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 2 

Abstract  1 

Background: Microbial whole-genome sequencing (WGS) is now increasingly used to 2 

inform public health investigations of infectious disease. This approach has transformed 3 

our understanding of the global population structure of Salmonella enterica serovar Typhi 4 

(S. Typhi), the causative agent of typhoid fever. WGS has been particularly informative for 5 

understanding the global spread of multi-drug resistant (MDR) typhoid. As WGS capacity 6 

becomes more decentralised, there is a growing opportunity for collaboration and sharing 7 

of surveillance data within and between countries to inform disease control policies. This 8 

requires freely available, community driven tools that reduce the barriers to access 9 

genomic data for public health surveillance and that deliver genomic data on a global 10 

scale. 11 

Methods: Here we present the Pathogenwatch (https://pathogen.watch/styphi) scheme for 12 

S. Typhi, a web application enabling the rapid identification of genomic markers of 13 

antimicrobial resistance (AMR) and contextualization with public genomic data to identify 14 

high-risk clones at a population level. Data are delivered in single genome reports or in 15 

collections of genomes combined with geographic and other data using trees, maps and 16 

tables.  17 

Results: We show that the clustering of S. Typhi genomes in Pathogenwatch is 18 

comparable to established bioinformatics methods, and that genomic predictions of AMR 19 

are largely concordant with phenotypic drug susceptibility data. We demonstrate the public 20 

health utility of Pathogenwatch with examples selected from over 4,300 public genomes 21 

available in the application.  22 

Conclusions: Pathogenwatch democratises genomic epidemiology of S. Typhi by 23 

providing an intuitive entry point for the analysis of WGS and linked epidemiological data, 24 

enabling international public health monitoring of the emergence and spread of high risk 25 

clones. 26 

 27 

Keywords: Salmonella Typhi, typhoid fever, enteric fever, antimicrobial resistance, 28 

genomics, whole-genome sequencing, surveillance, genomics, epidemiology, public 29 

health.  30 
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 3 

Introduction 1 

Bacterial pathogens have the potential for rapid evolution and adaptation (1). The ability to 2 

rapidly sequence microbial genomes directly from the field allows tracking of pathogen 3 

evolution in real-time and in a geographical context. Genomic surveillance provides the 4 

opportunity to identify the emergence of genetic signatures indicating antimicrobial 5 

resistance (AMR), or adaptation to host, facilitating early intervention and minimising wider 6 

dissemination. Consequently, genomic data has the ability to transform the way in which 7 

we manage the emergence of microbes that pose a direct threat to human health in real 8 

time.  9 

Although pathogen genomic data is being generated at a remarkable rate, we need to 10 

bridge the gap between genome sciences and public health with tools that make these 11 

data broadly and rapidly accessible to those who are not expert in genomics. To maximise 12 

the impact of ongoing surveillance programs, these tools need to quickly highlight high-risk 13 

clones by assigning isolates to distinct lineages and identifying genetic elements 14 

associated with clinically relevant features such as AMR or virulence. In this way, new 15 

isolates can be examined against the backdrop of a population framework that is 16 

continuously updated and that enables both the contextualisation of local outbreaks and 17 

the interpretation of global patterns.  18 

Salmonella enterica subsp. enterica serovar Typhi (S. Typhi) causes typhoid (enteric) 19 

fever, a disease that affects approximately 20-30 million people every year (2, 3). The 20 

disease is predominant in low-income communities where public health infrastructure is 21 

poorly resourced. Similar to other infections, typhoid treatment is compromised by the 22 

emergence of S. Typhi with resistance to multiple antimicrobials, including those currently 23 

used for treatment (3). Until recently, epidemiological investigations and surveillance of 24 

typhoid fever have employed alternative molecular techniques such as pulse-field gel 25 

electrophoresis (PFGE (4)), multi-locus sequence typing (MLST (5)), multiple-locus 26 

variable-number tandem-repeat (VNTR) analysis (MLVA (6)), and phage-typing (4), which 27 

offer insufficient resolution for a bacterium that exhibits very limited genetic variability. 28 

Whole genome sequencing (WGS) has proven key to identify S. Typhi high-risk clones by 29 

linking the population structure to the presence of AMR elements. For example, the recent 30 

resurgence of multi-drug resistant (MDR) typhoid (defined as resistance to all the historical 31 

first-line agents chloramphenicol, ampicillin and co-trimoxazole) has been explained in part 32 

by the global spread of an MDR S. Typhi lineage known as haplotype H58 or subclade 33 
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 4 

4.3.1 (7, 8), which is associated with both acquired AMR genes (conferring MDR) and 1 

fluoroquinolone resistance mutations (7, 9).  2 

WGS is increasingly being implemented in local and national public health laboratories, 3 

and web applications can provide rapid analysis and access to actionable information for 4 

infection control in the context of a global population framework. Online resources are 5 

available for the identification of acquired AMR mechanisms in bacterial pathogens, 6 

including Salmonella spp. (10, 11), and for in silico typing and visualisation of genome 7 

variation and relatedness based on WGS data (12-16), albeit without an emphasis on 8 

typhoidal Salmonella.  Here, we describe Typhi Pathogenwatch, a web application to 9 

support genomic epidemiology and public health surveillance of S. Typhi. Typhi 10 

Pathogenwatch rapidly places new genomes within the broader geographic and population 11 

context, predicts their genotype according to established nomenclatures (5, 8, 12), and 12 

detects the presence of AMR determinants and plasmid replicon genes to assess public 13 

health risk. Typhi Pathogenwatch displays this information interactively, allowing users to 14 

link lineages, AMR profiles, geographical data and other metadata to quickly determine if 15 

similar strains have been previously identified, where and when. Furthermore, results can 16 

be downloaded or shared via a web address containing a unique collection identifier. This 17 

approach allows the rapid incremental addition of new data and can be used to underpin 18 

the international surveillance of typhoid, MDR and other public health threats.  19 
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 5 

Methods 1 

 2 

The Pathogenwatch application 3 

The Pathogenwatch user interface is a React (17) single-page application with styling 4 

based on Material Design Lite (18). Phylocanvas (19) is used for phylogenetic trees, 5 

Leaflet (20) is used for maps, and Sigma (21) is used for networks. The Pathogenwatch 6 

back-end, written in Node.js, consists of an API service for the user interface and four 7 

“Runner” services to perform analysis: species prediction, single-genome analyses, tree-8 

building, and core genome multi-locus sequence typing (cgMLST) clustering. Runner 9 

services spawn Docker containers for queued tasks, streaming a FASTA file or prior 10 

analysis through standard input and storing JSON data from standard output. Data storage 11 

and task queuing/synchronisation are performed by a MongoDB cluster. 12 

 13 

S. Typhi genome assemblies and data privacy 14 

Genome assemblies can be uploaded by the user in FASTA format or assembled de novo 15 

from high-throughput short read data with the Pathogenwatch pipeline using SPAdes (22), 16 

as described in the Pathogenwatch documentation (23). Sequence data and metadata 17 

files uploaded by the user are kept private to the user account unless explicitly requested 18 

to be publicly shared. Genomes can be grouped into collections and kept private or set to 19 

be made available to collaborators through a web link. Users can also integrate private 20 

and potentially confidential metadata into the display without uploading it to the 21 

