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31 Abstract

32 Transcriptome-wide association studies (TWAS) test the association between traits and 

33 genetically predicted gene expression levels. The power of a TWAS depends in part on the 

34 strength of the correlation between a genetic predictor of gene expression and the causally 

35 relevant gene expression values. Consequently, TWAS power can be low when expression 

36 quantitative trait locus (eQTL) data used to train the genetic predictors have small sample sizes, 

37 or when data from causally relevant tissues are not available. Here, we propose to address these 

38 issues by integrating multiple tissues in the TWAS using sparse canonical correlation analysis 

39 (sCCA). We show that sCCA-TWAS combined with single-tissue TWAS using an aggregate 

40 Cauchy association test (ACAT) outperforms traditional single-tissue TWAS. In empirically 

41 motivated simulations, the sCCA+ACAT approach yielded the highest power to detect a gene 

42 associated with phenotype, even when expression in the causal tissue was not directly measured, 

43 while controlling the Type I error when there is no association between gene expression and 

44 phenotype. For example, when gene expression explains 2% of the variability in outcome, and 

45 the GWAS sample size is 20,000, the average power difference between the ACAT combined 

46 test of sCCA features and single-tissue, versus single-tissue combined with Generalized Berk-

47 Jones (GBJ) method, single-tissue combined with S-MultiXcan or summarizing cross-tissue 

48 expression patterns using Principal Component Analysis (PCA) approaches was 5%, 8%, and 

49 38%, respectively. The gain in power is likely due to sCCA cross-tissue features being more 

50 likely to be detectably heritable. When applied to publicly available summary statistics from 10 

51 complex traits, the sCCA+ACAT test was able to increase the number of testable genes and 

52 identify on average an additional 400 additional gene-trait associations that single-trait TWAS 
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53 missed. Our results suggest that aggregating eQTL data across multiple tissues using sCCA can 

54 improve the sensitivity of TWAS while controlling for the false positive rate. 

55

56 Author summary

57 Transcriptome-wide association studies (TWAS) can improve the statistical power of genetic 

58 association studies by leveraging the relationship between genetically predicted transcript 

59 expression levels and an outcome. We propose a new TWAS pipeline that integrates data on the 

60 genetic regulation of expression levels across multiple tissues. We generate cross-tissue 

61 expression features using sparse canonical correlation analysis and then combine evidence for 

62 expression-outcome association across cross- and single-tissue features using the aggregate 

63 Cauchy association test. We show that this approach has substantially higher power than 

64 traditional single-tissue TWAS methods. Application of these methods to publicly available 

65 summary statistics for ten complex traits also identifies associations missed by single-tissue 

66 methods.

67
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68 Introduction

69 Genome-wide association studies (GWASs) have successfully identified thousands of 

70 associations between single-nucleotide polymorphisms (SNPs) and complex human phenotypes. 

71 Yet, the interpretation of these identified associations remains challenging, and several lines of 

72 evidence suggest that many additional associated loci remain to be identified [1, 2]. A recently 

73 proposed approach transcriptome-wide association study (TWAS) [3, 4] identifies genetic 

74 associations by combining GWAS data with expression quantitative trait locus (eQTL) data. 

75 TWAS can be used both to identify new associations and prioritize candidate causal genes in 

76 GWAS-identified regions [5]. TWAS integrates gene expression with GWAS data using only 

77 genotype expression imputation from a gene expression model built from eQTLs, and then test 

78 for the association between imputed gene expression level and a phenotype of interest. The main 

79 strength of TWAS is that it can infer the association of imputed gene expression with the 

80 phenotype using only GWAS summary statistics data [3, 4]. TWAS can increase the statistical 

81 power by combining single-SNP association tests in a biologically motivated fashion and 

82 reducing the number of tests performed. The applications of TWAS have led to novel insights 

83 into the genetic basis for several phenotype and diseases [6].

84

85 Despite the successes of TWAS, the approach has multiple limitations [7]. First, the most 

86 relevant tissue for many human diseases and phenotypes remains unclear, and the eQTL data for 

87 these relevant tissues are usually challenging to access in large samples. The choice of the most 

88 relevant tissue-specific eQTL sample for building gene expression prediction model in TWAS 

89 remains largely ad-hoc. Two commonly adopted approaches are: (1) using the largest eQTL 

90 sample accessible (usually whole blood [3]), or (2) using the most relevant tissue based on 
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91 previous knowledge and experience [6, 8].  Second, the power of TWAS is mainly bounded by 

92 the sample size of eQTL data; power of TWAS increases dramatically with the eQTL sample 

93 size, approaching an empirical maximum when eQTL sample size is close to 1,000 [3]. 

94 However, most available eQTL data sets have a sample size substantially smaller than 1,000. For 

95 example, Genotype-Tissue Expression(GTEx) project [9, 10] have generated matched genotype 

96 and expression data for 44 human tissues, but with sample size for each tissue varying from only 

97 70 to 361. Researchers do not always know which tissue to use, and sometimes the sample size 

98 for the tissue that they prefer to use is too small to have enough power. 

99

100 Recent work in gene regulation patterns across tissues suggests that local gene expression 

101 regulation is often shared across tissues [9-11]. Thus, combining eQTL data across multiple 

102 tissues can improve the power of TWAS, by increasing the effective eQTL sample size or 

103 increasing the likelihood that the causal tissue (or a close proxy) is included in the eQTL training 

104 data. Two previously proposed approaches, UTMOST [12] and S-MultiXcan [13], have shown 

105 the advantage of a multi-tissue TWAS approach. However, these two approaches still conduct 

106 the TWAS test with single-tissue TWAS weights first, and then combine multiple single-tissue 

107 associations into a single powerful metric to quantify. UTMOST uses a generalized Berk-Jones 

108 (GBJ) test, which is a set-based method [12]. S-MultiXcan proposes a combined chi-square test 

109 that uses principal components from the tissue-specific genetically predicted expression values to 

110 integrate univariate S-PrediXcan results [13]. We refer to these two approaches as single-tissue 

111 based cross-tissue TWAS approach. We propose to leverage the correlated gene expression 

112 pattern across tissues in the eQTL dataset directly to build more stable and representative cross-

113 tissue gene expression features using sparse canonical correlation analysis (sCCA) [14], and thus 
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114 improve the gene expression prediction model for TWAS. The potential advantage of sCCA is 

115 that it can capture any genetic contribution to gene expression that is shared across multiple 

116 tissues. Because sCCA maximizes the correlation between a linear combination of tissue-specific 

117 expression values and linear combination of cis-genotypes, sCCA features are more likely to be 

118 detectably heritable than cross-tissue features constructed using principal components analysis 

119 (PCA), which constructs linear combinations to capture total (genetic plus non-genetic) 

120 expression variance [14]. In addition, we also propose an omnibus test that combines the single 

121 tissue TWAS test results with the sCCA-TWAS test results using the aggregate Cauchy 

122 association test (ACAT). ACAT is a computationally efficient P-value combination method for 

123 boosting the power in sequencing study, and has proved to be powerful for detecting a sparse 

124 signal [15]. 

