
Prior hypotheses or regularization allow inference of diversification histories 1 

from extant timetrees  2 

 3 

Hélène Morlon1,*, Florian Hartig2 & Stéphane Robin3   4 

 5 

1. Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, 6 

CNRS, INSERM, PSL Research University, 75005 Paris, France 7 

2. Theoretical Ecology, University of Regensburg, Regensburg, Germany 8 

3. UMR MIA-Paris, AgroParisTech, INRA, Paris-Saclay University, 75005 Paris, France 9 

 10 

*corresponding author. email: helene.morlon@bio.ens.psl.eu 11 

 12 

Abstract 13 

Phylogenies of extant species are widely used to study past diversification dynamics1. The 14 

most common approach is to formulate a set of candidate models representing evolutionary 15 

hypotheses for how and why speciation and extinction rates in a clade changed over time, and 16 

compare those models through their probability to have generated the corresponding 17 

empirical tree. Recently, Louca & Pennell2 reported the existence of an infinite number of 18 

‘congruent’ models with potentially markedly different diversification dynamics, but equal 19 

likelihood, for any empirical tree (see also Lambert & Stadler3). Here we explore the 20 

implications of these results, and conclude that they neither undermine the hypothesis-driven 21 

model selection procedure widely used in the field nor show that speciation and extinction 22 

dynamics cannot be investigated from extant timetrees using a data-driven procedure. 23 

  24 
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Main text 26 

Louca & Pennell2 consider the homogeneous (i.e. lineage-independent) stochastic birth-death 27 

process of cladogenesis traditionally used in macroevolution to test hypotheses about how and 28 

why rates of speciation (birth, 𝜆) and extinction (death, 𝜇) have changed over time 𝑡. They 29 

show that for any given time-dependent speciation function 𝜆 > 0 and extinction function 30 

𝜇 ≥ 0, there exists an infinite set of alternative functions 𝜆∗ > 0 and 𝜇∗ ≥ 0 such that the 31 

probability distribution of extant trees under the corresponding birth-death processes M and 32 

M* is identical. Consequently, M or M* yield identical likelihood values for any given 33 

empirical tree. This identifiability issue is certainly both interesting and unfortunate, but what 34 

are its implications for phylogenetic-based diversification analyses? 35 

 36 

We consider this question against two alternative philosophies to conducting science. The 37 

first is a hypothesis-driven research approach, in which a small number of alternative ideas 38 

about the underlying mechanism are compared against data4. An example is the foundational 39 

study of Nee et al. (1992)5, who examined one of the first molecular phylogenies of birds, and 40 

demonstrated that it was incompatible with a constant-rate diversification model. Grounded in 41 

Simpson’s evolutionary theory of adaptive radiations6, they then hypothesized that rates of 42 

cladogenesis in birds might be affected by niche-filling processes. Finding that a diversity-43 

dependent model indeed fitted their data better, they concluded that diversity-dependent 44 

cladogenesis was a more plausible scenario to explain the diversification of birds.  45 

 46 

This hypothesis-driven approach has inspired more than 30 years of research in phylogenetic 47 

diversification analyses1. Exponential time-dependencies have been used, for example, to 48 

mimic early burst patterns expected from adaptive radiation theory6, or as an approximation to 49 

diversity-dependent cladogenesis7. In the context of the environment-dependent models 50 
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mentioned by Louca & Pennell2, functional hypotheses have often been derived from 51 

foundational theories of biodiversity, such as the metabolic theory of biodiversity8 and 52 

MacArthur & Wilson’s theory of island biogeography9. Phenomenological models, such as 53 

simple linear time- or environmental-dependencies, have indeed also been used, but typically 54 

either as null models7 or as the simplest way to model the effect of an explanatory 55 

environmental variable on evolutionary rates8,10. The primary goal of this research, however, 56 

has been to fit, test and compare diversification scenarios that were defined a priori to reflect 57 

different evolutionary hypotheses. 58 

 59 

Louca & Pennell’s congruent models M*, on the other hand, do not correspond a priori to any 60 

evolutionary hypotheses, and would never be considered in a well-conducted hypothesis 61 