Pathogenwatch servers. This private metadata will not be shared even if the collection is 22 

set to be shared via web link (24).  23 

Genomes from published studies with geographical localisation metadata and short read 24 

data on the European Nucleotide Archive (ENA) are available as public data and 25 

accessible to all users for browsing and for contextualisation of their own datasets. As of 26 

November 2020, 4389 public S. Typhi genomes from 26 studies were available (Additional 27 

File 1: Supplementary Table S1), either sequenced and available from the Wellcome 28 

Sanger Institute (WSI) directly, or obtained from the ENA. Genomes sequenced at WSI 29 

were assembled de novo with a previously described assembly pipeline (25). Briefly, 30 

FASTQ files were used to create multiple assemblies using VelvetOptimiser v2.2.5 and 31 

Velvet v1.2 (26). An assembly improvement step was applied to the assembly with the 32 
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 6 

best N50, and contigs were scaffolded using SSPACE (27) and sequence gaps filled using 1 

GapFiller (28). Genomes downloaded from the ENA were assembled with Velvet as 2 

above, as well as with SPAdes v3.9.0 (22) and a range of k-mer sizes of 66-90% of the 3 

read length (in increments of 4). Assemblies were evaluated based on their metrics and 4 

the Pathogenwatch core genome stats (number of contigs, assembly length, N50, non-5 

ATCG characters, GC content, number of core matches,). Seventeen public and published 6 

genomes were excluded as the assemblies either contained more than 700 contigs, more 7 

than 50,000 non-ATCG characters, a GC content below the smallest GC content or above 8 

than the largest GC content of the S. enterica subsp enterica genomes in RefSeq. or a 9 

total length that is <10% smaller than the smallest genome or >10% larger than the largest 10 

S. enterica subsp enterica genome in RefSeq, For five isolates, we used genome 11 

assemblies deposited in GenBank that met the same quality criteria. The metadata and 12 

assembly stats and method of the public genomes is available on (Additional File 2: 13 

Supplementary Table S2). 14 

 15 

Characterisation and genotyping of S. Typhi genomes with Pathogenwatch  16 

For both user-uploaded and public genomes, Pathogenwatch outputs a taxonomy 17 

assignment, a map of their locations, and assembly quality metrics. The taxonomy 18 

assignment is the best match to a microbial version of the RefSeq genome database 19 

release 78, as computed with Mash (29) (k=21, s=400). Details of the speciator tool can be 20 

found in the documentation (30). 21 

Pathogenwatch also provides compatibility with Salmonella serotyping (SISTR (15)), multi-22 

locus sequence typing (MLST (5)), core-genome MLST (cgMLST (12)) and S. Typhi 23 

single-nucleotide polymorphism (SNP)-based genotyping (GenoTyphi (8)). Detailed 24 

descriptions of the implementation of the typing tools can be found in the documentation 25 

(31). 26 

The MLST and cgMLST schemes are periodically downloaded from Enterobase (32) and 27 

(33), respectively. Samples are typed as described in the documentation 28 

(https://cgps.gitbook.io/pathogenwatch/technical-descriptions/typing-methods/mlst and 29 

https://cgps.gitbook.io/pathogenwatch/technical-descriptions/typing-methods/cgmlst). 30 

Exact allele matches are reported using their allele ID. Multiple allele hits for a gene are 31 
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 7 

reported if present. Inexact allele matches and novel STs are reported by hashing the 1 

matching allele sequence and the gene IDs, respectively. 	2 

Pathogenwatch implements SISTR (Salmonella In Silico Typing Resource (15)), which 3 

produces serovar predictions from WGS assemblies by determination of antigen gene and 4 

cgMLST gene alleles using blastn v2.2.31+. Pathogenwatch uses the cgmlst_subspecies 5 

and serovar fields from the SISTR JSON output to specify the serovar. 6 

GenoTyphi assigns S. Typhi genomes to a predefined set of clades and subclades based 7 

on a curated set of SNPs (8) that is regularly updated as novel lineages of epidemiological 8 

interest are identified (34). Pathogenwatch uses an in-house implementation designed to 9 

work with assembly output. The blastn v2.2.30 program is used to align the query loci and 10 

identify positions of diagnostic SNPs, which are then processed according to the rules of 11 

the GenoTyphi scheme (35). The genotype assignment and the number of diagnostic 12 

SNPs identified on the assemblies are reported.  13 

The plasmid replicon marker sequences are detected in the user and public genome 14 

assemblies with Inctyper, which uses the PlasmidFinder Enterobacteriaceae database 15 

(36). Details of the Inctyper tool can be found in the documentation (37). 16 

 17 

The Pathogenwatch S. Typhi core genome library 18 

Pathogenwatch supports SNP-based neighbour joining trees of S. Typhi both for user 19 

genomes (collection trees) and public genomes (population tree and subtrees). The trees 20 

are inferred using a curated core gene library of 3284 S. Typhi genes (38) generated from 21 

a pan-genome analysis of 26 complete or high-quality draft genomes (Additional File 1: 22 

Supplementary Table S3) with Roary (39) and identity threshold of 95%. The core gene 23 

families were realigned using MAFFT v7.2.2.0 (40), and filtered or trimmed according to 24 

the quality of the alignments. The gene with the fewest average pairwise SNP differences 25 

to the other family members was selected as the representative for each family. We then 26 

selected 19 reference genomes (Additional File 1: Supplementary Table S3) belonging to 27 

different genotypes according to the population structure previously described (8). The 28 

gene families were then searched against each of the 19 reference genomes and filtered 29 

according to the following rules: a) only universal families with complete coverage of the 30 

representative were kept; b) all paralogues were removed; c) overlapping gene families 31 

were merged into a single, contiguous pseudo-sequence. A BLAST (41) core library was 32 
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 8 

then built with the representative genes, and a profile of variant sites determined for the 1 

core genes present in each reference genome. Each of the 4389 public genomes was 2 

then clustered with its closest reference genome based on this profile of variant sites, thus 3 

constituting each of the 19 population subtrees that Pathogenwatch employs to 4 

contextualise user-uploaded genomes.  5 

 6 

Pathogenwatch genome clustering of S. Typhi 7 

The relationships between genomes are represented with trees (dendrograms) based on 8 

the genetic distance computed from substitution mutations in the core gene library, as 9 

described in detail in the documentation (42). User-provided assemblies are queried 10 

against the S. Typhi core gene library with blastn v2.2.30 (41) using an identity threshold 11 

of 90%. The core gene set of each query assembly is compared to the reference genome 12 

core that has the most variant sites in common. An overall relative substitution rate is 13 

determined, and loci that contain more variants than expected assuming a Poisson 14 

distribution are filtered out. Pairwise distances between assemblies (including user-15 

provided and reference) are scored via a distance scoring algorithm that compares all 16 

variant positions from all pairs of core gene sets, SNPs are counted (generating a 17 

downloadable pairwise difference matrix) and normalised by the relative proportion of the 18 

core present (generating a downloadable pairwise score matrix). The pairwise score matrix 19 

is then used to infer a midpoint-rooted neighbour-joining tree using the Phangorn v2.4.0 20 

