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Abstract 

Non-alcoholic steatohepatitis (NASH) is a fatty liver disease characterized by 

accumulation of fat in hepatocytes with concurrent inflammation and is associated with 

morbidity, cirrhosis and liver failure. After extraction of a liver core biopsy, tissue 

sections are stained with hematoxylin and eosin (H&E) to grade NASH activity, and 

stained with trichrome to stage fibrosis. Methods to computationally transform one stain 

into another on digital whole slide images (WSI) can lessen the need for additional 

physical staining besides H&E, reducing personnel, equipment, and time costs. 

Generative adversarial networks (GAN) have shown promise for virtual staining of 

tissue. We conducted a large-scale validation study of the viability of GANs for H&E to 

trichrome conversion on WSI (n=574). Pathologists were largely unable to distinguish 

real images from virtual/synthetic images given a set of twelve Turing Tests. We report 

high correlation between staging of real and virtual stains (ρ � 0.86; 95% CI: 0.84-0.88). 

Stages assigned to both virtual and real stains correlated similarly with a number of 

clinical biomarkers and progression to End Stage Liver Disease (Hazard Ratio HR = 

2.06, CI 95% 1.36-3.12, P < 0.001 for real stains; HR = 2.02, CI 95% 1.40-2.92, p < 

0.001 for virtual stains). Our results demonstrate that virtual trichrome technologies may 

offer a software solution that can be employed in the clinical setting as a diagnostic 

decision aid. 
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Introduction 

Non-alcoholic steatohepatitis (NASH), the most serious condition in the Non-Alcoholic 

Fatty Liver Disease (NAFLD) spectrum, is a liver disease characterized by serologic 

markers of hepatocyte injury as well as distinct histological features1. NASH is 

associated with significant morbidity and mortality 2–4. Patients with NASH are at 

increased risk of progressive fibrosis with end-stage liver disease characterized by 

reduced hepatic synthetic function, portal hypertension, encephalopathy, and 

malignancy such as hepatocellular carcinoma. Portal hypertension can lead to variceal 

bleeding, splenomegaly, ascites, and renal injury 5. Prevalence of NASH in the United 

States has been increasing in recent years in parallel with rising levels of obesity and 

metabolic syndrome6. It is predicted to become the leading cause of liver transplantation 

in the next decade7. 

 

Definitive diagnosis of NASH requires tissue biopsy. These biopsy findings can motivate 

patients to make lifestyle changes (such as improved diet and weight loss) that 

significantly improve their prognosis. Additionally, appropriate staging can determine if a 

patient is eligible for routine screening for hepatocellular carcinoma or treatment for 

varices, ascites, amongst other conditions. Therefore, accurate and timely diagnosis is 

crucial for patient care. For NASH evaluation, liver biopsies are fixed in formalin, 

embedded in paraffin and sectioned. Tissue sections are subsequently stained with two 

principle stain combinations: a routine tissue stain called hematoxylin and eosin (H&E)8 

for grading of NASH and a trichrome special stain that highlights fibrous tissue blue (or 

green depending on local staining methods) for staging of fibrosis.9,10 Macrovesicular 
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steatosis of hepatocytes, parenchymal inflammatory foci and hepatocyte ballooning are 

hallmarks of NASH used in grading disease activity while the distribution, extent and 

interconnectivity of fibrous tissue is used to stage fibrosis.11 Maintaining the reagents 

and technical staff to perform dozens of special chemical stains in a CLIA certified lab is 

costly and resource intensive12. It is thus attractive to computationally "infer" or 

"translate" a digital WSI of a ubiquitous chemical stain (H&E) to a special stain 

(trichrome)13. 

 

The past 20 years have seen the development of sophisticated computational pipelines 

that operate on digitized representations of slides, referred to as whole slide images 

(WSI). Prior to the age of machine learning many of the traditional computational 

approaches to medical image analysis relied on overly simplistic assumptions as to the 

shape, color and structure of the tissue features of interest (e.g. nuclei are round, the 

cytoplasm is pink).14 These rigid assumptions often lead to subpar performance on 

morphometric tasks and fail to capture more informative features that are too esoteric, 

or high dimensional for pathologists and programmers to effectively capture in rules 

based programs.15 Deep learning approaches, heuristics that utilize artificial neural 

networks (ANN) and convolutional neural networks (CNN), circumvent this issue in that 

they are able to find important shapes and patterns for prediction without human 

specification by capturing and integrating low level features into higher level 

abstractions16,17. Given the advent of these powerful machine learning tools, the 

Department of Pathology and Laboratory Medicine at Dartmouth Hitchcock Medical 

Center (DHMC) has fully embraced digital pathology with the caveat that it must 
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leverage advanced computational technologies to provide significant benefits over 

traditional glass slides.18–20 To this end, we have been developing and validating various 

deep learning technologies in histopathology and designing them to clinical scale18,21–26.  