125

126 Specifically, we propose a novel four-step pipeline to perform multi-tissue TWAS: 1. generate 

127 sparse canonical correlation analysis (sCCA) [14] -based cross-tissue features (sCCA-features) 

128 integrating eQTL data across multiple tissues; 2. fit TWAS weights for these sCCA-features as 

129 well as single tissue-specific gene expression [3, 4]; 3. perform TWAS with weights built from 

130 sCCA-features and singe tissue gene expression [3, 4]; 4. combine the test results of sCCA 

131 TWAS results and single tissue TWAS results using the aggregated Cauchy association test 

132 (ACAT) [15]. We use extensive simulations to compare this approach with four other cross-

133 tissue approaches, including: 1. performing TWAS on single most relevant tissue, 2. performing 

134 TWAS on all single tissues available and combining the test results via Bonferroni or generalized 

135 Berk-Jones (GBJ) test [16]; 3. using Principal Components Analysis (PCA) to create cross-tissue 

136 features; and 4. the recently proposed S-MultiXcan approach [13]. 
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137

138 Through simulations we show that sCCA-features identify a larger number of cis-heritable 

139 transcripts than single tissue and PCA-features, and the combined test substantially improves 

140 statistical power. Importantly, all approaches successfully control the type I error rate. We also 

141 show by simulations that the power of our combined test compares favorably to other approaches 

142 despite using incomplete gene expression matrix for all individuals and all tissues thus requiring 

143 imputation, as is often the case for multi-tissue gene expression dataset like GTEx [9, 10].

144

145 We applied our four-step approach to eQTL data from GTEx and 10 sets of publicly available 

146 GWAS summary statistics data. We built sCCA-features on an expression matrix including 134 

147 individuals with data in 22 tissues. The sCCA-TWAS results were then compared with the 

148 single-tissue based TWAS results available on TWAS HUB (http://twas-hub.org). sCCA-TWAS 

149 was able to increase the number of testable genes by 81% and double the number of identified 

150 gene-phenotype associations. 

151

152 Results

153 Methods Overview

154 Our proposed method entails four steps: the feature generating step, weight building step, TWAS 

155 step, and tests combining step (Fig. 1). In the feature generating step, we considered three 

156 approaches to build TWAS weights using eQTL data from multiple tissues. The first approach 

157 builds gene expression prediction weights in each tissue one at a time. The second approach, 

158 which we call the PCA-TWAS approach, first performs PCA on the gene expression matrix to 

159 create the top PCs (we restricted to top 3 PCs in this work). These PCs are then used as new gene 
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160 expression feature to build the gene expression weights and perform TWAS. In the final 

161 approach, sCCA-TWAS, we propose to use sCCA to build cross-tissue gene expression features 

162 as the weighted average of gene expression across multiple tissues (see Methods). These 

163 weighted averages maximize the correlation between the weighted average of gene expressions 

164 across tissues and cis-genotypes (within 500kb of the gene boundary). In the weight building 

165 step, we build TWAS weights for each of these multi-tissue features by regressing the feature on 

166 cis-SNPs in the gene’s window. In the second step of TWAS, we perform tests for association 

167 using these set of weights (for each single-tissue or multi-tissue feature) separately. Finally, in 

168 the tests combining step, the single-tissue TWAS tests are combined using a Bonferroni multiple 

169 testing adjustment, the Generalized Berk-Jones (GBJ) procedure, or S-MultiXcan [13, 16] (see 

170 Methods for more details). We also propose a combined test of single-tissue test and sCCA 

171 cross-tissue test by combining the test results with ACAT [15]. 

172

173 We compared the performance of sCCA based cross-tissue TWAS with single tissue based 

174 cross-tissue TWAS approaches (Bonferroni, GBJ, S-MultiXcan) and PCA based cross-tissue 

175 TWAS through 2,000 simulations based on GTEx data. We conducted the simulations varying 

176 gene expression heritability, genetic correlation in expression across tissues, the proportion of 

177 tissues correlated with the causal tissue, the scale of non-centrality parameters in the GWAS z-

178 score distribution (to model GWAS sample size), and whether gene expression from the 

179 underlying causal tissue is observed (i.e. not included in model training) or not.

180

181 sCCA improves statistical power to detect heritable gene expression
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182 The first step of the TWAS approaches we consider tests the cis-heritability of each gene 

183 expression feature; the features that demonstrate significant heritability are only analyzed further. 

184 Fig. 2 compares the power of this heritability test for single-tissue, PC and sCCA expression 

185 features in the scenario where half of the tissues are correlated with the causal tissue, and the 

186 causal tissue is not observed. The relative performance of these features is very similar in the 

187 other scenarios (S1 and S2 Figs). The power of detecting heritable genes at a set alpha level 

188 increases as the correlation between correlated tissue and causal tissue or the heritability for gene 

189 expression in causal tissue increases. On average, the sCCA-features have a consistently higher 

190 chance of being heritable: they were 2.78x and 3.72x more likely to be heritable compared to the 

191 single tissue-based features and PCA based features. 

192

193 The power of heritability test for PCA based cross-tissue TWAS is generally low, and the PC 

194 that captures the genetic signal best varies across scenarios (S3 Fig). The PCs that explain more 

195 of the variance in gene expression are not necessarily more heritable. Sometimes the second or 

196 third PC is heritable, but the first PC is not. We also observed that the chance of the PCA based 

197 feature to be heritable decreased with as the correlation between the genetic effect of the 

198 correlated tissue and the causal tissue increased. This may occur because non-genetic sources of 

199 correlation in expression across tissues outweigh genetic sources when the genetic contributions 

200 to expression are highly correlated. In this setting, the top PCs often do not capture the genetic 

201 effects. 

202

203 Because sCCA features are constructed by maximizing the correlation between gene expression 

204 and genotype, the Type I error rate for the cis-heritability test can be inflated due to overfitting. 
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205 In fact, we did observe an inflated Type I error rate for heritability test under null for sCCA (S4 

206 Fig). Considering individual features, the sCCA-feature1 had the highest Type I error rate at 

207 0.43, while PC-feature1 had a slightly inflated type I error rate at 0.06 and the single tissue 

208 features maintained the Type I error rate at 0.05 level. But when we account for overall testing of 

209 3 sCCA features, 3 PCS features and 22 single tissue features, the Type I error rate for at least 

210 one single tissue being significantly heritable at 0.05 level was 0.65 which is similar to the 

211 observed Type I error rate for at least one of the sCCA features being heritable. We note that 

212 standard TWAS pipelines typically do not adjust for the number of tissue features tested at the 

213 heritability stage. Most importantly, even though the cis-heritability test had an inflated rate of 

214 Type I error, the final Type I error rate for the sCCA-TWAS while testing for an association 

215 between predicted expression and phenotype was still well controlled (S5 Fig).