(43) and Ape v5.1 (44) R packages. Trees are computed for the user assemblies only 21 

(collection tree), and for the user assemblies and public assemblies assigned to the same 22 

reference genome (public data subtrees), all of which are downloadable in Newick format. 23 

We benchmarked the Pathogenwatch clustering method against other methods of SNP-24 

based tree inference with three subsets of published genomes: Dataset I) 118 genomes 25 

spanning the population diversity of S. Typhi defined by GenoTyphi (Additional File 3: 26 

Supplementary Table S4); Dataset II) 138 closely related genomes, from a recent clonal 27 

expansion of the multidrug-resistant haplotype H58 within Africa (Additional File 2: 28 

Supplementary Table S5); and Dataset III) 43 strains from clade 3.2 including CT18, the 29 

first completed S. Typhi genome, which remains reference of choice for most population 30 

genomics studies (Additional File 2: Supplementary Table S6). For each subset a tree was 31 

generated with four different methods: 1) Pathogenwatch; 2) maximum likelihood (ML) with 32 
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RAxML v8.2.8 (45) on SNPs extracted from an alignment of concatenated core genes 1 

generated using Roary (39); 3) neighbour joining (NJ) with FastTree (46) using the option 2 

–noml on the same alignment as 2); and 4) ML with RAxML v8.2.8 on SNPs extracted 3 

from a previously published CT18-guided alignment (7). Five hundred bootstrap replicates 4 

were computed for the ML trees (methods 2 and 4). We compared the trees thus 5 

generated using the tree comparison software Treescape v1.10.18 (Kendall-Colijn 6 

distance, now available as Treespace (47)) and the Tanglegram algorithm of Dendroscope 7 

(48). The tree files used in the tree comparisons are provided in (49). 8 

Genomes can also be clustered in Typhi Pathogenwatch based on their cgMLST profile 9 

using single linkage clustering. Distance scores are calculated between each pair of 10 

samples by identifying the genes which have been found in both samples and by counting 11 

the number of differences in the alleles. The SLINK algorithm (50) is used to quickly group 12 

genomes into clusters at a given threshold. For a given genome, users are able to see 13 

how many other genomes it is clustered with at a range of distance thresholds, view the 14 

structure of the cluster as a network graph, and view the metadata and analysis for 15 

sequences in that cluster. 16 

 17 

Genomic predictions of antimicrobial resistance 18 

The Pathogenwatch AMR prediction module queries the genome assemblies with blastn 19 

v2.2.30 (41) for the presence of genes and single point mutations known to confer 20 

resistance in S. Typhi to ampicillin (AMP), chloramphenicol (CHL), broad-spectrum 21 

cephalosporins (CEP), ciprofloxacin (CIP), sulfamethoxazole (SMX), trimethoprim (TMP), 22 

the combination antibiotic co-trimoxazole (sulfamethoxazole-trimethoprim, SXT), 23 

tetracycline (TCY), azithromycin (AZM), colistin (CST) and meropenem (MEM) (Additional 24 

File 1: Supplementary Table S7 (51)). For details of the implementation see the 25 

Pathogenwatch documentation (52).  26 

The Pathogenwatch AMR prediction module also provides a prediction of AMR phenotype 27 

inferred from the combination of identified mechanisms. To benchmark the genotypic 28 

resistance predictions, we used a set of 1316 genomes from 16 published studies 29 

(Additional File 1: Supplementary Table S1) with drug susceptibility information available 30 

for at least one of the twelve antibiotics reported by Typhi Pathogenwatch. The drug 31 

susceptibility data reported was heterogeneous across the studies (minimum inhibitory 32 
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 10 

concentration (MICs), disk diffusion diameters, and/or susceptible/intermediate/resistant 1 

(SIR)). We first compared the Typhi Pathogenwatch antibiotic resistance predictions to the 2 

drug susceptibility phenotype (SIR interpretation provided by the studies) of 1316 3 

genomes, grouping the Resistant and Intermediate classifications as non-susceptible. For 4 

each antibiotic, the sensitivity, specificity, positive predictive value (PPV) and negative 5 

predictive value (NPV) for detection of known resistance determinants, and their 95% 6 

confidence intervals (CI) were calculated with the epi.tests function of the epiR v1.0-14 7 

package (53). False negative (FN) and false positive (FP) results were further investigated 8 

with alternative methods by querying the genome assemblies with Resfinder (54) and/or 9 

by mapping and local assembly of the sequence reads to the Bacterial Antimicrobial 10 

Resistance Reference Gene Database (Bioproject PRJNA313047) with ARIBA (55).  11 

Seven studies reported ciprofloxacin MICs for a total of 889 S. Typhi strains, albeit 12 

interpreted with different breakpoint guidelines and versions (Additional File 2: 13 

Supplementary Table S1). We compared the Typhi Pathogenwatch ciprofloxacin 14 

resistance predictions (SIR) for each observed combination of genetic AMR determinants 15 

against the MIC values re-interpreted with the ciprofloxacin breakpoints for Salmonella 16 

spp. from CLSI M100 30th edition (susceptible MIC£0.06; intermediate MIC = 0.12 to 0.5; 17 

resistant MIC ³1 (56)) with a script that is available at (49) .  18 

 19 

Results 20 

Overview of the Typhi Pathogenwatch application 21 

We have developed a public health focused application for S. Typhi genomics that uses 22 

genome assemblies to perform three essential tasks for surveillance and epidemiological 23 

investigations, i.e., (i) placing isolates into lineages or clonal groups, (ii) identifying their 24 

closest relatives and linking to their geographic distribution, and (iii) detecting the presence 25 

of genes and mutations associated with AMR. These data can aid the local investigator to 26 

rapidly identify a potential source of transmission and to predict AMR phenotypes. 27 

The Pathogenwatch application can be accessed at https://pathogen.watch/styphi, where 28 

users can create an account and upload and analyse their genomes (Figure 1 and video 29 

(57)). User data remains private and stored in their personal account. Pathogenwatch 30 

provides compatibility with typing information for MLST (5), cgMLST (12), in silico 31 

serotyping (SISTR (15)), a SNP genotyping scheme (GenoTyphi (8)), and plasmid replicon 32 
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sequences (36). The results for a single genome are displayed in a genome report that 1 

can be downloaded as a PDF. The results for a collection of genomes can be viewed 2 

online and downloaded as trees and tables of genotypes, AMR predictions, assembly 3 

metrics, and genetic variation. Results can also be accessed at a later date and shared via 4 

a collection ID embedded in a unique weblink, thus facilitating collaborative surveillance. 5 