 

Generative image translation techniques transform an image from a source domain A to 

a target domain B. Recently, these techniques have seen much use in the clinical 

space, from converting MRI to CT scans to the ability to generate retinal fundus images 

from blood vessel scans for diabetic retinopathy27,28. As such, these technologies 

present an attractive opportunity in digital histopathology stain translation. The most 

promising of these methodologies rely on the use of generative adversarial networks 

(GAN), which generate realistic images from noise (for the purpose of this study, an 

input signal) using two ANNs; one, the generator, which "generates" the images, and 

another, the discriminator, which decides whether an incoming image is real or 

virtual/synthetic29. The quality of images created by GANs improves as the generator 

“learns" to fool the discriminator through an iterative process of trial and error. GANs 

have been applied in histopathology with success, including for stain translation from 

autofluorescence imaging30, to removal of technical artifacts, as well as for nucleus 

detection and augmentation of deep learning datasets with synthetic images to improve 

prediction accuracy.13,30–42  

 

Our initial preliminary evaluation of technologies for inferring trichrome stains from H&E 

featured a small dataset of images to test the viability of utilizing such techniques at our 

institution.23 Here, we perform a full-scale internal validation study of inferring trichrome 
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stains from H&E at our institution for near-term incorporation into our clinical workflow. 

We describe an image translation model for the purpose of converting H&E stains into 

trichrome stains, validate the technology through comparison of the correlation in 

staging real versus virtual stains with a preliminary non-inferiority cutoff, and highlight 

technical improvements that demonstrate its potential readiness for clinical deployment.  

 

Methods 

Study Population 

Our study cohort consisted of 273 individuals with biopsy proven NASH diagnosis from 

Dartmouth Hitchcock Medical Center in Lebanon, New Hampshire. To identify patient 

cases for our study, we performed a keyword search through a Cerner database for the 

words “trichrome” OR “steatohepatitis” OR “steato” OR “macrovesicular”, OR 

“steatosis”, OR “NASH” OR “alcoholic” over all pathology cases from July 2007 to 

March 2019. Identified cases were then individually checked to make sure the case was 

actually diagnosed as steatosis / steatohepatitis of the non-alcoholic type. All patients 

had paired H&E and trichrome sections (574 total WSI; 14 patients had repeat biopsies; 

21 of the 287 liver biopsies were wedge biopsies), taken at DHMC. Retrospective 

demographic data, serologic markers, and symptoms of end stage liver disease were 

collected from patient charts. We chose to collect data on patient characteristics that 

have been shown to correlate with fibrosis score and prognosis such as BMI 43, status 

of having a diagnosis of impaired fasting glucose, and diabetes mellitus44. Additionally, 

in order to address potential discrepancies between scores of traditionally stained 

tissues and their virtual counterparts, we collected data on non-invasive markers of 
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hepatic fibrosis that are widely used. AST and ALT are well known independent 

predictors of NASH induced liver fibrosis45. Markers of reduced hepatic function such as 

INR, albumin and downstream effects of portal hypertension such as hyponatremia, 

thrombocytopenia, creatinine levels were also recorded. Sodium levels were capped at 

137 milliequivalents per liter as values greater than that are not found to be predictive of 

disease severity and this is the value used to calculate the MELD score 46. We collected 

the serologic data from the time of diagnosis and last clinical encounter.   

 

Lastly, we collected serologic markers in order to calculate MELD and Fib4 scores 

which have been shown to correlate with outcomes of steatohepatitis. Fib4 combines 

platelet count, ALT, AST and age to calculate a score which has been shown to have 

good predictive accuracy for advanced fibrosis in NASH 47–49. The MELD score is a 

prospectively developed and validated measure of liver disease severity commonly 

used by United Network for Organ Sharing (UNOS) to assess the need for 

transplantation 50. One-Way Analysis of Variance (ANOVA) and Chi-Squared statistical 

tests were performed to compare these demographic statistics between the median 

fibrosis stages assigned to the real slides. 