216

217 sCCA-features increase power of cross-tissue TWAS

218 Next, we compare the power of various approaches to multi-tissue TWAS to detect gene-trait 

219 associations via simulation. We simulated genotype and expression data using linkage 

220 disequilibrium (LD) and expression correlation information from GTEx. We set the gene 

221 expression in one tissue to be causal for the phenotype and varied the variance explained by 

222 genotype for the causal tissue, number of tissues with gene expression correlated with the causal 

223 tissue and the corresponding correlation (see Methods for more details). All methods control the 

224 Type I error when expression is not associated with the outcome (S5 Fig). In simulations, we 

225 varied the correlation between the casual and correlated tissue, the proportion of other tissues 

226 correlated with the casual tissue, whether the test results from the causal tissue was observed or 

227 not, and the proportion of gene expression variation explained by genotype in the casual tissue 
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228 (see Methods for details).  In the simulation scenarios that we considered—all of which involved 

229 some correlation between the genetic contribution to gene expression in the causal tissue and at 

230 least one other tissue—we observed that the relative performance of different methods did not 

231 change as a function of the genetic correlation between the casual tissue and the correlated 

232 tissues, or the proportion of all tissues correlated with the casual tissue, or whether the causal 

233 tissue was analyzed (S1 and S2 Figs, S1-3 Tables). 

234

235 We considered three sets of methods: (1) single tissue TWAS based approaches, which perform 

236 the single tissue based TWAS and either account for multiple testing using Bonferroni or GBJ 

237 corrections, or combine the test results using S-MultiXcan ; (2) tests based on cross-tissue 

238 features (using PCA or sCCA to build cross-tissue features); and (3) combined test of both 

239 single-tissue based methods and cross-tissue feature based methods, using either Bonferroni or 

240 ACAT to adjust for multiple testing [15].

241

242 First, for the single tissue-based approaches, GBJ and S-MultiXcan had either similar power or 

243 GBJ had slightly higher power than S-MultiXcan. For example, when gene expression explains 

244 2% of the variability in outcome and the GWAS sample size is 20,000, the average power of 

245 single-tissue test combined with GBJ and single-tissue combined with S-MultiXcan was 0.34, 

246 and 0.29, respectively. Second, for the approaches using cross-tissue features, sCCA yielded a 

247 substantially higher power than PCA under all scenarios (the average power is 0.26 for sCCA 

248 and <10-4 for PCA, S1-3 Tables). Third, for approaches to combine sCCA-TWAS and single 

249 tissue TWAS test results, combining sCCA-TWAS and single tissue TWAS test results with 
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250 ACAT [15] yielded 1.37 times greater power than combining them with Bonferroni (the average 

251 power is 0.38 for ACAT and 0.37 for Bonferroni, S1-3 Tables).

252

253 Finally, we compared single-tissue, cross-tissue, and combined single- and cross-tissue 

254 approaches. For simplicity, we only present comparisons between single-tissue based tests using 

255 GBJ to combine evidence across tissues, cross-tissue feature based approach with sCCA-

256 features, and combined test of single-tissue based approach and sCCA-feature with ACAT. 

257

258 Under the alternative, when gene expression has local genetic effects and gene expression is 

259 associated with the trait, the combined test of sCCA-features and single tissue-features using 

260 ACAT had the greatest power to detect a gene associated with the outcome, even when 

261 expression in the causal tissue was not directly measured (Fig 3). For example, when gene 

262 expression explains 2% of the variability in outcome and the GWAS sample size is 20,000, the 

263 average power for the ACAT [15] combined test of sCCA features and single-tissue test, sCCA-

264 TWAS and single-tissue tests combined with GBJ was 0.38, 0.23 and 0.34, respectively (S1-3 

265 Tables). The gain in power is likely because sCCA cross-tissue features are more likely to be 

266 significantly heritable, and thus increase the number of testable genes. This is particularly 

267 relevant for genes with low heritability: for such a gene, sCCA-TWAS has superior power (Fig 3 

268 left panels). On the other hand, for highly heritability genes, single-tissue-based tests have better 

269 power than sCCA features. The combined test using both sCCA-TWAS and single-tissue TWAS 

270 results thus has superior power in both low- and high-heritability settings. Of note, the gain in 

271 power due to combining tests that perform well in different settings can be offset by the potential 

272 increased multiple testing burden. Fig. 3 presents power comparisons under the scenario where 
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273 half of the tissues are correlated with the causal tissue and the causal tissue is not observed 

274 (power under other scenarios are reported in S1-3 Tables). 

275

276 sCCA-features provide insight into tissues where gene expression is associated with 

277 outcome

278 Although our primary motivation for combining multiple tissues when building expression 

279 weights is to increase the power of TWAS, since sCCA performs feature selection on the tissues 

280 as well as the cis-SNPs, it has the potential to suggest which tissues may be responsible for an 

281 identified TWAS association.

282

283 Fig. 4 shows the sensitivity and specificity for the first sCCA component placing non-zero 

284 weight on the causal tissue (if included in the expression panel), or a tissue whose genetic 

285 contribution is correlated with that of the causal tissue. The sensitivity of the first sCCA 

286 component putting a non-zero weight on a causal or correlated tissue increases with the gene 

287 expression hg
2 and the correlation between the causal tissue and the correlated tissues. Under our 

288 simulation assumption, the specificity of the first sCCA component is consistently high, which 

289 indicates that when combining gene expression across tissues with sCCA, it is less likely that 

290 non-relevant tissues would be included in the top sCCA expression feature. Thus, sCCA can 

291 effectively increase sample size while excluding noise. The tissues with non-zero weights in 

292 sCCA have a higher probability of being causal. 

293

294  

295

ℎ2 =
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296 sCCA performance is stable to missing data imputation in the expression data

297 The sCCA-TWAS approach requires a complete gene expression matrix: every individual used 

298 to train the sCCA features must have expression data from every tissue included in the analysis. 

299 However, this is typically not true for multi-tissue gene expression datasets like GTEx [9], where 

300 not all donors have samples or expression data from all tissues. A complete case analysis can 

301 greatly reduce the sample size available to train sCCA features. On the other hand, imputing 

302 missing expression data may induce measurement error or bias. We evaluate the impact of 

303 imputing missing expression data via simulation. We simulate complete gene expression and 

304 genotype data based on correlations in gene expression observed across GTEx; we then perform 

305 single-tissue based TWAS using weights trained in the complete data set. For sCCA and PCA 

306 based approaches, we mask the expression data matrix randomly based on the missing proportion 

307 pattern for each tissue in GTEx, then impute the missing expression data with MICE [17], using  

308 the "predictive mean matching" method. We then perform sCCA-TWAS or PCA-TWAS on the 

309 imputed gene expression dataset. sCCA-TWAS applied to imputed expression data still correctly 

310 controlled the Type I error rate. Although the power for sCCA-TWAS was lower when using 

311 imputed expression data (across all scenario decreased from 0.38 to 0.21), the sCCA-TWAS still 

312 provide valuable information when the genetic signal for gene expression is weak. 