 6 

Clustering genomes into lineages with Pathogenwatch 7 

The pairwise genetic distance between isolates provides an operational unit for genomic 8 

surveillance. Typhi Pathogenwatch clusters genomes based on their genetic distance and 9 

displays their relationships in a collection tree. We benchmarked the Pathogenwatch 10 

clustering method against established methods of SNP-based tree inference, i.e. 11 

maximum likelihood or neighbour-joining trees inferred from core genome SNPs or whole-12 

genome SNPs. We used three sets of published genomes: I) 118 genomes spanning the 13 

population diversity of S. Typhi defined by GenoTyphi (8); II) 138 closely related genomes, 14 

from a clonal expansion of 4.3.1 within Africa (7); and III) 43 strains from clade 3.2 15 

including CT18, the genome of choice for reference-guided population genomics studies 16 

(8). The Pathogenwatch trees clustered the diverse genomes from subset I according to 17 

genotype assignments (Additional File 4: Supplementary Figure S1a), and detected 18 

phylogeographic signal in the closely related genomes of subset II (Additional File 4: 19 

Supplementary Figure S1b), in agreement with previous studies. In addition, we found that 20 

the Typhi Pathogenwatch clustering algorithm produced trees comparable to the 21 

established methods based on visualisations of the tree space and tree topology 22 

(Additional File 4: Supplementary Figure S2). 23 

 24 

Contextualisation with public data 25 

A fundamental process for interpreting genomic datasets is to identify the nearest 26 

neighbours to the genome(s) under investigation. Pathogenwatch contextualises the user-27 

uploaded genomes with public genomes using a population tree of 19 diverse genome 28 

references (Additional File 4: Supplementary Figure S3) to guide the SNP-based clustering 29 

of user and public genomes into subsets of closely related genomes (population subtrees). 30 

A previous investigation of a typhoid outbreak in Zambia exemplifies the value of 31 

contextualisation with the most relevant public data (58). This retrospective study identified 32 
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clonal diversity and two repertoires of AMR genes within outbreak organisms, which 1 

belonged to haplotype H58 (genotype 4.3.1), but at the time only 5 genomes from 4.3.1 2 

were available for comparison. Using Pathogenwatch, the outbreak strains can be rapidly 3 

contextualised with public genomes, which revealed two different clusters with close 4 

relationships to contemporary genomes from neighbouring countries Malawi and Tanzania 5 

(Figure 2a-b) that are also characterised by different dfrA genes (Figure 2c-d). The 6 

integration of genomic data and associated metadata from different studies in 7 

Pathogenwatch facilitates the investigation of a local outbreak in a broader geographic 8 

context via the web and without the need for bioinformatics expertise. 9 

Users interested in exploring the public genomes without creating their own collections can 10 

browse the public data as a whole (59) or view by published study (60). As of November 11 

2020, Typhi Pathogenwatch included 4389 public genomes from 26 published articles 12 

(Additional File 1: Supplementary Table S1). The genomes spanned the years 1905 to 13 

2019 and seventy-seven different countries, with the largest representation from 2000 14 

onwards (N=3,795, 86.49%) and from the Indian subcontinent (N=1,602, 36.50%), 15 

respectively (Table 1 and Additional File 4: Supplementary Figure S4). Over 97% of the 16 

genomes were classified as either ST1 (68.2%) or ST2 (29.0%) using the 7-locus 17 

Salmonella MLST scheme, with the remaining 2.8% divided between 33 rare STs 18 

(Additional File 1: Supplementary Table S8). Similarly, over half of the genomes (N=2,500, 19 

57.0%) belonged to the globally dominant MDR genotype 4.3.1, although the five different 20 

genotypes comprising 4.3.1 showed different temporal distributions and relative 21 

abundance (Additional File 4: Supplementary Figure S5). 22 

 23 

Genomic predictions of antimicrobial resistance 24 

Typhi Pathogenwatch provides resistance predictions for antimicrobials relevant to 25 

treatment of typhoid fever by querying genome assemblies with BLAST (41) and a curated 26 

library of known AMR genes and mutations (Additional File 1: Supplementary Table S7). 27 

To benchmark the Typhi Pathogenwatch predictions, we compared the genotypic 28 

resistance genotypes to the available drug susceptibility phenotypes (SIR interpretation) of 29 

1316 genomes, grouping the Resistant and Intermediate classifications as insusceptible. 30 

The sensitivity of the Pathogenwatch genotypic predictions was at least 0.96 for all 31 

antibiotics with a computed value (Table 2); at the time of writing, there were no 32 
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insusceptible isolates described for colistin or meropenem. The false negative (FN) calls 1 

for ampicillin (N=4), cephalosporins (N=2), chloramphenicol (N=6), and sulfamethoxazole-2 

trimethoprim (N=7) were paralled by the original genome studies (61-63), and by an 3 

alternative bioinformatics method (55), neither of which detected any known resistance 4 

genes in these genomes. The 49 FN calls for ciprofloxacin were also in agreement with the 5 

in silico analyses reported in the original genome studies (34, 63), in which no QRDR 6 

mutations or qnr genes were detected. Only mutations outside of the quinolone-resistance 7 

determining region (QRDR) of parE (A364V, N=17) or gyrA (D538N, N=2) were found in 8 

20 genomes. These mutations have not as yet been shown to cause ciprofloxacin 9 

insusceptibility and were therefore omitted from the Pathogenwatch AMR library.  10 

The specificity of the Pathogenwatch genotypic predictions was at least 0.95 for most 11 

antimicrobials (Table 2), with the exception of ciprofloxacin, for which a third of the 12 

ciprofloxacin susceptible isolates were reported as insusceptible by Pathogenwatch. A 13 

closer inspection of the 57 false positive (FP) results showed that Pathogenwatch reported 14 

one (N=55), two (N=2) or three (N=1) mutations in the QRDR of gyrA, gyrB and/or parC, 15 

most frequently the single mutations gyrA_S83F (N=25) and gyrB_S464F (N=16). For 54 16 

of these samples, the same mutations were reported in the original genome studies. For 17 

the remaining three genomes, no mutations were reported in the original studies, but we 18 

confirmed the presence of gyrB_S464F (N=2) or gyrB_S464Y (N=1) in the assemblies 19 

using Resfinder (54). Similarly, we confirmed the Pathogenwatch identification of blaTEM-1, 20 

catA1, or sul1-dfrA7 for all 47 of the FP calls for ampicillin (N=8), chloramphenicol (N=14), 21 

and sulfamethoxazole-trimethoprim (N=25), respectively, either from the original genome 22 

studies or with Resfinder.  23 

The additive effect of QRDR mutations on ciprofloxacin susceptibility has been previously 24 

described (64). In addition, the presence of three non-synonymous mutations in the gyrA 25 

(S83F and D87N) and parC (S80I) genes was previously associated with ciprofloxacin 26 

resistance and fluoroquinolone treatment failure (64, 65) and was predictive of 27 

ciprofloxacin resistance in a study of reference laboratory isolates (66). Pathogenwatch 28 

thus reports this specific combination of mutations as resistant on the Antibiotics table with 29 

a red circle, while any other single, double or triple QRDR mutation is reported as 30 

decreased susceptibility (intermediate, yellow circle). We evaluated the ciprofloxacin MICs 31 

of 889 S. Typhi isolates from nine previous studies against the different combinations of 32 

resistance mechanisms identified by Pathogenwatch. Overall, the distribution of MIC 33 
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values was consistent with the genomic predictions of AMR from Pathogenwatch (Figure 1 