 

Biopsy Collection and Digitization  

Liver tissue from our cohort of NASH patients were obtained by core needle biopsy, fine 

needle biopsy, and wedge resection. Samples were fixed and embedded in paraffin 

blocks and 5-micron sections were stained with H&E and trichrome. Slides were 

scanned using the Leica Aperio-AT2 (Leica Microsystems, Buffalo Grove, IL) scanner at 
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20x magnification, stored in SVS image format (JPEG compression at 70% quality), 

from which they were extracted and converted to NPY (uncompressed unsigned 8-bit 

RGB numpy array) format via our in house pipeline, PathFlowAI. 18  

 

We utilized 20 H&E/Trichrome WSI pairs for training the deep learning model, spanning 

a representative sample of fibrosis stages. WSI are large images that can measure 

hundreds of thousands of pixels in any given spatial dimension. As such, they are 

currently too big to fit into memory for a deep learning analysis and must be broken into 

smaller sub-images. In this case, a whitespace detector contained within the 

PathFlowAI software framework, was used to extract 33,456 non-overlapping 512-pixel 

subimages that contained up to 8% of white space, correspondent to the 40 training 

WSI.  

 

Experimental Design 

We utilized a CycleGAN architecture because of its clear advantages in translating 

unpaired images 51,52. More details and justification on model selection may be found in 

the supplementary section “Model Selection”. We trained a CycleGAN model on the 

33,456 subimages from 20 paired WSI, randomly cropping 256-pixel subimages from 

each of these 512-pixel tiles to augment the amount of usable data. GANs can train 

unpredictably and thus may not have an objective to converge. Instead, the user must 

visually inspect images during the training process to verify training iterations where the 

model is producing highly realistic images. However, judging the quality of the any given 

subimage was not sufficient to decide whether the translation technique could produce 
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both highly realistic and clinically actionable trichrome WSI. Therefore, we built into the 

currently existing CycleGAN framework the ability to test the latest iteration of the model 

on an entire WSI by dynamically extracting and translating overlapping subimages from 

the H&E WSI, then blending overlapped areas as they were used to construct the virtual 

trichrome. This ensured maximum realism and reduced the appearance of obvious 

"tiling artifact". During training, we selected two representative H&E/Trichrome pairs 

(demonstrating different distributions and intensities of trichrome staining) to 

dynamically translate at various points during model training. A pathologist then visually 

compared the predicted trichrome WSIs to the actual trichrome WSIs at a variety of 

points during model training (every 5000 training batch iterations; Figure 1a). After 

training the model across 200,000 batch iterations (Figure 1b), a pathologist selected 

the top model through visual comparison of the real and virtual trichrome WSI 

generated for these two images (Figure 1c). We applied the chosen CycleGAN model to 

virtually trichrome stain 287 H&E WSI using an inhouse pipeline that encases the 

selected model, performs the translation and exports WSI into formats that pathologists 

can read through open-source applications like QuPath or ASAP 53. Our in-house 

pipeline also deploys the slides onto a password-protected image server that allows for 

tissue-staging from any private web browser through the use of openseadragon54 

(Figure 1d). Details about the software implementation for training and slide viewing 

may be found in the Supplementary Materials (section “Software Implementation”).  

 

Four board-certified pathologists (all of whom regularly stage fibrosis in liver biopsies on 

the gastrointestinal subspecialty service) independently staged the virtual and real 
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trichrome stains via the NASH CRN system 55. The inspection of virtual and real images 

was separated by a period of at least two weeks to reduce the risk of the pathologist 

recognizing previously staged counterparts in the virtual image set. The real image set 

was also numbered and ordered differently from the virtual set. All pathologists staged 

separately the virtual and real stains for each of the slides, (8 total assessments per 

slide; 4 assessments for real, 4 for virtual; one pathologist was not able to determine 

stage for two slides; 287 slides; 8*287-2=2294 observations). We also acquired a 

second set of stages for the real slides as further validation over the course of two 

months following another washout period of at least one month (separate set of n=1145 

observations, a stage could not be determined for three images; total set of n=3439 

observations, correspondent to 2291 pairs of assigned virtual and real stages). Images 

were staged using the NASH CRN system, a five-point ordinal scale with F0 indicating 

no fibrosis, F1 as portal fibrosis without septa, F2 as few septa, F3 as numerous septa, 

bridging fibrosis without cirrhosis, and F4 as cirrhosis 55,56. Image inspection was 

conducted using both ASAP Slide V (after a TIFF file export) and openseadragon; the 

usage of either system by an individual pathologist was dependent on computational 

limitations (e.g. some of the pathologists’ work and personal computers could not open 

large images due to hardware limitations) and familiarity with the software. We felt the 

selection of viewing software would have negligible impact on the ability to stage as 

both offer a nearly identical viewing experience and have identical controls. 

