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Abstract 21 

Patients with cerebellar ataxia suffer from various motor learning deficits hampering their 22 

ability to adapt movements to perturbations. Motor adaptation is hypothesized to be the result 23 

of two subsystems: a fast learning mechanism and a slow learning mechanism. We tested 24 

whether training paradigms that emphasize slow learning could alleviate motor learning 25 

deficits of cerebellar patients. Twenty patients with cerebellar degeneration and twenty age-26 

matched controls were trained on a visuomotor task under four different paradigms: a 27 

standard paradigm, gradual learning, overlearning and long intertrial interval learning. 28 

Expectedly, cerebellar participants performed worse compared to control participants. 29 

However, both groups demonstrated elevated levels of spontaneous recovery in the 30 

overlearning paradigm, which we saw as evidence for enhanced motor memory retention after 31 

extended training. Behavioral differences were only found between the overlearning paradigm 32 

and standard learning paradigm in both groups. 33 

Modelling suggested that, in control participants, additional spontaneous recovery was the 34 

result of higher retention rates of the slow system as well as reduced learning rates of the slow 35 

system. In cerebellar participants however, additional spontaneous recovery appeared only to 36 

be the result of higher retention rates of the slow system and not reduced learning rates of the 37 

slow system. Thus, memory resilience was reduced in cerebellar participants and elevated 38 

levels of slow learning were less resilient against washing out. Our results suggest that 39 

cerebellar patients might still benefit from extended training through use-dependent learning, 40 

which could be leveraged to develop more effective therapeutic strategies.  41 
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1 Introduction 42 

The cerebellar ataxias are a heterogeneous group of disorders clinically identified by 43 

cerebellar dysfunction. Patients exhibit a range of impairments in motor control, including 44 

incoordination of eye movements, dysarthria, limb incoordination, and gait disturbances 45 

(Mariotti et al., 2005), as well as impairments in the cognitive domain (Schmahmann and 46 

Sherman, 1998). While the genetic and pathophysiological underpinnings of many of the 47 

cerebellar ataxias are increasingly well understood (Jayadev and Bird, 2013; Matilla-Dueñas 48 

et al., 2014), treatment remains a major challenge with genetic therapies being at the horizon 49 

for only a subset of genetically defined ataxias (Scoles et al., 2017). Contemporary cerebellar 50 

therapy is aimed at alleviating motor symptoms to maintain activities of daily living (ADL), 51 

as no curative therapy currently exists (Ilg et al., 2014). Although the consensus is that 52 

cerebellar patients benefit from supportive therapy, i.e. physical therapy, speech therapy and 53 

occupational therapy, little is known about the mechanisms underlying the improvements and 54 

how patients can benefit most (Fonteyn et al., 2014; Ilg et al., 2014). Providing effective care 55 

for ataxia patients can be especially challenging, since cerebellar patients suffer from various 56 

motor learning deficits (Maschke et al., 2004; Tseng et al., 2007) and initial studies suggest a 57 

relationship between motor learning deficits and the efficacy of neurorehabilitation programs 58 

(Hatakenaka et al., 2012). An intervention which can lessen these motor learning deficits 59 

might therefore augment the effects of cerebellar therapy.  60 

Previous work has found that motor learning deficits of cerebellar patients can partially be 61 

ameliorated when trained with an explicit strategy (Taylor et al., 2010) or by altering the type 62 

of feedback (Therrien et al., 2016). There is also limited evidence that training paradigms that 63 

emphasize slow learning processes might alleviate motor learning deficits (Criscimagna-64 

Hemminger et al., 2010), but, as of yet, few studies have examined this notion. Early evidence 65 

pointed to beneficial effects of the gradual introduction of reaching movement perturbations 66 
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in cerebellar patients (Criscimagna-Hemminger et al., 2010), but this was not replicated in 67 

cerebellar patients in subsequent work (Gibo et al., 2013; Schlerf et al., 2013). On the other 68 

hand, in studies with healthy individuals, training paradigms which emphasize slow learning 69 

have shown robust effects on motor performance. For instance, when healthy individuals keep 70 

training after attaining asymptotic performance on a motor learning task, so-called 71 

overlearning, retention increases with the number of trials trained at the asymptote (Joiner and 72 

Smith, 2008). The amount with which retention increases can be predicted by a two-state 73 

model that incorporates a fast and slow learning mechanism and is thought to be the result of 74 

increased engagement of the slow state of motor learning (Joiner and Smith, 2008; Smith et 75 

al., 2006). Similarly, when healthy individuals train with long intertrial intervals (ITI) 76 

between movements, the rate of learning decreases, but retention increases due to more trial-77 

to-trial forgetting of the fast state of motor learning and more activation of the slow state of 78 

motor learning (Kim et al., 2015; Sing et al., 2009).  79 

The aim of the present study was to study slow learning processes in more detail, in particular 80 

in patients with cerebellar degeneration, and to assess whether paradigms that emphasize slow 81 

learning affect behavioral measures of motor learning. We tested twenty patients with 82 

degenerative ataxia and twenty healthy age- and sex-matched controls on a visuomotor 83 

reaching adaptation task under four different training paradigms (a standard learning 84 

paradigm, gradual learning, overlearning and long intertrial interval (ITI) learning). The 85 

paradigms, other than the standard learning paradigm, were specifically chosen to stimulate 86 

slow learning in individuals.  87 

We expected to find impaired motor learning in cerebellar participants under a standard 88 

training paradigm, characterized by incomplete adaptation to visuomotor perturbations and 89 

decreased retention. Training cerebellar participants with paradigms that emphasize slow 90 

learning might enable them to compensate for these motor learning deficits. If slow learning 91 
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paradigms allow cerebellar participants to compensate motor learning deficits, it could 92 

facilitate the design of new strategies in supportive therapy.   93 
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2 Methods 94 

2.1 Participants 95 

Twenty participants with cerebellar degeneration (9 females, 54.9 years ± 10.8 (SD), range 18 96 

– 70 years) and twenty age- and sex-matched participants (9 females, 55.2 years ± 11.2 (SD), 97 

range 18 – 71 years), took part in the study. Cerebellar participants were recruited from the 98 

patients attending our ataxia clinic and matched controls were recruited via print 99 

advertisements distributed on the hospital campus. Only right-handed individuals were 100 

included, as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971). The severity 101 

of cerebellar symptoms in the group of cerebellar participants was assessed by one 102 

experienced neurologist (DT) and healthy age- and sex-matched controls were examined by 103 

AM. Cerebellar symptoms were scored on the International Cooperative Ataxia Rating Scale 104 

(ICARS; Trouillas et al., 1997), as well as the Scale for the Assessment and Rating of Ataxia 105 

(SARA; Schmitz-Hübsch et al., 2006). The group of cerebellar participants was diagnosed 106 

with diseases known to primarily affect the cerebellar cortex (Gomez et al., 1997; Timmann et 107 

al., 2009). Three age-matched controls were excluded and replaced due to neurological 108 

symptoms on their examination or minor extracerebellar pathology on their MRI. All 109 

participants gave informed oral and written consent. The experiment was approved by the 110 

ethics committee of the medical faculty of the University of Duisburg-Essen and conducted in 111 

accordance with the Declaration of Helsinki. The characteristics of the recruited cerebellar 112 

participants and matched controls can be found in Table 1.  113 

Table 1          

Overview Cerebellar participants and Control participants         

        Cerebellar participants Control participants 

ID Age Sex Diagnosis Disease 
duration 

ICARS 
(total/100) 

