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Abstract 
Emerging bacterial pathogens threaten global health and food security, and so it is important to 
ask whether these transitions to pathogenicity have any common features. We present a 
systematic study of the claim that pathogenicity is associated with genome reduction and gene 
loss. We compare broad-scale patterns across all bacteria, with detailed analyses of 
Streptococcus suis, a zoonotic pathogen of pigs, which has undergone multiple transitions 
between disease and carriage forms. We find that pathogenicity is consistently associated with 
reduced genome size across three scales of divergence (between species within genera, and 
between and within genetic clusters of S. suis). While genome reduction is most often 
associated with bacterial endosymbionts, other correlates of symbiosis (reduced metabolic 
capacity, GC content, and the expansion of non-coding elements) are not found consistently in 
pathogens, and genome reduction in pathogens cannot be attributed to changes in 
intracellularity or host restriction. Together, our results indicate that genome reduction is a 
predictive marker of pathogenicity in bacteria, and that the causes and consequences of 
genome reduction in pathogens are sometimes distinct from those in endosymbionts.  
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1. Introduction 
 
The emergence of new bacterial pathogens is a major threat to human health and food security 
across the globe (1). Identifying common features could help us to understand, predict, and 
ultimately prevent these transitions to pathogenicity. One intriguing observation is that some of 
the most serious human pathogens have smaller genomes and fewer genes than their closest 
non-pathogenic or less pathogenic relatives (2–10). Nevertheless, without formal comparative 
studies, it is difficult to know whether these are isolated instances of genome reduction, or part 
of a broader trend (7, 11). 
 
There are also doubts about whether genome reduction has anything to do with pathogenicity 
per se (7). Most notably, similar patterns of genome reduction are found in mutualist or 
commensal bacteria that have adopted a host-restricted or intracellular lifestyle. In these 
bacteria, genome reduction appears as one part of a syndrome that also includes a decreased 
proportion of G/C relative to A/T bases, a proportional expansion of non-coding regions 
(including pseudogenes and other non-functional elements), and a loss of genes in metabolic 
pathways. This “endosymbiont syndrome” is a plausible outcome of long-term evolutionary 
processes associated with small isolated populations, and greater dependency on the host (4, 
12–15). As such, the genome reduction observed in some pathogens may be a reflection of 
their host-restricted lifestyle, rather than their pathogenicity. 
 
Here, we present a systematic study of genome reduction and pathogenicity in bacteria, across 
multiple scales of divergence (Figure 1). First, at the broadest scale, we compare pairs of 
bacterial species, where a known vertebrate pathogen has a non-pathogenic relative in the 
same genus. These data span 6 distinct phyla, and a wide range of ecologies (Figure 1a, Table 
1). Second, we focus on Streptococcus suis, an opportunistic pathogen of pigs, whose 
pathogenicity has previously been associated with genome reduction (5, 16, 17). This bacterium 
is of particular interest because it has undergone multiple independent transitions between 
carriage and disease forms, yet both forms are generally extracellular, and have equal levels of 
host restriction. As such, we can observe “replicated” changes in pathogenicity, that are not 
accompanied by changes in the broader ecology (see below). Furthermore, the species 
includes multiple genetic clusters of closely-related isolates. By comparing patterns between 
clusters (Figure 1b), and between isolates within clusters (Figure 1c), we can contrast longer-
term processes to smaller-scale or rapid genomic changes. 
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2. Results 
 
Data sets 
For our broadest-scale between-species data set (Figure 1a), we carried out a systematic 
search for phylogenetically-independent species pairs, comprising a pathogen, a congeneric 
non-pathogen, and an outgroup, with publicly available whole-genome data (see methods for 
details). Our criteria left us with 31 species pairs (Tables 1, S1) represented by 478 ingroup 
genomes (Table S2). Because these pairs differed both in their sampling densities (i.e. the 
number of available genomes), and in the evolutionary distances between the species, we 
developed a phylogenetic comparative method to correct for these differences. 
 
