷︷ ︸

chemical
reactions

− C
(j)
1

l1

dl1
dt︸ ︷︷ ︸

changes in
cell length

+
1

l1

(
T
−(j)
2 C

(j)
2 l2︸ ︷︷ ︸

diffusion into
cell 1

− T
+(j)
1 C

(j)
1 l1︸ ︷︷ ︸

diffusion out of
cell 1

)
, (8)

dC
(j)
i

dt
= Z(j) (Ci)︸ ︷︷ ︸

chemical
reactions

− C
(j)
i

li

dli
dt︸ ︷︷ ︸

changes in
cell length

+
1

li

(
T

+(j)
i−1 C

(j)
i−1li−1 + T

−(j)
i+1 C

(j)
i+1li+1︸ ︷︷ ︸

diffusion into cell i

−
(
T

+(j)
i + T

−(j)
i

)
C

(j)
i li︸ ︷︷ ︸

diffusion out of cell i

)
, i = 2, . . . , N − 1,

(9)

dC
(j)
N

dt
= Z(j) (CN )︸ ︷︷ ︸

chemical
reactions

−
C

(j)
N

lN

dlN
dt︸ ︷︷ ︸

changes in
cell length

+
1

lN

(
T

+(j)
N−1C

(j)
N−1lN−1︸ ︷︷ ︸

diffusion into
cell N

− T−(j)
N C

(j)
N lN︸ ︷︷ ︸

diffusion out of
cell N

)
, (10)

where li = xi(t) − xi−1(t) is the length of cell i. Chemical reactions between the chemical species

residing in the ith cell are described by Z(j) (Ci). The form of Z(j) (Ci) is chosen to correspond to

different signalling pathways.

In summary, the discrete model is given by Equations (1)–(10), where Equations (1)–(3) describe

the mechanical interaction of cells, and Equations (8)–(10) describe the underlying biological mech-

anisms. We solve this deterministic system of ODEs numerically using ode15s in MATLAB [42].

The numerical method is outlined in Appendix B.1, and key numerical algorithms are available on

GitHub.

2.2 Continuum model

Assuming that the tissue consists of a sufficiently large number of individual cells, N , we now derive

an approximate continuum limit description of the discrete model. The discrete model describes the

mechanical relaxation of cells, chemical reactions within cells, and diffusive transport between nearest

neighbour cells. To keep the derivation of the continuum model as straightforward as possible, we

first consider the continuum limit description of the reactions terms, and then consider the continuum

limit description of the transport terms.

In the discrete model, i = 0, 1, . . . , N is a discrete variable which indexes cell positions and cell

properties. The time evolution of the cell boundaries, xi(t), is a set of N + 1 discrete functions

that depend continuously upon time. In contrast, the continuum model describes the spatially

continuous evolution of cell boundary trajectories in terms of the cell density per unit length, q(x, t).
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In the continuum model, we consider ī = i/N as the continuous analogue of i [5]. As N → ∞,

ī = 0, 1/N, . . . , 1 becomes a continuous variable and defines a continuum of cells. The spatially and

temporally continuous cell density is [5, 8]

q(x, t) = N
∂ī(x, t)

∂x
, x ∈ [0, L(t)] and ī ∈ [0, 1]. (11)

For each time t, x(̄i, t) is defined as the inverse function of ī(x, t) where 0 ≤ x ≤ L(t) for ī ∈ [0, 1]. We

use x(̄i, t) to represent the continuous spatial and temporal evolution of cell boundary trajectories [5].

The discrete quantity Ci(t) becomes a multicomponent vector field in the continuum model,

CCC(x, t) = {C1(x, t), C2(x, t), . . . , Cm(x, t)}. We assume that the mechanical relaxation of cells is suf-

ficiently fast such that the spatial distribution of cell lengths is slowly varying in space [6]. Under

this assumption, the location of the resident points can be approximated as the midpoint of each

cell. Thus,

Cj
(
x

(
i

N
− 1

2N
, t

)
, t

)
= C

(j)
i (t), i = 1, . . . , N. (12)

In Equation (12), the subscript j denotes the jth chemical species in the continuum model, and the

superscript (j) denotes the jth chemical species in the discrete analogue. Mechanobiological coupling

is introduced by allowing the cell stiffness, k (CCC), and the cell resting length, a (CCC), to depend on the

chemical family.

We write the linear force law for the continuum of cells as

f (̄i, t) = k (CCC) (x (̄i, t)− x (̄i− 1/N, t)− a (CCC)) , (13)

where CCC is evaluated at ī− 1/(2N) in Equation (13). Thus, the equations of motion are:

η
∂x(̄i, t)

∂t
= 0, ī = 0, (14)

η
∂x(̄i, t)

∂t
= f (̄i+ 1/N, t)− f (̄i, t) , ī ∈ (1/N, 1), (15)

η
∂x(̄i, t)

∂t
= −f (̄i, t) , ī = 1. (16)

The definition of f (̄i, t) in Equation (13) contains arguments evaluated at ī, ī− 1/N and ī− 1/(2N).

Equation (13) is substituted into Equations (14)–(16), and all components are expanded in a Taylor

series about ī as N →∞,

η
∂x

∂t
= 0, ī = 0, (17)

η
∂x

∂t
= − a

N

∂k

∂ī
− k

N

∂a

∂ī
+

1

N2

∂x

∂ī

∂k

∂ī
+

k

N2

∂2x

∂ī2
+O

(
N−3

)
, ī ∈ (1/N, 1), (18)

η
∂x

∂t
= ak − k

N

∂x

∂ī
− k

2N

∂a

∂ī
− a

2N

∂k

∂ī
+

1

2N2

∂k

∂ī

∂x

∂ī
+

k

2N2

∂2x

∂ī2
,

+
k

4N2

∂2a

∂ī2
+

a

4N2

∂2k

∂ī2
+

1

4N2

∂k

∂ī

∂a

∂ī
+O

(
N−3

)
, ī = 1. (19)

To describe the continuous evolution of cell trajectories and cell properties, we relate the cell

length to the inverse of cell density [6, 7], and define the continuous linear force law corresponding

5
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to Equation (13) as a 1D stress field,

f(x, t) = k (CCC(x, t))
(

1

q(x, t)
− a (CCC(x, t))

)
, x ∈ (0, L (t)) . (20)

We express Equations (17)–(19) in terms of q(x, t) and f(x, t) through a change of variables from

(̄i, t) to (x, t) [5, 8]. The change of variables gives

∂x

∂ī
=
N

q
,

∂x

∂t
= −N

q

∂ī

∂t
, (21)

∂k

∂ī
=
∂k

∂x

∂x

∂ī
=
N

q

∂k

∂x
,

∂a

∂ī
=
∂a

∂x

∂x

∂ī
=
N

q

∂a

∂x
. (22)

Complete details of the change of variables calculation are outlined in Appendix A.1. The non-zero

O
(
N−3

)
terms are neglected in Equations (17)–(19) and we show in Section 3 that the truncated

Taylor series expansion is sufficient to ensure reasonably good agreement between solutions of the

discrete and continuum models.

