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ABSTRACT 

The integration of proteomic, transcriptomic, and genetic-variant annotation data will improve our 

understanding genotype-phenotype associations. Due, in part, to challenges associated with 

accurate inter-database mapping, such multi-omic studies have not extended to 

chemoproteomics, a method that measure the intrinsic reactivity and potential 'druggability' of 

nucleophilic amino acid side chains. Here, we evaluated two mapping approaches to match 

chemoproteomic-detected cysteine and lysine residues with their genetic coordinates. Our 

analysis reveals that databases update cycles and reliance on stable identifiers can lead to 

pervasive misidentification of labeled residues. Enabled by this examination of mapping 

strategies, we then integrated our chemoproteomic data with in silico generated predictions of 

genetic variant pathogenicity, which revealed that codons of highly reactive cysteines are 

enriched for genetic variants that are predicted to be more deleterious. Our study provides a 

roadmap for more precise inter-database comparisons and points to untapped opportunities to 

improve the predictive power of pathogenicity scores and to advance prioritization of putative 

druggable sites through integration of predictions of pathogenicity with chemoproteomic datasets. 
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INTRODUCTION 

Understanding how proteins work is the bedrock of functional biology and drug 

development. The identification of amino acids that directly regulate a protein’s activity (e.g. 

catalytic residues, residues that drive interactions, or residues important for folding or stability) is 

an essential step to functionally characterize a protein. Delineation of amino acid-specific 

functions is typically accomplished using site-directed mutagenesis (Starita et al. 2015; Hemsley 

et al. 1989). While such studies can identify functional hotspots in human proteins, they are 

typically limited in scope and largely restricted to proteins easily expressed in vitro. With the 

advent of next generation sequencing and CRISPR-based mutagenesis, deep mutational 

analysis can now be scaled to individual genes (e.g. TP53 and BRCA1) (Starita et al. 2015; 

Boettcher et al. 2019), but such studies have not been extended genome-wide. 

This problem of identifying the function of a specific amino acid parallels one of the central 

challenges of modern genetics: interpretation of the pathogenicity of the millions of genetic 

variants found in an individual’s genome. Many in silico algorithms, such as M-CAP (Jagadeesh 

et al. 2016),  CADD (Kircher et al. 2014), PolyPhen (Adzhubei et al. 2010), and SIFT (Vaser et al. 

2016) integrate data such as sequence conservation, metrics of sequence constraint, and other 

functional annotations to provide a metric for stratification of benign and pathogenic variants. In 

the absence of experimental data, these scores provide a quantitative metric to rank genetic 

variants for their effect on a phenotype, something particularly important in the era of genome-

wide association studies and sequencing studies.  

Beyond genetic variation, a frequently overlooked parameter that defines functional ‘hot-

spots’ in the proteome is amino acid side-chain reactivity, which can fluctuate depending on the 

residue’s local and 3-dimensional protein microenvironment. Mass spectrometry-based 

chemoproteomics methods have been developed that can assay the intrinsic reactivity of 

thousands of amino acid side chains in native biological systems (Weerapana et al. 2010; Backus 

et al. 2016; Hacker et al. 2017). Using these methods, previous studies, including our own, 
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revealed that "hyper-reactive" or pKa perturbed cysteine and lysine residues are enriched in 

functional pockets. These chemoproteomic methods can even be extended to measure the 

targetability or "druggability" of amino acid side chains, which has revealed that a surprising 

number of cysteine and lysine side chains can also be irreversibly labeled by small drug-like 

molecules (Weerapana et al. 2010; Backus et al. 2016; Hacker et al. 2017). Complicating matters, 

for the vast majority of these chemoproteomic-detected amino acids (CpDAA), the functional 

impact of a missense mutation or chemical labeling remains unknown. Integrating 

chemoproteomic data with genomic-based annotations represents an attractive approach to 

stratify amino acid functionality and to identify therapeutically relevant disease-associated 

pockets in human proteins. 

Such multi-omic studies require mapping a protein's sequence back to genomic 

coordinates, through the transcript isoforms, in essence reverse engineering the central dogma 

of molecular biology. Accurate mapping between genomic coordinates and amino acid positions 

remains particularly challenging, due in part to the diversity of cell-type specific transcript and 

protein isoforms and the non-linear relationship between genomic, transcriptomic, and protein 

databases. One approach to address these challenges is through proteogenomics, where custom 

FASTA files are generated from whole exome or RNA-sequencing data. However, such 

approaches are not typically scalable or cost-effective. Furthermore, many proteomic datasets, 

particularly previously acquired and public datasets, lack matched genomic data, precluding 

proteogenomic analysis. 

Many computational tools have been developed for inter-database mapping, including 

using unique identifiers (Agrawal and Prabakaran 2020; L. M. Smith et al. 2019; Durinck et al. 

2009), methods to map genomic coordinates to protein sequences and structures(Stephenson et 

al. 2019; Sehnal et al. 2017; Sivley et al. 2018; David and Yip 2008), and tools for codon-centric-

based annotation of genetic variants (Gong et al. 2014; Schwartz et al. 2019). One key application 

of these tools is in the improved prediction of variant pathogenicity (Guo et al. 2017). Complicating 
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such data integration, while many predictive genetic scores are built on the GRCh37 reference 

genome (frozen in 2014), the proteomic UniProtKB reference is based on GRCh38. Further 

complicating matters, the unsynchronized and frequent updates to widely used databases, such 

as UniProtKB and Ensembl, results in a constantly evolving landscape of genome-, transcriptome- 

and proteome-level sequences and annotations, which further confounds multi-omic data 

integration, particularly for residue level analyses.  

Focusing on previously identified CpDAAs (Weerapana et al. 2010; Backus et al. 2016; 

Hacker et al. 2017), we first quantitatively assess the impact of mapping methods, including the 

use of stable and versioned identifiers and tools for residue-coordinate mapping, on the fidelity of 

data integration. We then apply an optimized mapping strategy to annotate CpDAA positions with 

predictions of genetic variant pathogenicity. Our study uncovers key sources of inaccurate 

mapping and provides fundamental guidelines for multi-omic data integration. We also reveal that 

highly reactive cysteines are enriched for genetic variants that have high predicted pathogenicity 

(high deleteriousness), which supports both the utility of predictive scores to further power 

proteomics datasets and the use of chemoproteomics to add another layer of interpretation to 

missense genetic variants. As many databases move to GRCh38, we anticipate that our findings 

will provide a roadmap for more precise inter-database comparisons, which will have wide ranging 

applications for both the proteomics and genetics communities.     

 

RESULTS  

(1) Characterizing the dynamic mapping landscape relevant to CpDAA data integration. 