 

Assessment of Visual Quality of the Tissue with a Turing Test 
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We solicited feedback on the visual quality of the real and virtual stain slides in the form 

of optional pathologist notes compiled in a table by the pathologists as they screened 

the virtual slides. Given the highly subjective and sporadic nature of solicited feedback, 

we found that these recordings did not quantitatively communicate the extent of the 

presence of artifacts and their impact on liver fibrosis staging. To quantitatively assess 

visual quality of our stains, we conducted multiple Turing Tests, the most common 

method to assess the quality of a translated image using GANs. Typical, tests are 

conducted by showing pathologists images of real and virtual subimages, randomly 

sampled across the real and virtual stained slides. Each pathologist assesses whether 

the image is real or virtual, the results of which are tabulated against the ground truth to 

yield a contingency table. A Chi-Squared or Fischer’s Exact Test assesses whether the 

virtual images may be easily separated from the real images, and vice versa. A Turing 

Test passes if the corresponding statistical test (Fischer’s Exact) fails to reject the null 

hypothesis. We presented each pathologist with a random set of 100 real and 100 

virtual images for three separate subimage sizes: 256x256, 512x512, and 1024x1024 

pixels, where larger images are more likely to contain disqualifying tissue artifacts (200 

images per subimage size* 3 subimage sizes * 4 pathologists = 2400 observations). We 

conducted a total of twelve Turing Tests, four tests (one per pathologist) for each 

subimage size to assess the visual quality of the virtual stain. 

 

Quantitative Assessment of Concordance 

To validate our technology, we aimed to design a preliminary non-inferiority test to 

demonstrate concordance between pathologist staging of the real trichromes and the 
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corresponding virtual trichromes, which could address many of the challenges 

associated with assessment using the NASH CRN system (see supplementary 

materials section “Challenges with Assessment via NASH CRN System and 

Justification for Statistical Modeling Approach” and “Treatment of Pathologist Staging 

Uncertainty for Study Evaluation”). As such, we designed a modeling approach that 

would attempt to account for ordinal outcome measurements 57, pathologist bias (eg. 

was the pathologist predisposed to increasing or decreasing the assigned virtual stage 

given the real stage), memorization from repeated testing of real stages, and repeated 

measurements within case, while establishing a cutoff value that was commensurate 

with the difficulty of the task at hand (non-inferiority of a GAN technology). To account 

for these considerations, we correlated real stage to virtual stage using a multi-level 

ordinal regression model with the following functional specification: 

��	
��
 �
��� � 	��
 �
��� � 	�
�	 � �1 � 
��
|����� 

Real stage was modeled as a monotonic effect 58. The interaction term, 	��
 �
��� �

	�
�	, accounts for pathologist/rater bias. The random slope, �1 � 
��
|�����, accounts 

for memorization between successive tests of real stages given repeated 

measurements per case. Virtual stage was modeled from these predictors using ordinal 

logistic regression with a cumulative link model, which assumes that fibrosis stages 

represent “cut points” in a latent distribution of the true underlying continuous fibrosis 

progression 59–61. To handle uncertainty in pathologist assigned stage (521 

observations, or 15% of the dataset featured reported interval measurements to convey 

uncertainty, eg. F2-F3; impacts 67% of the slides), we separately considered the upper 

bound (eg. F3) and the lower bound (eg. F2) of the measurement interval. To account 
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for high interrater discordance, we separately considered the modeling of concordance 

in the scenario where we retained cases with high agreement of real stain staging 

between the pathologists (as quantified by an interquartile range (IQR) in real stages 

less than or equal to 0.3). In each case, parameters were estimated using a hierarchical 

Bayesian framework, which utilized Markov Chain Monte Carlo procedures with the R 

package brms. We integrated over the predictive posterior to obtain bias adjusted 

ordinal estimates of fibrosis stage, which were correlated to virtual stage using 

Spearman’s Correlation Coefficient. A 95% confidence interval for the correlation 

coefficient was estimated via a 10,000 sample non-parametric bootstrap and compared 

to a preliminary non-inferiority cutoff of 0.962. Additional information on the statistical 

modeling procedures, convergence plots and treatment of pathologist uncertainty in 

staging may be found in the supplementary material, under sections “Treatment of 

Pathologist Staging Uncertainty for Study Evaluation” and “Statistical Methods and 

Results”. 

 

We tested for inter-rater variability through calculation of Spearman’s Correlation 

Coefficient between pairs of pathologists for the set of virtual stages and both sets of 

real stages. We separately tested for test-retest reliability 63 of real staging (comparing 

results from the first real stain stages to the second set) using a 10,000-sample non-

parametric bootstrap of spearman’s correlation coefficient after acquiring two sets of 

real stages per slide from each pathologist. 
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The CycleGAN model was used to make patch level predictions and was thus not tied 

to staging being done on the WSI-level. In this spirit (level of analysis), and with regards 

to preliminary results that demonstrated that including the training slides in the 

evaluation set had negligible impact on concordance, we utilized the entire set of slides 

for the correlation analyses.  