The local cell velocity, u(x, t) = ∂x/∂t, is derived by substituting Equations (21)–(22) into the

right hand side of Equation (18). Factorising in terms of f(x, t) gives,

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
, x ∈ (0, L (t)) . (23)

As u(x, t) = ∂x/∂t, we substitute Equation (21) into the left hand side of Equation (23) to derive

the governing equation for cell density. The resulting equation is differentiated with respect to x to

give,

∂

∂x

(
N
∂ī

∂t

)
=

∂

∂x

(
−1

η

∂f(x, t)

∂x

)
, x ∈ (0, L (t)) . (24)

The order of differentiation on the left hand side of Equation (24) is reversed, and Equation (21) is

used [5, 8] to give,

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
, x ∈ (0, L (t)) . (25)

We now derive the boundary condition for the evolution of L(t) by substituting Equations (21)–

(22) into the right hand side of Equation (19), giving

η
∂x

∂t
= ak − k

q
− k

2q3

∂q

∂x
+

1

2q2

∂k

∂x
− 1

2q

∂

∂x
(ak)

+
1

4q

{
1

q

∂a

∂x

∂k

∂x
+ k

∂

∂x

(
1

q

∂a

∂x

)
+ a

∂

∂x

(
1

q

∂k

∂x

)}
, x = L(t).

(26)

As u(x, t) = ∂x/∂t, the left hand side of Equation (26) is equated to Equation (23). Factorising in

terms of f(x, t) gives the free boundary condition

0 = f(x, t) +
1

2q(x, t)

∂f(x, t)

∂x
+

1

4q(x, t)

{
1

q(x, t)

∂a (CCC(x, t))
∂x

∂k (CCC(x, t))
∂x

(27)

+ k (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂a (CCC(x, t))
∂x

)
+ a (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂k (CCC(x, t))
∂x

)}
, x = L(t).
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A similar transformation is applied to Equation (17) to yield the left boundary condition as

∂f(x, t)

∂x
= 0, x = 0. (28)

Equations (23), (25), (27) and (28) form a continuum limit approximation of the discrete model.

Equations (23), (25) and (28) were reported previously by Murphy et al. [6] who consider tissues

of fixed length. A key contribution here is the derivation of Equation (27), which describes how

the free boundary evolves due to the underlying biological mechanisms and heterogeneity included

in the discrete model. For a homogeneous tissue where the cell stiffness and cell resting length

are constant and independent of Cj(x, t), Equation (27) is equivalent to Equation (23) in Baker et

al. [5]. Appendix A.2 shows that Equations (23), (25) and (28) can be derived without expanding all

components of Equations (14)–(15). As the definition of f (̄i, t) in Equation (13) contains arguments

evaluated at ī, ī − 1/N and ī − 1/(2N), it is necessary to expand all components of Equation (16)

about ī to derive Equation (27). For consistency, Equations (23), (25) and (28) are derived in the

same way. Numerical exploration in Section 3 reveals that solutions of Equations (23), (25), (27)

and (28) accurately reflect the solution of the discrete model.

We now derive a reaction–diffusion equation for the evolution of Cj(x, t). The reaction–diffusion

equation involves terms associated with the material derivative, diffusive transport, and source terms

that reflect chemical reactions as well as the effects of changes in cell length,

∂Cj(x, t)
∂t

+ u(x, t)
∂Cj(x, t)
∂x︸ ︷︷ ︸

material derivative

+ Cj(x, t)
∂u(x, t)

∂x︸ ︷︷ ︸
changes in cell length

−Dj
∂2Cj(x, t)
∂x2︸ ︷︷ ︸

diffusion

= Zj (CCC (x, t)) ,︸ ︷︷ ︸
chemical reactions

x ∈ (0, L(t)) .

(29)

The material derivative arises from differentiating Equation (12) with respect to time, and describes

to the propagation of cell properties along cell boundary characteristics [6,7]. The term describing the

effects of changes in cell length comes directly from the discrete mechanisms described in Equations

(8)–(10). The linear diffusion term arises due to the choice of jump rates in Equations (4)–(7) of the

discrete model [41]. Chemical reactions are described by Zj (CCC (x, t)), and originate from equivalent

terms in the discrete model, Z(j) (Ci).

Boundary conditions for Cj(x, t) are now formulated to ensure mass is conserved. As the left

tissue boundary is fixed, we set ∂Cj/∂x = 0 at x = 0. At x = L(t), we enforce that the total flux of

Cj(x, t) in the frame of reference co-moving with the right tissue boundary is zero for all time,

u (L(t), t) Cj (L(t), t)−Dj
∂Cj (L(t), t)

∂x︸ ︷︷ ︸
total flux at x = L(t)

− u (L(t), t) Cj(L(t), t)︸ ︷︷ ︸
moving frame of reference

= 0, (30)

where u (L(t), t) = dL/dt. Thus, ∂Cj/∂x = 0 at x = L(t). Equation (29) can be written in
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conservative form such that the free boundary mechanobiological model is:

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
, x ∈ (0, L (t)) , (31)

∂Cj(x, t)
∂t

+
∂

∂x

(
u(x, t)Cj(x, t)−Dj

∂Cj (x, t)

∂x

)
= Zj (CCC (x, t)) , x ∈ (0, L (t)) , (32)

0 =
∂f(x, t)

∂x
, x = 0, (33)

0 = f(x, t) +
1

2q(x, t)

∂f(x, t)

∂x
+

1

4q(x, t)

{
1

q(x, t)

∂a (CCC(x, t))
∂x

∂k (CCC(x, t))
∂x

(34)

+ k (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂a (CCC(x, t))
∂x

)
+ a (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂k (CCC(x, t))
∂x

)}
, x = L(t),

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
, x ∈ (0, L (t)) , (35)

where

f (x, t) = k (CCC)
(

1

q(x, t)
− a (CCC)

)
, x ∈ (0, L (t)) , (36)

and ∂Cj/∂x = 0 at x = 0 and x = L(t).

Equations (31)–(36) are solved numerically using a standard boundary fixing transformation [43].

In doing so, Equations (31)–(36) are transformed from an evolving domain, 0 ≤ x ≤ L(t), to a fixed

domain, 0 ≤ ξ ≤ 1, by setting ξ = x/L(t) [43]. The transformed equations are discretised using a

standard implicit finite difference method with initial conditions q(x, 0) and Cj(x, 0). The numerical

method is outlined in Appendix B.2 and key numerical algorithms are available on GitHub.

3 Results

To examine the accuracy of the new free boundary model, we compare solutions from the discrete

and continuum models for epithelial tissues consisting of m = 1 and m = 2 chemical species.