Our first step to achieve high fidelity multi-omic data integration was to establish a 

comprehensive set of test data. For this we turned to publicly available chemoproteomics datasets 

(Backus et al. 2016; Hacker et al. 2017; Weerapana et al. 2010). To generate our test dataset, 

we first aggregated the CpDAAs identified in all three prior studies and then confirmed that all 

UniProtKB IDs and residue numbers were valid (Table S1). All three original CpDAA datasets 
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had been previously searched against the same reference proteome (November 2012 UniProtKB 

release), a non-redundant FASTA file of protein sequences identified by UniprotKB stable IDs. In 

these datasets, each detected amino acid is represented as the associated stable identifier (Table 

S2) and amino acid position based on the canonical sequence (e.g. P04637_C141 represents 

cysteine 141 in UniProtKB ID P04637 sequence, which is TP53). After data merge and ID 

validation (see Methods), we recovered 99% of the original chemoproteomic datapoints, with a 

small fraction lost due to absence of protein stable identifiers in the 2012 UniProtKB FASTA file 

or mis-matched coordinates for detected cysteine and lysine. In aggregate, our dataset consists 

of 6,404 identified cysteine residues and 9,213 identified lysine residues within 4,084 unique 

proteins. These 15,617 CpDAAs are further sub-categorized by the measures of amino acid 

intrinsic reactivity and potential targetability. 

As our overarching objective was to characterize CpDAAs using functional annotations 

based on the protein, transcript, or gene coordinates (Figure 1A), our next step was to map the 

CpDAA UniprotKB stable identifiers to the identifiers of corresponding proteins, genes, and 

transcripts in more recent versions of UniProtKB, Ensembl and GENCODE. We chose to map our 

data using stable identifiers, instead of versioned identifiers (Table S2), for two reasons. First, the 

CpDAAs were identified by stable, but not versioned, identifiers. Second, stable identifiers offer 

the seeming advantage of remaining constant through update cycles. However, one particularly 

confusing and notable aspect of the stable identifier is that the word “stable” in this context does 

not mean permanent, reliable, or immutable. Specifically, the associated sequence linked to a 

stable identifier can change over database version releases. These changes complicate residue-

level mapping across different database releases and can cause residue mismapping where the 

amino acid position is correct in one release but incorrect in a future updated version of the 

database. Therefore, we evaluated established methods for inter-database mapping, including ID 

mapping, residue-residue mapping, and residue-codon mapping (See Table S2 for detailed 

descriptions of each type of mapping).  
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We collected a test set of Ensembl releases (Table S3) to benchmark the fidelity of specific 

mapping methods, using our CpDAA dataset as a starting point. Specific releases were prioritized 

to highlight how specific updates and integrations impacted data mapping. Specific releases were 

prioritized that (1) represented reference releases based on the GRCh37 or GRCh38 reference 

genome, (2) were compatible with the latest Consensus CoDing Sequence (CCDS) update for 

the human genome (release 22), (3) were used in dbNSFPv4.0a and CADDv1.4, two resources 

that integrate functional annotations for all possible non-synonymous single nucleotide variants 

(SNV) (Kircher et al. 2014; Liu et al. 2016), and (4) were associated with a commonly used version 

of the Ensembl Variant Effect Predictor (VEP) (McLaren et al. 2016). 

 With this data in hand, we next tracked the loss of proteins and CpDAAs during intra-

database mapping of UniProtKB releases and inter-database mapping of multiple Ensembl 

releases to a frozen release of the UniProtKB human proteome. Through this analysis we sought 

to quantify how database update-induced changes to the protein sequences associated with 

stable identifiers would affect CpDAA mapping. Gratifyingly, only a handful of the original 4,119 

IDs were lost due to database updates, both for Ensembl and UniProtKB (Figure 1B). While all 

Ensembl datasets showed similar losses, Ensembl v85 modestly outperformed more recent 

versions, consistent with the v85 release date being closest in time to the UniProtKB release on 

which legacy data was based. The greatest identifier loss was observed from mapping UniProtKB-

based legacy data to the UniProtKB-SwissProt curation of the human proteome from 2018, with 

119 entries not found in the 2018 dataset. We ascribe this identifier loss to both UniProtKB 

updates and to the higher-level of curation for proteins in the 2018 dataset, which includes only 

Swiss-Prot canonical protein sequences with an entry term in the CCDS database cross-

reference (xref) files. Of note, CCDS gene IDs are manually reviewed and linked to UniProtKB-

SwissProt. In contrast, other database cross-references include protein IDs that are not manually 

reviewed. Both the manually curated and automatically generated protein IDs are included in the 
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TrEMBL database, which, as a result is comprised of a significantly larger sets of UniProtKB IDs, 

when compared to CCDS (Figure EV1).  

Accurate residue-level mapping between sequences from different database sources is 

further complicated by the frequent and unsynchronized update cycles of independent databases. 

Therefore, we next sought to identify the optimal releases for data mapping. We assembled a 

comprehensive inventory of all database updates for Ensembl, GENCODE, NCBI, and CCDS 

(Table S4) between the dates of August 2013 - July 2019 (6 years). In total, we noted the release 

dates of 25 Ensembl, 13 GENCODE, 6 CCDS (homo sapiens only), and 5 NCBI releases. 

Quantification of the average update cycle for each database across this time period revealed 

that UniProtKB has the shortest mean update cycle length (~6 weeks) (Figure 1C). In contrast, 

NCBI is only updated yearly. Many updates are not synchronized (Figure 1D), which can create 

a lag between versions of databases used to create identifier cross-reference (xref) files. For 

example, stable ID mapping files provided by Ensembl for UniProtKB proteins may not share 

identical sequences if not used within the short 4-week window between UniProtKB updates. 

These changes can accumulate over time and can lead to data loss and residue mis-annotation. 

From this analysis, we concluded that using the CCDS UniProtKB release was optimal for 

integration with multiple predictions of pathogenicity, including CADD (Kircher et al. 2014), DANN 

(Quang, Chen, and Xie 2015), and FATHMM (Rogers et al. 2018).  

 

(2) Updates to canonical sequences assigned to UniProtKB stable identifiers can lead to 

intra-database mismapping of CpDAAs.   

Proteomics datasets, including the published CpDAA datasets, are routinely searched 

against FASTA files containing all canonical sequences (Table S2) of proteins encoded by the 

genome, identified by UniProtKB stable IDs. The use of canonical sequences, instead of all 

isoforms, substantially reduces the redundancy and complexity of database searches. An 

additional advantage of these stable IDs is that they remain unchanged across releases, which 
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can facilitate rapid intra-database cross referencing. Therefore, our next step was to use these 

stable IDs to map between two UniProtKB releases (2012 and 2018). By mapping our data to the 

2018 UniProtKB CCDS release, we aimed to take advantage of the extensive array of tools that 

have been developed to facilitate forward and reverse annotation between gene, transcripts, and 

protein coordinates (Table S5). Updating to the 2018 release was a requisite step for using these 

tools, as they overwhelmingly require recent cross-reference files. We performed residue-residue 

mapping—defined as a one-to-one correspondence between amino acids in proteins from 

different databases or release dates (Table S2)—of all CpDAA positions between the two 

versions of UniProtKB. We matched the canonical sequences that were linked with the 2012 

stable ID vs the 2018 stable ID from our CpDAA data (Table S6). Our analysis showed the loss 

of 121 protein IDs, with 108 simply not found and the remaining 13 found to have different 

canonical sequences, resulting in mismapping or loss of the originally identified CpDAA residues. 

 The high concordance between these two UniProtKB releases, separated by six years, 

indicates that for the vast majority of UniProtKB updates, differences in release date should not 

complicate annotating legacy proteomics data with metrics based on more recently released 

gene, transcript, and protein sequences. However, we were surprised to find that several widely 

studied proteins, including protein arginine N-methyltransferase 1 (PRMT1, Q99873) (Tang et al. 