313

314 Real-data application

315

316 Applying sCCA to GTEx data increased the number of testable genes 

317 We applied the sCCA-TWAS approach based on top 3 sCCA-features to integrate GTEx data 

318 (version 6) and GWAS summary statistics data for 10 complex traits using the same cis-
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319 heritability filter as TWAS HUB, and compared the results with single tissue based TWAS 

320 results on TWAS HUB [18]. The phenotype information is included in Table 1 and the tissue 

321 expression dataset information is included in S4 Table. We choose to include top 3 sCCA-

322 features as we observed in the simulation study that the gain in power due to including more 

323 features was negligible (S7 Fig). With sCCA cross-tissue features, we increased the number of 

324 testable genes to 21,740 compared to 12,027 (all GTEx tissues on TWAS HUB) and 18,954 (all 

325 panels on TWAS HUB). Among the genes that we could test using sCCA-TWAS, 10,649 genes 

326 were not testable in any of the other single-tissue panels available (that is, they did not pass the 

327 filtering criterion for cis-heritability or prediction strength set by TWAS-HUB). At the same 

328 time, with sCCA-features that combine expression profiles across multiple tissues, we reduced 

329 the multiple testing burden from 84,964 (GTEx tissues) and 157,316 (all panels in TWAS HUB) 

330 to 38,620. When the cis-genetic regulation is shared across multiple tissues, sCCA-TWAS 

331 reduces the redundnacy in expression features tested. Using sCCA-TWAS as opposed to single-

332 tissue TWAS increased the number of testable genes relative to single GTEx tissues by 81% and 

333 reduced the multiple testing burden by 55%; realtive to all panels in TWAS HUB we increased 

334 the number of testable genes by 56% and reduced the multiple testing burden by 75% [18].
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Table 1. Summary of data application results  

Trait GWAS 

sample 

size

Number of 

significant 

loci

Total number 

of significant 

genes in TWAS 

HUB

Number of 

signifiacnt 

genes in GTEx 

panel

Number of 

significant 

genes by 

sCCA-TWAS

Number of 

significant 

genes by 

ACAT

Reference

Alzheimer ’s 

Disease 

(including proxy)

388324 17 70 34 44 51 Marioni et al. 

2018 Nat 

Comms

Breast Cancer 228951 79 353 162 260 278 Michailidou 

2017 Nature

Coronary Artery 

Disease (CAD)

56422 11 17 11 8 11 Schunkert et 

al. 2011 Nat 

Genet
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Type 2 Diabetes 

(T2D) (2012)

48761 5 5 4 2 4 Morris et al. 

2012 Nat 

Genet

Schizophrenia 

(2018)

65967 38 167 58 138 90 Ruderfer et al. 

2018

BMI 457824 255 1592 782 1132 1246 UKBB Loh et 

al. 2018 Nat 

Genet

Height 458303 423 5709 2891 4080 5112 UKBB Loh et 

al. 2018 Nat 

Genet

Smoking Status 457683 59 233 106 166 164 UKBB Loh et 

al. 2018 Nat 

Genet

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186247
http://creativecommons.org/licenses/by/4.0/


18

Chronotype 

(morning person)

410520 69 202 82 145 140 UKBB Loh et 

al. 2018 Nat 

Genet

Tanning 449984 65 382 197 274 325 UKBB Loh et 

al. 2018 Nat 

Genet
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335 Real-data application detects novel predicted-expression to phenotype associations     

336 The sCCA-ACAT and sCCA-feature TWAS detected additional associations between predicted 

337 gene expression and phenotype for the 10 GWAS traits we considered (Table 1). The single-

338 tissue TWAS tests with GTEx weights identified 4,327 phenotype gene expression associations. 

339 In aggregate, sCCA-TWAS identified 4,400 additional associations for 10 phenotypes compared 

340 to single tissue GTEx TWAS, and the sCCA-ACAT combined test identified 3,277 additional 

341 associations compared to single tissue GTEx TWAS (Figs 5 and 6). The two phenotypes with the 

342 largest number of associated genes identified are height and BMI, which are both highly 

343 polygenetic. To further contrast the significant associations identified, we considered the overlap 

344 between the associations identified with sCCA cross-tissue TWAS and single tissue TWAS for 

345 each phenotype. On an average, 18% of the gene-phenotype associations were identified by both 

346 single-tissue TWAS and sCCA TWAS, 49% gene-phenotype associations were only identified 

347 by sCCA-TWAS, and 34% signals were only detected by single tissue TWAS (Fig 7). 

348

349 ACAT served as a good combination method for single tissue and sCCA TWAS. Out of the total 

350 number of associations identified by either single-tissue TWAS, sCCA-TWAS, or sCCA-ACAT, 

351 85% were significant in the sCCA-ACAT combined test. Among the gene-trait associations that 

352 were identified using the sCCA-ACAT approach, 41% were also identified by the single tissue 

353 approach but not the sCCA approach; 36% were also identified using the sCCA approach but not 

354 the single-tissue approach; 23% were identified using all three approaches; and 1% were 

355 identified using only the sCCA-ACAT combined approach. Fig 8 shows the breakdown in the 

356 testing performance by phenotype. 

357
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358 Direct comparison of the absolute z-scores from all the single tissue TWAS and sCCA-TWAS 

359 shows a correlation of 0.86. The sCCA-TWAS absolute z-score is slightly greater than the 

360 median value of single tissue absolute z-score of the same gene from multiple tissues (S6 Fig). 

361

362 Discussion

363 We have proposed a novel approach (sCCA-TWAS) to constructing cross-tissue expression 

364 features using sparse canonical correlation analysis to boost the power of transcriptome-wide 

365 association studies. Through simulations we show that if the genetic component of gene 

366 expression in the causal tissue is correlated with the genetic contribution of expression in other 

367 tissues, then sCCA-TWAS has greater power than the approaches that use TWAS test statistics 

368 based on single-tissue features, including simply applying Bonferroni correction for the number 

369 of tissues tested or combining single-tissue tests using a GBJ procedure or S-MultiXcan [13, 16]. 

370 We have also proposed to combine sCCA-TWAS tests with single-tissue TWAS tests 

371 implementing the aggregate Cauchy association test (sCCA+ACAT). sCCA+ACAT achieves 

372 optimal or near-optimal power among the procedures considered both when the causal tissue is 

373 genetically correlated with other tissues and when it is not, suggesting that the sCCA+ACAT is a 

374 useful method when the genetic architecture of tissue-specific expression and its relationship to 

375 outcome is unknown. This increase in power is due in part to the greater number of genes with 

376 significantly heritable sCCA features relative to single-tissue features. sCCA-TWAS also greatly 

377 improved power relative to another cross-tissue technique using PCA to create cross-tissue 

378 features, as the leading principal components often capture non-genetic sources of covariation in 

379 gene expression (a general drawback to cross-trait association analysis using PCA[19]). 

380 Moreover, the tissue-wise loadings from sCCA factors associated with outcome may provide 
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381 some guidance to which tissues are causally related to the outcome (or genetically correlated 

382 with the unmeasured causal tissue). 