3.1 Case study 1: Homogeneous tissue

In all simulations, an epithelial tissue with just N = 20 cells is considered. Choosing a relatively

small value of N is a challenging scenario for the continuum model. Baker et al. [5] show that the

accuracy of the continuum model increases as N →∞. Additional simulations with N > 20 confirm

this (results not shown). In the discrete model, each cell i is initially the same length, li(0) = 0.5,

such that L(0) = 10. The discrete cell density is qi(t) = 1/li(t) which corresponds to q(x, 0) = 2 for

0 ≤ x ≤ L(0) in the continuum model.

The simplest application of the free boundary model is to consider cell populations without

mechanobiological coupling. For a homogeneous tissue with one chemical species CCC(x, t) = C1(x, t),

the cell stiffness and cell resting length are constant and independent of C1(x, t). Thus, the governing

equations for q(x, t) and C1(x, t) are only coupled through the cell velocity, u(x, t). To investigate

how non-uniform tissue evolution affects the chemical concentration of cells, we set C1(x, 0) = 1 for

0 ≤ x ≤ L(0) and Z1(C1) = 0.

Figure 2(a) demonstrates a rapid decrease in the cell density at x = L(t) as the tissue relaxes

and the cells elongate. This decreases the chemical concentration (Figure 2(b)). As the tissue

mechanically relaxes, the cell boundaries form a non-uniform spatial discretisation on which C1(x, t)

8
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is transported (Figure 2(a)–(b)). Figure 2(c)–(d) compares discrete and continuum solutions, and

demonstrates that the continuum model accurately reflects the biological mechanisms included in

the discrete model. Additional results in Appendix C show that q(x, t), C1(x, t) and L(t) become

constant as t→∞.
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Figure 2: Homogeneous tissue with N = 20 cells and one chemical species where Z1(C1) = 0, and
a = k = D1 = η = 1. Characteristic diagrams in (a)–(b) illustrate the position of cell boundaries
where the free boundary is highlighted in red. The colour in (a)–(b) represents q(x, t) and C1(x, t)
respectively. In (a)–(b), the black horizontal lines indicate times at which q(x, t) and C1(x, t) snap-
shots are shown in (c)–(d). In (c)–(d), the discrete and continuum solutions are compared as the
dots and solid line respectively for t = 0, 10, 25, 50, 75 where the arrow represents the direction of
time.
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3.2 Case study 2: Rac–Rho pathway

We now apply the mechanobiological model to investigate the Rac–Rho pathway. Rho GTPases are

a family of signalling molecules that consist of two key members, RhoA and Rac1. Rho GTPases

cycle between an active and inactive state, and regulate cell size and cell motility [12, 35, 37, 44, 45].

Additionally, Rho GTPases play roles in wound healing [46] and cancer development [47, 48]. New

experimental methods [49, 50] have discovered a connection between cellular mechanical tension

and Rho GTPase activity [51]. Previous studies use a discrete modelling framework to investi-

gate this relationship, and conclude that epithelial tissue dynamics is dictated by the strength of the

mechanobiological coupling [12,33]. We extend these previous results by considering how mechanobi-

ological coupling, and chemical variation associated with changes in cell length and diffusion, lead

to oscillatory and non-oscillatory tissue dynamics.

To investigate the impact of mechanobiological coupling on epithelial tissue dynamics, we let

CCC(x, t) = {C1(x, t), C2(x, t)} such that C1(x, t) is the concentration of RhoA and C2(x, t) is the con-

centration of Rac1. In the discrete and continuum models, cells are assumed to behave like linear

springs [8, 9]. Thus, cellular mechanical tension is defined as the difference between the length and

resting length of cells. Mechanobiological coupling is proportional to cellular tension and is included

in Zj (CCC). As Rho GTPase activity increases cell stiffness [52], we choose k (CCC) as an increasing

function of either C1(x, t) or C2(x, t). Furthermore, a (CCC) is chosen to reflect the fact that RhoA

promotes cell contraction [12,33].

The effect of RhoA, C1(x, t), on epithelial tissue dynamics is considered first. We include the

same mechanobiological coupling as [12,33] and let,

Z1 (C1) =

activation︷ ︸︸ ︷(
b+ γ

Cn1
1 + Cn1︸ ︷︷ ︸

feedback loop

+β

(
1

q
− a (C1)

)
︸ ︷︷ ︸
mechanobiological

coupling

)
(GT − C1) − δC1,︸ ︷︷ ︸

deactivation

(37)

where b is the basal activation rate, GT is the total amount of active and inactive RhoA, and δ is

the deactivation rate [12,33]. The activation term contains a positive feedback loop, governed by γ,

to reflect the fact that RhoA self–activates [12, 33]. Mechanobiological coupling is governed by β,

and is proportional to mechanical tension.

Similar to [12], we find that the tissue either mechanically relaxes or continuously oscillates de-

pending on the choice of β (Figure 3). Figure 3(a),(c) illustrates non-oscillatory tissue behaviour

when the mechanobiological coupling is weak, β = 0.2. By increasing the strength of the mechanobio-

logical coupling to β = 0.3, we observe temporal oscillations in the tissue length and sharp transitions

between high and low levels of RhoA (Figure 3(b),(d)). Figure 3(e)–(h) illustrates that the contin-

uum model and the free boundary condition accurately describe non-oscillatory and oscillatory tissue

dynamics.

As diffusion is usually considered a stabilising process [53], we hypothesise that increasing D1

will smooth the oscillations that arise when β = 0.3. Figure 4 illustrates that as D1 increases, the

amplitude of the oscillations remains constant, but the timing is delayed. While this delay is not

significant for a weakly coupled system (Figure 4(a)), it is significant for a strongly coupled system

(Figure 4(b)). Thus, diffusion does not significantly dampen the oscillations. This test case provides

further evidence of the ability of the new continuum model and free boundary condition to capture

key biological mechanisms included in the discrete model (Figure 4).
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To examine the combined effect of RhoA and Rac1 on epithelial tissue dynamics, we let [12],

Z1 (CCC) =

activation︷ ︸︸ ︷(
b1 + β̂

(
1

q
− a (C1)

)
︸ ︷︷ ︸
mechanobiological

coupling

)
1

1 + Cn2
(G1T

− C1)− δ1C1,︸ ︷︷ ︸
deactivation

(38)

Z2 (CCC) =
b2

1 + Cn1
(G2T

− C2)︸ ︷︷ ︸
activation

− δ2C2.︸ ︷︷ ︸
deactivation

(39)

In a weakly coupled system when β̂ = 1, we observe the fast transition from the initial concentrations

of RhoA and Rac1 to the steady state concentration (Figure 5(a),(c)). Analogous to Figure 3(a),(c),

temporal oscillations arise when the mechanobiological coupling is strong, β̂ = 2.5 (Figure 5(b),(d)).