model selection procedure in the first place4. Fortunately, as Louca & Pennell2 admit, most 62 

diversification hypotheses that are compared by evolutionary biologists are distinguishable 63 

from extant trees, and the ongoing effort to integrate fossil information provides even brighter 64 

perspectives11. The existence of a large number of congruent models therefore poses no direct 65 

challenge to the traditional hypothesis-driven research approach. The only possible concern is 66 

the question of model selection consistency: if the true model is not in the set of considered 67 

models, do we select the correct hypothesis? This question has not been answered one way or 68 

the other and would require thorough investigation in future research.  69 

 70 

By considering all possible diversification functions, Louca & Pennell2 implicitly subscribe to 71 

a different method of scientific discovery, where the goal is to learn 𝜆 and 𝜇 from the data 72 

alone. After finding that these quantities are not simultaneously identifiable, even for 73 

infinitely large phylogenies, they suggest to instead estimate identifiable quantities such as the 74 

pulled speciation rate 𝜆( or pulled diversification rate 𝑟(. There are certainly advantages of 75 
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the pulled rates, but estimating them from limited-size phylogenies is still a challenging task 76 

(SI S.1). One could address the problem by regularization, but then the question arises why 77 

we should not directly use regularization to handle the identifiability issue around 𝜆 and 𝜇. 78 

Indeed, a wide body of statistical regularization techniques exist to deal with unidentifiability 79 

issues12, such as shrinkage13, smoothing14 or the use of Bayesian priors. Louca & Pennell2 do 80 

not address the possibility to use such statistical regularization methods, although these 81 

methods have already been used successfully for inference of diversification rates15,16 (SI 82 

S.2).  83 

 84 

To provide a concrete example of these points, we perform an analysis of the diversification 85 

of the Madagascan vangas in the logic that would be applied in the field17, but simplified for 86 

illustrative purposes. We hypothesize that diversification followed an ‘Early Burst’ pattern18, 87 

with fast speciation at the origin of the group and subsequent slowdown, rather than constant-88 

rate diversification. The Early Burst pattern, related to the idea of adaptive radiations6, is 89 

modeled by an exponential decay of the speciation rates through time, used as an 90 

approximation of diversity-dependence. We also consider the hypothesis that a substantial 91 

number of extinction events occurred during the diversification of this group. Among the four 92 

corresponding models, the model with exponential change and no extinction (M) is best 93 

supported by the data (see Table 1 & Supplementary Information). M is characterized by 94 

𝜆(𝑡) = 𝜆-𝑒/0 and 𝜇(𝑡) = 0 where 𝑡  is measured from the present to the past, 𝜆- = 0.018 is 95 

the estimated present-day speciation rate, and 𝛼 = 0.1 measures the estimated speed of time 96 

change. A positive 𝛼 reflects a decline in speciation rate from the origin of the group to the 97 

present (Fig. 1). We conclude that the hypothesis of Early Burst diversification with 98 

negligible extinctions is the most likely of the four hypotheses we considered.  99 

 100 
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We now follow Louca & Pennell2 by solving Eq. 2 for models congruent to our best model 101 

M. First, we choose the extinction function to be a constant 𝜇5∗(𝑡) = 𝜇- and compute 𝜆5
∗(𝑡). 102 

Second, we choose the speciation function to be a constant 𝜆6
∗(𝑡) = 𝜆- and compute 𝜇6∗(𝑡). 103 

We find (SI; see the corresponding inferred dynamics in Fig. 1):   104 

    105 
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  107 

and 108 

 𝜇6∗(𝑡) = 	 𝜆- − 	𝛼 −	𝜆-𝑒/0 109 

 110 

The biological interpretation of these additional models and of their parameters is not 111 

obvious. The equation for 𝜇6∗ looks more interpretable at first, but it expresses the temporal 112 

change and the extinction rate at present through the same parameter 𝛼, which means that a 113 

positive extinction rate at present (𝛼 < 0) will force extinction rates to decline over time. 114 

