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 2 

Abstract 18 

Identification of bacterial virulence factors is critical for understanding disease pathogenesis, 19 

drug discovery and vaccine development. In this study we used two approaches to predict 20 

virulence factors of Burkholderia pseudomallei, the Gram-negative bacterium that causes 21 

melioidosis. B. pseudomallei is naturally antibiotic resistant and there are no melioidosis 22 

vaccines. To identify B. pseudomallei protein targets for drug discovery and vaccine 23 

development, we chose to search for substrates of the B. pseudomallei periplasmic disulfide 24 

bond forming protein A (DsbA). DsbA introduces disulfide bonds into extra-cytoplasmic 25 

proteins and is essential for virulence in many Gram-negative organism, including B. 26 

pseudomallei. The first approach to identify B. pseudomallei DsbA virulence factor substrates 27 

was a large-scale genomic analysis of 511 unique B. pseudomallei disease-associated strains. 28 

This yielded 4,496 core gene products, of which we hypothesise 263 are DsbA substrates. 29 

Manual curation of the 263 mature proteins yielded 73 associated with disease pathogenesis or 30 

virulence. These were screened for structural homologues to predict potential B-cell epitopes. 31 

In the second approach, we searched the B. pseudomallei genome for homologues of the more 32 

than 90 known DsbA substrates in other bacteria. Using this approach, we identified 15 33 

potential B. pseudomallei DsbA virulence factor substrates. Two putative B. pseudomallei 34 

virulence factors were identified by both methods: homologues of PenI family β-lactamase and 35 

of succinate dehydrogenase flavoprotein subunit. These two proteins could serve as high 36 

priority targets for future B. pseudomallei virulence factor characterization.  37 

  38 
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Introduction 39 

Burkholderia pseudomallei is a Gram-negative soil dwelling saprophyte, and an opportunistic 40 

pathogen responsible for the severe tropical disease melioidosis [1]. B. pseudomallei infections 41 

are difficult to treat [2-4] and are intrinsically resistant to almost all available antibiotics [5-8]. 42 

Predominant resistance factors utilised by B. pseudomallei include a thick, impermeable cell 43 

wall combined with efficient efflux pumps that interfere with drug activity [9]. Furthermore, 44 

B. pseudomallei infections are difficult to diagnose as melioidosis symptoms vary significantly, 45 

ranging from fever, pneumonia, urinary tract infections, and on rare occasions 46 

encephalomyelitis [4]. Standard treatment consists of a combination of intravenous antibiotic 47 

for two weeks to stop septicaemia, followed by a second eradication phase that can last for up 48 

to six months, with no guarantee of success [10].  49 

 50 

More generally, antibiotic resistance is increasing at an accelerating rate among pathogenic 51 

bacteria [11]. New approaches and treatment strategies are needed including vaccination [12], 52 

novel antimicrobial compounds [13] and antivirulence strategies [14]. There is currently no 53 

successful, persistent vaccine against B. pseudomallei [15]. However Outer Membrane Protein 54 

A (OmpA) has been used as a subunit vaccination against melioidosis in mice [16]. 55 

 56 

Identification of B. pseudomallei virulence factors would contribute towards understanding 57 

pathogenesis and could aid in drug discovery and vaccine development [17]. Targeting 58 

virulence rather than viability is an approach that is hypothesized to have a number of benefits 59 

including an increased range of possible anti-virulence mechanisms compared to antimicrobial 60 

compounds, as well as the possibility of reducing selection pressure [18, 19]. Both vaccine 61 

development and anti-virulence approaches could reduce selection pressure and potentially 62 

reduce resistance development [14, 18, 19].  63 
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 64 

The formation of correct disulfide bonds is critical for the proper folding and function of 65 

proteins [20]. In bacteria, the introduction of disulfide bonds is mediated by the DiSufide Bond-66 

forming proteins (DSB). The DSB proteins are of particular interest as an antivirulence 67 

strategy, because many virulence factors contain disulfide bonds [19, 21-23]. The Disulfide 68 

bond forming protein A (DsbA) is a periplasmic protein found in most Gram-negative bacteria 69 

and incorporates a thioredoxin fold with two cysteines which introduce disulfide bonds into 70 

substrate proteins via a redox transfer reaction [24].  71 

 72 

Mice infected with B. pseudomallei DsbA knockouts (or of its redox partner DsbB) have an 73 

increased rate of survival compared with mice infected with wild type B. pseudomallei [25, 74 

26]. These findings suggest that many B. pseudomallei virulence factors are substrates of 75 

DsbA, as is also observed in Escherichia coli [27, 28], Klebsiella pneumoniae [29], Salmonella 76 

enterica [30], Francisella tularensis [31] and many more [22, 23, 32]. However, the full extent 77 

of B. pseudomallei DsbA substrates has not been investigated. Identification of B. pseudomallei 78 

DsbA substrates would help identification of infection mechanisms, and could lead to the 79 

discovery of key virulence factors and potential drug and vaccine targets. Finding potential 80 