The mechanobiological coupling and intracellular signalling in Figures 3–5 extend upon previous

Rho GTPase models [12, 33]. The source terms stated in Equations (37)–(39) can be applied to a

single, spatially–uniform cell to determine the dependence of the system stability on model param-

eters [12]. This analysis is outlined in Appendix D.1 and was used to inform our choices of β and

β̂.
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Figure 3: 1D tissue dynamics where RhoA is coupled to mechanical cell tension. (a),(c),(e),(g)
correspond to a non-oscillatory system where β = 0.2 and (b),(d),(f),(h) relate to an oscillatory
system where β = 0.3. Characteristic diagrams in (a)–(d) illustrate the evolution of cell boundaries
where the free boundary is highlighted in red. The colour in (a)–(b) represents C1(x, t) and q(x, t) in
(c)–(d). The black horizontal lines indicate times at which C1(x, t) and q(x, t) snapshots are shown in
(e)–(f) and (g)–(h) respectively. In (e)–(h), the discrete and continuum solutions are compared as the
dots and solid line respectively for t = 0, 100, 220, 350, 430. In both systems, a = l0−φCp1/ (Gp

h + Cp1 ),
k = 1 + 0.05C1, D1 = 1, η = 1, and C1(0, t) = 1 for 0 ≤ x ≤ L(0). Parameters: b = 0.2, γ = 1.5,
n = 4, p = 4, GT = 2, l0 = 1, φ = 0.65, Gh = 0.4, δ = 1 .
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Figure 4: The effect of diffusion on the dynamics of the free boundary for (a) a non-oscillatory system
with β = 0.2 and (b) a oscillatory system with β = 0.3. The discrete solution is shown as the dots
and the continuum solution as solid line. Parameters are as in Figure 3.
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Figure 5: Characteristic diagrams for the interaction of RhoA and Rac1 where the free boundary
is highlighted in red. (a),(c) correspond to a non-oscillatory system where β̂ = 1 and (b),(d) relate

to an oscillatory system where β̂ = 2.5. The colour in (a)–(b) denotes the concentration of RhoA
and the concentration of Rac1 in (c)–(d). In both systems, a = l0 − φCp1/ (Gp

h + Cp1 ), k = 1 + 0.1C2,
D1 = D2 = 1 and η = 1. The initial conditions are C1(0, t) = 1 and C2(0, t) = 0.5 for 0 ≤ x ≤ L(0).
Parameters: b1 = b2 = 1, δ1 = δ2 = 1, n = 3, p = 4, G1T

= 2, G2T
= 3, l0 = 1, φ = 0.65, Gh = 0.4.

Discrete and continuum solutions are compared in Appendix D.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185686


3.3 Case study 3: Activator–inhibitor patterning

Case study 3 considers an activator–inhibitor system [53–55]. Previous studies of activator–inhibitor

patterns on uniformly evolving domains have characterised the pattern splitting and frequency dou-

bling phenomena which occur naturally on the skin of angelfish [25–28,56]. To investigate how diffu-

sion driven instabilities arise on a non-uniformly evolving domain, we let CCC(x, t) = {C1(x, t), C2(x, t)}
with D1 6= D2, and use Schnakenberg kinetics,

Z1 (CCC) = n1 − n2C1 + n3C2
1C2, (40)

Z2 (CCC) = n4 − n3C2
1C2, (41)

where C1(x, t) is the activator and C2(x, t) is the inhibitor [53]. The parameters, ni > 0 for i =

1, 2, 3, 4, govern activator–inhibitor interactions. Non-dimensionalisation of the governing equations

(Equations (25) and (29)) reveals that the linear stability analysis is analogous to the classical

stability analysis of Turing patterns on fixed domains [53]. Thus, we define the relative diffusivity,

d = D2/D1, with the expectation that there exists a critical value, dc, that depends upon the choice

of ni. In doing so, it is expected that diffusion driven instabilities arise for d > dc [53, 54].

A homogeneous tissue is initialised to investigate the affect of d on the evolution of activator–

inhibitor patterns. For d < dc, the distribution of C1(x, t) and C2(x, t) varies in time but remains

approximately spatially uniform throughout the tissue (Figure 6(a),(c),(e),(g)). Thus, only temporal

patterning arises when d < dc. Figure 6(b),(d),(f),(h) demonstrates that spatial–temporal patterns

develop when d > dc. Similar to [25–27], we observe splitting in activator peaks for d > dc where the

concentration of C1(x, t) is at a minimum. Figure 6(b) shows that two distinct activator peaks arise.

The long time behaviour of the tissue is examined in Appendix E. Figure 6(e),(g) shows excellent

agreement between the solutions of the discrete and continuum models when d < dc, whereas Figure

6(f),(h) shows a small discrepancy between the solutions of the discrete and continuum models when

d > dc.
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Figure 6: The evolution of activator–inhibitor patterns in a homogeneous tissue with Schnakenberg
dynamics. In (a),(c),(e),(g), D1 = 2 and D2 = 3 such that d < dc. In (b),(d),(f),(h), D1 = 0.5 and
D2 = 5 such that d > dc. Characteristic diagrams in (a)–(d) illustrate the evolution of cell boundaries
where the free boundary is highlighted in red. The colour in (a)–(b) represents C1(x, t) and C2(x, t) in
(c)–(d). The black horizontal lines indicate times at which C1(x, t) and C2(x, t) snapshots are shown
in (e)–(f) and (g)–(h) respectively. In (e)–(h), the discrete and continuum solutions are compared
as the dots and solid line respectively for t = 0, 10, 20, 40, 90. In both systems, C1(x, 0) = 1 and
C2(x, 0) = 0.5 for 0 ≤ x ≤ L(0) and a = k = η = 1 Parameters: n1 = 0.1, n2 = 1, n3 = 0.5, n4 = 1
and dc = 4.9842
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4 Conclusion

In this study, we present a novel free boundary mechanobiological model to describe epithelial tissue

dynamics. A discrete modelling framework is used to include mechanobiological coupling at the cell

level. Tissue–level outcomes are described by a system of coupled, non-linear partial differential

equations. In contrast to previous free boundary models [22–28], the free boundary condition is not

pre-specified to correspond to uniformly evolving tissues, or a one–phase Stefan condition [20,21]. We

take the continuum limit description of the discrete model to derive a new free boundary condition

which describes how mechanobiological coupling dictates epithelial tissue dynamics. In deriving

the continuum model, we make reasonable assumptions about the number of cells and the rate of

mechanical relaxation. Case studies involving a homogeneous cell population, the Rac–Rho pathway

and activator–inhibitor patterning demonstrate that the continuum model reflects the biologically–

motivated discrete model even when N is relatively small. In addition, these case studies show how

non-uniform tissue dynamics, including oscillatory and non-oscillatory tissue behaviour, arises due

to mechanobiological coupling.