Here M2* infers negative extinction rates, and is therefore not plausible (Fig. 1). M1* infers a 115 

decline in speciation rate from the origin of the group to the present for extinction rates 𝜇- 116 

ranging from at least 0.05 to 0.3, consistent with our previous results (Fig. 1). While rate 117 

estimates do vary substantially, the general temporal trend is preserved.  118 

 119 

Finally, we fit 𝑟( directly with spline functions, as suggested by Louca & Pennell2 (SI S.3), 120 

and deduce 𝜆 (or 𝜇) when assuming 𝜇 (or 𝜆) constant. General diversification trends are 121 

consistent with those found above; finer dynamics depend on the choices made to estimate 𝑟( 122 

and suggest interesting new hypotheses to test (SI S.3). Here we chose 𝜆 or 𝜇 to be constant to 123 

simplify the problem. Data-driven approaches have relaxed this hypothesis while still 124 
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estimating global temporal tendencies accurately, based on the reasonable prior belief that 125 

rates don’t change much in a small amount of time15. We expect such or similar regularization 126 

approaches to eliminate the pathological cases with markedly different diversification 127 

histories shown in Louca & Pennell2.  128 

 129 

There are useful results in Louca & Pennell’s paper. The pulled diversification rate is difficult 130 

to interpret biologically, yet realizing that models are only distinguishable by this quantity is 131 

important, and the approach might provide an interesting way to generate new hypotheses. 132 

The implications of these results for diversification analyses, however, are largely 133 

overinterpreted, mainly because the constraints imposed by the practice of hypothesis-driven 134 

research, prior knowledge, and the possibilities to penalize complexity are not considered in 135 

the paper. A very similar identifiability issue occurred 10 years ago in population genetics, 136 

when it was shown that the widely-used allelic frequency spectrum (AFS) is consistent with a 137 

myriad of demographic histories19. Despite this insight, the AFS - along with other data 138 

sources - remains a prominent approach of demographic inference20. Identifiability issues 139 

naturally arise in approaches that try to infer the potentially unlimited complexity of historical 140 

processes from limited contemporary data, and this is why we work hypothesis-driven, 141 

develop regularization techniques, and integrate other data types. Louca & Pennell2 remind us 142 

that the hypotheses we formulate when we develop models influence the conclusions we 143 

draw, and that these conclusions should always be taken with a grain of salt; this is always a 144 

good reminder, but it does not compromise the current practice in the field.  145 

 146 
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 204 

Table 1. Diversification models fitted to the phylogeny of the Madagascan vangas 205 

 206 

Model nb Log L AICc ΔAIC  𝜆-	 𝛼	 𝜇-	  
Exponential 
change of 
speciation rate, 
no extinction (M) 

2 -71.29 147.21 0 0.018 0.102 - 

Exponential 
change of 
speciation rate, 
constant 
extinction 

3 -71.04 149.4 2.19 0.025 0.117 0.077 

Constant 
speciation, no 
extinction 

1 -76.09 154.37 7.17 0.06 - - 

Constant 
speciation, 
constant 
extinction 

2 -76.09 156.80 9.6 0.06 - 3.39e-09 

nb denotes the number of parameters. LogL stands for the maximum log-likelihood, AICc for the second order Akaike 207 
Information Criterion4, and ΔAIC for the difference in AICc between the model and the best model in the set. Models are ranked based on 208 
their AICc support. 𝜆- is the estimated speciation rate at present, 𝛼 is the estimated rate of change of speciation with time (a positive 𝛼 209 
reflects a rate decline), and 𝜇- is the estimated extinction rate. Fits were performed using the fit_bd function from RPANDA21 using the 210 
“crown” conditioning and a sampling fraction of 1 (the tree of the Madagascan vangas is complete17). 211 

  212 
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 213 

 214 

Figure 1 Diversification of the Madagascan vangas as inferred from congruent models.  215 

The black curves on the left panel represent the dynamics of speciation (plain line) and 216 

extinction (dashed line) corresponding to our best-fit model M (exponential decline in 217 

speciation rate, non-significant extinctions). The colored curves illustrate the rate dynamics of 218 

congruent models obtained by: fixing increasing values of a constant extinction rate (left 219 

panel, M1*) and fixing the speciation rate to 𝜆- (right panel, M2*). Note that M1* infers a 220 

speciation rate decline regardless of the assumed extinction rate.    221 

 222 

 223 

 224 

 225 
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Supplementary Information  227 