DsbA substrates is assisted by the observation that: (i) DsbA is located in the periplasm, and 81 

thus its substrates are likely to have a secretion signal sequence; and (ii) proteins containing 82 

disulfide bonds may have an even rather than an odd number of cysteines in their sequence. 83 

This last point is thought to have evolved to limit formation of mis-matched disulfide bonds 84 

and therefore misfolded proteins [33, 34].  85 

 86 

In the present study, we used two approaches to identify potential B. pseudomallei DsbA 87 

substrates for further study as virulence factors. In one approach, we used computational 88 
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methods to generate a curated list of 263 putatively extra-cytoplasmic proteins from the core 89 

genome of 511 disease-associated isolates of B. pseudomallei, 73 of which were predicted to 90 

be virulence-associated. In the second approach, 15 candidate DsbA virulence factor substrates 91 

were identified by sequence homology to known DsbA virulence factor substrates in other 92 

bacteria. 93 

  94 
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Results 95 

Genomic analysis to predict B. pseudomallei DsbA virulence factor 96 

substrates  97 

In this approach, our strategy was to cast a wide net initially, by determining the pangenome 98 

of disease-associated isolates of B. pseudomallei, and then filtering from that the core genome 99 

(i.e. the highly conserved genes). The disease-associated B. pseudomallei core genome should 100 

then be enriched in conserved virulence factors. At the time of this analysis the NCBI database 101 

[35] contained 1577 B. pseudomallei isolates. Metadata notation allowed selection of 512 102 

isolates associated with disease (i.e. isolates from swabs/clinical isolates: accession numbers 103 

of these are given in S1 Fig); other genomes were discarded. We note that only 355 of the 512 104 

isolates were tagged ‘pathogen’ in the NCBI database indicating a discrepancy between NCBI 105 

assignment and user-uploaded metadata. Analysis of the pangenome, that is the core, accessory 106 

and unique genes of these 512 B. pseudomallei isolates (see Table 1), revealed two identical 107 

strains. Therefore for the remainder of this analysis, only the 511 unique strains were used.  108 

 109 

Table 1: Pangenome results of 511 disease-associated B. pseudomallei strains.  110 

The pangenome is subdivided into the core (found in every strain), soft shell core (found in 95 111 

– 99% of strains), shell (found in 15 – 95% of strains), and cloud (found in 0 – 15% of strains) 112 

genes. The total number of genes is shown, along with the percentage of total pangenome. 113 

 114 

We found that the core genome consisted of 4,496 genes (see S2 Fig) or 22.49% of the total 115 

19,991 pangenome. This analysis largely agrees with a previous pangenomic analysis which 116 

Pangenome breakdown Classification Number of genes Percent of pangenome (%) 

Core genes (99% <= strains <= 100%) 4,496 22.49 

Soft core genes (95% <= strains < 99%) 517 2.59 

Shell genes (15% <= strains < 95%) 965 4.83 

Cloud genes (0% <= strains < 15%) 14,013 70.10 

Total pangenome (0% <= strains <= 100%) 19,991 100 
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extrapolated a modelled core genome of 4,568±16 from a much smaller set of 37 isolate 117 

genomes [36]. In that approach, modelling was used to predict the core genome if the number 118 

of isolates was expanded. Our approach gives an exact number because all 4,496 genes were 119 

found in all 511 genomes. Notably, the dithiol oxidase redox enzyme pair DsbA and DsbB and 120 

the disulfide isomerase redox relay enzymes DsbC and DsbD were all identified as core genes.  121 

 122 

We then used the B. pseudomallei core genome for further analysis, because it encodes highly 123 

conserved proteins - a key criteria for selecting vaccine or anti-virulence targets. 124 

 125 

From these 4,496 core genes, 726 were predicted to encode proteins with a signal sequence 126 

and which are therefore likely to be exported out of the cytoplasm and into the periplasm where 127 

DsbA is localised. Of these 726 proteins, 263 have an even number of cysteines, indicating the 128 

likelihood that the proteins form intramolecular disulfide bonds (see S3 Fig). We predict that 129 

these 263 proteins are substrates of B. pseudomallei DsbA. The workflow for this analysis is 130 

shown in Fig 1.  131 

 132 

Fig 1: Bioinformatic workflow. From the 1,577 B. pseudomallei genomes found on NCBI, 133 

511 were unique and associated with disease and these were used for further analysis. The 134 

pangenome of these 511 genomes comprised 19,991 unique genes. 4,496 of these were 135 

classified as core genes. Predicted translation of these genes gave 726 predicted extra-136 

cytoplasmic proteins. Of these extra-cytoplasmic proteins, 263 were predicted to contain an 137 

even number of cysteines. We predict that these 263 proteins are substrates of B. 138 

pseudomallei DsbA.  139 

 140 

Distribution of cysteines in the core genome of disease-related B. 141 

pseudomallei  142 

Many bacterial extra-cytoplasmic (periplasmic and extracellular) proteins have a strong 143 

preference for an even number of cysteines, which is thought to reduce the chances of non-144 
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native disulfide bond formation [33]. We examined the cysteine distribution of encoded 145 

proteins in the B. pseudomallei pangenome to investigate whether the previously demonstrated 146 

enrichment of an even number of cysteines in extra-cytoplasmic proteins in other Gram-147 

negative bacteria [33] was also true for B. pseudomallei.  148 

 149 

The distribution of cysteines in B. pseudomallei cytoplasmic and extra-cytoplasmic proteins 150 

was calculated for the pangenome (total of 19,991 genes) and the core genome (4,496 genes) 151 