The accuracy of the continuum model increases as N → ∞ [5]. One potential approach to

improve the accuracy of the continuum model is to retain additional terms in the truncated Taylor

series used to derive the continuum model. We do not follow this approach for two reasons. First,

retaining higher order terms can lead to ill–posed partial differential equation models [57]. Second,

numerical exploration has confirmed that solutions of the discrete and continuum models agree for

a relatively small value of N = 20. Therefore, we leave the question of retaining additional terms in

the truncated Taylor series for future consideration.

There are several possible mathematical and biological extensions of this study. We take the

most fundamental approach and choose a linear force law to describe cell-to-cell interactions. One

extension of this work is to describe cell-to-cell interactions using a non-linear force law [5, 9]. An-

other choice we make is to suppose that chemical transport is described by linear diffusion at the

macroscopic scale. Other choices, such as diffusion with drift, are also possible [58]. An important

extension of the free boundary model is to introduce cell proliferation and cell death [5,7,59]. While

these phenomena traditionally depend on cell length [5, 7], the general theoretical framework pre-

sented here is compatible with cell proliferation and death that depend on intracellular signalling.

In doing so, the model is applicable to biochemical networks where biological mechanisms regulate

cell proliferation in epithelial tissues [60].
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Appendices

A Continuum model derivation

A.1 Change of variables

This section outlines the change of variables from (̄i, t) to (x, t) used in Section 2.2. Rewriting

Equation (11), the cell density per unit length, q(x, t), is

q(x, t) = N
∂ī(x, t)

∂x
. (42)

To perform a change of variables from (̄i, t) to (x, t), we calculate the Jacobian of the coordinate

transformation [5, 8, 9],

(
∂x
∂ī

∣∣
t

∂x
∂t

∣∣̄
i

∂t
∂ī

∣∣
t

∂t
∂t

∣∣̄
i

)
=

 ∂ī
∂x

∣∣∣
t

∂ī
∂t

∣∣∣
x

∂t
∂x

∣∣
t

∂t
∂t

∣∣
x

−1

, (43)

=
1

∂ī
∂x

∣∣∣
t

∂t
∂t

∣∣
x
− ∂ī

∂t

∣∣∣
x

∂t
∂x

∣∣
t

 ∂t
∂t

∣∣
x

− ∂ī
∂t

∣∣∣
x

− ∂t
∂x

∣∣
t

∂ī
∂x

∣∣∣
t

 , (44)

to arrive at the relationships,

∂x

∂ī
=
N

q
,

∂x

∂t
= −N

q

∂ī

∂t
. (45)

Using the chain rule, the second derivatives are,

∂2x

∂ī2
=
∂x

∂ī

∂

∂x

(
N

q

)
= −N

2

q3

∂q

∂x
, (46)

∂2k

∂ī2
=
∂x

∂ī

∂

∂x

(
∂k

∂x

∂x

∂ī

)
=
N2

q

∂

∂x

(
1

q

∂k

∂x

)
, (47)

∂2a

∂ī2
=
∂x

∂ī

∂

∂x

(
∂a

∂x

∂x

∂ī

)
=
N2

q

∂

∂x

(
1

q

∂a

∂x

)
. (48)

A.2 Derivation of governing equation for cell density in factorised form

Here we outline how Equations (23), (25) and (28) can be obtained using the factorised form of

f (̄i, t) in Equation (13). The equations of motion in Equations (14)–(16) are restated as,

η
∂x(̄i, t)

∂t
= 0, ī = 0, (49)

η
∂x(̄i, t)

∂t
= f (̄i+ 1/N, t)− f (̄i, t) , ī ∈ (1/N, 1), (50)

η
∂x(̄i, t)

∂t
= −f (̄i, t) , ī = 1. (51)

To derive the local cell velocity in Equation (23), the right hand side of Equation (50) is expanded

in a Taylor series about ī,

η
∂x

∂t
=

1

N

∂f

∂ī
+O

(
N−2

)
, ī ∈ (1/N, 1). (52)
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Neglecting non-zero higher order terms and using the chain rule gives,

η
∂x

∂t
=

1

N

∂f

∂x

∂x

∂ī
, ī ∈ (1/N, 1). (53)

Equation (45) is substituted into the right hand side of Equation (53) to derive the local cell velocity,

u(x, t) = ∂x/∂t, as,

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
, x ∈ (0, L (t)) . (54)

As u(x, t) = ∂x/∂t, Equation (45) is substituted into the left hand side of Equation (54). Differen-

tiating the resulting equation with respect to x gives,

∂

∂x

(
N
∂ī

∂t

)
=

∂

∂x

(
−1

η

∂f(x, t)

∂x

)
, x ∈ (0, L (t)) . (55)

The order of differentiation on the left hand side of Equation (55) is reversed, and Equation (45) is

used to give,

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
, x ∈ (0, L (t)) . (56)

To derive the left boundary condition in Equation (28), the left hand side of Equation (49) is equated

to Equation (54) giving,

∂f(x, t)

∂x
= 0, x = 0. (57)

Thus, we have shown that Equations (23), (25) and (28) can be obtained using the factorised

form of f (̄i, t) in Equation (13) and first order Taylor series expansions. In the main document we

do not peruse this approach. This is because more care is required to obtain the correct form of

the free boundary equation in Equation (27). Extensive numerical exploration confirms that the

approach taken in the main document is necessary to reflect the underlying biological mechanisms

included in the discrete model.
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B Numerical methods

This section outlines the numerical method used to solve the discrete and continuum models with

one chemical species, m = 1. Key numerical algorithms for m = 1 and m = 2 chemical species are

available on GitHub.

B.1 Discrete model

For N cells and one chemical species, the discrete model consists of 2N + 1 ordinary differential

equations. For simplicity, we write C = C(1) = C and D1 = D. Equations (1)–(10) are restated as:

η
dx0

dt
= 0, (58)

η
dxi
dt

= fi+1 − fi, i = 1, . . . , N − 1, (59)

η
dxN
dt

= −fN , (60)

dC1

dt
= Z (C1)− C1

l1

dl1
dt

+
1

l1

(
T−2 C2l2 − T+

1 C1l1
)
, (61)

dCi

dt
= Z (Ci)−

Ci

li

dli
dt

+
1

li

(
T+
i−1Ci−1li−1 −

(
T+
i + T−i

)
Cili + T−i+1Ci+1li+1

)
, i = 1, . . . , N − 1,

(62)

dCN

dt
= Z (CN )− CN

lN

dlN
dt

+
1

lN

(
T+
N−1CN−1lN−1 − T−NCN lN

)
, (63)

where li = xi(t)− xi−1(t) is the length of cell i and

fi = k (Ci) (xi(t)− xi−1(t)− a (Ci)) , i = 1, . . . , N. (64)

The transport rates for internal cells are

T−i =
2D

(yi(t)− yi−1(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (65)

T+
i =

2D

(yi+1(t)− yi(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (66)

and

T+
1 =

2D

(y2(t)− y1(t)) (y2(t) + y1(t))
, (67)

T−N =
2D

(yN (t)− yN−1(t)) (xN (t)− yN (t)− yN−1(t))
, (68)

for boundary cells [41]. Equations (58)–(68) are solved numerically using ode15s in MATLAB [42].