2000), serine/threonine-protein kinase, (SIK3; Q9Y2K2) (Walkinshaw et al. 2013), and 

Tropomyosin alpha-3 chain (TPM3, P06753) were not found during intra-UniProtKB mapping 

(Table S6). We observed two main reasons for these losses: 1) changes to the canonical 

sequence associated with the UniProtKB stable ID and 2) changes to which isoform is assigned 

as the canonical sequence. While both the 2012 and 2018 sequences of PRMT1 are associated 

with UniProtKB stable ID Q99873, the 2018 sequence contains an additional short N-terminal 

sequence, not present in the 2012 sequence (Figure 2A). As a result, all 13 PRMT1 CpDAAs 

failed to map to the 2018 UniProtKB release. In the 2012 release of UniProtKB, the canonical 

sequence of the Peptidyl-prolyl cis-trans isomerase FKBP7 is associated with the versioned 
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(isoform) ID Q9Y680-1, whereas in the 2018 release the canonical sequence is associated the 

versioned (isoform) ID Q9Y680-2, which lacks a short sequence (AAΔ125:162) in the middle of 

the protein. For FKBP7, this update fortuitously does not result in loss of CpD Lys83, as it is 

located n-terminal to the deletion. However, as showcased by PRMT1, updates to a protein’s 

canonical sequence, such as these, can easily result in data loss and mismapping.  

These updates are, in essence, masked by the stable IDs, which do not flag sequence 

updates or changes to which isoform sequence is assigned as the canonical. Exemplifying this 

problem, we identified 45 stable identifiers with non-identical canonical protein sequences in the 

2012 and 2018 UniProtKB releases (Table S7). Therefore, our next step was to investigate how 

the presence or absence of protein isoforms would affect intra-database mapping. Analysis of all 

protein entries associated with our CpDAA dataset revealed 58% of protein stable IDs have 

between 2-5 associated isoform sequences (Figure 2B). Some proteins had sequence variability 

with five proteins having more than 16 isoforms and Catenin delta-1 protein (CTNND1, O60716) 

had 32 isoforms, which was the greatest number of isoforms in our dataset (Table S8). Protein 

entries with only one isoform accounted for 37% of protein stable IDs (n=1,466).  

Protein isoforms are identified by the ‘-X’ after the UniProtKB ID, where X represents the 

isoform number. A standard assumption of most mapping tools and proteomics databases is that 

the ‘-1’ sequence is the canonical sequence. However, a key finding from our isoform analysis is 

that the canonical sequence does not actually always correspond to the ‘-1’ isoform ID provided 

by UniProtKB. For 55 proteins (~2%) of our CpDAA-containing proteins, the canonical sequence 

is not the ‘-1’ isoform (Figure 2C and Table S9). Strikingly, the canonical sequence can even be 

the '-10' isoform, as is the case for the Ras-associated and pleckstrin homology domains-

containing protein (RAPH1, Q70E73). In the context of database mapping, all of these non- ‘-1’ 

canonical entries will likely result in mismapping using established tools.   
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(3) Accurate residue-level mapping between UniProtKB and Ensembl is dependent on 

database update cycles  

To investigate inter-database mapping, we next turned to ID cross-reference files (Table 

S2) that are released by Ensembl and UniProtKB. Cross-reference files can be used to convert 

between UniProtKB and Ensembl ID types. In the ideal scenario for inter-database mapping, we 

would have a 1:1 relationship between UniProtKB protein ID and amino acid position and Ensembl 

protein, transcript, and gene IDs and corresponding genomic coordinates. However, in practice, 

three major challenges arise with ID cross-referencing: 1) when cross reference stable IDs match, 

but corresponding sequences are not identical, 2) multi-mapping, where a UniProtKB ID maps to 

many Ensembl protein, transcript, and gene IDs, and 3) when the origin, both the time of releases 

and which database provided cross reference files, determines the mapping accuracy of datasets.  

Sequence updates associated with a stable ID can lead to mismapping of gene-, 

transcript-, and protein-level annotations for CpDAAs. Glucose-6-phosphate dehydrogenase 

(G6PD, P11413) exemplifies how Ensembl IDs change with database updates from v85 to v92 

(Figure 3A). For G6PD, the same UniProtKB ID maps to multiple Ensembl stable protein IDs 

(colored squares). Additionally, the protein sequence associated with specific Ensembl stable IDs 

varied across Ensembl releases. In fact, over time the same protein sequence was associated 

with four different Ensembl protein IDs with identical sequences (see first row in ‘Identical’) as well 

as three different Ensembl protein IDs with non-identical sequences (see second row in ‘Non-

identical’). For G6PD, this significant redundancy at the protein ID level also extends to the 

Ensembl stable transcript and gene IDs (Figure 3B).   

Building upon the substantial number of Ensembl sequence updates observed for G6PD, 

we next assessed how pervasive sequence updates were for associated stable identifiers across 

all Ensembl gene, transcript, and protein IDs mapped to our set of CpDAA UniProtKB IDs. We 

counted the sequence version increments for each Ensembl stable ID, starting with the v85 

release. The number of version updates varies for gene, transcript, and protein sequences 
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associated with Ensembl IDs. We find that genes undergo the highest frequency of sequence re-

annotation (Figure 3C). For example, between Ensembl v85 and v97, there are only 128 

sequence updates for protein IDs compared with 32,949 sequence updates for transcript IDs and 

41,439 for gene IDs (Table S10). Therefore, this high variability in sequence updates for stable 

IDs make mapping using only stable IDs a challenging problem. 

A solution to deciphering which of these many sequences are non-redundant, is to use 

cross reference files with Ensembl versioned IDs (Table S2), which adds an increment to a stable 

ID (i.e. ‘.1’ to ‘.2’) to indicate that a change to the associated sequence has occurred. For Ensembl 

stable identifiers, version number increments signify updates made to the associated amino acid 

or nucleotide sequence or to exon boundaries (“Ensembl Stable IDs” n.d.; Ruffier et al. 2017). 

These versioned IDs can reduce the many-to-one, one-to-many, or many-to-many relationships 

between gene, transcript, and protein IDs. For example, for protein tropomyosin alpha-4 chain 

(TPM4, P67936), during the update from v96 to v97, the stable protein identifier was showed 

version change from ‘.3’ to ‘.4’  (ENSP00000300933.3 to ENSP00000300933.4) which corresponds 

to a difference of 165 amino acids in the primary sequence (Table S11a). While versioned IDs 

appear to solve many mapping issues, they are challenging to work with as many of the cross-

reference files made available by each database only provide stable IDs (and not versioned 

identifiers) for the database being cross-referenced.  

Multi-mapping, where a single UniProtKB ID maps to many Ensembl protein, transcript, 

and gene IDs, further complicates inter-database mapping, particularly when using versioned IDs. 

While G6PD has only two stable gene IDs, it has seven stable transcript IDs and thirteen 

versioned transcript IDs (Figure 3B). To assess how pervasive multi-mapping is across the whole 

CpDAA dataset, we quantified the mean number of Ensembl IDs per UniProtKB IDs. We found 

that the mean number of Ensembl IDs per UniProtKB IDs was significantly increased in versioned 

IDs compared to stable IDs, both for Ensembl gene and transcript IDs (Figure EV2). We 
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suspected that the presence or absence of isoforms might contribute to the observed multi-

mapping. Therefore, we extended our analysis of multi-mapping trends to compare the average 

number of Ensembl IDs mapping to single isoform- (Figure 3D) or multi-isoform- (Figure 3E) 

associated UniProtKB IDs. Not surprisingly, we found that UniProtKB stable identifiers with 

multiple associated protein isoforms have higher average counts of Ensembl ID types per 

UniProtKB identifier when compared to UniProtKB IDs associated with only one protein isoform. 