(refer to Table 1). In cytoplasmic B. pseudomallei proteins, cysteine distribution followed a 152 

Poisson law peaking at zero for the pangenome and at one for the core genome (denoted by the 153 

orange lines in the histograms on Figs 2A and 2B). This distribution changed for extra-154 

cytoplasmic B. pseudomallei proteins. For the core genome (blue bars Fig 2B), B. pseudomallei 155 

proteins with an even number of cysteines were over-represented compared to a typical Poisson 156 

distribution. As extra-cytoplasmic proteins represent a small fraction of the total number of the 157 

translated core genome and pangenome (16% and 11.5% of all proteins, respectively), we also 158 

analysed the normalised frequency (Figs 2C and 2D). The core genome normalised cysteine 159 

distribution reveals a sawtooth pattern with a preference for even number of cysteines with 160 

peaks for two, four, six and eight cysteines (Fig 2D). In contrast, the pangenomic normalised 161 

cysteine distribution for extra-cytoplasmic B. pseudomallei proteins does not indicate a strong 162 

preference for even number of cysteines (Fig 2C). Overall, the saw-tooth pattern observed in 163 

Figs 2B and 2D is similar to that described for E. coli exported proteins [33] although not as 164 

pronounced.  165 

 166 

Fig 2: Cysteine distribution in the translated genome of B. pseudomallei. Panel A shows 167 

the distribution of cysteines in the pangenome (19,991 proteins). Panel B represents the same 168 

analysis for the core genome, comprising 4,496 translated genes. Predicted number of extra-169 

cytoplasmic proteins for each number of cysteines are represented as blue bars. Similarly, 170 

predicted cytoplasmic proteins are represented as orange lines. Panels C and D represent the 171 

normalised frequency of cysteine-containing extra-cytoplasmic proteins. The blue line in panel 172 
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D peaks for proteins with 2, 4, 6 and 8 cysteines suggesting a preference for an even number 173 

of cysteines. This trend is not observed as strongly in panel C, where a clear peak can only be 174 

seen for two and eight cysteines. The normalised frequency was calculated by dividing the 175 

number of extra-cytoplasmic proteins (having N number of cysteines) by the total number of 176 

proteins with N cysteines (N being a number between 0 - 20 as per the data points in C and D 177 

above). 178 

 179 

Functional assignment of core, extra-cytoplasmic, putative DsbA 180 

substrates 181 

The next step in the genomic analysis was to predict which of the 263 putative DsbA substrates 182 

are associated with virulence. Of the 263 selected proteins, 44 were annotated as 183 

hypothetical/uncharacterised. The remaining 219 proteins include ABC transporter-related 184 

proteins, housekeeping proteins like cytochrome C, proteins required for motility such as 185 

flagellar and fimbrial proteins, enzymes such as collagenase, peptidases and proteases, as well 186 

as antibiotic resistance enzymes, β-lactamases. Many oxidoreductases were also present 187 

including DsbA, DsbD and others such as Gfo/Idh/MocA family, glycerol-3-phosphate 188 

dehydrogenase GpsA and thioredoxin-like TlpA oxidoreductases. Redox enzymes such as 189 

DsbB and DsbC are core genes with signal sequences, and they have catalytic rather than 190 

structural disulfides. These two enzymes are not identified as DsbA substrates in our filter as 191 

they have an odd number of cysteines. 192 

 193 

Gene Ontology (GO) classification of the gene and gene-product function of the 263 proteins 194 

reveals a variety of functions, totalling 223 GO descriptions (Fig 3) (see S4 File for a full list). 195 

The highest frequency are integral components of the membrane (66 proteins), followed by 196 

proteins involved in redox processes (25 proteins). Of particular interest due to their putative 197 

involvement in virulence, are proteins associated with: proteolysis (20), heme binding (15), 198 

hydrolase activity (9), carbohydrate metabolism (8), serine-type endopeptidase activity (7), cell 199 
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adhesion (6), metallo-endopeptidase activity (6), pilus formation and organisation (6), copper 200 

binding (5), lipid catabolism (4), choline binding (3), triglyceride lipase activity (3), 201 

aminopeptidase activity (2), porin activity (OmpA family proteins) (2), chitin catabolism (1), 202 

N-carbamoylputrescine amidase activity (1) and toxin activity (Tat pathway signal protein) (1). 203 