 

After performing a correlation analysis, which assessed overall agreement across a 

wide range of stages, we wanted to understand whether pathologists could accurately 

assess virtual slides for the patients with the highest potential for progression to 

cirrhosis. We assessed sensitivity for staging advanced fibrosis (defined as median 

fibrosis stage equal to F4) in slides that were staged in complete pathologist agreement 

for real stains by recording proportion of times that each pathologist staged a given 

virtual trichrome as advanced fibrosis. We averaged these accuracy scores to yield a 

final agreement measure for advanced fibrosis. We then assessed for agreement for the 

presence or absence of advanced fibrosis for the entire set of pathologist-determined 

real and virtual fibrosis stages (dichotomized median real and virtual stage by strict 

cutoff � � 4). Cohen’s Kappa statistic was used as the measure of concordance for this 

assessment. 

 

Assessing Relationships with Clinical Endpoints 

In order to further test the accuracy of the virtual trichrome stain, we aimed to assess if 

the staging obtained by virtual and real stains were not only correlated with each other 

but with serologic markers of advanced fibrosis. These markers provide us with a 
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means of assessing discordance between the virtual and real staging means against 

quantitative serological data which is known to be correlated with fibrosis / NASH 

severity. We utilized Spearman’s Correlation Coefficient to correlate known serological 

markers with median virtual staging, real staging, the residual between the real and 

virtual assigned stage, and the variation in pathologist staging of the tissue (as defined 

by the IQR). For the sodium biomarker, we capped the maximum value at 137 and any 

value greater was marked as 137 as is the protocol in calculating MELD scores46. We 

also correlated fibrosis staging with the AST/ALT ratio, of which an AST/ALT ratio 

greater than one is associated with bridging fibrosis 45. 

 

We additionally used Kaplan-Meier survival analysis to determine the relationship 

between virtual and real fibrosis stage with development of end stage liver disease. Our 

model adjusted for age and BMI. An event was defined as the occurrence of ascites, 

hospitalization due to liver disease, encephalopathy, variceal bleed, evidence of varices 

with imaging, a diagnosis of hepatocellular carcinoma, dialysis, or the prescription of 

non-specific beta blocker propranolol as a prophylaxis for esophageal variceal bleed 

during follow up. Multivariate cox proportional hazard models adjusting for age and sex 

were also used. As these are markers of late stage liver disease, we also dichotomized 

our cohort into those with a virtual fibrosis stage greater than or equal to F3.5 and less 

than F3.5 and re-ran our analyses. For the serological and survival analysis, we 

modeled median stage as a continuous variable, which is considered to be an 

acceptable practice for the treatment of ordinal independent variables by maintaining 
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the parsimony of the relationship with the outcome while reducing degrees of freedom 

64,65. 

 

Results 

 

Results Overview 

We conducted a large-scale internal validation study of H&E to trichrome conversion by 

training a CycleGAN model on subimages from 20 paired WSI. Then, we converted our 

entire set of 287 H&E stained WSI into trichrome stained WSI; when processed in 

series, it took an average of 5 minutes to convert an entire H&E WSI into a virtual 

trichrome stained WSI. While other studies have chosen to assess the quality of the 

stain as the means of assessing the synthetic images, which is only tangentially related 

to the true utility of the virtual stain, we believe that the best way to assess the viability 

of the approach is whether pathologists can still assign the same fibrosis stage as if 

they were examining the true trichrome stain on an adjacent tissue section (after 

accounting for bias/interrater variability). Assessments of virtual trichrome stains should 

also correlate with actual clinical endpoints (eg. progression to cirrhosis, serological 

markers of liver injury and failure) in the same manner as the real stain. Our results 

indicate that the CycleGAN model we trained is capable of generating virtual trichrome 

stains from H&E which may be sufficient for clinical use pending additional validation.  

 

Patient Demographics 
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We tabulated patient demographic information (age, sex, BMI, various serological 

markers such as Fib4, AST, ALT) from our study cohort, which is summarized in 

Supplementary Table 1. Calculation of chi-squared statistics for categorical 

demographics and ANOVA tests for continuous outcomes demonstrated statistically 

significant differences in some but not all of the serological markers across the mean 

Fibrosis stages for the real trichrome slides. 

 

The mean age of our cohort was 53, ranging from 8-81. Consistent with previous 

studies, our cohort had an elevated BMI with a mean of 34 43. Table 1 displays 

characteristics of our study population stratified by fibrosis score obtained by inspection 

of the real trichrome. The majority (60%) of our patient cohort had significant fibrosis 

with a NASH CRN score greater than or equal to F2.  