In addition, single isoform UniProtKB IDs are more likely to cross-reference identical Ensembl 

proteins compared to multi-isoform UniProtKB IDs mapping with stable identifiers (Figure EV3 

and EV4 and Table S11a, S11b). Therefore, single isoform proteins and their corresponding 

UniProtKB IDs are more resistant to residue-level mis-annotation when using stable IDs from the 

Ensembl release-specific mapping files to annotate CpDAA coordinates.  

Next, we sought to determine how the changes to protein sequences associated with 

stable IDs varied across releases. We expected that temporally close releases of Ensembl would 

share higher sequence similarity and be less prone to mismapping. We identified the top stable 

IDs with poor sequence alignment across gene, transcript, and protein IDs (Table S12a). We then 

used the Hamming(Frederick, Sedlmeyer, and White 1993) and Levenshtein(Yujian and Bo 2007) 

normalized distance to score protein sequence similarity on a scale of 0 to 1, where 0 indicates 

that the sequence is identical to the UniProtKB stable ID sequence. We found that the sequences 

associated with the UniProtKB and the Ensembl stable IDs varied significantly depending on the 

Ensembl version (Figure 3F and EV5), with temporally close releases showing generally greater 

sequence similarity. 49 UniProtKB IDs had no canonical sequence equivalent in all five Ensembl 

releases analyzed, with 17 of these IDs having CpDAA index differences for all detected cysteine 

and/or lysine positions (Table S12b). 

One last challenge we identified is that the origin of the cross-reference file (whether it 

was created by UniProtKB or by Ensembl) affected the outcome of our mapping procedures. We 

pooled stable and versioned identifiers across five Ensembl releases and found that 56.9% of all 
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Ensembl entries were identical to the UniProtKB ID (Table S11b, Figure EV3). We suspected 

that the absence of versioned identifiers in our CpDAA proteomics data likely contributed 

substantially to the observed multi-mapping when using a cross-reference file generated by 

Ensembl. We then used a cross reference file from UniProtKB that displays the CCDS canonical 

isoform ID mapped to a stable Ensembl protein ID, to more accurately identify the best mapped 

Ensembl protein ID. This approach allowed for > 99% sequence match across the mapped IDs 

and substantially reduced effects of multimapping with Ensembl IDs (Table S11a, Figure EV4). 

Our study demonstrated that mapping between the residue- and nucleotide-level requires 

attention to details regarding database updates, multi-mapping, and cross-reference file sources. 

 

(4) Assessment of pathogenicity predictions for CpD cysteine and lysine codons, using 

residue-codon mapping.  

Our next objective was to apply residue-codon mapping to the prioritization of functional 

CpDAAs—defined here as amino acids identified in our chemoproteomics studies that are more 

likely to control protein interactions, stability, localization or cellular abundance. Cysteines and 

lysines are both highly conserved, with 97% (Miseta and Csutora 2000) and 80% (Hacker et al. 

2017) median level conservation, respectively. Consequently, sequence motif conservation 

cannot distinguish between functional and non-functional residues within chemoproteomic 

datasets. To identify cysteine- and lysine-centric genetic features suitable for pathogenicity 

prioritization, we tailored our pipeline to reverse-translate CpD cysteine and lysine positions to 

genomic coordinates of codons and genomic-based functional annotations. Cysteines and lysines 

were required to have valid coordinates in GRCh37 and GRCh38 reference genome assemblies, 

as some functional genetic variant annotations are only available for a one reference genome. 

For all proteins within our CpDAA dataset, we also processed both detected and undetected 

cysteines and lysines (Figure EV6). We found that probe-labeled cysteines and lysines represent 

~15% of all cysteines (6,057 CpD Cys out of 40,107 total Cys) and ~6% of all lysines (8,868 CpD 
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Lys out of 149,520 total Lys) found in chemoproteomic-identified proteins (n=3,840 UniProtKB IDs 

successfully mapped) (Figure 4A and 4B).  

We next mapped the CpDAA coordinates to a panel of functional annotation scores 

(Kircher et al. 2014; Jagadeesh et al. 2016; Ioannidis et al. 2016; Rogers et al. 2018; Samocha 

et al. 2017; Quang, Chen, and Xie 2015; Sundaram et al. 2018), aiming to assess the 

concordance between individual scores and chemoproteomic identification. We selected 

complementary gene-, sub-gene-, and variant-level scores (Table S13) for our analysis. For 

variant-level pathogenicity predictors, higher scores correlate with increased importance of a 

residue to a protein's function. To visualize the concordance of different scores for 

nonsynonymous SNVs, we calculated the correlation of scores for overlapping codon coordinates 

of CpD cysteine and lysine residues. While we observed generally high correlation for all scores, 

the correlation between pathogenicity predictions for CpD cysteine substitutions (Figure 4B) was 

higher (Spearman’s rank r between 0.36 and 0.91) than for CpD lysine substitutions (Spearman’s 

rank r between 0.16 and 0.81) (Figure 4C). When comparing only machine learning-based scores 

for substitutions at detected or undetected cysteines and lysines in chemoproteomic-detected 

proteins, we observed a lower correlation for detected compared to undetected lysines, and the 

opposite trend for cysteine residues (Figure EV7). We hypothesize that this higher correlation of 

annotation scores for cysteine may be driven in part by the high degree of cysteine conservation 

across evolution (Miseta and Csutora 2000) and the known critical functions of cysteines, 

including in catalysis, protein structure and redox regulation(Grunwell et al. 2015). For both CpD 

cysteines and CpD lysines, we observed a trend of slightly higher CADD scores with the GRCh38 

model compared to GRCh37 model (Table S14). 

Pathogenicity thresholds, which are provided by a subset of the scores investigated (e.g. 

CADD, FATHMM, and DANN), provide a useful cutoff for assessing whether substitutions at 

specific amino acids are likely to be deleterious to protein function. Therefore, we next assessed 

whether substitutions at detected versus undetected cysteines or lysines were more likely to be 
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predicted damaging. Missense changes with high Grantham score (Grantham 1974), Cys>Trp 

and Lys>Glu, were used to assess the impact of these non-synonymous substitutions (missense) 

at detected versus undetected cysteine and lysine residues. We find that for CADDhg38 (Kircher 

et al. 2014) CADD GRCh38 model), FATHMM (Rogers et al. 2018), and DANN (Quang, Chen, 

and Xie 2015), mutations of detected cysteines are less likely to be predicted damaging compared 

to undetected cysteines (Figure 4E, red). In contrast, mutations of detected lysines were found 

to be more deleterious when compared to undetected lysines (Figure 4E, blue). 

 

(5) Chemoproteomic data combined with pathogenicity scores can help prioritize 

functional residues. 