For our within-species comparisons (Figure 1b-c), we collated 1,079 whole genomes of S. suis, 
collected across three continents (Tables 2, S3). Data were associated with clinical information, 
and include “carriage isolates” from the tonsils of pigs without S. suis associated disease, and 
“disease isolates” from the site of infection in pigs with S. suis associated disease (divided into 
respiratory or systemic infections). We also included zoonotic disease isolates from humans 
with systemic disease in Vietnam, which a previous study found to be indistinguishable from 
isolates associated with systemic disease in pigs (5). A core genome alignment was used to 
infer a consensus phylogeny; but as S. suis is highly recombining, we inferred genetic clusters 
using an approach that is agnostic of the phylogeny (18, 19). We identified 34 clusters, of which 
33 contained isolates that could be unambiguously categorised as carriage or disease (Figure 
1b, Figure S1a, Table S4). These clusters have variable levels of genetic diversity and include 
some with recent origins; for example, a previous study dated the origin of our largest and most 
pathogenic cluster (cluster 1, Figure 1c) to the 1920s (5). There were marked differences 
between clusters in the proportion of disease isolates, and this correlated with the presence of 
virulence genes and serotypes with known disease associations (Figure S2). Allowing for 
comparisons at the finest scale, 11/34 were “mixed clusters”, containing both multiple carriage 
isolates and multiple disease isolates, and these are numbered in Figure 1b. 
 
Pathogenicity is associated with genome reduction at all divergence scales 
Across all three scales of divergence our data sets showed substantial variation in genome size, 
and in all cases we found a consistent association with pathogenicity (Figure 2). At the broadest 
scale, pathogenic species had smaller genomes than their non-pathogenic relatives more often 
than expected by chance (Figure 2a; see also Table S5 and Figure S3a for robustness 
analyses). Within S. suis, genetic clusters had smaller genomes when they contained a higher 
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proportion of disease isolates (Figure 2b; see also Table S6), and in 11/11 mixed clusters, 
disease isolates had smaller genomes on average, than carriage isolates from the same cluster 
(Figure 2c).  
 
Three further lines of evidence suggest that changes in genome size persist over long periods 
of time. First, in our between-species data set, a Brownian model of genome size evolution 
provides a good fit, such that longer times lead to larger changes (Figure S4). Second, in S. 
suis, between-cluster differences in genome size remain apparent when we consider the 
carriage isolates alone: carriage isolates have smaller genomes when they are found in clusters 
containing a higher proportion of disease isolates (“Dataset C” in Table S6). Finally, in S. suis, 
there is an association between genome size, and disease severity. We see the smallest 
genomes in isolates associated with more invasive systemic disease, with less severe 
respiratory disease isolates tending to have intermediate genome size (Figure S5). 
 
All of these results apply to total genome size. However, we observed the same pattern when 
we used genome annotations to consider only functional elements. Across all divergence 
scales, pathogenicity was associated with fewer genes, and smaller coding length, as well as 
smaller genome size (Figure S3a-i). 
 
Pathogenicity is not consistently associated with endosymbiont syndrome 
In endosymbionts, genome reduction is frequently associated with a preferential loss of 
metabolic genes, proliferation of non-functional DNA, and low GC content. In our data, evidence 
of this “endosymbiont syndrome” is patchy. 
 
Over all three timescales, pathogens do contain fewer genes with metabolic functions (Figure 
S3m-o; Table S5), but not more so than expected, given the overall pattern of gene loss. In 
particular, the proportion of genes that have a metabolic function does not differ significantly 
between pathogenic and non-pathogenic congeners (Figure 3a, Table S5). While in S. suis, the 
proportion of metabolic genes is actually higher in pathogens (Figure 3b-c) - the opposite of the 
predicted pattern. 
 
Results for non-coding regions are similar. Between species, there is no consistent difference 
between pathogens and non-pathogens in the proportion of the genome that is functional 
(Figure 3d, Table S5, Figure S6). While in S. suis, and against predictions, the functional 
proportion is higher in the disease isolates (Figure 3e-f). 
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For GC content, the third component of endosymbiont syndrome, results are more complicated. 
Between species, we did observe the predicted tendency for pathogens to be GC-poor (Figure 
3g). However, further analysis showed that this result was attributable to a subset of pairs that 
had undergone a large-scale shift in ecology. In 12/31 pairs, the pathogenic species showed a 
greater degree of host restriction and/or intracellularity than its non-pathogenic congener (Table 
1), and the relationship between pathogenicity and GC held only for these pairs, and not for the 
remainder of the data (Table S5). Results for genome size showed the exact opposite pattern: 
the association between genome reduction and pathogenicity was driven by 19/31 pairs without 
a clear difference in these aspects of ecology (Table S5). 
 