At each time step, we use a Voronoi partition to compute the resident points, yi(t), and the transport

rates, T±i .

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185686doi: bioRxiv preprint 

https://github.com/tamaratambyah/Tambyah2020
https://doi.org/10.1101/2020.07.02.185686


B.1.1 Voronoi partition

To define a Voronoi partition, we set the resident point of cell 1, y1(t), as the midpoint of its respective

cell boundaries,

y1(t) =
x0(t) + x1(t)

2
. (69)

The Voronoi partition enforces that the cell boundaries correspond to the midpoints of resident

points [41]. Thus, the following relationship holds

xi−1(t) =
yi(t) + yi−1(t)

2
, i = 2, . . . , N. (70)

Equations (69) and (70) can be written as the following system of linear equations,

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0
...

. . .
. . .

. . .
. . .

0 0 0 1 1





y1(t)

y2(t)

y3(t)
...

yN (t)


=



(x0(t) + x1(t)) /2

2x1(t)

2x2(t)
...

2xN−1(t)


. (71)

Equation (71) is solved numerically for the resident points at each time step of the discrete

simulation. As Equation (71) is a lower triangular matrix system, we use the Thomas Algorithm [61].

B.2 Continuum model

We now outline the numerical method used to solve the continuum model and write CCC = C1 = C and

D1 = D for simplicity. Equations (31)–(36) are restated as a system of coupled, non-linear partial

differential equations:

∂q

∂t
= −1

η

∂2f

∂x2
, x ∈ (0, L (t)) , (72)

∂C
∂t

+
∂

∂x

(
uC −D∂C

∂x

)
= Z (C) , x ∈ (0, L (t)) , (73)

0 =
∂f

∂x
, x = 0, (74)

0 = f +
1

2q

∂f

∂x
+

1

4q

{
1

q

∂a

∂x

∂k

∂x
+ k

∂

∂x

(
1

q

∂a

∂x

)
+ a

∂

∂x

(
1

q

∂k

∂x

)}
, x = L(t), (75)

u =
1

ηq

∂f

∂x
, x ∈ (0, L (t)) , (76)

where

f = k

(
1

q
− a
)
, x ∈ (0, L (t)) , (77)

and ∂C/∂x = 0 at x = 0 and x = L(t).

A standard boundary fixing transformation is used to transform Equations (72)–(77) from an

evolving domain, 0 ≤ x ≤ L(t), to a fixed domain, 0 ≤ ξ ≤ 1, by setting ξ = x/L(t) [43]. Invoking
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this transform yields:

∂q

∂t
= − 1

ηL2

∂2f

∂ξ2
+
ξ

L

dL

dt

∂q

∂ξ
, ξ ∈ (0, 1), (78)

∂C
∂t

+ v
∂C
∂ξ

+
C

ηqL2

{
∂2f

∂ξ2
− 1

q

∂q

∂ξ

∂f

∂ξ

}
− D

L2

∂2C
∂ξ2

= Z (C) , ξ ∈ (0, 1), (79)

0 =
1

L

∂f

∂ξ
, ξ = 0, (80)

0 = f +
1

2qL

∂f

∂ξ
+

k

4qL2

∂

∂ξ

(
1

q

∂a

∂ξ

)
+

1

4q2L2

∂a

∂ξ

∂k

∂ξ
+

a

4qL2

∂

∂ξ

(
1

q

∂k

∂ξ

)
, ξ = 1, (81)

u =
1

ηqL

∂f

∂ξ
, ξ ∈ (0, 1), (82)

where

v =
1

ηqL2

∂f

∂ξ
− ξ

L

dL

dt
, ξ ∈ (0, 1), (83)

and ∂C/∂ξ = 0 at ξ = 0 and ξ = 1.

Equations (78)–(83) are spatially discretised on a uniform mesh, with n = 1/∆ξ + 1 nodes. The

value of q(ξ, t) and C(ξ, t) at the ith spatial node and the jth temporal node are approximated as qji
and Cji respectively, where ξ = (i− 1)∆ξ and t = j∆t. A standard implicit finite difference method

is used to approximate spatial and temporal derivatives [61].

We first consider the discretisation of the governing equation and boundary conditions for cell

density. Central difference approximations are used to discretise Equation (78) as

qj+1
i − qji

∆t
= − 1

η(Lj+1)
2

(
f j+1
i−1 − 2f j+1

i + f j+1
i+1

(∆ξ)
2

)

+
ξ

Lj+1

(
Lj+1 − Lj

∆t

)(
qj+1
i+1 − q

j+1
i−1

2∆ξ

)
, i = 2, . . . , n− 1.

(84)

Equations (80) and (81) are discretised using appropriate forward and backward difference approxi-

mations,

0 = f j+1
2 − f j+1

1 , (85)

0 = f j+1
n +

1

2qj+1
n Lj+1

(
f j+1
n − f j+1

n−1

∆ξ

)
+

kj+1
n

4qj+1
n (Lj+1)

2

(
1

qj+1
n

− 1

qj+1
n−1

)(
aj+1
n − aj+1

n−1

∆ξ

)

+
aj+1
n

4qj+1
n (Lj+1)

2

(
1

qj+1
n

− 1

qj+1
n−1

)(
kj+1
n − kj+1

n−1

∆ξ

)

+
1

4
(
qj+1
i

)2

(Lj+1)
2

(
aj+1
n − aj+1

n−1

∆ξ

)(
kj+1
n − kj+1

n−1

∆ξ

)
.

(86)

We now consider the discretisation of the governing equation and boundary conditions for C. As C
propagates along cell boundary characteristics, Equation (83) is used to upwind the first derivative

of C in Equation (79). For vi > 0, a backward difference approximation is used to approximate

the first derivative of C, and all other spatial derivates are approximated using central difference
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approximations:

Cj+1
i − Cji

∆t
+ vi

(
Cj+1
i − Cj+1

i−1

∆ξ

)
− D

(Lj+1)
2

(
Cj+1
i−1 − 2Cj+1

i + Cj+1
i+1

(∆ξ)
2

)

+
Cj+1
i

ηqj+1
i (Lj+1)

2

{(
f j+1
i−1 − 2f j+1

i + f j+1
i+1

(∆ξ)
2

)

− 1

qj+1
i

(
qj+1
i+1 − q

j+1
i−1

∆ξ

)(
f j+1
i+1 − f

j+1
i−1

∆ξ

)}
= Z

(
Cj+1
i

)
, i = 2, . . . , n− 1.