We next assessed correlations between genetic-based pathogenicity score and amino 

acid reactivity, as assessed by chemoproteomics. We chose CADD as the optimal score to 

evaluate, as it integrates other nucleotide variant predictors into its model and is available for both 

reference genome assemblies, GRCh37 and GRCh38. Chemoproteomic reactivity 

measurements were binned into low, medium, and high reactivity categories, defined as low 

(R10:1>5), Medium (2<R10:1<5), High (R10:1<2) isoTOP-ABPP ratios, respectively(Weerapana et al. 

2010; Hacker et al. 2017). These ratios quantify the relative labeling of a residue at different probe 

concentrations (e.g. 1× vs 10×). A ratio closer to one indicates that labeling is saturated at low 

probe concentration, which corresponds to a cysteine or lysine with higher intrinsic reactivity.  

To adapt CADD scores from the nucleotide level to the amino acid level for CpDAAs, the 

mean and max CADD score for all possible nonsynonymous SNVs per codon (see Methods) were 

calculated. For both max (Figure 5A) and mean (Figure EV8) CADD codon scores, we found 

that highly reactive cysteines show significantly higher predicted deleteriousness (Cysteine 

CADD38 PHRED: Low 24.50 mean, 0.07 SD, 95% CI [24.35,24.64]; Medium 25.34 mean, 0.09 

SD, 95% CI [25.16,25.53]; High 27.34 mean, 0.17 SD, 95% CI [27.01,27.66 CI]). In contrast, 

lysine reactivity did not correlate with predicted pathogenicity (Figure 5B and Figure EV8) 
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(Lysine CADD38 PHRED: Low 26.12 mean, 0.02 SD, 95% CI [26.07,26.17]; Medium 25.90 mean, 

0.06 SD, 95% CI [25.79,26.01]; High 26.07 mean, 0.08 SD, 95% CI [25.91,26.22]).     

As a first use-case to test the utility of integrating genetic-based pathogenicity predictions 

with CpDAA reactivity measures, we turned to the well characterized enzyme glucose-6-

phosphate dehydrogenase (G6PD), which is an essential enzyme that when mutated results in 

one of the most common genetic enzymopathy caused by over 160 different point mutations 

(Hwang et al. 2018). G6PD deficiency is associated with both acute and chronic hemolytic anemia 

(Miwa and Fujii 1996; Porter et al. 1964) (OMIM #300908), and associated with malaria resistance 

(Luzzatto, Usanga, and Reddy 1969) (OMIM #611162). The G6PD protein contains 15 residues 

that were identified by chemoproteomics, 10 lysines and 5 cysteines. Of the CpD positions, K171 

is the only highly reactive residue, and positions C13, K205, C385, K408, C446, and K497 are 

lowly reactive. Several residues, including K386 and C294 were not identified by our reactivity 

studies but were labeled in our studies aimed at identifying small molecule ligands(Backus et al. 

2016; Hacker et al. 2017). Mutations at or affecting K171(Au et al. 2000) and K386 are implicated 

in anemia (Hirono et al. 1989).  

To visualize CADD scores along protein sequence length, we plotted the first 300 amino 

acids in G6PD with lines tracking max CADD GRCh38 scores (Figure 5C). While K171 and K205 

had very different intrinsic reactivities (high vs low, respectively), both showed high max CADD 

scores (28.8 and 32, respectively). Compared to other lowly reactive lysines in G6PD, lowly 

reactive K205 is the only residue with a missense average CADD score above the standard 

threshold of 25 for deleteriousness (K205 mean 26.3 compared to K408 mean 23.8 and K497 

mean 23.3). Analysis of the molecular structure of G6PD (Figure 5D PDB ID: 2bh9) revealed that 

K171 and K205 are located in the enzyme active site, proximal to the nicotinamide-adenine-

dinucleotide phosphate (NADP+) cofactor. Taken together, this analysis highlights the utility of 

integration of pathogenicity predictions to improve stratification of chemoproteomics data. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186007doi: bioRxiv preprint 

https://paperpile.com/c/LtF9dT/Ci7dH
https://paperpile.com/c/LtF9dT/4wdhI+Z5Sy3
https://paperpile.com/c/LtF9dT/8f7SF
https://paperpile.com/c/LtF9dT/OUxJl+P8F9M
https://paperpile.com/c/LtF9dT/OUxJl+P8F9M
https://paperpile.com/c/LtF9dT/6LofS
https://paperpile.com/c/LtF9dT/mgfE8
https://doi.org/10.1101/2020.07.03.186007


 

18 

(6) DISCUSSION 

We conducted an in-depth analysis of multiple mapping strategies to facilitate multi-omic 

analysis of chemoproteomics datasets. We then applied our optimal mapping strategy to analyze 

how genetic variant predicted pathogenicity scores correlate with CpDAA data of measured 

intrinsic reactivity of cysteine and lysine residues. Our study revealed a number of challenges that 

limit the precision of multi-omic, residue-level data integration. Databases of genomic, 

transcriptomic and proteomic data adhere to different update cycles (Figure 1C), which results in 

different mapping outcomes depending on which version of the proteome, transcript and genome 

are used to process the raw proteomic data. These version updates impact both identifier 

mapping and mapping to residues and genomic coordinates.  

Identification of sources of mismapping is an essential step to ensure high-quality and 

reproducible data integration. Proteomics research laboratories routinely share raw proteomic 

data files along with publication through the the ProteomeXchange Consortium (Deutsch et al. 

2017) using resources such as PRIDE (Côté et al. 2012), PeptideAtlas, Massive (Deutsch et al. 

2017), Panorama (Sharma et al. 2014), jPost (Rigden and Fernández 2019), and iProx (Rigden 

and Fernández 2019). However, providing the reference databases, which are typically a custom 

UniProtKB FASTA file, is not routine, making residue-level multi-omics integration challenging. 

Although UniProtKB is updated monthly, only annual releases are maintained long-term, meaning 

that the exact reference proteome data set used may no longer be publicly available for 

subsequent follow-up studies.  

The availability of raw proteomic data might suggest an obvious solution: to re-search raw 

data using a new UniProtKB reference. However, reprocessing raw data can be both 

computationally expensive and time limiting. An important alternative is to re-map the processed 

data files to a newer and/or common UniProtKB reference to facilitate comparisons between 

datasets. However, in practice this approach can result in data loss and errors, which may 

confound interpretation. For example, when we re-mapped our legacy data to multiple UniProtKB 
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version releases, we lost 28-199 of our proteins, which ranges from 0.6-4.8% of the original data 

(Figure 1B). While this may, at first glance seem to be a paltry fraction of all data, these losses 

can still prove problematic when key proteins of interest (Table S7) are lost due to mismapping. 

Making reference FASTA files publicly available alongside raw data files is a relatively simple 

solution to facilitate data integration. 

There are several interconnected causes for our observed data loss at the protein level. 

The absence of protein isoform identifiers in most proteomics reference datasets, particularly 

when combined with database updates to canonical sequences can lead to mismapping, as 

shown for PRMT1 and FKBP7 (Figure 2A). The small number of UniProtKB sequences for which 

the canonical sequence is not the UniProtKB ”-1” entry can also lead to further mismapping 

(Figure 2C). For protein-level mapping, the use of highly curated datasets, such as the Swiss-

Prot reviewed CCDS-UniProtKB subset, can in part mitigate these losses. 