SARA 
(total/40) ID Age Sex 
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P01 18 M ADCAIII 18 years 10.5 5 C01 18 M 
P02 47 M ADCAIII 25+ years 40 17.5 C02 43 M 
P03 50 F ADCAIII 25+ years 31 11.5 C03 50 F 
P04 51 M SCA14 25+ years 31 11.5 C04 50 M 
P05 51 F ADCAIII 19 years 29 12.5 C05 51 F 
P06 52 F SCA14 22 years 26.5 12 C06 53 F 
P07 53 F SCA6 2 years 23 9.5 C07 54 F 
P08 53 M SAOA 17 years 40 15 C08 53 M 
P09 53 M ADCAIII 17 years 36 11 C09 51 M 
P10 54 F SCA6 4 years 30.5 10 C10 56 F 
P11 56 F SCA14 25+ years 28 12 C11 58 F 
P12 57 M SCA6 11 years 38 11 C12 53 M 
P13 57 M SCA6 15 years 28 8 C13 59 M 
P14 58 M SAOA 25+ years 63.5 22 C14 61 M 
P15 59 M SCA6 5 years 23 9.5 C15 63 M 
P16 60 F SCA6 11 years 36.5 14 C16 60 F 
P17 63 F ADCAIII 23 years 33 13.5 C17 66 F 
P18 66 M SAOA 13 years 24.5 11 C18 66 M 
P19 70 F SAOA 7 years 32.5 12.5 C19 71 F 
P20 70 M SAOA 16 years 38 15 C20 67 M 

Table 1: Cerebellar participants were age- and sex-matched with the controls on the right side of the table. 114 
SCA6 = spinocerebellar ataxia type 6; SCA14 = spinocerebellar ataxia type 14; SAOA = sporadic adult onset 115 
ataxia; ADCA III = autosomal dominant ataxia type III; ICARS = International Cooperative Ataxia Rating 116 
Scale (Trouillas et al., 1997); SARA = Scale for the Assessment and Rating of Ataxia (Schmitz-Hübsch et al., 117 
2006). Disease duration is years since presentation of the first symptoms.  118 

2.2 Task 119 

All participants completed a standard reaching task with visuomotor perturbations. The 120 

experimental setup and task have been described previously in other studies from our group 121 

(Rabe et al., 2009). In short, participants were seated in front of an upright monitor and could, 122 

with their right hand, move a two-jointed manipulandum freely in the horizontal plane 123 

(Figure 1A). Vision of the participant’s arm was obstructed by a black cloth. Hand position 124 

and velocities were measured in a resolution of 106 counts per revolution and a sampling rate 125 

of 200 Hz (DMC-1826; Galil Motion Control). The location of the participant’s hand was 126 

represented on the monitor by a green dot with a diameter of 5 mm. The origin and target 127 
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locations were represented by a circle with a diameter of 10 mm, colored red and white 128 

respectively. At the start of each trial, the participant’s hand was moved towards the origin 129 

location by the servomotors connected to the manipulandum. Then, after a delay of 2000ms, a 130 

target circle appeared at one of three possible target locations, located 10 centimeters away 131 

from the origin at an angle of 66°, 90° or 114° (Figure 1B). Participants were instructed to 132 

move the green dot from the origin towards the target with a “quick and accurate movement” 133 

as soon as the target appeared. When participants moved the cursor through an invisible 134 

boundary located 10 centimeters from the origin, their hand was gently brought to a stop by a 135 

simulated cushion, indicating the end of the movement. Following each movement, 136 

participants received feedback on whether they hit the target and moved with the correct 137 

velocity. The target turned yellow when moving too fast, blue when moving too slow, and 138 

green when moving with the correct velocity. Participants moved with the correct velocity 139 

when their movement and reaction time fell within a 250ms window centered around 500ms. 140 

The 250ms window shrunk by 10% every time a movement had the correct velocity and 141 

increased by 10% when moving too fast or slow, adapting to a participant’s individual 142 

capabilities. When participants also managed to hit the target, in addition to moving with the 143 

correct velocity, a “yahoo” sound was played.  144 

 145 
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Figure 1: A) Experimental setup. For illustrative purposes the tabletop is pictured here as transparent. In reality 146 
the tabletop was opaque to obstruct the view of the hand and robot arm. Additionally, a black cloth was draped 147 
over the shoulders of the participant and attached to the table to obstruct vision of the arm. B) Localization of 148 
origin and target circles on the monitor. One of the three target circles would pseudo-randomly appear at the 149 
start of a movement trial. 150 

The experimental task consisted of 4 different training paradigms. Each paradigm consisted of 151 

a baseline set, an adaptation set, and a washout set. All participants completed each of the 152 

training paradigms. The order of paradigms was counterbalanced with a Latin-squares design 153 

against first-order carryover effects (Williams, 1949). Every paradigm order was completed 154 

by 10 participants each (five cerebellar participants and five control participants) (Figure 2A). 155 

Furthermore, perturbation direction in the adaptation sets was balanced by flipping the 156 

direction of the perturbation (clockwise or counterclockwise) in every successive adaptation 157 

set. Participants were allowed to take 5- to 10-minute breaks between paradigms, but not after 158 

sets within a paradigm. Each baseline set consisted of 135 null trials, in which participants 159 

received veridical feedback on hand position, and 15 pseudo-randomly interspersed clamp 160 

trials, in which participants received perfect feedback regardless of movement error. Then, 161 

depending on the training paradigm, one of four adaptation sets followed. In the standard 162 

training paradigm, the adaptation set consisted of 108 adaptation trials, in which a visuomotor 163 

perturbation of 30° was introduced abruptly, and 12 pseudo-randomly interspersed clamp 164 

trials (Figure 2B). The gradual paradigm contained 108 adaptation trials in the adaptation set, 165 

where the visuomotor perturbation of 30° was introduced gradually over the course of the set, 166 

increasing linearly each trial. The final 6 trials of the gradual adaptation set were at 30° of 167 

visuomotor perturbation. In addition, 12 clamp trials were pseudo-randomly interspersed 168 

(Figure 2C). The overlearning adaptation set consisted of 324 trials with a visuomotor 169 

perturbation of 30° (three times the amount of the standard paradigm) and 36 interspersed 170 

clamp trials (Figure 2D). The long intertrial interval (ITI) adaptation set included 120 171 

adaptation trials with visuomotor perturbations of 30°, where instead of delay of 2 seconds 172 
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between each movement, the delay was increased to 15 seconds (Figure 2E). The adaptation 173 

set of the long ITI paradigm did not include any clamp trials, thus trial-to-trial forgetting was 174 

only dependent on the passage of time. Finally, all adaptation sets were followed by a 175 

washout set. The first 12 trials of the washout set consisted of counterperturbation trials, 176 

where the direction of the perturbation was flipped from the direction in the adaptation set. 177 

Then, 60 clamp trials and 60 null trials followed.   178 

 179 

Figure 2: A) Overview of the paradigm orders. B–E) Trial structure of the experimental paradigms. Red line 180 
indicates the size and direction of the visuomotor perturbation. Direction of the perturbation is pictured here as 181 
clockwise for all paradigms, in reality perturbation direction was counterbalanced within participants. Grey 182 
area indicates the block of 60 clamp trials in the washout phase. Not pictured are pseudo-randomly interspersed 183 
clamp trials during the baseline and adaptation phase.  184 

2.3 MR imaging 185 

Cerebellar participants and age-matched controls were examined in a 3T combined MRI-PET 186 

system (Siemens Healthcare, Erlangen, Germany) with a 16-channel head coil (Siemens 187 
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Healthcare) [TR, 2530 ms; TE = 3.26 ms, TI = 1100 ms; flip angle 7 deg; voxel size 0.5 × 0.5 188 