(87)

where

vi =
1

ηqj+1
i (Lj+1)

2

(
f j+1
i+1 − f

j+1
i−1

2∆ξ

)
− ξ

Lj+1

(
Lj+1 − Lj

∆t

)
, i = 2, . . . , n− 1. (88)

Similarly, forward difference approximations are used when vi < 0. The boundary condition at ξ = 0

is

0 = C2 − C1. (89)

Numerical exploration revealed that a ghost node was necessary to solve ∂C/∂ξ = 0 at ξ = 1. The

use of a ghost node ensured that the numerical solution of the continuum model agreed with the

solution of the discrete model. The ghost node is placed outside the right domain boundary at

i = n + 1. A central difference approximation is applied to the zero–flux boundary condition to

obtain Cj+1
n+1 = Cj+1

n−1. To incorporate the ghost node, Equation (79) is factorised as

∂C
∂t

+ v
∂C
∂ξ

+
C
ηL2

∂

∂ξ

(
1

q

∂f

∂ξ

)
− D

L2

∂2C
∂ξ2

= Z (C) . (90)

Backward and central difference approximations are used to discretise Equation (90) as

Cj+1
n − Cjn

∆t
+ vn

(
Cj+1
n − Cj+1

n−1

∆ξ

)
− D

(Lj+1)
2

(
Cj+1
n−1 − 2Cj+1

n + Cj+1
n+1

∆ξ2

)
(91)

+
Cj+1
n

η (Lj+1)
2

1

∆ξ

{
1

qj+1
n

(
f j+1
n − f j+1

n−1

∆ξ

)
− 1

qj+1
n−1

(
f j+1
n − f j+1

n−1

∆ξ

)}
= Z

(
Cj+1
n

)
. (92)

Substituting Cj+1
n+1 = Cj+1

n−1 and factorising gives the boundary condition at ξ = 1 as

Cj+1
n − Cjn

∆t
+ vn

(
Cj+1
n − Cj+1

n−1

∆ξ

)
− D

(Lj+1)
2

(
2Cj+1

n−1 − 2Cj+1
n

(∆ξ)
2

)

+
Cj+1
n

η (Lj+1)
2

1

∆ξ

(
1

qj+1
n

− 1

qj+1
n−1

)(
f j+1
n − f j+1

n−1

∆ξ

)
= Z

(
Cj+1
n

)
.

(93)

where

vn =
1

ηqj+1
n (Lj+1)

2

(
f j+1
n − f j+1

n−1

∆ξ

)
− ξ

Lj+1

(
Lj+1 − Lj

∆t

)
. (94)
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Equation (77) is discretised as

f j+1
i = k

(
Cj+1
i

)( 1

qj+1
i

− a
(
Cj+1
i

))
, i = 1, . . . , n, (95)

and substituted into Equations (84)–(94) to form a non-linear system of equations.

We solve Equations (84)–(86) for qj+1
i and Equations (87)–(94) for Cj+1

i using the Newton-

Raphson method [62]. At each Newton-Raphson iteration, Equation (82) is used to update the

position of the free boundary as

Lj+1 = Lj +
∆t

ηqj+1
n Lj

f j+1
n − f j+1

n−1

∆ξ
. (96)

Newton-Raphson iterations are continued until the norm of the difference between successive solution

estimates of qj+1
i and Cj+1

i are both less than a specified tolerance, ε. To ensure all numerical results

are grid–independent, ∆ξ = 10−3, ∆t = 10−3 and ε = 10−8. All linear systems are solved using the

Thomas algorithm [61].
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C Case study 1: Homogeneous tissue

In Section 3.1, we examine a homogeneous tissue with N = 20 cells, one chemical species, CCC(x, t) =

C1(x, t), and no chemical source, Z1(C1) = 0. Figure 7(a)–(b) demonstrates that q(x, t), C1(x, t) and

L(t) become constant as t→∞. To obtain expressions for the long time behaviour of q(x, t), C1(x, t)

and L(t), the total number of cells, N , and total number of chemical particles, P , are computed as,

N =

∫ L(t)

0

q(x, t) dx, P =

∫ L(t)

0

C1(x, t) dx. (97)

Using Equation (97), N = q(x, 0)L(0) and P = C1(x, 0)L(0). As the tissue relaxes, the cells elongate

such that the length of individual cells approaches the cell resting length. Thus, q(x, t), C1(x, t) and

L(t) become constant,

lim
t→∞

q(x, t) =
1

a
, lim

t→∞
C1(x, t) =

P

Na
, lim

t→∞
L(t) = Na. (98)

Figure 7(c)–(d) shows that the average cell density, q̃(x, t), and the average chemical concentration,

C̃1(x, t), approach the limits stated in Equation (98) as t→∞.
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Figure 7: Homogeneous tissue consisting of one chemical species where Z1(C1) = 0 and a = k =
D1 = η = 1. Characteristic diagrams in (a)–(b) illustrate the position of cell boundaries where the
free boundary is highlighted in red. The colour in (a)–(b) represents q(x, t) and C1(x, t) respectively.
Discrete and continuum solutions for the average cell density, q̃(x, t), and the average chemical
concentration, C̃1(x, t) are compared in (c)–(d) respectively. The purple line in (c)–(d) shows the
asymptotic behaviour of q̃(x, t) = 1/a and C̃1(x, t) = P/(Na) respectively.
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D Case study 2: Rac–Rho pathway

To investigate the Rac–Rho pathway, we let CCC(x, t) = {C1(x, t), C2(x, t)} such that C1(x, t) represents

the concentration of RhoA and C2(x, t) represents the concentration of Rac1. Figure 8 compares the

discrete and continuum solutions relating to Figure 5.
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Figure 8: 1D tissue dynamics for the interaction of RhoA and Rac1. (a),(c),(e) correspond to

non-oscillatory system where β̂ = 1 and (b),(d),(f) relate to an oscillatory system where β̂ = 2.5.
Characteristic diagrams in (a)–(b) illustrate the behaviour of C1(x, t) where the free boundary is
highlighted in red. The black horizontal lines indicate times at which C2(x, t) and q(x, t) snapshots
are shown in (c)–(d) and (e)–(f) respectively. In (c)–(f), the discrete and continuum solutions are
compared as the dots and solid line respectively for t = 0, 1, 90, 140, 190, 300. In both systems,
a = l0−φCp1/ (Gp

h + Cp1 ), k = 1 + 0.1C2, D1 = D2 = 1 and η = 1. Parameters: b1 = b2 = 1, δ1 = δ2 =
1, n = 3, p = 4, G1T

= 2, G2T
= 3, l0 = 1, φ = 0.65, Gh = 0.4.
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D.1 Single cell model

To investigate the influence of the mechanobiological coupling on cellular dynamics, a discrete com-

putational framework is used to model a single cell [12, 33]. We let C(t) =
{
C(1)(t), C(2)(t)

}
where

C(1)(t) represents RhoA and C(2)(t) represents Rac1. As only a single cell is of interest, C(t) is not

indexed with a subscript (Figure 9). Mechanobiological coupling is introduced such that the cell

resting length, a = a (C), and the cell stiffness, k = k (C), depend on the chemical family, C(t).