Within S. suis, the raw results for GC showed no clear patterns (Figures 3h,i, S1c). However, 
this is attributable to divergent groups of S. suis with unusual GC content (20; Figures S1a,c, 
S7a). Once these groups are removed, results suggest a balance of opposing forces. Smaller S. 
suis genomes tend to rapidly lose GC-poor mobile elements, while slowly accumulating GC-to-
AT base substitutions in their core genomes (see Figure S7 for full details). The result is that the 
predicted association between pathogenicity and low GC is observed, but only between 
clusters, and only in the core genome (Figure S8). 
 
The link between pathogenicity and genome reduction in Streptococcus suis 
Genome reduction might be a cause of pathogenicity or a consequence (7). In S. suis, where 
we can examine the process over a range of timescales, the evidence is ambiguous. 
 
On the one hand, we have shown that genome reduction in S. suis can occur rapidly and 
without other signatures of the endosymbiont syndrome (Figures 2c, 3c,f,i). This is consistent 
with genome reduction having a causal role in pathogenicity. However, we can rule out one 
causal hypothesis. In other bacteria, the loss of immune targets or other “anti-virulence” genes 
have been linked to increased pathogenicity (21). Despite the overall trend for gene loss, our S. 
suis data show no evidence that particular genes are preferentially absent in disease isolates or 
pathogenic clusters (Figure S10). Instead, we find that genes are preferentially present in more 
pathogenic clusters - with putative virulence factors bucking the overall trend (Figures S2, S10; 
5). 
 
We have also shown that genome reduction in S. suis persists for long periods (Figure 2b), 
consistent with it being an ongoing consequence of pathogenicity. This would require some 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186684doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186684


7 

difference between the ecology of pathogens and non-pathogens, despite there being no 
difference in host restriction or intracellularity. One possibility is that pathogens have higher 
rates of transmission. There is evidence for this in the very broad geographic spread of the 
more pathogenic clusters of S. suis, despite their relatively recent origin. For example, cluster 1 
includes isolates from China, Vietnam, the UK, Spain and Canada (Table S4). Higher 
transmission rates would lead to more population bottlenecks and increased levels of genetic 
drift (22, 23). Consistent with this hypothesis, we have already demonstrated a slow increase in 
the AT content of the S. suis core genome (Figures S7, S8); and there is further evidence of 
increased drift in more pathogenic clusters, namely shorter terminal branches and faster rates of 
protein evolution (Figure S1, Figure S9). When coupled with a mutational bias towards 
deletions, this could lead to genome reduction as a gradual passive consequence of 
pathogenicity. 
 