× 1.0 mm³]. All MR scans were evaluated by an experienced neuroradiologist (SLG). A 189 

voxel-based morphometry analysis was applied to the cerebellum of each participant as 190 

described previously (Hulst et al., 2015; Taig et al., 2012). The analysis was automated with 191 

an in-house program written for MATLAB 9.4 using the SUIT toolbox (version 3.2) 192 

(Diedrichsen et al., 2009), implemented in SPM12 193 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12).  194 

2.4 Analysis of behavioral data 195 

Behavioral data was analyzed in MATLAB 9.4 (Mathworks, Natick, USA). Our primary 196 

outcome measure was the reaching direction (in degrees) at the end of the movement (i.e. 197 

when participants hit the simulated cushion). The reaching direction was calculated by taking 198 

the angle between a straight line from the position of movement onset to the target and a 199 

straight line from the position of movement onset to hand position at the end of the 200 

movement. Movement onset was defined as the first moment when movement velocity 201 

exceeded 5cm/s. Reaching directions were corrected for movement biases by calculating the 202 

average reaching direction in each baseline set and subtracting this from the subsequent 203 

adaptation and washout sets of a training paradigm. For ease of interpretation, reaching 204 

directions were flipped towards the same direction, regardless of perturbation direction, in all 205 

figures and analyses. Furthermore, paradigms were reordered to a canonical order for each 206 

participant, starting with the standard learning paradigm, then gradual learning, overlearning 207 

and finally the long ITI paradigm, regardless of the order the participant encountered the 208 

paradigms. Statistical analyses were conducted using Markov Chain Monte Carlo (MCMC) 209 

methods in MATLAB and JAGS 4.3.0 (Plummer, 2003). A mixed-design model (ANOVA-210 

like) was used to estimate the difference in reaching directions between factors. Participant 211 

group (cerebellar participant or control participant) was included as a between-subject factor. 212 
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Movement phase and training paradigm were included as within-subject factors. A random 213 

intercept for each participant and phase was included as well. The model ran on four separate 214 

chains with an adaptation phase of 5,000 samples and burn-in phase of 25,000 samples, after 215 

which we collected 50,000 samples per chain. Each parameter was visually and quantitatively 216 

checked to assure proper sampling of the posterior distribution using common MCMC 217 

diagnostics (Kruschke, 2010). First, trace plots were visually inspected for chain convergence. 218 

Next, the effective sample size (ESS), the potential scale reduction factor (PSRF) and the 219 

Monte Carlo Standard Error (MCSE) were calculated for all parameters. The PSRF was close 220 

to 1 for each parameter (max: 1.0002), MCSE was close to 0 for each parameter (max: 221 

0.0001), and median ESS was generally large (>> 5000), indicating convergence of the model 222 

run. The model code is available as supplementary data on 223 

https://github.com/thomashulst/paper-extendedtraining/.   224 

2.5 State-space modeling  225 

A two-state model was fit to the reaching directions of all trials in each individual participant. 226 

The equations for the state-space model are given in Equations 1−6:   227 

𝑒! = 𝑥! + 𝑝!     (Eq. 1) 228 

𝑥!"#$ = 𝐴$𝑥!$ − 𝐵$𝑒! + 𝜖%!&!'   (Eq. 2) 229 

𝑥!"#( = 𝐴(𝑥!( − 𝐵(𝑒! + 𝜖%!&!'   (Eq. 3) 230 

𝑥! = 𝑥!$ + 𝑥!(      (Eq. 4) 231 

𝑦! = 𝑥! + 𝜖)*!+*!     (Eq. 5) 232 

𝜖)*!+*!	~	𝑁/0, 𝜎,!
- 3, 𝜖%!&!'~	𝑁(0, 𝜎,"

- )  (Eq. 6) 233 

Where 𝐴( > 𝐴$ and 𝐵( <	𝐵$. 234 

This state-space model, as posited by Smith and colleagues (Smith et al., 2006), consists of a 235 

fast state (𝑥!$)  and slow state (𝑥!(). The fast state learns quickly and forgets quickly, while the 236 

slow state learns slowly and forgets slowly. Both states have an independent learning rate (𝐵) 237 
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and retention rate (𝐴). Each movement, the fast and slow state are updated based on the error 238 

(𝑒) in the previous movement. In visuomotor experiments, the amount of error is given by 239 

addition of the actual movement (𝑥!) and perturbation (𝑝!). The model has previously been 240 

able to predict various behavioral phenomena in reaching adaptation experiments like savings, 241 

anterograde interference and spontaneous recovery (Smith et al., 2006). 242 

To estimate the parameters and hidden state variables for a given participant from reaching 243 

directions, we implemented a hierarchical model based on Equations 1 − 6 in JAGS (Figure 244 

3). A hierarchical model improves fits by sharing information across participants. The 245 

parameters and state variables were estimated by MCMC methods, separately for each of the 246 

four training paradigms (standard, gradual, overlearning and long ITI) and two participant 247 

groups (cerebellar participants or control participants). In the hierarchical model, a 248 

participants’ learning rate (𝐵( and 𝐵$) and retention rate (𝐴( and 𝐴$) came from a normal 249 

distribution centered around 𝜇 with precision 𝜏. The learning and retention rates were sampled 250 

in logistic space and then transformed to the range from 0−1 to more realistically reflect 251 

changes in the parameters and provide better sampling behavior. Precision for the states and 252 

execution noise came from a very broad gamma distribution (A = 10./,		B = 	10./). 253 
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 254 

Figure 3: Diagram of the hierarchical model implemented in JAGS. The equals sign (=) denotes deterministic 255 
relationships, while tildes (~) denote stochastic relationships. The distributions on the white background indicate 256 
the hyperpriors. The light grey background indicates the subject loop, while the dark grey background indicates 257 
the trial loop.  258 

Only the shape of the learning- and retention rate distributions was specified (normal in 259 

logistic space), the actual priors for each participant were sampled from a hyperprior. The 260 

hyperparameter for 𝜇 came from an uninformative normal distribution (𝑀 = 0, 𝑆 = 1000) 261 

and 𝜏 from a weakly informed half-t distribution (𝑀0 = 0, 𝑆0 = 2.5, 𝑁 = 7) so each posterior 262 

distribution was mainly informed by the data. Reasonable initial values for 𝑀 and 𝑆 were 263 

estimated by running the model first without hyperpriors and weakly informed priors for the 264 

learning and retention rates of a participant (4 chains, adaptation and burn-in of 10,000 265 
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samples, 30,000 samples collected). Model runs for the model with hyperparameters started 266 

with an adaptation phase of 20,000 samples and burn-in phase of 80,000 samples, after which 267 

we collected 250,000 samples on four separate chains. Samples were thinned by a factor of 5 268 

to decrease the memory footprint and autocorrelation of samples. For every parameter we first 269 

visually inspected the trace plots for chain convergence. Next, several MCMC diagnostics 270 

were calculated: the ESS, PSRF and MCSE. Generally, sampling of the posterior distributions 271 

was considered adequate. No large differences in ESS, PSRF and MCSE were found between 272 

the paradigms. A small number of parameters had low ESS due to high autocorrelations in 273 

specific paradigms, mainly on the participant level, but longer model runs were deemed 274 

impractical. The model code is available as supplementary data on 275 

https://github.com/thomashulst/paper-extendedtraining/. 276 

3 Results 277 

3.1 Voxel-based morphometry (VBM) 278 

First, the results of the structural MRI data were analyzed using VBM. Figure 4 displays the 279 

difference in gray matter volume per voxel (in t-scores) between healthy participants and 280 

cerebellar participants. A resampling procedure (permutation test) was conducted to control 281 