 

Pathologist Staging and Histological Inspection 

When comparing pairs of real and virtual trichrome images there was generally 

excellent visual correspondence and for these cases it was difficult to appreciate a 

difference at low magnification (Supplementary Figures 1-5). For stage 0 fibrosis (figure 

2a) the virtual trichrome demonstrates hazy, serum-like staining in the periphery of the 

tissue and slight understaining of the wall of the central vein. In stage 1 fibrosis (figure 

2b), the virtual stain shows patterns consistent with chicken wire fibrosis (due to 

perisinusoidal scarring) although to a lesser extent than in the analogous field in the real 

trichrome stained slides. In stage 2 fibrosis (figure 2c) the virtual stain shows similar 

levels of portal and chicken-wire fibrosis with some aberrant edge staining. In stage 3 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.07.03.187237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.187237


 

 18

fibrosis (figure 2d) the virtual stain demonstrates a nearly identical distribution of fibrosis 

as compared to the real image with slight edge-staining. In stage 4 fibrosis (figure 2e) 

the virtual fibrosis staining pattern is virtually indistinguishable from the real trichrome. 

During pathologist review of the virtual trichrome WSI, the most frequent artifacts 

encountered were aberrant edge staining in the absence of capsule, and patchy 

overstaining / understaining.  In some cases, the virtual image was subjectively 

overstained (figure 3a). In this example, a low magnification inspection demonstrates 

areas of both overstaining and understaining (large portal area). At higher magnification 

there is obvious portal, parenchymal and edge overstaining in the virtual stain. An 

example of understaining of the virtual image (figure 3b) is apparent in both the portal 

and parenchymal areas.  

 

Quantitative Assessment of Stain Quality via Turing Test 

While there were additional understaining/overstaining artifacts in addition to artifacts 

related to biopsy procurement (Supplementary Table 2), the quality of the majority of the 

virtual stains was excellent. To qualify this assessment, pathologists were unable to 

distinguish a virtually stained subimage from a real subimage in nine out of the twelve 

Turing Tests (Supplementary Figures 6-7; Supplementary Table 3). None of the four 

pathologists were able to distinguish real from virtual subimages for images of size 

256x256 (p=0.55, p= 0.06, p=0.64, p=0.07); only one pathologist could distinguish 

images of size 512x512 (p=0.01, p=0.30, p=0.44, p=0.56); two out of the four 

pathologists were able to distinguish images of size 1024x1024 (p<0.001, p=0.16, 

p=0.14, p=0.004), which indicates that larger image crops contained a higher likelihood 
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for disqualifying image artifacts. Overall, the results indicate high micro and macro 

architectural quality when inspecting various slide subregions. 

 

However, we felt that the common artifacts would have negligible impact on the ability 

for the pathologist to stage the slide. Thus, we sought to quantify the concordance 

between the clinical staging of the real and virtual slides to assess the true viability of 

staging virtual stains while accounting for rater subjectivity. 

 

Correlation between Real and Virtual Stain Stage 

When assessing all slides and considering the upper bound of pathologist 

measurements for ambiguous assignments for real and virtual stain stages (eg. 

upstaging F2-3 to an F3) (Figure 4a,c-d), the correlation between bias-adjusted real and 

virtual stage was 0.81 (95% CI: 0.79-0.83). When considering the cases with low 

interrater disagreement of the real stages, we obtained a bias-adjusted correlation of 

0.86 (95% CI: 0.84-0.88), which fell slightly short of the preliminary non-inferiority 

correlation cutoff of 0.9. Complete concordance statistics can be found in the 

supplementary material (section “Statistical Methods and Results”; Supplementary 

Figure 8, Supplementary Table 4). 

 

Test-retest reliability (correlation) between assigned stages from subsequent 

inspections of the real stains for pathologists 1-4 were found to be 0.87 (95% CI: 0.84-

0.90), 0.64 (95% CI: 0.59-0.70), 0.75 (95% CI: 0.71-0.80) and 0.55 (95% CI: 0.48-0.61) 

respectively. The average spearman correlation between stages of real stains across all 
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pairs of pathologists was 0.69 from first set of real stages, while the average spearman 

correlation between pairs of pathologists was 0.70 from the second set of real stages.  

A complete set of inter-rater/intra-rater correlation in real staging and virtual staging can 

be found in the supplementary material (Supplementary Tables 5-6). 