 
3. Summary 
 
We have demonstrated a statistical association between pathogenicity and genome reduction in 
bacteria, which applies both across bacterial phyla and across different scales of divergence. 
This suggests that genome reduction could prove a useful marker of emerging and increasing 
pathogenicity in bacteria. We have further demonstrated that genome reduction in pathogens is 
independent of both changes in host restriction or intracellularity, and of other signatures of 
genome evolution commonly observed in endosymbionts (although these signatures are not 
entirely absent). The consistent trend for genome reduction across different pathogenic 
ecologies and different scales of divergence, combined with the variable presence of other 
signatures of genome evolution observed in endosymbionts, could reflect no single underlying 
cause for genome reduction in pathogens and instead suggests that multiple features of 
pathogenic ecologies underpin this process. 
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Figure 1. The evolution of pathogenicity over three evolutionary scales: (a) between species of bacteria, (b) between clusters of 
Streptococcus suis, and (c) between isolates of S. suis within clusters. (a) A cladogram of our 31 pairs of congeneric species, 
comprising a pathogen (red) and a non-pathogen (grey). Numbers refer to Table 1 and suprageneric relationships are from (52). (b) 
A core genome phylogeny of our 1,079 isolates of S. suis. Individual disease (red) and carriage (grey) isolates are indicated in the 
inner strip. The outer strip describes the 34 genetic clusters, with the 11 “mixed clusters” that include multiple disease and carriage 
isolates numbered. (c) An illustrative phylogeny of our largest and most pathogenic cluster, constructed from a recombination-
stripped local core genome alignment. Individual disease (red) and carriage (grey) isolates are again indicated on the strip. 
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Figure 2. Pathogenicity is associated with smaller genomes. (a) Each point represents a phylogenetically independent species pair, 
with numbers and colours from Figure 1a. Standardised contrast values are ordered such that negative values imply smaller 
genomes in the pathogenic species. p-value is from a permutation test of the null hypothesis of no difference in the mean contrast 
value (as indicated by the dotted line). (b) Each point represents a cluster of S. suis isolates, with colours from Figure 1b, and sizes 
indicating the number of isolates. A sample-size weighted regression shows that clusters containing a larger proportion of pathogenic 
isolates have a smaller average genome size. (c) Each point shows the difference in mean genome size between disease and 
carriage isolates in a cluster of S. suis isolates, such that negative values imply smaller genomes in the pathogens. Each point 
corresponds to a “mixed cluster” (containing multiple disease and carriage isolates), with colours and numbers matching Figure 1b. 
The p-value is from a permutation test as in (a). 
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Figure 3. Pathogenicity is not consistently associated with the “endosymbiont syndrome”. Each 
panel tests for an association between pathogenicity and another signature of the endosymbiont 
syndrome, (a-c): the proportion of protein-coding genes with metabolic function, (d-f): the 
proportion of the genome with known function, (g-i): the proportion of the genome comprising 
GC base pairs. Negative contrasts (a,c,d,f,g,i) or negative regression slopes (b,e,h) are 
consistent with an endosymbiont syndrome. All other details match Figure 2.   
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Table 1. Between-species data set.  
 

Phylum Pair Genus Pathogen sp. (#) Non-pathogen sp. (#) 
Firmicutes 1 Clostridium tetani (2) carboxidivorans (1) 
 2* Bacillus anthracis (31) subtilis (39) 
 3* Streptococcus pneumoniae (28) thermophilus (8) 
 4 Streptococcus suis (19) oligofermentans (1) 
Tenericutes 5 Mycoplasma putrefaciens (2) yeatsii (1) 
 6 Mycoplasma hyopneumoniae (2) flocculare  (1) 
Actinobacteria 7* Rhodococcus equi (1) pyridinivorans (1) 
 8* Corynebacterium diphtheriae (13) efficiens (1) 
 9* Mycobacterium abscessus (28) smegmatis (7) 
 10* Mycobacterium leprae  (1) indicus (1) 
Spirochaetes 11 Treponema pallidum (2) primitia (1) 
 12* Leptospira interrogans (8) biflexa  (2) 
 13 Brachyspira hyodysenteriae (2) murdochii (1) 
Bacteroidetes 14 Bacteroides helcogenes (1) vulgatus (1) 
 15 Flavobacterium branchiophilum (1) johnsoniae (1) 
 16 Flavobacterium columnare (4) indicum (1) 
Proteobacteria 17* Brucella suis (15) ceti (1) 
 18 Rickettsia prowazekii (9) e. I. scapularis (1) 
 19 Rickettsia rickettsii (9) peacockii (1) 
 20 Neisseria gonorrhoeae (9) lactamica (1) 
 21 Burkholderia pseudomallei (46) thailandensis (11) 
 22 Taylorella equigenitalis (2) asinigenitalis (1) 
 23* Bordetella pertussis (51) hinzi (2) 
 24* Francisella noatunensis (6) philomiragia (7) 
 25 Legionella pneumophila (21) fallonii (1) 
 26 Aeromonas salmonicida  (1) media (1) 
 27* Actinobacillus pleuropneumoniae (4) succinogenes (1) 
 28 Haemophilus influenzae (16) parainfluenzae (1) 
 29* Citrobacter rodentium  (1) amalonaticus (3) 
 30 Yersinia enterocolitica (9) rohdei (1) 
 31 Yersinia pestis (32) similis (1) 

 
Note: * pairs with a known difference in levels of intracellularity or host-restriction between 
pathogen and non-pathogen. 
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Table 2. Streptococcus suis data set. 
 