Reversing the central dogma to map protein identifiers back to transcript and gene 

identifiers and amino acids back to genomic coordinates adds several additional layers of 

mapping complexity. Ensembl stable identifiers (gene, transcript, and protein), which are linked 

to UniProtKB stable identifiers are useful for facilitating this process. However, the number of 

redundant sequences maintained by Ensembl and the dynamic landscape of Ensembl entries 

across releases, complicates the use of Ensembl stable IDs for inter-database mapping. For 

example, for the protein G6PD, across the five Ensembl releases investigated, we identified seven 

stable protein IDs, of which only 1 was consistently identical to the UniProtKB canonical sequence 

for G6PD (Figure 3A). Database updates that result in changes to protein sequences associated 

with stable IDs are a particularly problematic cause of mismapping, particularly when assessed 

at the chemoproteomic residue-level. Across a number of commonly studied proteins, including 

MCM3, RAD50, and DIABLO, we found substantial differences in Ensembl protein and UniProtKB 

sequences across Ensembl releases (Figure 3F). Practically speaking, what this means is that a 

residue from a proteomics dataset could easily be mapped to the incorrect amino acid in an 
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Ensembl protein, followed by the incorrect transcript position, incorrect genomic coordinates, and 

incorrect pathogenicity score.  

Choice of reference genome further complicates data mapping. While many studies have 

now transitioned to GRCh38, many useful tools, including many predictions of pathogenicity (e.g. 

MPC, PrimaryAI, M-CAP, fathmm-MKL), were built using GRCh37. As GRCh37 was frozen in 

2014, substantial mismapping is likely to occur when proteomics datasets generated using newer 

reference proteomes are mapped back to GRCh37. In the genetics community, this problem is 

commonly circumvented by performing a ‘lift-over’ from GRCh37 to GRCh38, bringing along the 

annotations linked with a specific reference genome. However, not all tools are compatible with 

liftover, as shown in Table S13. Local sequence alignment tools can be used to address the 

problems when transitioning between GRCh37 and GRCh38 but can be challenging to scale 

genome-wide. Transitioning all relevant annotations to the GRCh38 reference genome is ongoing 

and will address many of the aforementioned issues. However, this move is a substantial 

undertaking that requires rerunning of large-scale data sets and quality control.  

Together our analysis of inter-database mapping enabled us to compile a rigorously 

curated dataset of CpDAAs that mapped to both GRCh37 and GRCh38 scores. Using this 

dataset, we were then able to ask a number of novel questions, including how different scores 

compare across all identified cysteine and lysine residues and whether the codons of specific 

residues are enriched for predicted pathogenic mutations. For all nucleotide substitutions that 

result in a cysteine or lysine amino acid change, we observed generally high concordance 

between scores (Figure 4C and 4D). While mutations at cysteine codons were observed to be, 

in general, predicted less deleterious than those at lysine codons, the subset of cysteines with 

heightened reactivity were predicted to be more damaging than cysteines of lower reactivity 

(Figure 4E, 5A, EV8A). No such trend was observed for highly reactive lysines (Figure 4E, 5B, 

EV8B). These intriguing findings suggest that cysteine hyperreactivity is a privileged feature that 

could be used to inform the functions of genetic variants.  
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We can foresee a multitude of applications for chemoproteomic and genomic data 

integration. While prior studies that revealed hyper-reactive cysteine and lysine residues are 

enriched in redox-active sites and enzyme active sites(Backus et al. 2016; Weerapana et al. 2010) 

and hyper-reactive lysines were depleted in post-translational modification sites (PTMs)(Hacker 

et al. 2017), most CpDAAs still lack functional annotation. Predictive tools, such as those 

highlighted here, will undoubtedly aid in stratification of residues identified by chemoproteomics 

studies, pinpointing potentially druggable and disease-linked pockets in proteins.  

Another area that will undoubtedly benefit from such multi-omic approaches is 

interpretation of the impact of rare missense variation identified in patients with monogenic 

disorders. Protein-level functional data can aid in the interpretation of variants of uncertain 

significance (VUS), including those identified in clinical genetic testing, and can guide follow-up 

research studies. Proteomic approaches are also arguably more high-throughput relative genetic 

approaches, including site-directed mutagenesis. Application of chemoproteomics data to clinical 

studies will require careful data integration and sequence level mapping, particularly given that 

the reference sequences and choice of identifiers (versioned vs stable) employed by clinical vs. 

research studies are typically non-identical.  

Addition of protein structural data to these pipelines will further improve their utility and 

predictive power. As a starting point to such structure-based data integration, we mapped CADD 

predictive scores directly to the structure of G6PD (Figure 5D). This 3-dimensional data 

integration highlighted key residues that form a common function in 3D space but are not easily 

identified using predictions associated with conservation in the linear-space of DNA. Looking to 

the future, we anticipate that such multi-omic studies will likely prove most enabling when 

combined with rigorous functional validation, for example by combining CRISPR-Cas9 

mutagenesis with phenotypic assays. The use of CRISPR-Cas9 base editors (Kim et al. 2019; 

Grünewald et al. 2020, 2019) should facilitate such studies, particularly when combined with 

protein-centric guide RNA design packages (e.g. CRISPR-TAPE)(Anderson et al. 2020). In sum, 
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we anticipate that such studies represent the next frontier for both the genetics and 

chemoproteomics communities. 

 

METHODS 

Data sources. Amino acid coordinates in this paper refer to UniProtKB-SwissProt human 

proteome filtered by canonical isoform and cross-reference in CCDS database downloaded 

August 06 2018 (2018_06) from the website (see URLs). These UniProtKB protein IDs were 

mapped to Ensembl IDs using two sources of cross-reference files, UniProtKB ID-mapping 

(idmapping.dat) or Ensembl release-specific mapping files (xref files) (Aken et al. 2016). 

UniProtKB sequences were aligned to ID cross-referenced Ensembl peptide sequences from 

releases v85, v92, v94, v96, and v97 FASTA files downloaded from the website (see URLs) 

November 19 2019. CADDv1.4 (Kircher et al. 2014) scores were downloaded from the website 

on July 03 2019. DANN (Quang, Chen, and Xie 2015), fathmmMKL (Shihab et al. 2014), M-CAP 

(Jagadeesh et al. 2016), MPC (Samocha et al. 2017), REVEL (Ioannidis et al. 2016), and 

PrimateAI (Sundaram et al. 2018) scores were obtained from dbNSFPv4.0a (Liu et al. 2016) 

downloaded from the website (see URLs) June 11 2019. Additional gene constraint score LOEUF 

from gnomADv2.1.1 (Karczewski et al. 2020) was downloaded March 22 2019. 

 

https://www.uniprot.org/downloads 

http://uswest.ensembl.org/info/data/ftp/index.html 

https://cadd.gs.washington.edu/download 

https://sites.google.com/site/jpopgen/dbNSFP 

https://gnomad.broadinstitute.org/downloads 

  

Database update cycles. Average time between Ensembl, GENCODE, CCDS, and NCBI 

updates was quantified using all releases between August 2013 - July 2019 (5 years and 11 
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months window of time). Dates counted refer to the public release date posted on each databases’ 

ftp site. A total of 25 Ensembl, 13 GENCODE, 6 CCDS (only homo sapien releases), and 5 NCBI 

releases were used to calculate average time between each update. For UniProtKB update cycle 

length, values provided from the UniProtKB website on typical time between Knowledgebase 

releases from 2019 (4 weeks) and 2020 (8 weeks) were averaged. The timeline displays a subset 

of Ensembl, GENCODE, CCDS, and NCBI release dates used to calculate average database 

update cycles. Release dates were selected based on proximity to the dates of the five Ensembl 

releases analyzed for identifier multi-mapping. 