the family-wise error rate. The significance threshold was determined to be 3.95, meaning that 282 

voxels with an absolute t-score higher than 3.95 were considered significant. No significant 283 

positive differences were found, thus the figure displays negative t-scores only. The VBM 284 

analysis revealed a pattern of cerebellar degeneration in patients largely consistent with prior 285 

work (Hulst et al., 2015). The volume loss was largest in the anterior lobe of the cerebellum 286 

and the superior part of the posterior lobe (i.e. lobule VI). Cerebellar degeneration of the 287 

anterior cerebellum and lobule VI (i.e. the anterior hand area) are associated with motor 288 

learning deficits (Donchin et al., 2012; Rabe et al., 2009). Cerebellar degeneration was less 289 

pronounced in the inferior parts of the posterior lobe compared to earlier work (Hulst et al., 290 
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2015), which could be explained by younger cerebellar participants in the current study, with 291 

less severe ataxia scores. 292 

 293 

Figure 4: Flatmap of the cerebellum. Colors indicate the gray matter volume difference per voxel between 294 
healthy participants and cerebellar participants in t-scores. Voxels that do not exceed the threshold (−3.95) are 295 
not colored, low significant t-scores are colored blue, and high significant t-scores are colored green. Flatmap 296 
template from Diedrichsen and Zotow, 2015. 297 

3.2 Average reaching directions  298 

Next, the reaching directions were analyzed. The average reaching directions for each 299 

paradigm in control participants and cerebellar participants are plotted in Figure 5.  300 
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 301 

Figure 5: Reaching directions of control participants and cerebellar participants, averaged over bins. A) 302 
Control participants. B) Cerebellar participants. Trials were binned per 6 trials. Shaded error bars are mean ± 303 
SEM.  304 

As expected, reaching directions of controls participants and cerebellar participants are almost 305 

completely straight during the baseline phase in all training paradigms. When movements are 306 

perturbed by a visuomotor rotation, control participants learn the perturbation quickly, almost 307 

completely counteracting the rotation early in the adaptation set (barring the gradual 308 

paradigm). Cerebellar participants adapt much more slowly, counteracting about half of the 309 
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rotation compared to healthy controls during the early phases of learning in the standard and 310 

overlearning paradigm. Furthermore, the long intertrial interval condition appears to be 311 

lagging behind in the amount of early learning compared with the standard and overlearning 312 

conditions.  313 

Late in the adaptation set, control participants reach very similar reaching directions in all 314 

paradigms. Control participants learn only slightly more after plateauing early in the 315 

adaptation set, apart from the obvious difference in the gradual learning condition. Cerebellar 316 

participants, on the other hand, learn more after the initial adaptation phase, albeit slowly, 317 

which is especially evident in the overlearning paradigm. In general, control participants 318 

counteract more of the perturbation both early and late in the adaptation set than cerebellar 319 

participants.  320 

After a short phase of counterperturbation trials, both control participants and cerebellar 321 

participants exhibit spontaneous recovery in clamp trials immediately following the 322 

counterperturbation phase. That is, control participants and cerebellar participants move in the 323 

direction of what was previously learned in the absence of a perturbation. The amount of 324 

spontaneous recovery is largest in the overlearning paradigm in both groups. While cerebellar 325 

participants exhibit higher spontaneous recovery in the overlearning paradigm, the amount of 326 

spontaneous recovery is lower than in control participants.   327 

Figure 6 displays individual and mean hand directions as in Figure 5 but averaged over 328 

phases instead of bins. The baseline phase is the average movement direction of all trials in 329 

the baseline set, while the early adaptation phase is averaged over the first 30 trials (or 6 bins) 330 

of the adaptation set. Late adaptation is averaged over the last 6 trials (last bin) of the 331 

adaptation set and the recovery phase is averaged over the clamp trials in the washout set (60 332 

trials or 10 bins). Figure 6 corroborates the main observations of Figure 5. The differences in 333 
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mean reaching directions per phase were tested using the mixed-design model described in the 334 

methods section. The most important findings are briefly evaluated below. 335 

 336 

Figure 6: Boxplots of the reaching directions of control participants and cerebellar participants, averaged over 337 
phases. A) Control participants. B) Cerebellar participants. The baseline phase includes all trials in the baseline 338 
set. Early adaptation includes the first 30 trials (6 bins) of the adaptation set, while late adaptation is averaged 339 
over the last 6 trials (final bin) of the adaptation set. Recovery includes all clamp trials (60 trials) in the washout 340 
set. Individual mean reaching directions are indicated with a colored circle. Individual reaching directions more 341 
than 1.5 times the interquartile range removed from the first or third quartile are indicated with a red cross.  342 

Firstly, we tested for differences between the standard, gradual, overlearning and long ITI 343 

paradigm in each phase in control participants (Figure 7). The MCMC procedure gives us a 344 

posterior distribution of credible parameter values, given the data. The parameter of interest in 345 

this case was the difference in reaching direction between the standard paradigm and other 346 

paradigms. The 95% highest density interval (HDI) contains 95% of the mass of credible 347 

parameter values, where each value within the HDI has a higher probability density than any 348 

value outside the HDI. When the HDI falls completely within the Region of Practical 349 
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Equivalence (ROPE), we accept the null value of the parameter and when the HDI falls 350 

completely outside the ROPE, we reject the null value of the parameter. The ROPE was set at 351 

[−3.5°; 3.5°]. In the baseline phase of control participants, the gradual, overlearning and long 352 

ITI paradigms can be regarded as practically equivalent to the standard paradigm, with all 353 

credible values of the difference falling within the ROPE. During early learning, the gradual 354 

paradigm is obviously different from the standard paradigm, while the overlearning paradigm 355 

is practically equivalent. The long ITI paradigm cannot be regarded as equivalent or different 356 

from the standard paradigm during early adaptation. Late in learning, both the overlearning 357 

and long ITI paradigm are practically equivalent to the standard paradigm, while the HDI of 358 

the gradual paradigm falls just outside the ROPE. In the recovery phase, spontaneous 359 

recovery is higher in the overlearning paradigm compared to the standard paradigm, while the 360 

gradual and long ITI paradigm are practically equivalent.  361 

 362 
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Figure 7: Posterior distributions of the difference between the standard paradigm and other paradigms in 363 
control participants. The HDI is given in red text and red bars, the ROPE in black bars, and the percentage of 364 
the HDI within the ROPE in black text. The mode of the posterior distribution is given by blue text centered 365 
around the mode.  366 

Secondly, we tested for differences between paradigms in the cerebellar group (Figure 8). In 367 

the cerebellar group, similar differences and equivalencies between paradigms were 368 

established. That is, the baseline paradigms are practically equivalent, while the gradual 369 

paradigm is obviously different from the standard paradigm during the early adaptation phase. 370 

The overlearning and long ITI paradigm HDI’s fall just outside the ROPE during early 371 

learning, failing to establish equivalency. Late in adaptation, the gradual paradigm and long 372 

ITI paradigm are practically equivalent to the standard learning paradigm, while no decision 373 

criterion is met for the overlearning paradigm late in adaptation. Spontaneous recovery in the 374 

gradual paradigm and long ITI paradigm is practically equivalent to the standard paradigm. 375 

Credible values for the overlearning paradigm are higher than the standard paradigm, but the 376 

HDI and ROPE overlap slightly (5.46% of credible values fall within the ROPE). In other 377 

words, while the credible values for our parameter of interest are highly suggestive for a 378 

difference between the standard paradigm and overlearning paradigm in the recovery phase in 379 

cerebellar participants, the null value cannot be fully rejected given a ROPE of [−3.5°; 3.5°] . 380 
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 381 