383

384 sCCA- and sCCA+ACAT- TWAS can be useful in a situation where eQTL data on germline 

385 genetic variation and expression in multiple tissues or cell-types are available on the same set of 

386 individuals. sCCA-TWAS cannot be directly applied when eQTL data on different tissues are 

387 available on different, non-overlapping samples. When both a multi-tissue reference panel (such 

388 as GTEx) and additional large single-tissue reference panels are available, sCCA+ACAT can 

389 make use of both the cross-tissue features from the multi-tissue panel and the independent single-

390 tissue panels. Finally, inferring the causal tissue from a set of cross-tissue or single-tissue TWAS 

391 results remains an important open question. Although the tissue weights from the sCCA features 

392 may provide some clues, further work is needed to develop principled sensitive and specific 

393 methods for identifying candidate causal tissues.

394

395

396 Methods

397 sCCA

398 Suppose that we have n observations on  variables, and the variables are naturally p1 +  p2

399 partitioned into two groups of  and  variables, respectively.  Let  correspond p1 p2 𝐆 ∈  R(n × p1)

400 to the first set of variables, and let  correspond to the second set of variables. 𝐗 ∈  R(n × p2)

401 Assume that the columns of and have been standardized to have mean zero and standard 𝐆 𝐗 

402 deviation one. In our setting, is a matrix of standardized genotypes with SNPs corresponding 𝐆 
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403 to the columns and is a matrix of tissue-specific gene expression values with genes 𝐗 

404 corresponding to the columns.

405

406 Standard CCA seeks  and  that maximize correlation between  and 𝛚𝟏 ∈  R(p1) 𝛚𝟐 ∈  R(p2)  𝐆𝛚𝟏

407  [14], that is:𝐗𝛚𝟐

408 maximize𝛚𝟏,𝛚𝟐 𝛚𝐓
𝟏𝑮𝑻𝐗𝛚𝟐 subject to 𝝎𝑻

𝟏𝑮𝑻𝑮𝝎 = 𝝎𝑻
𝟐𝑮𝝎𝟏 = 𝝎𝑻

𝟐𝑿𝑻𝑿𝝎𝟐 = 𝟏

409

410 However, CCA is not appropriate  or . Witten et al. [14] proposed when p1 , p2 ≈  n p1, p2 >>  n

411 sparse CCA, a penalized version of CCA, by adding L1 and L2 penalization in the previous 

412 optimization problem [14] as:

413

414
maximize𝛚𝟏,𝛚𝟐 𝛚𝐓

𝟏𝑮𝑻𝐗𝛚𝟐  subject to 𝝎𝑻
𝟏𝑮𝑻𝑮𝝎 ≤ 1, 𝝎𝑻

𝟐𝑿𝑻𝑿𝝎𝟐 ≤ 1, and P1(𝛚𝟏) ≤ c1,P2(𝛚𝟐)
≤ c2

415

416 Using the identity matrix  as a substitute for  and  gives what can be termed as  𝐈 𝐗𝐓
𝟏𝐗𝟏 𝐗𝐓

𝟐𝐗𝟐

417 "diagonal penalized CCA", and the optimization problem can be re-formulated as:

418

419 ,maximize𝛚𝟏,𝛚𝟐 𝛚𝐓
𝟏𝑮𝑻𝐗𝛚𝟐  subject to ||𝛚𝟏||2

≤ 1,||𝛚𝟐||2
≤ 1  ||𝛚𝟏||1 ≤ 𝑐1, ||𝛚𝟐||1 ≤ 𝑐2

420

421 For a small  and , this results in  and  to be sparse, i.e., many of the elements of  𝑐1 𝑐2 𝛚𝟏 𝛚𝟐 𝛚𝟏

422 and will be exactly equal to zero. Witten et al. proposed to solve this maximization problem 𝛚𝟐 

423 by initializing  to belong to , and then iteratively maximizing subject to  and 𝛚𝟐  Rq  𝛚𝐓
𝟏𝑮𝑻𝐗𝛚𝟐  L1 

424  constraints for  and  in turn [14]. was initialized to have -norm 1 and was L2 𝛚𝟏 𝛚𝟐 𝛚𝟐 L2
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425 suggested to use the first right singular vector of X as the initial value.  and  can be chosen 𝑐1 𝑐2

426 by cross-validation, where   and  are chosen using a grid search to maximize  𝑐1 𝑐2 cor(𝐆𝛚𝟏,𝐗𝛚𝟐)

427 (across the cross-validation folds). It can be shown that a maximum of  orthogonal , min(p,q) 𝛚𝟏 

428 vectors can be generated by repeatedly applying this algorithm to the new correlation matrix 𝛚𝟐 

429   after regressing out the previous canonical component [14]. 𝑮𝑻𝐗

430

431 TWAS 

432 The TWAS pipeline consists of three steps: first, identifying gene expression features that have 

433 positive cis-heritability; second, building a linear predictor for each cis-heritable gene feature; 

434 and third, constructing the TWAS test statistic combining the prediction weights and summary 

435 Z-scores from a trait GWAS. 

436

437 We computed the p-values for testing cis-hg
2=0 using a likelihood ratio test implemented in 

438 GCTA that compares a model with a local random genetic effect to a model without a genetic 

439 effect [20]. We included all SNPs that fall within 500 kb of the transcription start and stop sites 

440 of a gene. We removed the genes that failed the heritability test from the set of candidate genes, 

441 and only the genes with a significant heritability were included in the subsequent prediction 

442 model construction.

443

444 We then used Elastic Net penalized regression implemented in the R package glmnet [21] to 

445 construct linear genetic predictors of gene expression features  based on all the cis SNPs in the 𝐖

446 eQTL reference panel (500 base-pair window surrounding the transcription start and stop sites). 

447 We applied 5-fold cross-validation to choose the elastic net penalty parameters. 
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448 We calculated the TWAS test statistic as , where  is a vector of Z𝑇𝑊𝐴𝑆 = 𝒘𝒁/(𝒘𝚺𝒔,𝒔𝒘')𝟏/𝟐 𝚭

449 standardized effect sizes of SNPs for a trait in the cis region of a given gene (Wald z-scores), and 

450  is a vector of prediction weights for the expression feature of the gene 𝒘 = (𝑤1 𝑤2 𝑤3……𝑤𝑗)

451 being tested, and  is the LD matrix of the cis SNPs estimated from the 1000 Genomes Project 𝚺𝒔,𝒔

452 as the LD reference panel. Under null hypothesis that there is no association between the gene 

453 expression feature and phenotype,  should follow a normal distribution with mean zero and Z𝑇𝑊𝐴𝑆

454 variance one. 

455

456 sCCA-TWAS 

457 Consider a gene expression array of a certain gene for individuals and  tissues , and the 𝑛 p2 𝐗𝐧𝐱𝐩𝟐

458 genotype data  for the same set of individuals at  cis-SNPs. Assume that the columns of 𝐆𝐧𝐱𝐩𝟏 p1

459 , and  have been standardized to have mean zero and variance one. 𝐗𝐧𝐱𝐩𝟐 𝐆𝐧𝐱𝐩𝟏

460

461 We apply sCCA (described above) and extract the first three pairs of canonical vectors: (𝝎(1)
1 ,

462 ,   and . We define three sCCA features as ,  and 𝝎(1)
2 ) (𝝎(2)

1 ,𝝎(2)
2 ) (𝝎(3)

1 ,𝝎(3)
2 ) 𝐗 𝝎(𝟏)

𝟐 𝐗 𝝎(𝟏)
𝟐 𝐗 𝝎(𝟑)

𝟐

463 . Then we treat the three sCCA-features as three repeated measure of gene expression across 

464 tissue and apply TWAS procedure to them, record the p-value for heritability and z-score of 

465 these three features. We account for testing multiple sCCA features per gene via Bonferroni ’s 

466 correction, including only the tests where the sCCA-feature passed the heritability test. We 

467 decided to include at most 3 sCCA features, because in simulations, the power gain from 

468 including more features appears to be small (Fig. S7). 