 228 

S.1 Fitting the pulled rates also requires model selection or regularization  229 

In their S9, Louca & Pennell explain how to obtain non-parametric estimates of 𝜆( and 230 

𝑟( from empirical timetrees by maximum likelihood. We note that, as for any non-parametric 231 

approach, these estimates rely on two non-independent and somewhat arbitrary choices: a) the 232 

functional basis (e.g. piecewise-polynomial, wavelets, Fourier) and b) the form of the 233 

regularization (e.g. smoothness, sparsity). For phylogenies of a few hundred of species, which 234 

is the data size typical for the application of the homogenous rate models considered by 235 

Louca & Pennell, the final estimates will depend on both choices. In other words, although 𝜆( 236 

and 𝑟( are theoretically (i.e. for infinitely large phylogenies) identifiable, in practice they must 237 

be estimated from limited data. Without fixed hypotheses or constraints on functional 238 

complexity, the exact estimation of the pulled rates can therefore still be challenging. For 239 

example, Louca & Pennell chose a spline between an arbitrary number of discrete times as the 240 

functional basis. As we illustrate below, the choice of the degree of the spline and of the 241 

number of discrete times can influence estimates (see S.3). Our point is that some constraints, 242 

either in the form of fixed hypotheses that are chosen a priori, or in the form of constraints on 243 

model complexity, are fundamentally unavoidable in the problem of inferring diversification 244 

histories from extant time trees.   245 

 246 

S.2 Regularization techniques can allow inference of diversification histories despite 247 

unidentifiability   248 

Louca & Pennell write that “common model selection methods that are based on 249 

parsimony or ‘Occam’s razor’ (such as the Akaike information criterion) generally cannot 250 

resolve these issues” (i.e. issues of model congruence). We first note that the Akaike 251 
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information criterion is designed to account for the number of parameters in a (parametric) 252 

model, while most data-driven approaches are non-parametric. In the latter case, other 253 

approaches that are regularly used in statistics and machine learning to deal with issues of 254 

unidentifiability and over-parametrization include the use of shrinkage13 or smoothing14 255 

estimators, or of Bayesian priors. The authors don’t discuss these approaches, but we see no 256 

reason why they should not be considered in this case.  257 

Regarding the use of model selection, two main arguments are provided by the authors 258 

for dismissing these techniques as a possible solution to the identifiability problem (section 259 

S2 in Louca & Pennell’s paper, the third argument is essentially the same as the first). The 260 

first argument is that “There is little reason to believe that the simplest scenario in a 261 

congruence class will be the one closest to the truth. Indeed, even if the true model is included 262 

in a congruence class, it will almost always be the case that there are both simpler and more 263 

complex scenarios within the same congruence class and, crucially, all of these alternative 264 

models remain equally likely even with infinitely large datasets.” Nothing about this 265 

statement is specific to birth-death models adjusted to timetrees, and thus we must conclude 266 

that the authors question the principle of parsimony (or Occam’s razor) in general. The 267 

authors are of course entitled to their opinion, as the principle of parsimony is not a 268 

mathematically provable law, but we note that this opinion contradicts centuries of thinking 269 

and experience from physics to machine learning, and from philosophy as well. If we follow 270 

the traditional thinking in science when presented with the situation highlighted by Louca & 271 

Pennell (i.e. scenarios with different degrees of complexity but equal likelihood), we should 272 

select the simplest scenario, because, although there is no guarantee that this scenario is the 273 

closest to the truth, the parsimony principle suggests that it is most probably true, all other 274 

things equal.  275 
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The second argument by Louca & Pennell is that the complexity of a diversification 276 

scenario cannot be quantified. Note that this argument is only relevant if one accepts the 277 

parsimony principle in the first place, or else complexity is irrelevant for model selection. We 278 

agree with Louca & Pennell that quantifying complexity (or its opposite: simplicity) is a hard 279 

question, and one that is not always well-addressed by simply counting the number of 280 

parameters (the number of parameters is in particular not meaningful in non-parametric data-281 