Figure 8: Posterior distributions of the difference between the standard paradigm and other paradigms in 382 
cerebellar participants. The HDI is given in red text and red bars, the ROPE in black bars, and the percentage 383 
of the HDI within the ROPE in black text. The mode of the posterior distribution is given by blue text centered 384 
around the mode.  385 

Finally, we tested for differences between control participants and cerebellar participants 386 

(Figure 9). The baseline phase is practically equivalent for all paradigms between control 387 

participants and cerebellar participants. Early learning is much higher in control participants 388 

in all paradigms except the gradual paradigm, for which no decision criterion is met. The late 389 

adaptation phase is suggestive of more learning in control participants, but all HDI’s overlap 390 

the ROPE. The recovery phase is suggestive of similar spontaneous recovery between control 391 

participants and cerebellar participants, but too much of the HDI falls outside the ROPE in all 392 

paradigms to establish equivalency.  393 
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 394 

Figure 9: Posterior distributions of the difference between control participants and cerebellar participants 395 
(cerebellar participants – control participants). The HDI is given in red text and red bars, the ROPE in black 396 
bars, and the percentage of the HDI within the ROPE in black text. The mode of the posterior distribution is 397 
given by blue text centered around the mode of the posterior distribution.  398 

To sum up, behaviorally, the most salient difference in control participants exists between the 399 

amount of spontaneous recovery in the standard paradigm versus the overlearning paradigm, 400 

i.e. there is more spontaneous recovery after overlearning than standard learning. Similarly, 401 

the difference between the overlearning paradigm and the standard paradigm in cerebellar 402 

participants is highly suggestive for more spontaneous recovery after overlearning as well, 403 

though the difference is smaller than in control participants. We hypothesized that the 404 

additional amount of spontaneous recovery in both groups could either be due to prolonged 405 
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activation of the slow learning system, thereby increasing buildup of the slow state, or due to 406 

changes in the learning and retention parameters themselves. These hypotheses will be 407 

explored in the next section.  408 

3.3 Model results 409 

Since behavioral differences between the paradigms were mainly evident in overlearning 410 

versus standard learning, the following section focusses on comparing these paradigms. The 411 

model results for the other paradigms can be found as supplementary data (Supplementary 412 

data: Table 2-1 and Figures 10-1 and 10-2).  413 

To assess whether the estimated learning rate and retention rate of individual participants 414 

changed between paradigms, we plotted the credible values of 𝐴 and 𝐵 parameters of each 415 

participant in the standard paradigm versus the overlearning paradigm (Figure 10).  416 
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 417 

Figure 10: Bivariate histograms of the credible parameter values of individual participants and 418 
hyperparameters in the standard versus overlearning paradigm. All samples of the overlearning paradigm (y-419 
axis) were distributed over 500 bins and plotted as a function of the standard paradigm (x-axis). Sample counts 420 
range from relatively few samples from the posterior distribution (red) to many samples from the posterior 421 
distribution (yellow). The black dashed line indicates equality between paradigms. Circles indicate the modal 422 
parameter value of individual participants. A) Control participants B) Cerebellar participants.  423 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.185959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.185959


 26 

Two changes in the parameters between the paradigms were discernable in control 424 

participants (Figure 10A). Most notably, the retention rate of the slow state (ASlow) was 425 

shifted towards higher values in the overlearning paradigm in control participants (i.e. more 426 

retention of the slow system). Furthermore, the learning rate of the slow state (BSlow) was 427 

shifted towards lower values in the overlearning paradigm in control participants (i.e. slower 428 

learning of the slow system). Thus, the slow learning system is less sensitive to error as a 429 

result of extended training. The learning and retention rates of the fast system (AFast and BFast) 430 

appeared equivalent between the paradigms in control participants. The shifts of ASlow and 431 

BSlow were also reflected in the posterior distributions of the hyperparameters in control 432 

participants (second row, Figure 10A).  433 

In patients, changes in parameters between the paradigms were less discernable (Figure 10B). 434 

Qualitatively, it appears that cerebellar participants have a slightly higher retention rate of the 435 

slow system (ASlow) in the overlearning paradigm, like controls participants, but not a lower 436 

adaptation rate of the slow system (BSlow). Furthermore, credible values of AFast appeared to 437 

shift towards slightly higher values in the overlearning paradigm. The modal values and 438 

HDI’s of the hyperparameters of both control participants and cerebellar participants are 439 

printed in Table 2. Comparing the hyperparameters of control participants to cerebellar 440 

participants, we found that the values of ASlow, BSlow, and AFast are generally higher in control 441 

participants in both paradigms, while BFast is equivalent between participant groups. Bivariate 442 

histograms of control participants versus cerebellar participants which further illustrate these 443 

observations are found in the extended materials (Supplementary data: Figure 10-3). 444 

Table 2 
Mode and HDI’s of hyperparameters in two-state model 

Control participants 
  Normal Overlearning 

Parameter Mode HDI Mode HDI 

ASlowHypMu 0.992 0.989 – 0.994 0.996 0.994 – 0.997 
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BSlowHypMu 0.057 0.040 – 0.103 0.039 0.029 – 0.052 

AFastHypMu 0.81 0.664 – 0.903 0.82 0.750 – 0.868 

BFastHypMu 0.16 0.113 – 0.221 0.154 0.106 – 0.214 

Cerebellar participants 
  Normal Overlearning 
Parameters Mode HDI Mode HDI 

ASlowHypMu 0.988 0.982 – 0.994 0.992 0.986 – 0.995 

BSlowHypMu 0.02 0.013 – 0.029 0.021 0.009 – 0.040 

AFastHypMu 0.588 0.454 – 0.695 0.669 0.550 – 0.757 

BFastHypMu 0.15 0.115 – 0.188 0.134 0.094 – 0.185 

Table 2: Mode and HDI of credible parameter values in control participants and cerebellar participants. HDI is 445 
the 95% highest density interval. Parameter names correspond with nodes in JAGS model code. 446 

3.4 Posterior predictive plots 447 

To assess how the differences in the learning and retention rate between training paradigms 448 

affect motor output (𝑦!) and the states (𝑥!$ 	and 𝑥!(), posterior predictive plots were generated 449 

from multiple random draws (n = 10.000) of the posterior distributions of each participant 450 

(Figure 11). The model output (𝑦H!) generated from the posterior distributions generally fits 451 

behavior, with some notable exceptions. We will first discuss how shifts in parameters 452 

between paradigms are reflected in the posterior predictive plots. In the next section (Section 453 

3.5), we will assess the ways in which the model output does not fit the behavioral data, since 454 

the amount of early learning and spontaneous recovery is generally underestimated, especially 455 

in the overlearning paradigm.  456 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.185959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.185959


 28 

 457 

Figure 11: Posterior predictive plots of standard and overlearning paradigm. A) Control participants. B) 458 
Cerebellar participants. In the left and middle panels, the average behavior (𝑦#) is displayed with a solid black 459 
line for the standard paradigm an overlearning paradigm respectively. The average model output (𝑦)#) is 460 
displayed with a solid red line, the average fast state (𝑥#$) with a dotted green line, and the average slow state 461 
(𝑥#%) with a dotted blue line. The shaded errorbars indicate the variability around the average posterior 462 
predictive (2.5th percentile – 97.5th percentile of simulated data). In the top left corner of the left and middle 463 
panels, the average value of the slow state late in adaptation (L: the last 6 trials of the adaptation set) and the 464 
recovery phase (R: all 60 clamp trials in the washout set) is printed. 𝛥 indicates the difference between the 465 
average slow state late in adaptation and the recovery phase (L − R). The distribution of 𝛥 for all 10.000 draws 466 
is plotted in the rightmost panel. The blue histogram indicates 𝛥 for the standard paradigm, while the red 467 
histogram indicates 𝛥 for the overlearning paradigm. The inset histogram is the distribution of differences 468 
between 𝛥 of the standard and overlearning paradigm (overlearning – standard) and displays the proportion (p) 469 
of draws with a difference larger than 0. 470 