469

470 Single tissue test based cross-tissue TWAS
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471 As a comparison, we also considered single-tissue test based cross-tissue TWAS, where we 

472 perform TWAS on the gene expression in each tissue, record the z-scores and p-values for 

473 heritability test, respectively. We account for testing multiple tissues for each gene via i) a 

474 Bonferroni multiple testing correction or  ii) a generalized Berk-Jones (GBJ) test with single-

475 tissue association statistics 𝑍 and their covariance matrix  as inputs [16]. We estimate   as 𝚺 𝚺 𝑾

476 , where  is a matrix with the expression weights for each tissue in each row and each 𝚺𝒔,𝒔𝑾' 𝑾𝒒𝒙𝒑 

477 SNP [12]. 

478

479 Combined test with sCCA-features and single-tissue features

480 While sCCA can increase power when sample sizes in individual tissues are small and the 

481 genetic contribution to expression is shared across tissues, a single-tissue based approach may be 

482 more powerful when the genetic contribution to expression in the causal tissue is uncorrelated 

483 with genetic contribution to expression in other tissues. Thus, a combined test for sCCA-features 

484 and single-tissue features can have a better average power across a range of scenarios. We 

485 therefore consider approaches that combine sCCA and single-tissue expression features, 

486 accounting for testing multiple features per gene using a  Bonferroni correction, the GBJ test 

487 [16], or the ACAT [15]. The GBJ test is a set-based test proposed for GWAS setting, which 

488 extended the Berk-Jones (BJ) statistics by accounting for correlation among tests [16]. ACAT is 

489 a fast p-value combination method that uses Cauchy distribution to approximate the distribution 

490 of a weighted sum of transformed p-values. ACAT has been shown to work well in the context 

491 of genetics research, mainly because it does not require the estimation of correlation straucture 

492 among the combined p-values. 

493
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494 PCA based cross-tissue TWAS

495 We also considered aggregating across tissue signal through Principal Component Analysis 

496 (PCA). We first applied PCA to the gene expression matrix , then used the top 3 principal 𝐗𝐧𝐱𝐪

497 Components (PCs) as new feature for TWAS. We accounted for testing multiple PCs for each 

498 gene by Bonferroni adjustment, including only the tests where the PCs passed the heritability 

499 test. 

500

501 S-MultiXcan 

502 Summary-MultiXcan (S-MultiXcan) is another single-tissue based approach for generating 

503 multi-tissue gene expression, and draw phenotype associations inference. It utilizes the LD 

504 information from a reference panel to integrate univariate S-PrediXcan results. It consists of the 

505 following steps: (1) computation of single tissue association test statistics with S-PrediXcan 𝒁 

506 [2]; (2) estimation of the correlation in tissue-specific predicted gene expression levels using the 

507 LD information from a reference panel (typically GTEx or 1000 Genomes); (3) discarding 

508 components of smallest variation from the matrix of correlations in genetically-predicted tissue-

509 specific gene expression levels  to avert collinearity and numerical problems (singular value 

510 decomposition, analogous to PC analysis in individual-level data). (4) estimation of multi-tissue 

511 test statistics from the univariate (single-tissue) results with the help of expression correlation. 

512

513 The aggregate S-MultiXcan test statistic is then calculated as ,  where 𝒁𝑻𝐶𝑜𝑟(𝑿) +  𝒁 ∼ 𝜒2
𝑘 𝐶𝑜𝑟

514  is the pseudo-inverse of a SVD-regularized version of  the correlation matrix of X, and k (𝑿) +  

515 the number of components surviving the SVD pseudo-inverse (the regularized version of the 
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516 correlation matrix is formed by decomposing the correlation matrix into its principal components 

517 and removing those eigenvectors corresponding to the eigenvalues ). 
𝜆𝑚𝑎𝑥

𝜆𝑖
< 30

518

519 Data simulation settings

520 We simulated genotype and expression data using linkage disequilibrium (LD) and expression 

521 correlation information from the Genotype-Tissue Expression project (GTEx) version 6 [9]. 

522 GTEx includes data from 449 donors across 44 tissues, with tissue-specific sample sizes ranging 

523 from 70 to 361.  We removed: (1) individuals with data available for less than 40% of the tissues 

524 and (2) tissues where less than 30% of the individuals have data. This results in a 134 (  𝑛

525 ndividuals) by 22 (  tissues) ordered expression matrix for each gene. We randomly sampled p2

526 400 genes in the data set, extracted the cis-SNPs within 500kb around the gene boundary 

527 (number of cis-SNPs indicated by ) and the gene expression for these 134 individuals and 22 p1

528 tissues, and imputed missing expression values with the column mean. We used this data set to 

529 calculate the correlation among gene expression levels across tissues ( ) and the LD structure 𝛴𝑋

530 of cis-SNPs ( ) for each of the 400 genes.𝛴𝐺

531

532 Individual-level data for a gene expression reference panel data were generated assuming that the 

533 gene expression for a particular gene in tissue  is  where is the local genotype 𝑖 𝐗𝐢 = 𝐆𝛃𝐢 + 𝛜𝒊, 𝐆 

534 matrix,  is the weight for genotype on gene expression in tissue , and the residuals  are 𝛃𝐢 𝑖  𝛜𝒊

535 normally distributed, independent across individual but correlated across tissues. We generated 

536 each row in the  genotype matrix  as  with mean zero and variance-covariance 𝑛 × 𝑝1 𝐆 MVNp1

537 matrix  , the LD matrix calculated from the GTEx genotype data from the gene's cis region. 𝚺𝑮

538 We randomly sampled one tissue to be causal and  tissues to be genetically correlated with 𝑁𝑐𝑜𝑟𝑟
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539 the causal tissue. We selected 3% of the cis-SNPs to be causally related to gene expression in the 

540 causal tissue and sampled their weights for gene expression, from normal distribution β𝑐𝑎𝑢𝑠𝑎𝑙
𝑖𝑗  

541 with mean zero and variance ; the remaining  for  not in the set of causal SNPs were set ℎ2
𝑔 β𝑐𝑎𝑢𝑠𝑎𝑙

𝑖𝑗 𝑗

542 to 0. To reflect the genetic correlation between the causal tissue and the  genetically 𝜌 𝑁𝑐𝑜𝑟𝑟 

543 correlated tissues, the weight for the same SNPs in the correlated tissues were sampled as  

544 𝛃𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐞𝐝 ∼ MVNNcorr × 1(𝛃𝐜𝐚𝐮𝐬𝐚l × ρ × 𝟏𝐍𝐜𝐨𝐫𝐫,(1 ‒ ρ2) × ℎ2
𝑔 ∙ 𝐈𝐍𝐜𝐨𝐫𝐫)