3). The isolates with 1 or 2 QRDR mutations displayed mostly intermediate MICs against 2 

ciprofloxacin, and support reporting as intermediate in Pathogenwatch. The MIC values of 3 

7 isolates carrying single mutations on gyrA (S83F, S83Y) and gyrB (S464F), however, 4 

were below the intermediate breakpoint, consistent with the lower specificity reported for 5 

ciprofloxacin in Table 2. The highest ciprofloxacin MIC values were observed for the 6 

combination of gyrA_S83F-gyrA_D87N-parC_S80I mutations, reported as resistant by 7 

Pathogenwatch. However, the triple combination gyrA_S83F-gyrA_D87G-parC_E84K was 8 

represented by 9 isolates with MICs in both the resistant (N=6) and the intermediate (N=3) 9 

ranges, and is reported by Pathogenwatch as intermediate. Further susceptibility testing of 10 

isolates with this combination of mutations is needed to refine genotypic predictions. 11 

Likewise, several other mechanisms potentially conferring insusceptibility to ciprofloxacin 12 

were found in the public genomes but had with no or little associated MIC data, including 13 

seven additional triple mutations (Additional File 1: Supplementary Table S9, Additional 14 

File 4: Supplementary Figure S6). 15 

Genomic predictions of AMR are presented in three interactive and downloadable tables, 16 

Antibiotics, Genes, and SNPs, which display the predicted resistance profile, AMR genes 17 

and AMR-associated chromosomal SNPs found for each genome in the collection, 18 

respectively. The user can overlay the genotypic predictions on the tree and the map 19 

views for one or multiple antibiotics/genes/SNPs, thus intuitively linking resistance with 20 

genome clustering and geographic location. For example, the distribution of genomic 21 

predictions of ciprofloxacin resistant, MDR, or extremely drug resistant (XDR, defined as 22 

MDR + ciprofloxacin resistant) S. Typhi on the map and on the tree of 4389 public 23 

genomes highlight the lineages that represent a particular challenge to treatment and their 24 

geographical distribution (Additional File 4: Supplementary Figure S7). A summary of the 25 

genomic predictions of MDR and XDR S. Typhi highlights the differences in the distribution 26 

of high-risk clones by region, year and genotype, as inferred from the public genomes 27 

(Additional File 4: Supplementary Figure S8).  28 

In addition, Pathogenwatch presents a granular picture of the different resistance 29 

mechanisms to an antibiotic. For example, the distinct distribution of trimethoprim-30 

resistance gene dfrA15 in West Africa associated with genotype 3.1.1, and of dfrA7 across 31 

Central and East Africa, associated with genotypes 2.5.1 and 4.3.1.1, respectively (67) 32 

(Additional File 4: Supplementary Figure S9). The most frequent AMR genes in the public 33 
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collection of 4389 genomes associated with an MDR phenotype were blaTEM-1 (ampicillin, 1 

N=1460), catA1 (chloramphenicol, N=1406), sul1 (sulfamethoxazole, N=1447), and dfrA7 2 

(trimethoprim, N=1232). Notably, blaCTX-M-15 was the most frequent gene coding for an 3 

extended-spectrum beta-lactamase (N=92, Additional File 4: Supplementary Figure S10). 4 

The acquired AMR genes found in the public genomes were identical or nearly identical 5 

matches to the AMR library representatives (Additional File 4: Supplementary Figure S11), 6 

with the vast majority of the matches (7842/8098, 96.8%) showing 100% identity. 7 

Several plasmids have been implicated in the dissemination of drug-resistant S. Typhi. 8 

Notably, the MDR phenotype is linked to a composite transposon carrying multiple 9 

resistance genes, either located in IncH1 plasmids or integrated into the chromosome (7). 10 

An IncY plasmid that confers resistance to fluoroquinolones and third-generation 11 

cephalosporins was detected in XDR S. Typhi from an outbreak in Pakistan (61), while 12 

plasmids belonging to at least five different Inc types have been described in a recent pan-13 

African study (67). Pathogenwatch identifies plasmid replicon marker sequences in the 14 

user genomes and reports them on the genome report and on the Typing table in the 15 

collection view (Figure 1). Pathogenwatch reported between one and four plasmid replicon 16 

marker sequences in a third of the public genomes (1,571/4,389, 35.79%, Additional File 17 

4: Supplementary Figure S12a). Predictably, plasmid replicon markers were more frequent 18 

in genomes with predicted genotypic resistance, in particular those organisms that were 19 

resistant to multiple antimicrobials (Additional File 4: Supplementary Figure S12b). 20 

Notably, the cryptic plasmid pHCM2, which does not carry resistance genes (68), was the 21 

most common replicon detected amongst genomes in which acquired resistance genes 22 

were not detected. The distribution of replicon genes showed that the combination of 23 

IncH1A and IncH1B(R27) was prevalent in MDR genomes from Southeast Asia and East 24 

Africa belonging to clade 4.3.1, while the same combination with the addition of 25 

IncFIA(HI1) was more prevalent in West Africa, and associated with clade 3.1 (Additional 26 

File 4: Supplementary Figure 12b-d). The IncH1A and IncH1B(R27) sequences detect 27 

fragments of the repA2 and repA genes, respectively, of the IncHI1 conjugative plasmid 28 

which has historically been associated with the majority of MDR typhoid (7). IncFIA(HI1) 29 

detects fragments of the repE gene that is present in a subset of IncHI1 plasmids, 30 

including the plasmid sequence type PST2 variant common in S. Typhi 3.1 in West Africa, 31 

but lacking from the PST6 variant that is widespread in S. Typhi 4.3.1 in East Africa and 32 

Asia (67). 33 
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 1 

Maximising the utility of genomic data  2 

Pathogenwatch makes the public WGS data easily accessible and searchable, and also 3 

constitutes a growing resource to which new data can be added. While genomic 4 

predictions of AMR are based on known mechanisms, the predictions can easily be 5 

updated as new mechanisms are discovered. Azithromycin is one of the last oral treatment 6 

options for typhoid for which resistance is currently uncommon, of particular importance in 7 

endemic areas with high rates of fluoroquinolone-resistance and outbreaks of XDR S. 8 

Typhi. A non-synonymous point mutation in the gene encoding the efflux pump AcrB 9 

(R717Q) was recently singled out as a molecular mechanism of resistance to azithromycin 10 

in S. Typhi (69). Pathogenwatch detected the acrB_R717Q mutation in a collection of 12 11 

Bangladeshi genomes of genotype 4.3.1.1 isolated between 2013 and 2016 in which this 12 

mutation was first described (Figure 4). Notably, Pathogenwatch also detected the 13 

acrB_R717Q mutation in three additional genomes, two from isolates recovered in 14 

England in 2014 (no travel history available (70)), and one from an isolate recovered in 15 