In the standard and overlearning paradigm in both groups, the model predicts large amounts 471 

of learning early in the adaptation set, driven by a quick rise of the fast state and a gradual rise 472 

of the slow state (Figure 11). Nearing the end of the adaptation set in both paradigms and 473 

groups, the model output is dominated by the slow state. The fast state quickly unlearns the 474 

perturbation during counterperturbation trials in both groups and paradigms, while the slow 475 

state is more resistant to the flip in perturbation direction. The recovery phase is dominated by 476 
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the slow state, but as mentioned above and further explored in Section 3.5, the model 477 

generally underestimates the amount of spontaneous recovery.  478 

In control participants, the slow state reaches similar levels of adaptation in both paradigms, 479 

about 21.1 degrees and 23.5 degrees for standard learning and overlearning respectively 480 

(Figure 11A). In the recovery phase of the standard paradigm the slow state is reduced to 481 

approximately 1.7 degrees, while the slow state in the overlearning paradigm retains 482 

approximately 7.8 degrees of what was learned. Thus, the difference between the slow state 483 

late in adaptation and the recovery phase is much larger in the standard paradigm than the 484 

overlearning paradigm (19.4 degrees versus 15.6 degrees respectively). This indicates that, in 485 

control participants, additional buildup of the slow state over the longer adaptation set is not 486 

the driving force behind additional spontaneous recovery as hypothesized, rather the motor 487 

memory has become more resilient, possibly due to the changes in the underlying parameters 488 

between paradigms. 489 

Contrastingly, in cerebellar participants, the difference between the slow state at the end of 490 

adaptation and the recovery phase is practically equivalent between the standard and 491 

overlearning paradigm, 10.7 degrees versus 10.9 degrees respectively (Figure 11B). Thus, 492 

while behaviorally there is more spontaneous recovery in the overlearning paradigm in 493 

cerebellar participants, this can largely be attributed by extended buildup of the slow state. 494 

By generating posterior predictive plots from the learning and retention parameters of the 495 

standard paradigm applied to the experimental structure of the overlearning paradigm (and 496 

vice versa), we could assess how much of the amount of slow learning in the recovery phase 497 

was explained by differences in parameters between the paradigms (Figure 12). 498 
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 499 

Figure 12: Posterior predictive plots of the standard and overlearning paradigm generated from parameter sets 500 
of the other paradigm. A) Control participants. B) Cerebellar participants. In the left and middle panels, the 501 
average behavior (𝑦#) is displayed with a solid black line for the overlearning and standard paradigm 502 
respectively. The average model output (𝑦)#) is displayed with a solid red line, the average fast state (𝑥#$) with a 503 
dotted green line, and the average slow state (𝑥#%) with a dotted blue line. The shaded errorbars indicate the 504 
variability around the average posterior predictive (2.5th percentile – 97.5th percentile of simulated data). In the 505 
top left corner of the left and middle panels, the average value of the slow state late in adaptation (L: the last 6 506 
trials of the adaptation set) and the recovery phase (R: all 60 clamp trials in the washout set) is printed. 𝛥 507 
indicates the difference between the average slow state late in adaptation and the recovery phase (L − R). The 508 
distribution of 𝛥 for all 10.000 draws is plotted in the rightmost panel. The blue histogram indicates 𝛥 for 509 
standard parameters in the overlearning structure, while the red histogram indicates 𝛥 for overlearning 510 
parameters in the standard structure. The inset histogram is the distribution of differences between 𝛥 of the 511 
standard parameters and overlearning parameters (overlearning – standard) and displays the proportion (p) of 512 
draws with a difference larger than 0. 513 

Notably, using incongruent parameter sets, the slow state reaches similar levels at the end of 514 

adaptation in the standard and overlearning experimental structure, both in control 515 

participants (Figure 12A) and cerebellar participants (Figure 12B). However, motor memory 516 

is only more resilient in the experimental structure with overlearning parameters in control 517 

participants, but not in cerebellar participants. This observation further establishes the idea 518 

that a shift in model rates between paradigms is what drives most of the additional 519 
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spontaneous recovery during overlearning, and that cerebellar participants have reduced 520 

motor memory resilience since their parameters change less as a function of overlearning.  521 

Finally, we wanted to assess whether the additional memory resilience after overlearning in 522 

control participants was driven largely by the changes in the retention parameter of the slow 523 

system (ASlow) or by changes in the learning parameter of the slow system (BSlow). Therefore, 524 

posterior predictive plots were generated from the original posterior distributions, but either 525 

ASlow or BSlow was drawn from the posterior distribution of the other paradigm (Figure 13). 526 

Posterior predictive plots are only shown for control participants, plots for cerebellar 527 

participants can be found in the extended materials (Supplementary data: Figure 13-1).  528 

 529 

Figure 13: Posterior predictive plots of the standard and overlearning paradigm, but with ASlow or BSlow from 530 
the other paradigm. Only the posterior predictive plots of control participants are shown. A) ASlow drawn from 531 
the other paradigm. B) BSlow drawn from the other paradigm. In the left and middle panels, the average 532 
behavior (𝑦#) is displayed with a solid black line for the standard paradigm an overlearning paradigm 533 
respectively. The average model output (𝑦)#) is displayed with a solid red line, the average fast state (𝑥#$) with a 534 
dotted green line, and the average slow state (𝑥#%) with a dotted blue line. The shaded errorbars indicate the 535 
variability around the average posterior predictive (2.5th percentile – 97.5th percentile of simulated data). In the 536 
top left corner of the left and middle panels, the average value of the slow state late in adaptation (L: the last 6 537 
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trials of the adaptation set) and the recovery phase (R: all 60 clamp trials in the washout set) is printed. 𝛥 538 
indicates the difference between the average slow state late in adaptation and the recovery phase (L − R). The 539 
distribution of 𝛥 for all 10.000 draws is plotted in the rightmost panel. The blue histogram indicates 𝛥 for the 540 
standard paradigm with one parameter from overlearning, while the red histogram indicates 𝛥 for the 541 
overlearning paradigm with one parameter from standard learning. The inset histogram is the distribution of 542 
differences between 𝛥 of the standard and overlearning paradigm. The paradigm with the larger amount of 543 
spontaneous recovery was subtracted from the smaller amount. The proportion (p) of draws with a difference 544 
larger than 0 is printed on top. 545 

For the posterior predictive plots with ASlow drawn from the other paradigm, the general 546 

pattern of learning and retention is similar to the original posterior predictive plots (Figure 547 

11A). There is slightly more buildup of the slow state during adaptation in the standard 548 

paradigm with ASlow drawn from the overlearning posterior (cf. Figure 11A), which suggests 549 

that ASlow determines the extent of the slow state at the end of learning. However, the motor 550 

memory is still less resilient than the overlearning paradigm, given the relatively large 551 

difference between the slow state late in adaptation and the recovery phase (20.2 degrees, 552 

Figure 13A). In the overlearning paradigm, with ASlow drawn from the standard posterior, we 553 

see slightly less buildup of the slow state during adaptation (cf. Figure 11A), but the motor 554 

memory remains relatively resilient (a difference of 15.2 degrees between late adaptation and 555 

the recovery phase, Figure 13A).  556 

However, when BSlow is drawn from the posterior of the other paradigm, we see a complete 557 

reversal of the pattern of memory resilience (Figure 13B). Now, the paradigm with the most 558 

resilient motor memory is the standard paradigm, instead of the overlearning paradigm. 559 