 

Advanced Stage Fibrosis and Sensitivity Analysis 

It is of paramount importance to detect advanced fibrosis with a high degree of 

sensitivity. Using slides where there was complete agreement between pathologists for 

advanced fibrosis (median � � 4.0; n=33 slides), staging of virtual slides recapitulated 

the advanced fibrosis (� � 4.0) staging 85% of the time (0.79, 0.79, 0.94, 0.88 for the 

pathologists respectively) (Figure 4b). Assessing agreement across all slides for both 

the presence (median � � 4) and absence (median � � 4) of fibrosis yielded a Cohen’s 

Kappa of 0.76 (95% CI: 0.65-0.87), demonstrating strong concordance. 

 

Serological Analysis  

While the results above demonstrate strong agreement in fibrosis stage between virtual 

and real trichrome staining, we hoped to correlate the assigned stages with serological 

markers of fibrosis and long-term effects of end stage liver disease to determine if the 

virtual stain correlates with disease severity. There were significant positive 

associations with markers of hepatocyte injury AST and ALT (p < 0.001) as well as 

hepatic synthetic function such as INR (p <0.001). Additionally, there was a strong 

association between virtual fibrosis stage and downstream effects of portal hypertension 

such as ascites (p=0.002). Lastly, real and virtual fibrosis stage were tested for 
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correlation with non-invasive scoring systems MELD and Fib4. Interestingly, although 

we observed a trend toward correlation for both real and virtual stains with the MELD 

score, only the virtual stage met statistical significance criteria (p = 0.047). Both virtual 

and real stages were significantly associated with Fib4 score (p < 0.001). These results 

further support the validity of utilizing virtual trichrome stains for fibrosis staging 

(Supplementary Table 7).  

 

Staging differences between virtual and real slides was also associated with key 

serological markers (Supplementary Table 7).  

 

Survival Analysis 

Perhaps the most important indicator of whether the virtual stains can be meaningfully 

employed in the clinic is whether staging of these tissues are equally predictive of risk of 

progression to end stage liver disease.  

 

We found that for both virtual and real stained tissue the NASH CRN fibrosis stages 

were equally predictive of occurrence of symptoms of end stage liver disease (ESLD) 

via Kaplan-Meier (KM) analysis (virtual trichrome log-rank p < 0.001, real trichrome log-

rank p < 0.001, Figure 5). All KM estimates for treating staging as a continuous measure 

(median across pathologists, rounded to nearest integer) and dichotomous measure 

(median � � 3.5) yielded p-values less than 0.0001 via log-rank statistic (Figure 6). The 

KM plots were consistent for dichotomized staging between real and virtual stains. 

Interestingly, the virtual trichrome fibrosis stage seemed to reflect the risk of progression 
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to End Stage Liver Disease (ESLD) more accurately for the various fibrosis stages. 

Namely, the order of time to progression to ESLD for the real trichrome fibrosis stages 

is F4 < F2 < F1 < F3 < F0 while in the virtual trichrome fibrosis stages the order is F4 < 

F3 < F2 < F1 = F0. (Figure 6b). 

 

A Cox-Proportional Hazards (CoxPH) model for time-to-event outcomes adjusting for 

age and BMI was also applied which demonstrated an increased hazard of experiencing 

symptoms of end stage liver disease with increasing fibrosis stage in both real (Hazard 

Ratio HR = 2.06, CI 95% 1.36-3.12, P < 0.001) and virtually stained tissues (HR = 2.02, 

CI 95% 1.40-2.92, p < 0.001). The concordance statistic, which is a measure of fit of the 

survival curves to the data, was statistically equivalent for models fit on staging of real 

and virtual trichrome staging, irrespective of whether the staging was dichotomized. The 

computed hazard ratios were similar in effect and significance (Supplementary Tables 

5-6). These trends, as elucidated via the KM and CoxPH analyses, were more 

pronounced when scores were dichotomized to advanced fibrosis (Fibrosis score 

greater than 3.5) or early fibrosis (score < 3.5). The aforementioned results suggest that 

virtual trichrome has the same ability to capture the potential for progression to ESLD as 

the real trichrome. 

 

There were no statistically significant differences in dichotomized Fibrosis stage for both 

KM and CoxPH analyses of the real (KM p-value: 0.25, CoxPH p-value: 0.732) and 

virtual (KM p-value: 0.099, CoxPH p-value: 0.563) stain staging for the outcome of 

death.  
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We have summarized the results for concordance between pathologists staging scores 

for fibrosis. Overall, there was moderately strong reported agreement in scores from the 

real trichrome fibrosis stage to the stage derived from inspection of the virtual images. 

This indicates that, pending additional validation in the form of a prospective 

randomized controlled trial, virtual trichrome conversion can generate stains that can be 

readily deployed in clinical practice. 