driven approaches). However, this again is not specific to birth-death models adjusted to 282 

timetrees, and a wide body of statistical literature exists that deals with this problem12. A 283 

review of this literature is beyond the scope of this discussion, but there are various routes to 284 

quantifying or penalizing complexity, such as information-theoretical measures (in particular 285 

the principle of maximum entropy22), other Bayesian and frequentist model selection 286 

approaches, and shrinkage or regularization estimators that essentially amount to setting 287 

priors on the parameters or smoothness of a curve. While we agree that choosing among those 288 

methods has a degree of subjectivity, we see no reason why complexity cannot be quantified 289 

for diversification scenarios. It seems to us that the problem is very similar to the general 290 

situation in data-driven analysis (starting from linear regressions), where we can always build 291 

more complex models with equal likelihood, but know for various reasons (parsimony, bias-292 

variance trade-off) that adding complexity brings disadvantages, and thus add penalizations or 293 

other regularization methods to balance the complexity of the explanation. There have already 294 

been a few studies that tested regularization approaches for inference of diversification 295 

rates15,16,23, but the study by Louca & Pennell highlights the need for more research in this 296 

field, to explore what regularization methods work best.  297 

Louca & Pennell also allude to the fact that the problem highlighted in their study is 298 

independent of sample size. We agree that this makes the situation somewhat different from 299 

some other model selection and regularization problems, but we do not see how this is 300 
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relevant in a practical data analysis, where the size of the timetree is fixed and typically not 301 

huge (in particular if we assume homogeneous rates), meaning that the problem at hand is to 302 

draw inference from limited data.    303 

 304 

S.3 Illustration with the Madagascan vangas  305 

Here we begin by exploring models congruent to M, the model selected among the 306 

four models we considered in our illustrative hypothesis-driven model selection procedure on 307 

the Madagascan vangas tree. M is characterized by 𝜆(𝑡) = 𝜆-𝑒/0 and 𝜇(𝑡) = 0 where 𝑡  is 308 

measured from the present to the past, 𝜆- = 0.018 is the estimated present-day speciation 309 

rate, and 𝛼 = 0.1 measures the estimated speed of time change.  310 

We first choose the extinction function to be a constant 𝜇5∗(𝑡) = 𝜇- and compute 311 

𝜆5
∗(𝑡). Note that the corresponding model M1* has 3 parameters (𝜆-, 𝛼 and 𝜇-) while M has 312 

only 2 (𝜆- and 𝛼), such that it would not be selected over M based on Occam’s razor. M1* 313 

would not be selected either if compared to the model ranked second in our analysis 314 

(exponential change of speciation rate and significant extinctions), as it has the same number 315 

of parameters and a lower likelihood (Table 1). We compute 𝜆5
∗(𝑡) using the solution to Eq.2 316 

from Louca & Pennell2, provided in their SI (Eq. 39 & 40), with 𝜂- = 𝜆- (here the sampling 317 

fraction 𝜌 = 1, as the Madagascan vangas tree is complete17): 318 

 319 

𝜆5∗(𝑡) = 	
𝜆-𝑒L(0)

1 + 𝜆- ∫ 𝑒L(F)0
- 𝑑𝑠

	320 

with     321 

𝛬(𝑡) = ∫ Q𝑟((𝑠) + 𝜇-R
0
- 𝑑𝑠. 322 

 323 

𝑟( , the ‘pulled diversification rate’, is given by Eq. 1 from Louca & Pennell2: 324 
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 325 

𝑟( = 𝜆 − 𝜇 + 5
7
E7
E0
= 𝜆-𝑒/0 + 𝛼. 326 

This gives:  327 

𝛬(𝑡) =
𝜆-
𝛼
(𝑒/0 − 1) + (𝛼 + 𝜇-)𝑡	328 

 329 

and  330 

𝑒L(0) = 𝑒S
;8
< 𝑒(/BT8)0𝑒

;8
<	9

<?
. 331 

Finally:  332 

𝜆5
∗(𝑡) = 789

:;8
< 9(<=>8)?9

;8
< 	A<?

5B789
:;8
< ∫ 9(<=>8)D9

;8
< 	A<D?