 204 

Fig 3: Gene Ontology (GO) descriptions of predicted extra-cytoplasmic proteins with an 205 

even number of cysteines. The highest frequency of proteins with an even number of 206 

cysteines are integral components of membranes (66 proteins), followed by proteins involved 207 

in redox (oxidation-reduction) processes (25 proteins) and proteolysis (20 proteins). For ease 208 

of representation and clarity, GO descriptors with less than three counts were excluded from 209 

this graph. A complete graph, along with raw values can be found in S4 File.  210 

 211 

By further inspection of the 263 core, putatively extra-cytoplasmic DsbA substrates, and by 212 

using the GO descriptions to aid in predicting protein functions,73 sequences were identified 213 

which were virulence-associated (Table 2). These include serine-type endopeptidases [37] 214 

associated with adherence, choline binding proteins N-carbamoylputrescine amidase, essential 215 

for production of putrescine, a component of Gram-negative cell walls of pathogens and key 216 

virulence [39-42], many proteases and peptidases.   217 

 218 

Table 2: Predicted virulence-associated core, extra-cytoplasmic proteins. 219 

Virulence-associated 

GO description 
Accession numbers 

Aminopeptidase activity ABA50277.1; WP_053292838.1 

Bacterial-type flagellum 

assembly 
WP_004525898.1 

Beta-lactamase activity KGV04506.1 

Carbohydrate metabolic 

processes 

ABA52198.1; EDO83218.1; EEH25224.1; WP_004526045.1; WP_004526830.1; 

WP_004553625.1; WP_053293009.1 

Cell adhesion/lipid 

metabolic/catabolic 

process/chitinase 

WP_004193933.1 

Cell adhesion/pillus EDU07436.1; WP_004193385.1; WP_038760383.1; WP_038765499.1; WP_063597677.1 

Chitin catabolic process WP_076802983.1 

Choline binding and 

transport 
ABA51731.1; ABN86005.1; ABN92885.1 

Copper ion binding WP_004529973.1; WP_004546221.1 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186213


 11 

Heme binding 

WP_004194773.1; WP_004535805.1; WP_004536717.1; WP_004538457.1; 

WP_004538458.1; WP_038730764.1; WP_041189005.1; WP_043304483.1; 

WP_076903047.1; WP_139900217.1; WP_151277731.1 

Heme binding/copper 

ion binding 
WP_029671417.1; WP_122827599.1 

Heme 

binding/proteolysis 
WP_009981622.1 

Heme bindingcopper ion 

binding 
WP_080248664.1 

Hydrolase activity 
CFL10512.1; EEC34719.1; WP_004525656.1; WP_024428578.1; WP_024429096.1; 

WP_080300428.1 

Lipid 

metabolic/catabolic 

process 

WP_009956690.1; WP_080248725.1 

Metallopeptidase/metall

oendopeptidase activity 

AFR18870.1; WP_004548157.1; WP_011204325.1; WP_038708181.1; WP_038730428.1; 

WP_076887541.1 

N-carbamoylputrescine 

amidase activity 
WP_045597613.1 

Penicillin binding/beta-

lactamase activity 
EDO89205.1 

Pillus and pillus 

organisation 
WP_151269450.1 

Porin activity WP_004189892.1; WP_011205039.1 

Proteolysis/hydrolase 

activity 
WP_011204795.1; WP_076852667.1 

Serine-type 

endopeptidase/carboxyp

eptidase activity 

ABA50268.1; ACQ98979.1; AFR20596.1; WP_004528537.1; WP_004529035.1; 

WP_004553586.1; WP_011852052.1; WP_024428782.1; WP_038778478.1 

Toxin activity WP_038707916.1 

Triglyceride lipase 

activity 
EEH28759.1; WP_038741497.1; WP_038775093.1 

Xenobiotic 

transmembrane 

transporter activity 

WP_004534049.1 

Analysis of the 263 putative DsbA substrates revealed 73 proteins associated with virulence, 220 

based on GO descriptions. Accession numbers from B. pseudomallei are shown, separated by 221 

a semicolon. 222 

 223 

Sequence homology prediction of B. pseudomallei DsbA virulence 224 

factor substrates 225 

To complement the genomic analysis described above we used a second approach to identify 226 

DsbA substrates, by screening all B. pseudomallei genomes uploaded on NCBI [43] (taxid 227 

28450) for homologues of known DsbA substrates. We implemented this approach because 228 

some DsbA substrates might be filtered out using the genomic approach described above if the 229 

substrates are not encoded by core genes, or if the gene product has an odd number of cysteines.  230 

 231 
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Over 90 DsbA substrates have been reported in the literature. We searched for B. pseudomallei 232 

homologues of these DsbA substrates using the following criteria: (i) presence of secretion 233 

signal, (ii) at least two cysteines in the mature sequence, (iii) at least 20% identity and (iv) 50% 234 

coverage to a known DsbA substrate sequence. After removing duplicates, our analysis found 235 

that B. pseudomallei encodes homologues of 15 DsbA substrates (Table 3). Two of these 15 236 

are DsbA substrates in other Burkholderia species B. cepacia and B. cenocepacia [44-47]: a 237 

metalloproteases, ZmpA and a sulfatase-like hydrolase transferase. In B. cenocepacia, ZmpA 238 

is a wide spectrum metalloprotease, thought to cause tissue damage during infection [48].  239 