545  This resulted in a  by  weight matrix for genotype on tissue-specific gene. Residual gene p1 p2

546 expression values were simulated as:

547 𝐞 ∼ MVNn × p(𝟎,𝐝𝐢𝐚𝐠(𝒔𝒆) × 𝚺𝑿 × 𝐝𝐢𝐚𝐠(𝒔𝒆))

548  where = , so that the variance in gene expression explained by 𝒔𝒆 Var(𝐗𝛃q × p) × (
1

h2g ‒ 1)

549 genotype in each tissue is . We considered four scenarios, defined by combination of the ℎ2
𝑔

550 proportion of tissues genetically correlated with the causal tissue and whether the causal tissue 

551 was observed in the analysis: all or half of the tissues were correlated with causal tissue; the 

552 causal tissue was or was not observed. We varied  from 0.01 to 0.1, and the genetic correlation ℎ2
𝑔

553 coefficient  between the causal and other tissues from 0.3 and 1.  ρ

554

555 Given the SNP-expression weights in a tissue and assuming that the trait under study Y has unit 

556 variance and the true mean of the trait is related to expression levels in the causal tissue via E[Y] 

557 = r Xcausal, the cis-SNP GWAS z-scores for tissue  are distributed as , 𝑖 𝐙 ∼ MVN(𝛴𝐺 × b × 𝛃𝐢,𝛴𝐺)

558 where . For each tissue, we randomly sampled the z-scores from this  b = 𝑁𝑔𝑤𝑎𝑠 × 𝑟2

559 multivariate normal and set b to 0.00, 6.78, 11.18, 14.36, 17.07, 19.60, 22.13, 24.84, 28.02, 32.42 

560 to achieve the theoretical power of 5%, 10%, ..., 90% at alpha level of 0.05. For example, when 
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561  equals 1% (i.e., variation in gene expression in the target tissue explains 1% of the variability 𝑟2

562 in the trait), the GWAS sample size  ranges from 4,602 to 105,074. We repeated the whole 𝑁𝑔𝑤𝑎𝑠

563 procedure on 400 randomly selected genes. For each gene, we further replicated 5 times for a 

564 total of 2000 replicates. For each statistical test procedure (sCCA, PCA, s-MultiXcan, etc.), and 

565 for each replicate, there are three possible outcomes: A: the gene is not heritable [i.e., no sCCA 

566 feature is significantly heritable, or no PCA, or no single tissue, depending on the procedure]; B: 

567 the gene is heritable but not significantly associated with the trait (after accounting for multiple 

568 testing across heritable tissues/features);  and C: the gene is heritable and significant. We 

569 calculate Type I error as B/(B+C) and power as C/2000.

570

571

572 Data application

573 We applied sCCA-TWS approach to GTEx and 10 real life-style, polygenic complex traits and 

574 diseases (Table 1): whether a morning person [22], smoking status [22], body mass index [22], 

575 height [22], hair color [22], schizophrenia [23, 24], type 2 diabetes [25], coronary artery disease 

576 [26], breast cancer [27] and Alzheimer's disease [12]. Before applying sCCA to the GTEx data 

577 (version?), we removed individuals with data available in less than 40% of the tissues. We also 

578 removed tissues where less than 30% of the donors have sample. This resulted in a 134 (n) 

579 individual by 22 ( ) tissue expression matrix for each gene (list of tissues provided in S4 p2

580 Table). We imputed the missing expression data using the predictive mean method in R package 

581 MICE [17]. We performed sCCA on the imputed gene expression and genotype data from GTEx, 

582 extracted the top 3 canonical vectors for gene expression for each gene, and built three sCCA-

583 features for each of the gene. Then we adopted the standard TWAS pipeline with the sCCA 
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584 features, filtering out sCCA-features that failed to converge in GCTA or had a heritability test p-

585 value greater than 0.01. We built linear genetic weights with the rest sCCA-features using Lasso, 

586 Elastic Net (eNet), and top eQTL models, and performed TWAS with the model of highest cross 

587 validation . 𝑅2

588
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685 Supporting information
686

687 S1 Fig. Proportion of significant (p<0.05) heritability tests for different expression features 

688 when cis genetic variation is associated with expression in all tissues.  denotes the strength 𝜌

689 of the genetic correlation between expression in the causal tissue and tissues where expression is 

690 also associated with cis germline variation ( “correlated tissues ”). “Non-correlated tissues ” are 

691 tissues where local germline variation is not associated with gene expression. Here expression in 

692 all of the tissues is genetically correlated with the causal tissue, and the causal tissue is not 

693 observed (performance in the causal tissue is included as a reference). PC1 is the first principal 

694 component of cross-tissue gene expression; sCCA-feature1 is the linear combination of tissue 

695 expression values from the first pair of sCCA canonical variables. h2 denotes the proportion of 

696 expression variance in the causal tissue explained by cis genetic variation.

697

698 S2 Fig. Proportion of significant (p<0.05) heritability tests for different expression features 

699 when cis genetic variation is associated with expression in some tissues.  denotes the 𝜌

700 strength of the genetic correlation between expression in the causal tissue and tissues where 

701 expression is also associated with cis germline variation ( “correlated tissues ”). “Non-correlated 

702 tissues ” are tissues where local germline variation is not associated with gene expression. Here 

703 expression in half of the tissues is genetically correlated with the causal tissue, and the causal 

704 tissue is observed. PC1 is the first principal component of cross-tissue gene expression; sCCA-

705 feature1 is the linear combination of tissue expression values from the first pair of sCCA 

706 canonical variables. h2 denotes the proportion of expression variance in the causal tissue 

707 explained by cis genetic variation.

708
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709 S3 Fig. Proportion of significant (p<0.05) heritability tests for the top three principal 

710 components summarizing gene expression across features (half of the tissues are correlated 

711 with the causal tissue and causal tissue not observed).  denotes the strength of the genetic 𝜌

712 correlation between expression in the causal tissue and tissues where expression is also 

713 associated with cis germline variation. Half of the tissues are genetically correlated with the 

714 causal tissue, which is not observed. h2 denotes the proportion of expression variance in the 

715 causal tissue explained by cis genetic variation.

716

717 S4 Fig.  Type I error rate for cis-heritability tests. Proportion of simulations where local 

718 genetic variation was nominally statistically significantly associated with gene expression, in the 

719 scenario where no association was present. sCCA-Feature_1: testing only the leading sCCA 

720 expression feature at the =0.05 level; PCA-feature_1: testing only the lead cross-tissue 𝛼

721 expression principal component at the =0.05 level; All_PCA-features and All_sCCA-features: 𝛼

722 proportion of simulations where at least one of the top three PCA (resp. sCCA) features was 

723 significant at the =0.05 level; All_single_tissue: proportion of simulations where at least one of 𝛼

724 the 22 single-tissue tests was significant at the =0.05 level.𝛼

725

726 S5 Fig.  Type I error rate for cross-tissue TWAS methods. Proportion of significant results 

727 under null average over all scenarios (Gene expression not associated with phenotype).