Origin # Isolates:   

Total (SP, RP, C) 
Genome size 
range (Mb) 

Cluster(s) Date(s) Reference(s) 

UK 440 (43, 52, 205) 1.95 - 2.56 1-11, 13-14, 16-18, 20, 
22-25, 27-28, 30-33 

2009 - 2015 (5, 31) 

Canada 197 (36, 31, 56) 1.92 - 2.49 1-3, 5-18, 20, 22-26, 
29-30 

1983 - 2016 (33) 

China 197 (0, 0, 197) 2.06 - 2.54 1, 3, 5-12, 18-22, 27-30, 
32, 34 

2013 - 2014 (31) 

Vietnam 190 (149, 0, 32) 1.97 - 2.19 1 2000 - 2010 (5) 

USA 16 (3, 4, 0) 2.02 - 2.46 3, 5, 8-10, 26 2016 (33) 

Spain 10 (7, 0, 0) 2.03 - 2.42 1, 4, 8, 22 2016 (33) 

Reference 
collection 

29 (14, 2, 3) 1.98 - 2.30 1-4, 6, 8, 13-14, 18-19 - (34) 

 
Note: SP: Systemic pathogen, RP: Respiratory pathogen, C: Carriage.  
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4. Methods 
 
Datasets 
For the between-species data set, we aimed for consistency, and so chose our data from a 
single common source: the NCBI RefSeq database (24; release 76, apart from one Rickettsia 
peacockii genome, added from release 77). We began by identifying all eubacterial genera that 
were represented by multiple named species in RefSeq. We then used Bergey (25), and the 
wider literature, to classify all species in these genera as “pathogens”, “non-pathogens” or 
“ambiguous/unknown”. Pathogenicity was defined with respect to vertebrates, not only because 
vertebrate pathogenicity is better studied, but because vertebrate adaptive immunity is 
implicated in some theories of genome reduction (7). We note that all such designations must 
contain an element of uncertainty and ambiguity, not least because of the ubiquity of 
opportunistic pathogenicity. For this reason, we restricted our definition of “pathogens'' to 
species that have repeatedly been reported to cause disease in immuno-competent vertebrate 
hosts, and preferred species where there was evidence of long-term persistence as a pathogen. 
For example, we scored Staphylococcus aureus as “ambiguous”, because human infection 
commonly occurs from carriage forms (26), and because carriage status could not be inferred 
from metadata associated with the sequenced isolates. Similarly, “non-pathogens'' were defined 
as species that were known to be free-living or commensals, even if there were isolated cases 
of secondary infections. For example, Aeromonas media was designated as a non-pathogen, 
despite a single case of isolation, together with pathogenic Yersinia enterocolitica, and in a 
patient recovering from infection with Aeromonas caviae (27). 
 
After these assignments, we aimed to choose pairs without further subjectivity, or influence of 
prior knowledge. As such, we used the following process. First, for each genus containing at 
least one pathogen and non-pathogen, we downloaded all available genomes (see Table S2). 
We then used Phylosift (28) to align 37 single copy orthologs identified as universal to all 
bacteria. Concatenated alignments of these loci were checked and corrected by eye, and we 
used MEGA7 (29) to build neighbour-joining phylogenies using variation at synonymous sites. 
We used a modified Nei-Gojobori method using Jukes-Cantor and complete deletion of sites 
with missing data. These genus-level phylogenies were then midpoint rooted using the R 
package Phangorn (30). Then, using these trees, we identified all possible phylogenetically 
independent pairs of a pathogen and non-pathogen species. This included checking that the 
genomes from both species were monophyletic with respect to each other, and all other species 
in the genus-level data set. When a pair included multiple pathogenic or non-pathogenic 
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species, e.g., when a non-pathogen was a sister group to multiple pathogenic species, we 
chose the best-sampled species with the largest number of available genomes. This process 
yielded the 31 pairs listed in Table 1 and Table S1. We next noted a suitable outgroup for each 
pair, and re-estimated trees including only genomes from the pair and outgroup. These pair-
level phylogenies were checked for consistency against the relevant whole-genus phylogenies, 
and used when calculating the independent contrasts (see below). 
 