Samoa in 2007 (7). The Samoan genome 10349_1_30_Sam072830_2007 was typed as 16 

genotype 3.5.4, while the English genomes 65343 and 32480 (no travel information 17 

available) belonged to genotypes 4.3.1.1 and 4.3.2.1, respectively. Genome 65343 was 18 

closely related to the cluster of 12 genomes from Bangladesh where this mutation was first 19 

described, while genome 32480 belonged to a small cluster of five genomes from India or 20 

with travel history to India. Thus, reanalysis of public data with Pathogenwatch showed 21 

that the acrB_R717Q mutation has emerged in multiple genetic backgrounds, in multiple 22 

locations, and as early as 2007.  23 

 24 

Pathogenwatch applied to rapid risk assessment 25 

Typhoid fever is rare in countries with a good infrastructure for the provision of clean water 26 

and sanitation, with most cases arising from travel to endemic areas (71). Ceftriaxone-27 

resistant typhoid fever was recently reported in developed countries and associated with 28 

travel to Pakistan (72-74). These ceftriaxone resistant isolates were associated to the 29 

recent outbreak of XDR S. Typhi in the Sindh province of Pakistan by the epidemiological 30 

data, the antibiograms, and information derived from WGS of the clinical isolate, such as 31 

presence of resistance genes, and mobile genetic elements. In some cases the genomes 32 
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were contextualised with retrospective genomes by building a phylogenetic tree using an 1 

existing bioinformatic pipeline (72, 73). 2 

We exemplify how Pathogenwatch facilitates this analysis with the genome from the 3 

isolate recovered in Canada (PHL5950, accession RHPM00000000 (74)). Pathogenwatch 4 

provides a printable genome report (Additional File 4: Supplementary Figure S13) 5 

including genotyping and in silico serotyping information, predicted resistance profile, and 6 

the presence of resistance genes and mutations. In addition, Pathogenwatch places the 7 

genome within the Pakistani XDR outbreak (Figure 5) and shows the close genetic 8 

relatedness (between 3 and 8 pairwise differences) of the isolates via the downloadable 9 

score matrix.  10 

 11 

Pathogenwatch as a tool for international collaboration in typhoid surveillance 12 

As WGS capacity becomes a reality in typhoid endemic countries, there is a growing 13 

opportunity for local genomic surveillance and for collaboration across borders. This is 14 

underscored by the growing number of genomes from the Indian Subcontinent (Additional 15 

File 4: Supplementary Figure S3), where epidemic clone 4.3.1 (H58) and the nested clade 16 

of fluoroquinolone-resistant triple mutants belonging to genotype 4.3.1.2 (H58 lineage II) 17 

have been shown to have originated (7, 65)). The triple mutants were first reported in 18 

Nepal (isolated in 2013-2014) and linked to isolates from India from 2008-2012 (65). More 19 

recent surveillance studies showed that this lineage was still prevalent in S. Typhi isolates 20 

collected in Nepal in 2016 and in India in 2016-2017 (34, 75). The public data integrated in 21 

Pathogenwatch showed that (at the time of writing) this lineage is represented by 195 22 

public genomes from seven countries (India, Bangladesh, Nepal, Pakistan, Myanmar, 23 

Japan, and United Kingdom, Figure 6a, (7, 63, 64, 70, 75-78)) and from as early as 2006 24 

(Japan, with travel history to India, Figure 6b (76)). Linking the tree and the map highlights 25 

distinct clusters of genomes that show evidence of transmission across borders, for 26 

example between India-Pakistan and India-Nepal (Figure 8c-d). In addition, three isolates 27 

recovered in 2016 in India were reported to be resistant to cephalosporins, linked to the 28 

presence of the blaSHV-12 gene (79); Pathogenwatch detected blaSHV-12, qnrB and the IncX3 29 

plasmid replicon in these genomes. Another previous study reported an IncN replicon in 30 

three genomes from the United Kingdom (two with travel history to India) that also carried 31 

resistance genes dfrA15 (trimethoprim), sul1 (sulfamethoxazole), and tetA(A) (tetracycline) 32 
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(64). Pathogenwatch identified the same AMR genes and plasmid replicon in these 1 

genomes, and also in two closely related genomes from Japan with travel history to Nepal 2 

and India (Figure 6b). Altogether, these observations suggest that this lineage circulating 3 

in South Asia and linked to treatment failure with fluoroquinolones, can acquire plasmids 4 

with additional AMR genes, with the concomitant risk of the clonal expansion of a lineage 5 

that poses additional challenges to treatment. 6 

 7 

Discussion 8 

Our understanding of the S. Typhi population structure, including MDR typhoid has 9 

improved dramatically since the introduction of WGS, which provides a level of 10 

discrimination much needed for a human-adapted pathogen that exhibits very limited 11 

genetic variability. Progress towards the widespread implementation of WGS for 12 

epidemiological investigations and integrated routine surveillance within public health 13 

settings needs to be accompanied by i) active surveillance programs in endemic regions; 14 

ii) implementation of WGS at laboratories in endemic regions; iii) analysis of WGS data 15 

with fast, robust and scalable tools that deliver information for public health action; iv) 16 

dissemination of WGS data through networks of collaborating reference laboratories at the 17 

national, international and global scales; and v) provision of WGS data and associated 18 

metadata through continuously growing databases that are amenable to interaction and 19 

interpretation (80). Here, we described Typhi Pathogenwatch, a web application for the 20 

genomic surveillance and epidemiology of S. Typhi, which enhances the utility of public 21 

WGS data and associated metadata by integration into an interactive resource that users 22 

can browse or query with their own WGS data.  23 

Rapid, timely access to information on local patterns of AMR may inform treatment 24 

regimens, which could ultimately lead to a reduction in morbidity and mortality associated 25 

with enteric fever as this is much greater in the absence of effective antimicrobial therapy 26 

(81) . Typhi Pathogenwatch provides a general framework for genomic predictions of AMR 27 

and of related strain clusters, and is accessible to users of all bioinformatics skills levels. 28 

This enables users with an understanding of genomics but no bioinformatics training to 29 

conduct surveillance and epidemiological investigations using WGS. Furthermore, it allows 30 

experienced bioinformaticians to rapidly perform the essential tasks listed in the results 31 

section, thus freeing up time for more advanced downstream analyses. 32 
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We demonstrated that genomic predictions of AMR are largely concordant with the 1 

resistance phenotype (overall concordance 96.34%, Table 2). It should also be noted that 2 

Pathogenwatch was developed with a focus on surveillance, not for clinical decision 3 

making. A previous study of 332 S. Typhi isolates analysed in a single reference laboratory 4 

reported only 0.03% discordant results (66) versus 3.66% from our data. Similarly, 5 

AMRFinder (11) and Resfinder 4.0 (10) reported slightly higher overall phenotype-6 

genotype concordance, at 98.0% and 98,8%, respectively. These two studies analysed 7 

large collections of Salmonella genomes, albeit belonging to non-typhoidal serovars. A 8 

limitation of our study, is that it amalgamated published susceptibility data from thirteen 9 

different publications conducted in eight different countries. The availability of consistent 10 

laboratory antimicrobial susceptibility testing data is key for the periodic benchmarking and 11 

refinement of genomic predictions of AMR (82), in particular for ciprofloxacin due to the 12 

diverse combinations of mechanisms (Additional File 1: Supplementary Table S9). Unlike 13 

other AMR prediction tools, Pathogenwatch provides the added value of immediate 14 

contextualisation with location, time and population structure in an interactive visualisation.  15 