728

729 S6 Fig.  Comparison of the absolute z-score for sCCA-TWAS and single tissue TWAS using 

730 weights calculated form GTEx data and GWAS summary statistics from 10 complex traits. 

731 The TWAS test statistics using sCCA feature 1 and all single tissue weights from Fusion are 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186247
http://creativecommons.org/licenses/by/4.0/


35

732 plotted on the x-axis and y-axis respectively. The blue line is the fitted regression line and red 

733 line is y=x.

734

735 S7 Fig.  Cumulative power for identify heritable gene when include sCCA feature 1 to 

736 feature 3. The Y axis indicate the cumulative power of detecting heritable genes when include 

737 only sCCA feature 1, sCCA feature 1 and 2, and sCCA feature 1 to 3, average over all scenarios. 

738

739 S1 Table.  Summary of simulation power when gene expression in other tissues not 
740 correlated with the causal tissue
741
742
743 S2 Table. Summary of simulation power when gene expression in half of the tissues 
744 correlated with the causal tissue
745

746 S3 Table. Summary of simulation power when gene expression in all of the tissues 
747 correlated with the causal tissue
748

749 S4 Table. Summary of GTEx expression data

750

751
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752 Figures

753

754

755  

756 Fig 1. Methods overview. The single tissue based cross-tissue TWAS approach is shown in blue 

757 arrows, the PCA based cross-tissue TWAS approach is shown in red arrows, and the sCCA-

758 TWAS approach is shown in purple arrows.

759
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760  

761 Fig 2. Proportion of significant (p<0.05) heritability tests for different expression features 

762 when cis genetic variation is associated with expression in some tissues. Here  denotes the 𝜌

763 strength of the genetic correlation between expression in the causal tissue and another tissue in 

764 which the expression is also associated with cis-germline variation ( “correlated tissues ”). “Non-

765 correlated tissues ” are the tissues where local germline variation is not associated with the gene 

766 expression. Here expression in half of the tissues is genetically correlated with that in the causal 

767 tissue, and the causal tissue is not observed (performance in the causal tissue is included as a 

768 reference). PC1 is the first principal component of cross-tissue gene expression; sCCA-feature1 

769 is the linear combination of tissue expression values from the first pair of sCCA canonical 

770 variables. h2 denotes the proportion of expression variance in the causal tissue explained by cis-

771 genetic variation.

772
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773

774 Fig 3. Power comparison for cross-tissue TWAS methods. Power (at =0.05) as a function of 𝛼

775 GWAS effect size. For each tissue, we randomly sampled the z-scores from this multivariate 

776 normal and set  to 0.00, 6.78, 11.18, 14.36, 17.07, 19.60, 22.13, 24.84, 28.02, b = 𝑁𝑔𝑤𝑎𝑠 × 𝑟2

777 32.42 to achieve theoretical power of 5%, 10%, ..., 90% at alpha level of 0.05. That is, when 𝑟2

778 =1% (when variation in gene expression in the target tissue explains 1% of the variability in the 

779 trait), the GWAS sample size  ranges from 4,602 to 105,074. h2 denotes the proportion of 𝑁𝑔𝑤𝑎𝑠

780 expression variance in the causal tissue explained by cis-genetic variation. sCCA-ACAT: 

781 combining 3 sCCA-features and 22 single-tissue tests with ACAT; sCCA: combining top 3 

782 sCCA-features tests using a Bonferroni correction;  Single Tissue_GBJ: combining 22 single-

783 tissue TWAS statistics using the GBJ test; s-MultiXcan: combining 22 single tissue based test 

784 using s-MultiXcan); true weights: a TWAS test using the true (simulated) weights relating SNPs 

785 to expression in the causal tissue.
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786

787 Fig 4. Sensitivity and Specificity of sCCA features.

788 The box plot of sensitivity and specificity of sCCA putting non-zero weights on the tissue where 

789 genotype regulates gene expression. We varied underlying gene expression heritability ( ) and ℎ2

790 correlation ( ) with the causal tissue as: (a) ; (b) ; (c) 𝜌 ℎ2 = 0.01, 𝜌 = 0.3 ℎ2 = 0.01, 𝜌 = 0.8 ℎ2

791 ; (d) .= 0.1, 𝜌 = 0.3 ℎ2 = 0.1, 𝜌 = 0.8

792
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793
794
795 Fig 5. Venn Diagram of the significant expression-phenotype associations. The Venn 

796 Diagram of the significant expression-phenotype associations for single tissue test results, sCCA-

797 TWAS test results and ACAT combined results. sCCA-ACAT: combining 3 sCCA-features and 

798 22 single-tissue tests with ACAT; sCCA: combining top 3 sCCA-features tests using a 

799 Bonferroni correction; Single Tissue: combining 22 single-tissue TWAS statistics using 

800 Bonferroni.

801
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802

803 Fig 6. Number of significant genes identified by ACAT combined test, sCCA-TWAS, 

804 TWAS using single tissue GTEx data and the total number of significant genes identified 

805 by all three methods. Different phenotypes are arranged along the x-axis and the number of 

806 significant genes identified by ACAT combined test, sCCA-TWAS, TWAS using single-tissue 

807 GTEx data and the total number of significant genes identified by all three methods are shown in 

808 the y-axis on log 10 scale. The information about the phenotype are provided in Table 1. sCCA-

809 ACAT: combining 3 sCCA-features and 22 single-tissue tests with ACAT; sCCA: combining top 

810 3 sCCA-features tests using a Bonferroni correction; Single Tissue: combining 22 single-tissue 

811 TWAS statistics using Bonferroni.

812
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813

814 Fig 7. Percentage of significant associations identified by both single tissue TWAS and 

815 sCCA TWAS, by only sCCA-TWAS, and by only identified by single tissue TWAS, among 

816 all associations identified with sCCA cross-tissue TWAS or single tissue TWAS. Different 

817 phenotypes are arranged along the x-axis and the percentage of significant identified by both 

818 single tissue TWAS and sCCA-TWAS, by only sCCA-TWAS, and by only identified by single 

819 tissue TWAS are shown in the y-axis. The information about the phenotype are provided in 

820 Table 1. 
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822 Fig 8. Percent of significant identified by only sCCA-ACAT, by sCCA-ACAT, sCCA-

823 TWAS and single tissue TWAS, by both sCCA-TWAS and sCCA-ACAT, by both single 

824 tissue TWAS and sCCA-ACAT among all significant genes. Different phenotypes are 

825 arranged along the x-axis and the percentage of significant associations by only ACAT, by 

826 ACAT, sCCA-TWAS and single tissue TWAS, by both sCCA-TWAS and ACAT, by both single 

827 tissue TWAS and ACAT are shown in the y-axis. The information about the phenotype are 

828 provided in Table 1. sCCA-ACAT: combining 3 sCCA-features and 22 single-tissue tests with 

829 ACAT; sCCA: combining top 3 sCCA-features tests using a Bonferroni correction; Single 

830 Tissue: combining 22 single-tissue TWAS statistics using Bonferroni.

831
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