Finally, we returned to the literature, to identify a subset of pairs with a qualitative difference in 
ecology between the pathogen and non-pathogen. In particular, we noted pairs where the non-
pathogen was extracellular and the pathogen facultatively intracellular (pairs 2, 7, 9, 10, 12 and 
23) and where the pathogen, but not the non-pathogen, replicated exclusively within their hosts 
in nature (pairs 3, 8, 10, 17, 23, 24, 27 and 29); these pairs are indicated in Table 1. 
 
For our S. suis data, we used isolates originating from six collections spanning six countries 
(Table 2) with the same diagnostic criteria of pathogenicity status. The first collection includes 
isolates from the UK sampled between 2009 and 2011 (described in 5). The second includes 
isolates from pigs and human meningitis patients from Vietnam, sampled between 2000 and 
2010 (described in 5). The third includes carriage isolates from pigs from five intensive farms in 
the UK, and from five intensive farms and five traditional farms in China from between 2013 and 
2014 (described in 31). The fourth includes disease isolates sampled from UK pigs (described in 
32). The fifth includes isolates from North American and Spanish pigs, sampled between 1983 
and 2016 (33). The sixth includes 29 reference isolates downloaded from GenBank (34). Full 
details of all genomes are in Table S3.  
 
Pathogenicity status was defined in the following way. Isolates were classified as associated 
with “disease”, if they were recovered from systemic sites in pigs or humans with clinical signs 
consistent with S. suis infection, including meningitis, septicaemia and arthritis (“systemic 
disease” isolates), or were recovered from a pig’s lungs in the presence of lesions of pneumonia 
(“respiratory disease” isolates). Isolates recovered from the tonsils or tracheo-bronchus of 
healthy pigs or pigs without any typical signs of S. suis infection were classified as “carriage”. 
The remaining isolates remained unclassified, due to insufficient clinical information or 
ambiguity in the cause of disease.  
 
For most of the collection, serotyping was performed using antisera to known S. suis serotypes 
by the Lancefield method (5,32). Isolates that could not be typed with known sera were 
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classified as non-typeable. A subset of UK isolates and the Chinese isolates were serotyped in 
silico using capsule genes of known serotypes (described in 31). Isolates that were not 
serotyped were excluded from comparisons. 
  
Sequence data from all isolates was used to generate de novo assemblies using Spades 
v.3.10.1 (35), after first removing low quality reads using Sickle v1.33 (36). Measures were 
taken to ensure all assemblies were high-quality, as described in previous studies (5,31–33). 
Briefly, Illumina reads were mapped back to the de novo assembly to investigate polymorphic 
reads in the samples (indicative of mixed cultures) using BWA v.0.7.16a (37), and genomes that 
exhibited poor sequencing quality (i.e. poor assembly as indicated by a large number of contigs, 
low N50 values or a high number of polymorphic reads) or that which were inconsistent with an 
S. suis species assignment were excluded from the analysis. Altogether this left 1,079 
genomes. 
 
To identify genetic structure in our S. suis isolates we identified 429 low-diversity core genes in 
our data set, aligned them using DECIPHER (38), and stripped regions that could not be aligned 
unambiguously due to high divergence, indels or missing data. This conserved region of the 
core genome was first used to construct a consensus neighbour-joining tree using the ape 
package in R and a K80 model (39). This tree is shown in Figures 1b and S1, and was used to 
generate the covariance matrices used in the phylogenetically corrected regressions (Table S6, 
Figure S11). The same data were used to identify genetic clusters, using the hierBAPS package 
in R (18). Initial analysis identified 35 clusters. To evaluate this clustering we mapped the 
clusters onto the core gene phylogeny, and following the definition in (40), estimated FST 
between clusters from pairwise nucleotide distances in the core gene alignment. We identified a 
pair of clusters with very low FST (<0.02) that were also monophyletic in the tree, and these 
clusters were combined to form cluster 3 (Table S1). Full details of all clusters are found in 
Table S4. 
 
The illustrative genealogy shown in Figure 1c involved mapping to the reference genome 
BM407 (see Table S3) using Bowtie2 (41), recombination-stripping in Gubbins (41,42), and tree 
construction with MrBayes (43) with default parameters and the HKY+Γ substitution model. 
 