 

Mapping CpDAA data to more recent UniProtKB releases. Chemoproteomic-detected amino 

acid datasets had been previously searched against a non-redundant reverse concatenated 

UniProtKB reference FASTA file (Hacker et al. 2017; Backus et al. 2016; Weerapana et al. 2010) 

from the November 2012 (2012_11) release and amino acids in labeled peptides were annotated 

with the corresponding UniProt stable ID, amino acid letter, and position (e.g. P11413_C205). 

The author-provided UniProtKB 2012_11 FASTA file was referenced to check the UniProtKB IDs 

and CpDAA coordinates. Legacy chemoproteomic-detected cysteine and lysine residues that did 

not match amino acid letter and coordinate in the 2012_11 version of peptide sequence were 

removed prior to further analysis. The 2012-based CpDAA UniProtKB IDs and coordinates were 

then mapped to canonical sequences from the 2018_06 UniProtKB human proteome dataset 

using a custom python script. 

 

Criteria for removal from further analysis. Chemoproteomic-detected proteins were excluded 

from further analysis if: (1) UniProt canonical sequence from 2018 release was missing 

chemoproteomic-detected positions (example: natural variant overlaps detected cysteine 

position), (2) UniProt ID flagged with ‘caution’ on UniProt’s website (example: 
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https://www.uniprot.org/uniprot/Q8WUH1), and (3) matching stable UniProt ID was not found in 

one of the five Ensembl release-specific mapping files downloaded.  

 

Assessment of isoforms per stable UniProtKB ID. The UniProtKB homo sapien FASTA file 

containing canonical and isoform sequences was downloaded August 06 2018. Isoform counts 

per UniProt entry were counted based on versioned IDs included in the FASTA file, excluding the 

canonical isoform, which is marked by the ID with no isoform name detail (e.g. P11413). 

  

Identification of UniProtKB canonical isoform ID numbers. UniProtKB canonical isoform ID 

numbers (e.g. P11413-X, ‘X’ representing the isoform name), were identified for only multi-isoform 

UniProtKB entries. The isoform name for the canonical sequence was identified by comparison 

of isoform-specific IDs in the FASTA file (used to count isoforms per stable UniProtKB ID) and 

the ID mapping (idat) file from UniProtKB August 01, 2018 release downloaded from the website 

August 06, 2018. The FASTA file marks the canonical ID with no isoform name, but the idat file 

displays the canonical ID isoform name. A custom python script compared all isoform-specific IDs 

for a single stable entry between the file types and annotated the isoform name associated with 

the canonical protein sequence in the FASTA file. 

 

Interdatabase mapping of CpDAA residues between UniProtKB and Ensembl proteins. Two 

methods were used to cross-reference equivalent Stable or Versioned protein IDs between 

UniProtKB and five Ensembl releases: 

  

A. Ensembl isoform-less mapping: Ensembl xref files specific to each release studied (v85, 

v92, v94, v96, v97) were used for inter-database identifier mapping. All Ensembl gene, 

transcript, and protein stable IDs associated with 3,953 CpDAA stable UniProtKB IDs were 
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pooled. Multi-mapping and sequence identity features between Ensembl proteins mapped 

to UniProtKB proteins grouped by single or multi-isoform entry status.  

 

B. UniProt isoform-specific mapping: UniProtKB ID-mapping (idmapping.dat) file from 

August 01, 2018 release was used for inter-database identifier mapping. Isoform-specific 

UniProt IDs for multi-isoform entries and stable IDs for single isoform entries were used 

to cross-reference Ensembl stable protein IDs in the idat file. Similar to Method A, multi-

mapping and sequence identity were assessed for mapped UniProt and Ensembl proteins.  

  

Assessing identifier multi-mapping between UniProtKB and Ensembl. From Method A ID 

mapping, all Ensembl IDs mapped to a Stable CpDAA UniProt ID were pooled from five Ensembl 

xref files. The mean number of unique Ensembl IDs (Versioned and Stable) per UniProt ID was 

then calculated both for UniProt entries with a single isoform and with multiple isoforms. Sequence 

equivalence between Ensembl and UniProtKB was assessed as a boolean (True identical 

sequence or False for not identical) using a custom python script. From Method B ID mapping, 

stable Ensembl protein IDs pulled from the UniProtKB idat file were used to filter Ensembl release-

specific FASTA files for associated sequences. Similar to analysis from Method A, multi-mapping 

was calculated both for single and multi-isoform UniProt entries with sequence equivalence 

determined using a custom python script. Statistical significance for all multi-mapping results was 

assessed with a Student’s unpaired T-test. 

  

Distances between mapped UniProtKB and Ensembl sequences across releases. ID 

mappings were obtained from Method B, using isoform-specific information to map UniProtKB 

canonical IDs for multiple isoform entries to equivalent stable Ensembl protein IDs. Protein 

sequence similarity was scored for mapped IDs using the Hamming normalized distance metric 

(Frederick, Sedlmeyer, and White 1993) and the Levenshtein normalized distance metric (Yujian 
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and Bo 2007) to quantify how different the sequence is compared to the UniProtKB Stable ID 

sequence. Normalized scale is over 0 to 1, with 0 meaning the Ensembl protein is identical to the 

UniProt canonical sequence while 1 shows significant differences between the two sequences.   

  

Identification of frequently updated Ensembl gene, transcript, and protein IDs. Ensembl 

Stable IDs found in all five Ensembl releases studied were first identified. In total, 8,861 unique 

Ensembl protein IDs with associated transcript and gene IDs were used to create Stable Key IDs 

(formatted as ‘ENSG_ENST_ENSP’). These Ensembl key IDs cross-referenced 3,887 unique 

CpDAA UniProtKB IDs, and were used to filter Ensembl release-specific FASTA files for 

associated gene, transcript, and protein versioned IDs. To identify updating Ensembl sequences 

over the five studied releases, version number increments (signifying sequence re-annotation 

updates) since the v85 release were summed for a given gene, transcript, and protein ID (e.g. ID 

extension number ‘.X’). For comparison of gene, transcript, and protein ID types, version number 

sums for each release were calculated and compared to the v85 sum. To identify ‘dated’ ID 

mappings in which the Ensembl proteins are no longer equivalent to the canonical UniProtKB 

protein from 2018_06 release, we used ID cross-references from Method B and scored sequence 

distance by Hamming or Levenshtein metrics. We included 75 Ensembl Stable IDs with mapped 

proteins equivalent to the UniProtKB canonical sequence in v92 but significantly different in other 

Ensembl releases analyzed.  

  

Residue mapping to pathogenicity scores. CpDAA coordinates were mapped to dbNSFPv4.0. 

Matching UniProt Stable ID, and amino acid positions matching our CpDAA dataset were 

required. Coordinates for undetected cysteine and lysine residues were also pulled with 

dbNSFPv4.0. Reference genome GRCh37 and GRCh38 coordinates from dbNSFPv4.0 were 

then used to map CADDv1.4 scores from both CADD models (GRCh37 and GRCh38 models). 