Novel mechanisms of AMR can easily be added to the curated Pathogenwatch AMR 16 

library, and the growing collection of public genomes can be retrospectively screened, 17 

potentially revealing the presence of a newly identified gene or mutation in genomes from 18 

isolates previously collected (Figure 4). This illustrates how the provision of public genomic 19 

data through Pathogenwatch maximises reusability from which new insights into novel 20 

AMR mechanisms can be derived. The utility of maintaining a regularly updated archive of 21 

WGS data that can be rapidly ‘mined’ for the presence of newly discovered AMR gene was 22 

elegantly illustrated before by the retrospective discovery of the colistin resistance gene 23 

mcr-1 in S. enterica and Escherichia coli genomes from Public Health England (83). 24 

Pathogenwatch extends this utility to the entire Typhi community, thus democratising the 25 

reusability of the genomic data. 26 

Contextualizing new genomes with existing data is now a routine part of genomic 27 

epidemiology, as it can complement epidemiological investigations to, among many 28 

applications, place the new genomes in or out of an outbreak, link to past outbreaks, and 29 

determine if the success of a resistant phenotype is the result of a single clonal expansion 30 

or multiple independent introductions (84). Using the publicly available genomes, we 31 

provided examples of the utility of Pathogenwatch to contextualise user-uploaded 32 

genomes for outbreak investigation in endemic areas (Figure 2) or for the management of 33 
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patients in non-endemic countries with travel history to endemic areas (Figure 5). 1 

Analysing new genomes in the context of global genomes involves the retrieval, storage 2 

and bioinformatic analysis of large amounts of sequence data and linked metadata, which 3 

is time-consuming at the least, and largely unfeasible for hospitals or public-health 4 

agencies with limited computing infrastructure. Pathogenwatch bridges this gap and 5 

provides contextualisation with the closest genomes guided by the S. Typhi population 6 

tree (Additional File 4: Supplementary Figure S3) and subtrees.  7 

The interpretation of the genomic context relies heavily on the completeness of the public 8 

collection used for contextualisation and of its metadata. This in turn depends on the 9 

establishment of local, national and international surveillance programs for the real-time 10 

management of emerging lineages that pose a direct threat to human health. The 11 

International Typhoid Consortium collected and sequenced around 40% of the global 12 

genomes available in Pathogenwatch for comparison (7, 8), but ongoing surveillance and 13 

WGS are needed to maintain a relevant, contemporary genome collection. Pathogenwatch 14 

does not currently support automated updates or submissions, which instead requires 15 

retrieval and curation of published genome data and associated metadata. Thus, while 16 

sequence data are not instantly available on Pathogenwatch when they become available 17 

on sequence data archives. Pathogenwatch maximises the utility of genomes available on 18 

the platform. For example, as of November 2020 Pathogenwatch provides 4234 of 4389 19 

(96.5%) S. Typhi genomes with at least both year and country of isolation, while the same 20 

applies to 3473 of 7743 (44.9%) genomes on Enterobase (16), 3936 of 5618 (70.1%) 21 

genomes on GenomeTrakr (14), and 2085 of 3100 (67.3%) genomes on PATRIC (13). In 22 

addition, Pathogenwatch includes patient travel information when available.  23 

Pathogenwatch can facilitate collaborative surveillance in endemic areas via data 24 

integration and shared collections for the early detection and containment of high-risk 25 

clones (Figure 6). Collections can be set to off-line mode to work while disconnected from 26 

the internet, which may be advantageous in settings with unreliable internet connections. 27 

Despite recent efforts to promote data openness in times of pandemics (85, 86), several 28 

challenges to sharing genomic data and linked metadata remain in both the academic and 29 

public-health settings (80). User-uploaded genomes and metadata remain in the 30 

Pathogenwatch user account, and collections also remain private unless the user 31 

specifically shares them via a collection URL. Moreover, Pathogenwatch offers a private 32 

metadata option to work with confidential information.  33 
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Recent improvements in our understanding of the disease burden and the dissemination 1 

of AMR, and the development of new typhoid conjugate vaccines have bolstered efforts to 2 

employ routine vaccination for the containment of typhoid fever (87). Routine surveillance 3 

coupled with WGS can inform decisions on suitable settings for the introduction of 4 

vaccination programs and on the evolution of pathogens in response to them (88, 89). 5 

Pathogenwatch could be linked to routine genomic surveillance around typhoid vaccination 6 

initiatives to monitor the population dynamics in response to the deployment of new 7 

vaccines. 8 

 9 

Conclusions 10 

Typhi Pathogenwatch combines accurate genomic predictions of AMR with broad 11 

geographic and population context within an easy to use interface for delivered for the 12 

community and to support ongoing typhoid surveillance programs. The modular 13 

architecture of Pathogenwatch allows new functionalities to be added to cater to the 14 

community needs. 15 

 16 

List of abbreviations 17 

AMR: antimicrobial resistance 18 

cgMLST: core-genome multi-locus sequence typing 19 

PFGE: pulse-field gel electrophoresis 20 

MDR: multi-drug resistant 21 

MLST: multi-locus sequence typing 22 

MLVA: multiple-locus variable-number tandem-repeat analysis 23 

QRDR: quinolone resistance determining region 24 

VNTR: multiple-locus variable-number tandem-repeat 25 

XDR: extremely-drug resistant 26 

WGS: whole-genome sequencing 27 
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Availability of data and materials 1 

The genome data and linked metadata presented are available from: 2 
https://pathogen.watch/collection/07lsscrbhu2x-public-genomes, 3 
https://pathogen.watch/collection/g5pbucot6e58-hendriksen-et-al-2015, and 4 
https://pathogen.watch/collection/11lsok8nrzts-wong-et-al-2018-idcases-15e00492 5 

The tree comparison nexus files are available from 6 
https://gitlab.com/cgps/pathogenwatch/publications/styphi/benchmark_tree 7 

The AMR benchmarking input files and script are available from 8 
https://gitlab.com/cgps/pathogenwatch/publications/styphi/benchmark_AMR 9 
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Figures 1 
 2 