Genome annotation 
For between-species data, we used the RefSeq annotations. We also carried out re-annotations 
using Prokka (v2.8.2) (44). While Prokka and RefSeq annotations were generally congruent, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186684doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186684


16 

Prokka does not explicitly annotate pseudogenes and thus high levels of pseudogenisation in a 
handful of species (e.g., Rickettsia prowazekii), led to erratic results, so we preferred RefSeq 
annotations. We also excluded plasmids because these can be lost during culture and 
sequencing. However, the main results concerning genome size are robust to their inclusion 
(Table S5).  
 
The draft S. suis genomes were also annotated using Prokka (v2.8.2) (44). Orthologous genes 
were initially identified using Roary (45), with the recommended parameter values. We then 
manually curated these orthology groups, in order to identify orthologous genes that had been 
wrongly placed in distinct orthology groups either due to high levels of divergence or incomplete 
assemblies. We also checked all instances of gene absence in each orthology group, since 
these might have resulted from incomplete genome assemblies. This was undertaken using all-
against-all gene group nucleotide BLAST search (BLASTN), and BLASTN search of all 
orthology groups against all of the genomes in which that group was described as absent (46). 
The final set of orthology groups were used to define the core genome (Figures S7, S8).  
 
In Figure 3 and related analysis, we defined the “coding” proportion of the genome as any 
region annotated as a protein- or RNA-coding locus. For both data sets, all genes were 
assigned a COG category (47), and categories C, E, F, G, H, I, P and Q defined as “metabolic 
genes”. For the S. suis data set we also identified genes that were annotated as transposases 
or integrases in the Prokka annotations.  
 
Statistical analyses 
For the between-species data, each comparison pair differed in the number of genomes 
sampled, and the amount of evolutionary change between the species. For this reason, we 
standardized the weightings using a method of independent contrasts. In brief, each comparison 
point was equivalent to the difference between the ancestral trait values for the sampled 
genomes from the pathogenic and non-pathogenic species that would be inferred from a 
Brownian motion model of trait evolution (and using the tip value in the case of a single 
genome). The contrast for each pair was then standardised by its associated standard 
deviation. The method used the pic and ace functions in the ape package in R (39,48), and for 
each pair, we used the genealogies constructed from the 37 “universal genes”, described 
above, so that amounts of molecular evolution were comparable across the entire data set. We 
also added a fixed constant of 1/length(alignment) to deal with zero-length branches in some of 
the genealogies (reducing this constant by a factor of 10 had no appreciable effect on our 
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results).  For each variable, we then tested the validity of the Brownian motion model following 
the recommendations of (49), and as shown in Figures S4 and S6. For most traits, the model 
provided a good fit after appropriate transformations (logarithmic for genome size and gene 
number, and logit for proportions). The sole exception was the proportion of genomes with 
coding function (Figure S6d-f), which is consistent with the rapid loss of non-functional 
elements. 
 
Even after standardising the variances, the set of contrasts was usually highly non-normal (e.g., 
Figure 2a), and so we tested the null hypothesis of a vanishing mean (i.e., no consistent trait 
difference between pathogenic and non-pathogenic species) by randomly permuting the labels 
“pathogen” and “non-pathogen” within each pair (i.e., randomly choosing the sign of each of the 
31 contrasts). The test statistic was the mean absolute contrast value (using the true signs), and 
106 random permutations were used to construct its null distribution. We also repeated results 
after removing outliers, identified by eye (Table S5). The same permutation approach was used 
for the within-cluster data set, although here, the disease and carriage isolates were 
interspersed in the genealogy, and so we used the raw means of the trait values for each class 
of isolate. 
 
For the between-cluster analyses, tests also had to account for the differences in cluster size. 
For this reason, most results used weighted linear regression (using the square root of the 
number of isolates in each cluster as weights). Because these analyses ignored possible 
covariances between clusters, due to their shared ancestry, we also used phylogenetically-
corrected regressions, retaining only the larger clusters (containing at least 20 isolates). These 
analyses, shown in Table S6 dataset “D”, used the gls function in the nlme package in R (50), 
and Pagel’s “lambda correlation structure” (51) (corPagel in the ape package, 39). 
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