L(t) 

* *
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x

*

x
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Figure 9: Schematic of a single cell with length L(t). The mechanical cell properties, a and k, depend
on the family of chemical signals, C(t) =

{
C(1)(t), C(2)(t)

}
.

We model the cell as an overdamped, mechanical spring [8, 39] such that C(t) tends to decrease

as the cell expands, and tends to increase as the cell compresses. Thus, the governing equations are,

dL

dt
= −ε (L− a (C)) , (99)

dC(j)

dt
= Z(j) (C)︸ ︷︷ ︸

chemical
reactions

− C(j)

L

dL

dt︸ ︷︷ ︸
changes in
cell length

, (100)

where L(t) is the cell length, ε = 2k (C) /η is the rate of contraction, η is the mobility coefficient

and Z(j) (C) governs the reactions between the chemical species within the cell [12]. For simplicity,

the cell stiffness is chosen to be independent of C(t) such that ε is constant. The cell resting length

is assumed to vary from a fixed value, l0 [12]. By including a Hill function with amplitude φ, switch

location Gh and power p, we assume RhoA shortens the resting cell length [12],

a (C) = l0 − φ
(
C(1)

)p
Gh +

(
C(1)

)p . (101)

Equations (99) and (100) form a dynamical system. Phase planes are constructed to characterise

the dependence of the system stability on the strength of the mechanobiological coupling. We used

this analysis to inform our choice of model parameters in Section 3.2. The equilibrium points, L̄ and

C̄(j), are determined by setting the time derivatives to zero such that L̄ = a
(
C̄
)

and Z(j)
(
C̄
)

= 0.

To investigate a single cell containing only RhoA, we consider [12]

Z(1)
(
C(1)

)
=

activation︷ ︸︸ ︷(
b+ γ

(
C(1)

)n
1 +

(
C(1)

)n︸ ︷︷ ︸
feedback loop

+β
(
L(t)− a

(
C(1)

))
︸ ︷︷ ︸

mechanobiological
coupling

)(
GT − C(1)

)
− δC(1),︸ ︷︷ ︸

deactivation

(102)
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where b is the basal activation rate, γ is rate of feedback activation, β governs the strength of

the mechanobiological coupling, GT is the total amount of active and inactive RhoA, and δ is the

deactivation rate [12, 33]. By substituting L̄ = a
(
C̄
)

into Z(1)
(
C̄(1)

)
= 0, C̄(1) is numerically

computed as the roots of,

0 = (−b− γ + δ)
(
C̄(1)

)n+1

+ (bGT + δGT)
(
C̄(1)

)n
+ (−b+ δ) C̄(1) + bGT. (103)

As Equation (103) is independent of β. Thus, we vary β to investigate how the system stability

depends on the strength of the mechanobiological coupling (Figure 10). Phase planes are constructed

using quiver in MATLAB [63] and trajectories are computed using ode15s in MATLAB [42] (Figure

10).
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Figure 10: Dynamics of a single cell containing RhoA. (a),(c) corresponds to a non-oscillatory system
where β = 0.2, and (b),(d) corresponds to an oscillatory system where β = 0.3. In (a)–(b), cyan rep-
resents the L nullcline and magenta represents the C(1) nullcline. The trajectory for

(
C(1)(0), L(0)

)
=

(0.5, 1) is shown in red. In (b), the additional trajectory for
(
C(1)(0), L(0)

)
= (0.5, 0.65) is drawn

as a dashed red line to demonstrate that all solutions exhibit oscillatory behaviour for β = 0.3.
Parameters are: b = 0.2, γ = 1.5, n = 4, p = 4, GT = 2, l0 = 1, φ = 0.65, Gh = 0.4, δ = 1, ε = 0.1 .

Figure 10(a),(c) demonstrates that the equilibrium point is stable when β = 0.2, and the cell

exhibits non-oscillatory behaviour. By increasing the strength of the mechanobiological coupling

to β = 0.3, a limit cycle arises which leads to continuous oscillations in L(t) and C(1)(t) (Figure

10(b),(d)). Stability analysis reveals that the equilibrium point is unstable for β = 0.3. Thus, all

solutions, regardless of the initial condition, exhibit oscillatory behaviour when β = 0.3 (Figure
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10(b)).

To investigate how intracellular reactions between RhoA and Rac1 impact cell behaviour, we

consider [12]

Z(1) (C) =

activation︷ ︸︸ ︷(
b1 + β̂

(
L(t)− a

(
C(1)

))
︸ ︷︷ ︸

mechanobiological
coupling

)
1

1 +
(
C(2)

)n (G1T
− C(1)

)
− δ1C

(1),︸ ︷︷ ︸
deactivation

(104)

Z(2) (C) =
b2

1 +
(
C(1)

)n (G2T
− C(2)

)
︸ ︷︷ ︸

activation

− δ2C
(2).︸ ︷︷ ︸

deactivation

(105)

Figure 11(a),(c) illustrates that when the mechanobiological coupling is weak, β̂ = 1, the equilibrium

point is stable and the cell mechanically relaxes. By increasing the strength of the mechanobiological

coupling to β̂ = 2.5, a limit cycle arises and the cell exhibits oscillatory behaviour (Figure 11(b),(d)).
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Figure 11: Reactions between RhoA and Rac1 in a single cell. (a),(c) corresponds to a non-oscillatory

system where β̂ = 1, and (b),(d) corresponds to an oscillatory system where β̂ = 2.5. In (a)–(b),
magenta represents the C(1) nullcline and green represents the C(2) nullcline. The trajectory for(
L(0), C(1)(0), C(2)(0)

)
= (0.5, 1, 0.5) in shown in red. Parameters: b1 = b2 = 1, δ1 = δ2 = 1, n =

3, p = 4, G1T
= 2, G2T

= 3, l0 = 1, φ = 0.65, Gh = 0.4, ε = 0.1.
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E Case study 3: Activator–inhibitor patterning

Section 3.3 considers an activator–inhibitor system with CCC(x, t) = {C1(x, t), C2(x, t)} where C1(x, t)

is the activator and C2(x, t) is the inhibitor. Figure 12 illustrates the long time behaviour of Figure

6(b),(d) and shows two distinct activator peaks evolve as t → ∞ for d > dc. Thus, unlike [25, 26],

we do not observe continuous peak splitting.
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Figure 12: The evolution of spatial–temporal patterns in a homogeneous tissue with Schnakenberg
dynamics where D1 = 0.5 and D2 = 5 such that d > dc. (a) illustrates the behaviour of the activator,
C1(x, t), and (b) illustrates the behaviour of the inhibitor, C2(x, t). Parameters are as in Figure 6.
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