 3 
 4 
Figure 1. Workflow of the Typhi Pathogenwatch application. Input assemblies or sequence reads and 5 
metadata files can be uploaded via drag-and-drop onto the Upload page. Once the analyses completed, the 6 
genomes are listed on the Genomes page with Pathogenwatch outputs for speciation and MLST. Clicking on 7 
a genome name on the list pops up a Genome Report. The user can create collections of genomes. The 8 
Collection view displays the user genomes clustered by genetic similarity on a tree, their location on a map, 9 
a timeline, as well as tables for metadata, typing and AMR. The Population view displays the user genomes 10 
by their closest reference genome in the population tree. Clicking on one of the highlighted nodes (purple 11 
triangles) opens the Population subtree view, which contextualises the user genomes with the closest public 12 
genomes. 13 
  14 
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 1 
 2 
Figure 2. Pathogenwatch provides genomic context for outbreak investigations. a-b Genomes from an 3 
outbreak in Zambia (purple markers on tree and map) are linked by genetic relatedness to genomes from 4 
neighbouring countries Malawi and Tanzania (grey markers) forming 2 separate groups of 16 (a) and 4 (b) 5 
outbreak genomes, respectively. The number of pairwise differences (range) between outbreak and related 6 
genomes in the Pathogenwatch score matrix are indicated on the bottom-right of the tree panel. c-d 7 
Differential distribution of trimethoprim resistance genes dfrA7 (c) and dfrA14 (d) across the two clades 8 
containing outbreak genomes. The data are available at https://pathogen.watch/collection/g5pbucot6e58-9 
hendriksen-et-al-2015. 10 
 11 
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 1 

 2 
 3 
 4 
Figure 3. Distribution of minimum inhibitory concentration (MIC) values (mg/L) for ciprofloxacin in a 5 
collection of S. Typhi isolates with different combinations of genetic mechanisms that are known to confer 6 
resistance to this antibiotic. Only combinations observed in at least 5 genomes are shown. Dashed 7 
horizontal lines on the violin plots mark the CLSI clinical breakpoint for ciprofloxacin. Point colours inside 8 
violins represent the genotypic AMR prediction by Pathogenwatch on each combination of mechanisms. 9 
Barplots on the top show the abundance of genomes with each combination of mechanisms. Bar colours 10 
represent the differences between the predicted and the observed SIR (i.e. red for a predicted susceptible 11 
mechanism when the observed phenotype is resistant).  12 
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 1 
 2 

 3 
 4 
Figure 4. Pathogenwatch data reusability. Fifteen genomes carrying the acrB_R717Q mutation recently 5 
linked to azithromycin resistance in S. Typhi are shown in red on the tree of 4389 public genomes and on the 6 
map. The presence of the mutation is indicated by the red circles on the SNPs table. Three of these 7 
genomes (tree labels) belong to isolates collected before the mutation was first described and are shown in 8 
more detail in the bottom panels. The data are available at https://pathogen.watch/collection/07lsscrbhu2x-9 
public-genomes 10 
  11 
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 3 
Figure 5. Rapid risk assessment of typhoid fever cases in non-endemic regions. Pathogenwatch 4 
places genome PHL5950 from an isolate recovered in Canada and with travel history to Pakistan within the 5 
XDR-outbreak in Pakistan (red markers). The data are available at 6 
https://pathogen.watch/collection/11lsok8nrzts-wong-et-al-2018-idcases-15e00492 7 
 8 
 9 
 10 
 11 
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Figure 6. Pathogenwatch to for collaborative international surveillance of S. Typhi. a Pathogenwatch 3 
highlights 195 ciprofloxacin-resistant triple mutants on the public data tree and map by simultaneously 4 
selecting the mutations gyrA_S83F, gyrA_D87N, and parC_S80I on the SNPs table. b Detailed visualisation 5 
of the triple mutants showing the temporal distribution of the genomes on the timeline. Magenta arrowhead: 6 
3 genomes from India with blaSHV-12, qnrB and an IncX3 replicon. Purple arrowhead: 4 genomes with sul1, 7 
dfrA15, tetA(A) and an IncN replicon from the UK and Japan. Selecting individual clades on the tree shows 8 
distinct clades that span neighbouring countries India-Pakistan (c) and India-Nepal (d). The data are 9 
available at https://pathogen.watch/collection/07lsscrbhu2x-public-genomes10 
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Tables 
 
Table 1. Characteristics of 4,389 public genomes in Pathogenwatch 
Year of isolation Number of genomes (%) 

1905-1969 41 (0.9) 
1970-1989 79 (1.8) 
1990-1999 395 (9.0) 
2000-2009 1,187 (27.0) 
2010-2019 2,609 (59.4) 

No date 78 (1.78) 
Country of isolation (top 6) Number of genomes (%) 

Bangladesh 637 (14.51) 
United Kingdom 629 (14.33) 

India 486 (11.07) 
Nepal 318 (7.25) 

Vietnam 220 (5.01) 
Cambodia 209 (4.76) 

Assembly Stats  Median (range) 
Number of contigs 51 (1 – 633) 

Assembly length 4,747,975 (4,535,494 – 5,211,763) 
N50 204,317 (19,527 – 4,806,333) 

non-ATCG 152 (0 – 48,002) 
GC content (%) 52.0 (51.4 - 52.4) 

 
Table 2. Benchmark analysis of Typhi Pathogenwatch AMR predictions for ampicillin (AMP), 
chloramphenicol (CHL), broad-spectrum cephalosporins (CEP), ciprofloxacin (CIP), sulfamethoxazole-
trimethoprim (SXT), tetracycline (TCY), azithromycin (AZM), colistin (CST) and meropenem (MEM). The total 
number of comparisons, true negatives (TN), true positives (TN), false negatives (FN), false positives (FN), 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), very major error 
(VME) rate, major error (ME) rate, and concordance are shown. Confidence intervals (95%) are shown in 
parenthesis. 
 

Antibiotic Total TN TP FN FP Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

VME 
rate 

ME 
rate 

Concordance 
(%) 

AMP 875 461 402 4 8 0.99 
(0.97-1.00) 

0.98 
(0.97-0.99) 

0.98 
(0.96-0.99) 

0.99 
(0.98-1) 0.01 0.02 98.63 

CEP 348 256 90 2 0 0.98 
(0.92-1.00) 

1.00 
(0.99-1.00) 

1.00 
(0.96-1.00) 

0.99 
(0.97-1.00) 0.02 0 99.43 

CHL 913 518 375 6 14 0.98 
(0.97-0.99) 

0.97 
(0.96-0.99) 

0.96 
(0.94-0.98) 

0.99 
(0.98-1.00) 0.02 0.03 97.81 

CIP 1282 111 1065 49 57 0.96 
(0.94-0.97) 

0.66 
(0.58-0.73) 

0.95 
(0.93-0.96) 

0.69 
(0.62-0.76) 0.04 0.32 91.73 

SXT 912 513 367 7 25 0.98 
(0.96-0.99) 

0.95 
(0.93-0.97) 

0.94 
(0.91-0.96) 

0.99 
(0.97- 0.99) 0.02 0.05 96.49 

TCY 44 40 4 0 0 1.00 
(0.40-1.00) 

1.00 
(0.91-1.00) 

1.00 
(0.40-1.00) 

1.00 
(0.91-1.00) 0 0 100 

AZM 156 144 12 0 0 1.00 
(0.74-1.00) 

1.00 
(0.97-1.00) 

1.00 
(0.74-1.00) 

1.00 
(0.97-1.00) 0 0 100 

CST 41 41 0 0 0 - 1.00 
(0.91-1.00) - 1.00 

(0.91-1.00) - 0 100 

MEM 132 132 0 0 0 - 1.00 
(0.97- 1.00) - 1.00 

(0.97- 1.00) - 0 100 
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