 240 

Table 3: List of B. pseudomallei proteins homologous to previously reported DsbA 241 

substrates. 242 

Accession Number 

(DsbA substrate) 
Organism Reference  

B. pseudomallei 

homologue  

Identity / 

coverage 

(%) 

Protein function Cys # 

WP_059237834 B. cepacia [44] WP_076835606.1 89 /100 
Sulfatase like hydrolase 
/transferase 

3 

WP_006481898 B. cenocepacia [45, 46] WP_139900467 87/100 M4 family metallopeptidase 4 

gi|89255876 F. tularensis [34] WP_050859308 24/92 lytic transglycosylase 3 

gi|89255615 F. tularensis [34] WP_080367462 40/51 Pilin  2 

gi|89255615 F. tularensis [34] WP_076953316 27/92 Pilin 2 

gi|89256194 F. tularensis [34] WP_041862011 30/83 
Molybdopterin synthase adenyl 
transferase (MoeB) 

13 

gi|89256236 F. tularensis [34] WP_064459078 34/53 DNA/RNA endonuclease 2 

gi|89256237 F. tularensis [34] WP_050772403 31/90 PenI family Beta-lactamase 4 

gi|89256856 F. tularensis [34] WP_044360358 21/80 hypothetical protein 4 

gi|89256859 F. tularensis [34] WP_058035453 39/80 
Polyamine ABC transporter 
substrate binding protein  

3 

gi|89257049 F. tularensis [34] WP_009915682 54/99 Succinate dehydrogenase 6 

WP_001363619 E. coli [22] WP_102811167 38/88 Molecular chaperone 3 

AAC38377 E. coli [22] WP_082252625 44/93 
T3SS outer membrane ring 
protein 

4 

AAA24962 
Heamophilus 
Influenza 

[22] WP_053293022 47/92 
ABC transporter substrate 
binding protein 

4 

CAA43967 Yersinia pestis [22] WP_085538626 32/83 Pilus assembly protein PapD 2 
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The accession number of the known DsbA substrate (in an organism other than B. 243 

pseudomallei), the organism and the publication reference are given in the first three columns. 244 

The corresponding B. pseudomallei homologue is given in the fourth column. The identity and 245 

coverage (number of residues in the result sequence that overlap with the search sequence) is 246 

given in percent in the column “identity/coverage”. The final two columns provide the protein 247 

function and the number of cysteines in the predicted mature sequence. All proteins in this 248 

table are known or predicted to be secreted or periplasmic. 249 

 250 

Over 50 DsbA substrates in Francisella tularensis were identified by trapping and co-purifying 251 

substrates bound to a DsbA variant [34]. Of these 50, we found nine homologues encoded in 252 

B. pseudomallei (see Table 3). These include homologues of the lytic transglycosylase domain 253 

containing protein (implicated in peptidoglycan rearrangement) and homologues of two pilin 254 

proteins involved in the formation of pilus and flagella. Also present is an MoeB homologue; 255 

MoeB is a molybdopterin synthase adenyl transferase (cytoplasmic in E. coli but likely 256 

periplasmic in B. pseudomallei due to the twin-arginine translocation (TAT) signal sequence). 257 

A PenI family β-lactamase homologue is also found in B. pseudomallei; this is a class A β-258 

lactamase that confers resistance to β-lactams including, in rare cases, ceftazidime (commonly 259 

used to treat melioidosis) [49]. A succinate dehydrogenase flavoprotein subunit homologue, 260 

found in the bacterial inner membrane and part of the electron transport chain, is also encoded 261 

in B. pseudomallei. This protein is cytoplasmically oriented in E. coli, though again the B. 262 

pseudomallei version has a TAT signal sequence suggesting a possible periplasmic 263 

localisation.  264 

 265 

A number of DsbA substrates identified in E. coli (reviewed in [22]) have B. pseudomallei 266 

homologues including a molecular chaperone homologous to PapD and EscC, involved in the 267 

formation of the Type III secretion system (T3SS). The T3SS assembly requires DsbA activity 268 

in many Gram-negative bacteria, including E. coli and S. typhimurium. [50, 51]. Finally, a B. 269 
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pseudomallei protein homologous to the Y. pestis pilus assembly protein Caf1M (a molecular 270 

chaperone involved with assembly of the surface capsule of the bacterium) was also identified. 271 

 272 

Of the 15 putative B. pseudomallei DsbA substrates identified using this substrate homology 273 

method, two were also identified in the genomic pipeline method. These are the PenI and 274 

succinate dehydrogenase flavoprotein subunit homologues. 275 

 276 

We then aligned the sequences of the Table 3 B. pseudomallei proteins to identify any possible 277 

sequence conservation around the cysteine residues, but no pattern was identified. This lack of 278 

peptide sequence motif in DsbA substrates has also been observed in E.coli, demonstrating the 279 

difficulty of DsbA substrate prediction [52]. 280 

 281 

Epitope prediction of virulence-associated proteins 282 

To determine whether the DsbA substrates identified in the two methods above could 283 

contribute to vaccination efforts against B. pseudomallei, we also predicted B-cell epitopes, 284 

using a structure-informed approach. The sequences of the 73 putative, extra-cytoplasmic 285 