During the overlearning paradigm (middle panel, Figure 13B), the slow state reaches higher 560 

levels during adaptation than the slow state in the original posterior predictive plot of the 561 

overlearning paradigm (middle panel, Figure 11A). However, the difference of the slow state 562 

late in adaptation and the recovery phase is much larger than the posterior predictive with 563 

congruent parameters, revealing that motor memory resilience is mainly driven by a reduction 564 

in the learning rate of the slow system (BSlow). This also illustrates why cerebellar participants 565 

exhibit less spontaneous recovery than control participants. Since BSlow in cerebellar 566 
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participants remains relatively constant between the standard paradigm and overlearning 567 

paradigm (Figure 10B), motor memory resilience of cerebellar participants is not increased 568 

by overlearning. 569 

3.5 Exploring the lack of fit 570 

As briefly alluded to in the prior section, the amount of early learning and spontaneous 571 

recovery is underestimated compared to the actual behavioral response, especially in the 572 

overlearning paradigm. We hypothesized that this could be due to the fact that the model 573 

identifies a fixed set of parameters for all trials, while in reality learning and retention rates 574 

change dynamically in response to task demands. As the learning and retention rates are 575 

considered fixed in the model, any changes due to developing task demands might be 576 

‘averaged out’. That is, because the parameters are considered constant, the model has a hard 577 

time accounting for both the large amount of quick early learning in the adaptation set, as well 578 

as the increase in memory resilience due to overlearning.  579 

This hypothesis was explored by splitting the behavioral data in half and performing a model 580 

run for each part separately. The first split of behavioral data contained the trials of the 581 

baseline set and the early learning of the adaptation set, while the second split consisted of the 582 

trials late in adaptation, the counterperturbation trials, the recovery phase, and the washout 583 

phase. Thus, practically, an independent set of parameters was identified for each split of a 584 

paradigm.  585 

First, we assessed whether the parameters actually changed between the two splits of 586 

behavioral data. For this purpose, the learning and retention rate of the first split were plotted 587 

versus the rates of the second split (Figure 14).  588 
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 589 

Figure 14: Bivariate histograms of the credible parameter values of individual participants in the first split 590 
(Split1) versus the second split (Split 2). A) Control participants. B) Cerebellar participants. Both the standard 591 
learning paradigm and overlearning paradigm are pictured. All samples of the second split (y-axis) were 592 
distributed over 500 bins and plotted as a function of the first split (x-axis). Sample counts range from relatively 593 
few samples from the posterior distribution (red) to many samples from the posterior distribution (yellow). The 594 
black dashed line indicates equality between paradigms. Circles indicate the modal parameter value of 595 
individual participants. 596 
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This suggested that the parameters of control participants are relatively stable in the standard 597 

learning paradigm, with the exception of ASlow. ASlow is close to 1 during the first split in all 598 

participants, likely since adaptation has not plateaued in the early trials of the standard 599 

learning paradigm. In contrast, the learning and retention rates of control participants in the 600 

overlearning paradigm change quite dramatically between splits. Specifically, the parameters 601 

of the slow state (ASlow and BSlow) are shifted in the second half of the paradigm versus the 602 

first half. ASlow is generally higher in the second split, while BSlow is generally lower in the 603 

second split.  604 

In cerebellar participants, the shifts in parameters between the splits in the standard paradigm 605 

are mostly equivalent to control participants, though BSlow also appears to be slightly lower in 606 

the second split than the first split in the standard paradigm. In the overlearning paradigm, 607 

however, not only are there similar shifts to the parameters of the slow state as seen in control 608 

participants (ASlow and BSlow), there is also a shift in the parameters of the fast state between 609 

splits. Namely, both AFast and BFast are higher in the second split than the first split.  610 

To explore whether ‘averaging out’ the changes in parameters was actually the reason of the 611 

poor fit early in the adaptation set and recovery phase, multiple random draws (n = 10.000) 612 

were taken from the posteriors of each participant in both splits of the model data. Then, 613 

posterior predictive plots were generated from these draws and fitted to the respective split of 614 

behavioral data (Figure 15). The earlier observation that motor memory becomes more 615 

resilient with overlearning in control participants, but not cerebellar participants, also holds in 616 

the split model posterior predictive plots. The additional spontaneous recovery in cerebellar 617 

participants is fully explained by additional buildup of the slow state during adaptation, and 618 

not increased memory resilience. Importantly, in both paradigms and participant groups, the 619 

output of the split models clearly fits the behavioral data better than the unsplit model runs. 620 

Both the amount of early learning and the spontaneous recovery is estimated more accurately 621 
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in the split model than the unsplit model, further indicating that model parameters change 622 

dynamically in response to task demands, rather than being constant across all movements.  623 

  624 

Figure 15: Posterior predictive plots of the standard and overlearning paradigm using split model parameters. 625 
A) Control participants. B) Cerebellar participants. In the left and middle panels, the average behavior (𝑦#) is 626 
displayed with a solid black line for the overlearning and standard paradigm respectively. The average model 627 
output (𝑦)#) is displayed with a solid red line, the average fast state (𝑥#$) with a dotted green line, and the average 628 
slow state (𝑥#%) with a dotted blue line. The shaded errorbars indicate the variability around the average 629 
posterior predictive (2.5th percentile – 97.5th percentile of simulated data). In the top left corner of the left and 630 
middle panels, the average value of the slow state late in adaptation (L: the last 6 trials of the adaptation set) 631 
and the recovery phase (R: all 60 clamp trials in the washout set) is printed. 𝛥 indicates the difference between 632 
the average slow state late in adaptation and the recovery phase (L − R). The distribution of 𝛥 for all 10.000 633 
draws is plotted in the rightmost panel. The blue histogram indicates 𝛥 for the standard paradigm, while the red 634 
histogram indicates 𝛥 for the overlearning paradigm. The inset histogram is the distribution of differences 635 
between 𝛥 of the standard and overlearning paradigm (overlearning – standard) and displays the proportion (p) 636 
of draws with a difference larger than 0.  637 
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4 Discussion 638 

In the following paragraphs we will discuss our most important observations in more detail, 639 

the possible implications for cerebellar therapy, and address limitations of the present study. 640 

4.1 What drives memory resilience?  641 

Essentially, in control participants, extended training reduces sensitivity to new movement 642 

errors. Error sensitivity depends on several factors, like the size of the movement error 643 

(Marko et al., 2012), planning/execution noise (van der Vliet et al., 2018), the history of 644 

movement errors (Herzfeld et al., 2014) and the uncertainty of movement errors (Wei, 2010). 645 

We suggest that the reduction in error sensitivity in the overlearning paradigm is the result of 646 

reduced state estimation uncertainty (Kording et al., 2007). Assuming motor learning is a 647 

process of optimally combining feedforward estimates and sensory feedback, the motor 648 

learning system should adapt slower to new movement errors given reduced state estimation 649 

uncertainty. Thus, after extended training, counterperturbation trials are slower to washout the 650 

slow state, resulting in increased levels of spontaneous recovery in control participants.  651 

The reduction in error sensitivity appears to contrast with earlier work, which suggests that 652 

error sensitivity increases in response to more consistent error environments (Herzfeld et al., 653 