8 EF
 . 333 

 334 

Second, we choose the speciation function to be a constant 𝜆6
∗(𝑡) = 𝜆- and compute 335 

𝜇6∗(𝑡). The corresponding model M2* has the same number of parameters as M. Solving Eq. 2 336 

from Louca & Pennell2 with E7U
∗

E0
= 0 gives:  337 

 338 

𝜇6∗(𝑡) = 	 𝜆6
∗ − 𝑟( = 	𝜆- − 	𝛼 −	𝜆-𝑒/0. 339 

		340 

Next, we explore congruent models found by directly fitting 𝑟( to the tree, following 341 

the procedure outlined in Louca & Pennel’s SI (section S9), and with the same choice of 342 

keeping either 𝜆 or 𝜇 constant. We used the fit_hbd_pdr_on_grid function from the R package 343 

castor23 to fit 𝑟(. This function fits 𝑟( assuming a piecewise spline function on a predefined 344 

“grid”, i.e. discrete times between which 𝑟( varies as a spline. As we did not find specific 345 

recommendations on how to define the grid, we chose evenly-spaced times, and selected their 346 

number using the AIC criterion (we note though that the AIC is not a good criterion for 347 
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rupture detection25). We followed the recommendation from the help of the 348 

fit_hbd_pdr_on_grid function to not use a spline of degree zero (i.e. piecewise constant); we 349 

used a spline of degree of 1 (piecewise linear) and 2.  350 

Using a spline of degree 1, we selected 3 times, and the resulting diversification 351 

dynamics are shown in Fig. S1. The model that assumes 𝜆 is constant infers negative 352 

extinction rates, and is therefore not plausible. The model that assumes 𝜇 is constant infers a 353 

general tendency for a decline in speciation rates, with a local peak around 7 Myrs ago. This 354 

result illustrates again the stability of the general temporal trend (decline) of speciation rates 355 

to different fitting approaches. It also illustrates the potential use of congruent models to 356 

generate new hypotheses. Here for example, the inferred dynamics suggest to formulate a 357 

model with a declining background speciation rate combined with a local burst of speciation 358 

around 7 Myrs ago.   359 

Using a spline of degree 2, the AIC criterion selected only 1 time on the grid (i.e a 360 

constant 𝑟(), and the resulting diversification dynamics are shown in Fig. S2. The model that 361 

assumes 𝜆 is constant infers negative extinction rates, and is therefore not plausible. The 362 

model that assumes 𝜇 is constant infers a general tendency for a decline in speciation rates 363 

that tends to accelerate over time. This result illustrates first that the estimation of 𝑟( (and the 364 

resulting dynamics of 𝜆 when assuming 𝜇 constant) depends on specific hypotheses made 365 

when fitting 𝑟( (compare with Fig. S1). Second, it illustrates one more time the stability of the 366 

general temporal trend (decline) of speciation rates to different fitting approaches/choices. It 367 

also provides another illustration of the potential use of congruent models to generate new 368 

hypotheses. Here, the inferred dynamics suggest to formulate a model with a slow decline in 369 

speciation rates at the origin of the clade, that accelerates towards the present.   370 

 371 

 372 
 373 
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 391 

Figure S1 Diversification of the Madagascan vangas as inferred by directly fitting 𝑟(. 392 

Here 𝑟( is fitted with a spline of degree 1 (piecewise linear), with 3 evenly-spaced times 393 

(selected based on AIC). The curves on the left panel represent the dynamics of speciation 394 

(plain line) and extinction (dashed line) obtained by: fixing increasing values of a constant 395 

extinction rate (left panel) and fixing the speciation rate to 𝜆- (right panel).  396 

 397 
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 398 

Figure S2 Diversification of the Madagascan vangas as inferred by directly fitting 𝑟(. 399 

Here 𝑟( is fitted with a spline of degree 2 with 1 time (selected based on AIC, i.e. 𝑟( is 400 

constant). The curves on the left panel represent the dynamics of speciation (plain line) and 401 

extinction (dashed line) obtained by: fixing increasing values of a constant extinction rate (left 402 

panel) and fixing the speciation rate to 𝜆- (right panel). 403 

 404 
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