DsbA substrates (predicted virulence factors, Table 2) along with the 15 homologous DsbA 286 

substrates (Table 3) were screened against the Protein Data Bank (PDB) [53], to identify 287 

structurally characterised homologues (see S6 File). Six of the 73 proteins were found to have 288 

at least 80% similarity to a structurally characterised protein. Three of these six protein 289 

structures were from Pseudomonas species, while the other three were from Burkholderia 290 

species. Similarity was used rather than identity to account for mutations of functionally similar 291 

residues. The six protein structures were then used as models to predict structurally-informed 292 

B-cell epitopes of length 10-20 residues (Table 4 and Fig 4) using the SEPPA3 server.  293 
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Table 4: B-cell epitope prediction.  294 

The virulence-associated putative DsbA substrates (Table 2) were screened for ≥80% similarity 295 

to proteins within the PDB to account for substitution of functionally similar residues. The 296 

structures were then screened for epitopes using SEPPA 3.0. Fourteen B-cell epitopes of 10 to 297 

20 residues were predicted. 298 

 299 

Fig 4: Predicted B-cell epitopes. Graphical representation of B-cell epitopes found in Table 300 

4. Proteins are shown as white surfaces and their respective PDB ID is given in the bottom 301 

left corner of each box. The epitope region is highlighted in red and the corresponding 302 

homologous sequences found in B. pseudomallei are given in one letter code under each 303 

respective structure and separated by semicolon when more than one sequence pointed to the 304 

same epitope.  305 

 306 

These epitopes provide an interesting list for further evaluation. For example, epitopes from 307 

beta-lactamase Toho-1 and class D beta-lactamase could provide a useful vaccination approach 308 

for B. pseudomallei because these directly target antibiotic resistance proteins. Similar 309 

approaches have conferred protection against other bacteria in animal models [54-57].  310 

 311 

Vaccination targeting adhesion proteins and essential virulence factors such as FimA [58, 59] 312 

and type 1 fimbrial protein is a commonly used approach due to the external localisation of 313 

these proteins and their exposure to host immune systems. Anti-fimbrial antibodies have been 314 

shown to interfere with function and reduce disease [60, 61] and a FimA vaccine provided 315 

Gene name Predicted epitopes 
Homologue PDB 

code 

Accession 

number 

beta-lactamase Toho-1  RREPELNTALPGDER;  TTMRNPNAQARDDVIA 3W4O KGV04506.1 

type 1 fimbrial protein  SSKAYTIAEGDNTF 5N2B WP_063597677.1 

triacylglycerol lipase  SSTNNTNQDALA; AYVQQVLAATGASK 1HQD WP_038741497.1 

class D beta-lactamase  VSGDPGQNNGLDR 6NI0 EDO89205.1 

triacylglycerol lipase  QQVLAVTGAQK; SHTHNTNQDAIA 1HQD WP_038775093.1 

S8 family serine peptidase  

SGDEGVYECNNRGYPDGSNYTV; 

SNETVWNEGLDGNGKLW; YECNNRGYPDGSNYTV; 

MADLDASGNTGLTQ; QTNGSGGNYSDDQEG; 
GYSGYGYKASTGWDY 

1GA1/1NLU WP_004553586.1 
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protection against Streptococcus parasanguis, Streptococcus mitis, Streptococcus mutans and 316 

Streptococcus salivarius in rats [62-64]. 317 

 318 

Vaccination against conserved, secreted enzymes such as the triacylglycerol lipase (EstA) and 319 

S8 family serine peptidase enzymes may also be a useful strategy. Secreted peptidases are 320 

known virulence factors in many pathogenic bacteria [37, 65] and vaccines targeting them have 321 

attenuated disease in animal models [66, 67]. Two triacylglycerol lipases (WP_038741497.1 322 

and WP_038775093.1) were identified as having a structural homologue in the PDB. These 323 

two lipases are both core genes and share 78% similarity (72% identity, 87% query cover). and 324 

their sequences were both aligned to the same PDB code, resulting in epitope variants of similar 325 

sequences.   326 

  327 
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Discussion  328 

In the present study, we analysed genomes from 512 B. pseudomallei isolates specifically 329 

associated with disease to identify core putative DsbA substrates and virulence factors. 330 

Pangenomic analysis of B. pseudomallei has previously been performed utilising 37 isolates 331 

from a variety of isolation sources [36] and concluded the pangenome to be ‘open’, indicating 332 

that new isolates will continually increase the number of total genes, which we found to be the 333 

case, based on a pangenome of 19,991 genes from 512 isolates. Previous studies comparing 334 

the B. pseudomallei genome with the obligate pathogen Burkholderia mallei (responsible for 335 

glanders) and the generally non-pathogenic Burkholderia thailandensis [68-71], identified 336 

several loci likely to be involved in B. pseudomallei virulence. These include the capsular 337 

polysaccharide gene cluster and Type III secretion needle complex [71], which were not 338 

considered core genes, demonstrating the importance of large-scale analysis.  339 