Cysteines and lysines with valid coordinates in both assemblies were retained. All possible non-
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synonymous variant scores were required to be present (both for detected and undetected 

residues). Codons lacking variant scores were excluded from analysis. Both the max CADD score 

at a detected residue or the mean of all non-synonymous variants for that residue’s codon 

coordinates were assessed.   

  

Score thresholds for pathogenicity. CADD score greater than or equal to 25, fathmm-mkl score 

greater than or equal to 0.95, DANN score greater than or equal to 0.98.  

 

Mapping CADD scores to PDB structures. Max and mean non-synonymous CADD scores for 

all amino acid positions of protein G6PD (UniProtKB ID P11413) were calculated using 

downloaded CADD files (see URLs) and custom python script. Max and mean codon scores for 

the canonical sequence were next mapped to all amino acid positions found in the protein 

structure of G6PD (PDB: 2BH9). Beta factor values for alpha carbons of the structure were set to 

reflect CADD max or mean scores calculated. 

  

Data and source code availability. Analyses utilized Python 3.7.4 and R 3.6.2. Plots were 

generated in R using ggplot2 (Wickham 2016), Prism 8 (GraphPad Software Inc.), or Illustrator 

(Adobe Inc.). Code is available at https://github.com/mfpfox/MAPPING 

 

Abbreviations. UniProt Knowledge Base-Swiss-Prot (UniProtKB-SP), External Reference (xref), 

Ensembl Protein (ENSP), Ensembl Transcript (ENST), Ensembl Gene (ENSG), UniProt 

Knowledge Base (UKB), Combined Annotation Dependent Depletion (CADD), Chemoproteomic 

Detected Amino Acids (CpDAA), Consensus Coding Sequence (CCDS), Deleterious Annotation 

of genetic variants using Neural Networks (DANN), Functional Analysis through Hidden Markov 

Models (FATHMM-MKL), Protein Data Bank (PDB), single nucleotide variant (SNV), Database 

for Non Synonymous Functional predictions (dbNSFP).  
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Data and source code availability 

Analyses utilized Python 3.7.4 and R 3.6.2. Data and code available at the github site 

below are sufficient to reproduce the plots and analyses in this paper are available at 

https://github.com/mfpfox/MAPPING 

Software and Websites Accessed 

https://www.uniprot.org/downloads 

http://uswest.ensembl.org/info/data/ftp/index.html 

https://cadd.gs.washington.edu/download 

https://sites.google.com/site/jpopgen/dbNSFP 
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Figure 1. Stable identifier mapping across database releases. A) Overall objective of this 
study is to use stable identifiers to map chemoproteomic detected amino acids (CpDAAs), 
denoted here as red/blue ‘X,’ to variant pathogenicity scores. B) Shows the number of stable 
UniProtKB protein IDs from cysteine and lysine chemoproteomics studies in original legacy 
chemoproteomics dataset (4,119 Uniprot stable IDs in aggregate)(Hacker et al. 2017; Backus et 
al. 2016; Weerapana et al. 2010) that fail to map to IDs in more recent releases of Ensembl and 
UniProtKB. C) Average update cycle length across major gene annotation databases. D) Timeline 
of gene annotation database releases, including Ensembl releases tested for compatibility 
(Figure 3) to CpDAA coordinates based on canonical UniProtKB protein sequences.  
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Figure 2. Stable and versioned identifier mapping between UniProtKB releases. A) Residue 
mismapping due to UniProtKB database updates to sequences associated with stable identifiers. 
Shown are two representative mapping outcomes. For PRMT1, addition of 10 amino acids at the 
protein N-terminus results in incorrect mapping of all 13 CpDAAs. For FKBP7, CpDAA Lys83 is 
correctly mapped in the 2018 release, as the sequence update occurs C-terminal to the modified 
residue. B) The number of isoforms associated with CpDAA UniProtKB stable IDs. C) Canonical 
isoform ID number associated with UniProtKB entries. Only CpDAA stable IDs with >1 isoform 
sequence were used for analysis. 
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Figure 3. Mapping between UniProtKB stable IDs and Ensembl stable and versioned IDs 
across releases. A) CpDAA UniProtKB stable IDs map to multiple Ensembl stable protein IDs. 
The protein glucose-6-phosphate dehydrogenase (G6PD, UniProtKB ID P11413) maps to 
multiple Ensembl stable protein IDs including identical and non-identical sequences across all five 
Ensembl releases investigated. B) Number of stable and versioned Ensembl gene, transcript and 
protein IDs for G6PD across all five Ensembl releases shown in 'A.' C) Cumulative sequence re-
annotations for Ensembl gene, transcript, and protein IDs since the v85 release. D-E) Average 
number of Ensembl gene, transcript, and protein IDs for (D) single isoform (n=1,466) and (E) 
multi-isoform (n=2,487) CpDAA UniProt entries. F) Heatmap depicts protein alignment scores by 
normalized Hamming distance, with 0 indicating no difference, comparing CpDAA UniProtKB 
protein sequences (n=3,953) to cross-referenced IDs of Ensembl protein sequences (n= 29,450) 
across the five Ensembl releases. For D-E, bar plots represent mean values ± SD for the number 
of Ensembl IDs per stable UniProt ID. Statistical significance was calculated using an unpaired 
Student’s T-test, **** p-value <0.0001. 
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Figure 4. Mapping CpDAA genomic coordinates to predictions of pathogenicity. A-B) 
Aggregate number of cysteines (A) and lysines (B) in CpDAA-containing proteins (n=3,840), 
including both detected and undetected residues. C-D) Spearman’s correlation (r) of scores for 
all possible non-synonymous SNVs at cysteine (C) and Lysine (D) CpDAA codons. E) Odds ratio 
(OR) comparing the predicted pathogenicity of amino acid substitutions at detected versus 
undetected residue positions. Cys>Trp (yellow) and Lys>Glu (purple) missense scores were 
compared using a two-tailed Fisher’s Exact test with a 95% two sided confidence interval at the 
indicated score thresholds (y axis). OR> 1.0 indicates enrichment and OR< 1.0 indicates depletion 
of deleterious nonsynonymous SNVs at CpDAA relative to undetected residues. P-value cut-off 
= 5.0e-05, *** for values < 5.0e-21.  
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Figure 5. Association between amino acid reactivity and CADD score. A-B)  Distribution of 
the max CADD38 (model for GRCh38) PHRED score/codon for (A) cysteine (n=1,401) and (B) 
lysine (n=4,363) CpDAAs of low, medium, and high intrinsic reactivities, defined by isoTOP-ABPP 
ratios, low (R10:1>5), Medium (2<R10:1<5), High (R<2) (Weerapana et al. 2010; Hacker et al. 2017). 
Kruskal-Wallis test was used for multiple pairwise-comparisons and Wilcox test was used for 
pairwise comparisons. Significant FDR adjusted p-values marked, *, p < 0.1, **, p < 0.01, ***, p < 
0.0001. C) Shows CADD38 max codon missense scores for residues 1-300 of G6PD (UniProt ID 
P11413). D) Crystal structure of G6PD (PDB ID: 2BH9) shows K205 and K171 located within the 
enzyme active site. NADP+ cofactor shown in yellow. Surface colored by CADD38 max codon 
missense scores. Image generated in PyMOL (R. H. B. Smith, Dar, and Schlessinger, n.d.; 
DeLano and Others 2002). 
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