2014). Herzfeld et al. found that participants learned more from movement errors when an 654 

error environment was likely to persist, while learning from movement errors was suppressed 655 

in rapidly switching environments. However, in that study, error sensitivity was measured on 656 

a trial-by-trial basis, which likely captured error sensitivity of the fast process to a much 657 

greater extent than the slow process. Furthermore, the authors did not consider how extended 658 

exposure to a particular environment affected the resilience of that environment. Therefore, 659 

our findings are likely congruent with these earlier results, as increasing error sensitivity of 660 

the fast process and reducing error sensitivity of the slow process might work in parallel.  661 

4.2 Why is motor memory resilience attenuated in cerebellar participants? 662 
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Some researchers have suggested that the properties of the fast learning system are associated 663 

with the cerebellar cortex, while the properties of the slow system are associated with the 664 

deep cerebellar nuclei (DCN) (Antonietti et al., 2017; Casellato et al., 2015; Medina et al., 665 

2001). We observed degeneration of the anterior hand area of the cerebellum in the patient 666 

group, predicting a deficit of the fast learning system. This would explain why the cerebellar 667 

group was much slower to adapt and did not adapt to the extent of control participants, in line 668 

with previous work (Donchin et al., 2012). In contrast to control participants, error sensitivity 669 

of the slow system was not reduced in cerebellar participants after extended training, which 670 

made the slow state less resilient against washing out. Given the hypothesized association 671 

between the slow learning system and the DCN, reduced memory resilience could be the 672 

result of reduced DCN integrity. The cerebellar group may have been affected by reduced 673 

DCN integrity, since structure and function abnormalities of the DCN are common in patients 674 

with hereditary cerebellar ataxia (Stefanescu et al., 2015). Interestingly, lesions of the DCN 675 

have been linked to impaired long-term recovery and upper limb function after stroke and 676 

surgery (Konczak et al., 2005; Schoch et al., 2006), which we suggest could be due to reduced 677 

memory resilience. However, since the DCN were not imaged in this study, we cannot make 678 

conclusive statements about the relationship between memory resilience and DCN integrity.  679 

4.3 What underlies increased retention rates? 680 

While memory resilience was reduced in cerebellar participants, spontaneous recovery was 681 

still amplified after extended training. The modelling results suggest this was due to a shift 682 

towards more retention of the slow system (ASlow) and not increased memory resilience. A 683 

similar shift towards higher retention rates of the slow system was also observed in control 684 

participants. Since this property of motor learning is still preserved in cerebellar participants, 685 

the mechanism underlying increased retention rates could be extra-cerebellar.  686 
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A possible candidate for such an extra-cerebellar mechanism is use-dependent plasticity. 687 

When movements are repeatedly made towards the same area of the workspace, directional 688 

movement biases are formed that shape consecutive movements (Diedrichsen et al., 2010). 689 

Extended training towards the same target directions can therefore induce stronger movement 690 

biases and result in additional spontaneous recovery. In our experiment, targets were spread 691 

over a relatively limited area of the workspace (48°), so use-dependent movement biases were 692 

likely to build (cf. experiment 4 McDougle et al., 2015). Thus, we suggest that elevated 693 

spontaneous recovery after extended training in healthy participants is the result of two 694 

separate effects: use-dependent learning, resulting in higher retention rates of the slow system, 695 

and increased memory resilience, resulting in lower learning rates in the slow system. In 696 

contrast, we suggest that the elevated spontaneous recovery in cerebellar patients reflects only 697 

one of these effects: use-dependent learning, potentially an extra-cerebellar process. 698 

4.4 Could use-dependent plasticity be leveraged for cerebellar therapy? 699 

Prior work has found that intensive therapy programs are effective in reducing ataxia 700 

symptoms in cerebellar participants (Ilg et al., 2009; Miyai et al., 2012). These therapy 701 

programs were intensive, because patients were trained multiple times a week. Interestingly, 702 

long-term gains of therapy were correlated with the training intensity after the intervention 703 

period, as cerebellar patients that trained more at home retained a larger functional 704 

improvement after 1-year follow-up (Ilg et al., 2010). In that sense, continued high intensity 705 

therapy is a form of overlearning, since cerebellar patients continue training already learned 706 

behavior. The gains after high intensity therapy could therefore be the result of use-dependent 707 

learning as well. It should be noted however that the benefit of use-dependent learning during 708 

therapy might be limited by disease progression (Donchin and Timmann, 2019). That is, 709 

impaired learning from sensory-prediction errors due to cerebellar degeneration might also 710 
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disrupt other motor learning mechanisms when cerebellar disease is sufficiently far 711 

progressed.  712 

Another possible application of our results is to see whether motor memory resilience can 713 

predict response to neurorehabilitation. Although evidence is still limited, there appears to be 714 

a link between motor learning deficits and the success of neurorehabilitation (Hatakenaka et 715 

al., 2012). Our modeling results suggest that healthy participants successfully reduce error 716 

sensitivity of the slow system while cerebellar patients do not. Thus, reduced memory 717 

resilience could be a sign of disease progression and patients with reduced memory resilience 718 

might benefit less from extended training than patients with relatively intact memory 719 

resilience. As such, motor memory resilience might help in identifying which cerebellar 720 

patients will respond best to intensive therapy.  721 

4.5 Limitations 722 

Several limitations have to be taken into account while interpreting the results of this study. 723 

Firstly, the two-state model with fixed learning and retention rates could not account for the 724 

full amount of early learning and the extent of spontaneous recovery. Only when two 725 

independent models were fit to the early and late phase of training did the model output 726 

accurately match behavior. Others have described rate changes of the two-state model, but 727 

mainly in the context of faster relearning (Coltman et al., 2019; Zarahn et al., 2008). Our 728 

results further indicate that model parameters likely vary between different phases of motor 729 

learning and fixed parameters cannot account for these variations.  730 

Secondly, motor learning during reach adaptation experiments depends on multiple learning 731 

mechanisms (Haith and Krakauer, 2013), including learning from sensory prediction errors 732 

(Shadmehr et al., 2010), use-dependent learning (Diedrichsen et al., 2010), reinforcement 733 

learning (Galea et al., 2015) and strategic learning (Taylor et al., 2014). We only considered 734 

the effects of error-based learning and use-dependent learning on motor behaviors. While our 735 
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training paradigms were not developed to selectively engage reinforcement learning or 736 

strategic learning, a differential effect of these learning mechanisms between paradigms 737 

cannot be excluded. Furthermore, we only considered that error sensitivity of the slow state 738 

changed due to reduced state estimation uncertainty, but it could be the result of other factors 739 

as well. For instance, planning and execution noise correlate with learning rates (van der Vliet 740 

et al., 2018), and the fast system might be temporally labile, while the slow system is 741 

temporally stable (Sing et al., 2009). 742 

Finally, though the modelling results of the gradual and long ITI paradigm are not discussed 743 

in the present manuscript, the extended materials reveal that the learning and retention 744 

parameters shift in these paradigms as well. However, since behaviorally the gradual and long 745 

ITI paradigms are equivalent to the standard paradigm, it is difficult to infer the exact 746 

implications of these parameter shifts in the current study.  747 

4.6 Conclusions 748 

The present study investigated the effect of slow learning paradigms on motor behavior. Of 749 

the training paradigms tested, only overlearning elicited higher levels of spontaneous recovery 750 

compared to standard learning. We suggest that enhanced motor retention was the result of 751 

changes to memory resilience and use-dependent plasticity in control participants. Memory 752 

resilience in cerebellar participants was diminished, which we suggest could be caused by 753 

reduced DCN integrity. To our knowledge, this is the first time this deficit has been described 754 

in cerebellar patients. We suggest that cerebellar patients might still benefit from extended 755 

training through use-dependent learning.   756 
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