 340 

In the present study, we used two orthogonal approaches to identify a total of 278 putative 341 

DsbA substrates, with 86 predicted to be virulence factors (S5 File). Of these, 73 were 342 

identified by the genome analysis approach and 15 were identified by the DsbA substrate 343 

homology approach. Two of the putative 86 DsbA virulence factor substrates were identified 344 

in both approaches. These two are the experimentally validated bacterial virulence factors and 345 

DsbA substrates succinate dehydrogenase flavoprotein subunit, and a PenI family -lactamase 346 

(both reported to be F. tularensis DsbA substrates) [34].  347 

 348 

Delving deeper into the results presents some curious outcomes. For example, the well-349 

characterised E.coli DsbA substrate and virulence factor FlgI [27, 72] was not picked up as a 350 

potential B. pseudomallei DsbA substrate by either method, though B. pseudomallei encodes 351 

FlgI. The B. pseudomallei FlgI sequence has 4 cysteines in the translated gene product but the 352 
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predicted mature sequence after cleavage of the signal sequence has just one cysteine. 353 

Generally, DsbA does not interact with proteins having just one cysteine. If B. pseudomallei 354 

FlgI is a DsbA substrate (that is yet to be tested), then the most likely reasons that it was not 355 

identified as a substrate by either of the two methods we used are that (i) the predicted signal 356 

peptide is incorrect and/or (ii) the single cysteine of B. pseudomallei FlgI forms an inter-357 

molecular disulfide bond.  358 

 359 

The finding that the two orthogonal approaches identified the same two target proteins suggests 360 

that there is merit in using different theoretical approaches to select high priority targets for 361 

further evaluation (in this case, the PenI family Beta-lactamase and succinate dehydrogenase 362 

flavoprotein subunit). On the other hand, the fact that there were so few overlaps in the 363 

predicted substrates from the two methods raises questions about the filters we applied. 364 

Specifically, we found that of the 15 potential substrates identified by the substrate homology 365 

method, 5 had an odd numbers of cysteines, whereas the genomic analysis filtered these 366 

proteins out of consideration. We applied the even cysteine filter because previous reports 367 

showed that E. coli exported proteins have a strong preference for an even number of cysteines. 368 

This even number of cysteine preference is present in B. pseudomallei exported proteins (Fig 369 

2) though is not as pronounced as in E. coli. By restricting our genomic analysis to core, extra-370 

cytoplasmic B. pseudomallei proteins with an even number of cysteines, some DsbA substrates 371 

may therefore have been missed. There is considerable evidence that many virulence factors 372 

such as adhesion and motility proteins, toxins and enzymes are extra-cytoplasmic proteins in 373 

both Gram-positive and Gram-negative bacteria [21, 22, 73]. Given that extra-cytoplasmic 374 

proteins in the translated core genome of B. pseudomallei have a slight preference for even 375 

number of cysteines (Fig 2) and the identification of many virulence-associated proteins within 376 

the 263 proteins in the list, the approach taken in this analysis (Fig 1) to identify DsbA 377 
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substrates was justified. Further, the genomic analysis focused on highly conserved proteins 378 

from the core genome; accessory proteins associated with virulence would not be identified 379 

using this approach. Nevertheless, the genomic analysis identified homologues of known DsbA 380 

substrates in other bacteria, such as the OmpA porin, supporting the use of this approach. 381 

However, attempting to identify epitopes from proteins which are not found in every disease-382 

causing isolate may present challenges for anti-virulence and vaccination attempts.   383 

 384 

In addition, the genomic analysis identified several proteins of unknown function which could 385 

represent novel virulence factors for future studies. Importantly, our theoretical approach was 386 

extended to predict structurally-informed surface epitopes for several core gene DsbA 387 

substrates for potential vaccine or antibody development (Table 4).  388 

 389 

In summary, our in silico analysis combined a substrate homology approach and a genomic 390 

analysis approach to identify more than 80 potential B. pseudomallei DsbA virulence factor 391 

substrates, two of which we mark as high priority for experimental validation. Future 392 

characterization of these proteins will aid our understanding of B. pseudomallei virulence and 393 

could provide new targets for antivirulence drug discovery and vaccine development. The 394 

approaches we report here could also be applied to identify potential DsbA virulence factor 395 

substrates in other pathogenic bacteria. 396 

  397 
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Methods  398 

Data acquisition and filtering of core, extra-cytoplasmic, putative 399 

DsbA substrates 400 

1577 B. pseudomallei genomes were obtained from the genome information table from NCBI 401 

(https://www.ncbi.nlm.nih.gov/genome/genomes/476) (date accessed: 1/2/20).The biosample 402 

accession numbers were batch downloaded using Entrez. A list of assembly accession numbers 403 

can be found in S1 Fig. Metadata was then scraped for disease association using grep with the 404 

following command: 405 

grep -A 1 "disease" 406 

 407 

The assemblies were then downloaded using Entrez and annotated using a prokka (version 408 

1.14.5) [74] for loop with the following command: 409 

for file in *.fna; do tag=${file%.fna}; prokka --prefix "$tag" --locustag "$tag" --genus Burkholderia --410 

species pseudomallei --strain "$tag" --outdir "$tag"_prokka --force --addgenes "$file"; done 411 

 412 

The .gff files were used as input for roary (version 3.11.2) [75] without splitting paralogues via 413 

the following command: 414 

roary -e --mafft -i 90 -v -p 72 -z -s -o output -f *.gff 415 

 416 

The roary output file was altered from interleaved fasta to one line per sequence 417 

awk '{if(NR==1) {print $0} else {if($0 ~ /^>/) {print "\n"$0} else {printf $0}}}' input.fa > output.fa 418 

 419 

The core genome was then used in the remaining analysis and core DNA sequences were 420 

translated into protein sequences using transeq [76] with the following command: 421 

transeq -sequence input.fasta -outseq output.fasta -table 11 -frame 1 422 

 423 
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The core genome was then filtered based on signal sequence and then the sequence of the 424 

mature exported protein, as predicted utilising SignalP 5.0 [77, 78] 425 

signalp -fasta prot_core_genome_complete.fasta -format short -mature -org gram- -verbose  426 

 427 

These sequences were then filtered for genes containing even numbers of cysteines 428 

awk -F \C 'NF % 2' < input.fasta | awk "/C.*C/" | sed '/>/{$!N;/\n.*>/!P;D}' > output.fasta 429 

 430 

This list was then annotated via screening sequences against NCBI and Gene Ontology [79] 431 

using the PANNZER2 server [80]. 432 

 433 

Identification of DsbA substrate homologues in B. pseudomallei   434 

DsbA substrates were also predicted using a substrate homology search. This approach may 435 

identify proteins not encoded in the core genome. The B. pseudomallei genome was screened 436 

for homologues of known DsbA substrates using BLASTP. A starting list of confirmed DsbA 437 

substrates was extracted from the literature [22, 34, 45-48, 81], and their amino acid sequences 438 

used in BLAST searches [82] against the NCBI protein database [43] for homologues in B. 439 

pseudomallei using default search parameters. In some cases two search proteins identified the 440 

same homologue in B. pseudomallei. In these cases only the search protein most similar to the 441 

B. pseudomallei homologue is given in Table 3. The results were filtered to select proteins with 442 

at least 20% sequence identity and a sequence coverage of at least 50%. Protein sequences with 443 

fewer than two cysteines were removed. Exported proteins were selected on the basis of 444 

predicted signal sequence (SignalP 5.0 [77]) or experimental evidence of extra-cytoplasmic 445 

localisation for the reported DsbA substrate in another Burkholderia species. 446 

 447 
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Cysteine distribution analysis 448 

Fasta files containing either the 19,991 pan genes or the 4,496 core gene of B. pseudomallei 449 

with their corresponding amino acid sequences and descriptors were utilised to calculate the 450 

distribution of cysteines with a custom Python 3.0 script (available on Github : 451 

(https://github.com/gpetit99/cysteineCount_bPseudomallei/blob/master/CysCountFrequency.452 

py”). Briefly, lists of the extra-cytoplasmic  protein sequences with signal peptides removed 453 

were compared to lists of the protein sequences from the whole genome to create dataframes 454 

with either cytoplasmic or extra-cytoplasmic proteins. Proteins were grouped based on the 455 

presence or absence of SP, and based on the number of cysteines in the mature protein. To 456 

calculate the normalised frequency of cysteines for extra-cytoplasmic proteins, we divided 457 

the number of extra-cytoplasmic proteins having N cysteines by the total number of proteins 458 

having N cysteines (N being an integer from 0 to 73 – No protein has more than 73 cysteines 459 

in the B. pseudomallei translated genome). This analysis was run for the core genome and 460 

pangenome independently. Other statistics (e.g. number of proteins in each group) were 461 

extracted from the dataframes.  462 

 463 

Epitope prediction 464 

The metadata for each of the 263 proteins in the annotated list was manually inspected to select 465 

for further analysis a total of 73 proteins likely related to virulence. The sequences of these 73 466 

selected proteins were combined with the 15 selected proteins from the homology analysis (to 467 

give 86 unique protein sequences). These were screened against the protein data bank using 468 

BLAST (criteria: ≥80% positive substitutions/similarity used as a threshold) to find structurally 469 

characterised homologues. These structural homologues were then used to predict B-cell 470 

epitopes using SEPPA 3.0 (http://www.badd-cao.net/seppa3/index.html) with a threshold of 471 

0.1 [83]. Similarity was used rather than identity to account for mutations of functionally 472 
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similar residues. Predicted B-cell epitopes were accepted if they were 10 – 20 residues in 473 

length, as described in [84]. 474 

 475 

 476 

  477 
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