 

Discussion 

We investigated technologies that could potentially transition trichrome staining to a 

digital pathology test rather than a chemical stain, reducing the cost and personnel 

required to stage NASH biopsies. Our virtually stained tissue were visually consistent 

with real trichrome stained tissue as assessed by pathologists given the strong results 

from our Turing Tests, and our large-scale internal validation cohort quantitatively 

demonstrates strong correlation in staging between the real and virtual stains as 

assessed by pathologists. Virtually stained tissue fibrosis stages nearly surpassed our 

preliminary non-inferiority cutoff in concordance with two separate tests of real stage, 

had similar relationships with clinical / serological biomarkers, and were as predictive of 

progression to ESLD as their real trichrome stained counterparts. Our research 

presents a less labor and resource intensive solution to trichrome staining with nearly 

equivalent predictive value as traditional staining protocols. The ideal use of the 

technology as it currently stands is likely reflexive virtual trichrome staining for liver 

biopsies with real trichrome available by request (significantly reducing the volume of 
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real trichrome stains performed), pending additional fine-tuning of the technology 

(Supplementary Figure 9).  

 

Compared to other medical GAN studies, the strength in our design is the evaluation of 

clinical endpoints of the examined disease process. Our study, in addition to many 

others in the medical GAN literature, present “Turing Tests” that, while useful for 

evaluating the realism of generated images, have previously been utilized in the 

histopathology setting to assess small segments of tissue, which do not reflect whether 

the whole slide “looks real” 39,66–68. Though most of our sampled virtual subimages were 

indistinguishable from their real counterparts by a team of pathologists, we note that 

these measures of quality do not directly assess the viability of the generated slide for 

the potential to capture actionable clinical endpoints and place the pathologist in the 

position of evaluating a tiny subimage, rather than the entire slide. Accurately 

diagnosing and staging the presence of hepatic fibrosis is critical to the management of 

NASH. The presence of fibrosis, especially advanced fibrosis, has significant 

implications for medical management, frequency of disease assessment and prognosis. 

Additionally, accurate diagnostic information may serve as the impetus patients need to 

initiate lifestyle modifications and may indicate to the clinician the need for medication to 

manage their NASH risk factors 69. For these reasons it was extremely important for us 

to demonstrate, not only that our model could produce subjectively acceptable virtual 

trichrome subimages, but that it could create convincing WSI which were of sufficient 

quality to be accurately staged by pathologists. Given that this is an unproven 

technology that aims to replace or augment part of an already risky diagnostic 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.07.03.187237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.187237


 

 25

procedure, we also thought it was necessary to take the additional steps of 

demonstrating that virtual trichrome fibrosis stage was strongly correlated with 

serological and clinical markers of liver injury and ESLD in a similar manner to real 

trichrome fibrosis stages. We were unable to make any substantive claims in our 

preliminary mortality-based survival analysis due to the relatively few patients who died 

during the study period 2. These factors merit further study of virtual staining in a cohort 

with greater representation of F4 stage tissue and sufficient mortality.  

 

In general, the virtual trichrome images were deemed by the reviewers to be 

subjectively acceptable, confirmed by the use of Turing Tests. The most common 

comment recorded for the virtual stains was the presence of aberrant edge staining on 

needle core biopsies. This is likely the due to the inclusion of wedge biopsies in the 

training set. Because wedge tissue has significant areas of capsule, the model may 

have begun to associate any edge with trichrome positivity, even in the absence of 

capsular tissue 70. If this is the reason for the edge staining effect, then elimination of 

wedge biopsies with capsules in the final fine-tuning of our modeling approach may 

alleviate edge overstaining. Nonetheless, the raters in our study universally indicated 

that these areas of aberrant staining did not impede fibrosis scoring. Furthermore, 

quantitative results demonstrated that pathologists were able to recapitulate real late 

stage fibrosis using the virtual trichrome set.  

 

Limitations 
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There are several limitations to our work. The experiment was not completely blinded. 

Each pathologist was given a set of virtual trichromes first and then, two weeks later, 

staged the real set of trichromes. A final set of real stages were collected one to two 

months after staging the first real set.  In order to minimize the chance of a pathologist 

recognizing a correspondent case between the real and virtual trichrome sets 

(“memorization”) we enforced a “washout” period between viewing the two sets of 

images and took the additional step of scrambling the case numbers and slide order. 

We acknowledge that this experimental design risks introducing bias, given that the 

raters might seek to judge the virtual images overly harshly or overly leniently and there 

is the small risk that the rater might remember their diagnosis from a virtual case while 

reviewing the analogous real case. However, given the limited time that raters were able 

to grant us, the goals we were seeking to accomplish (collecting subjective information 

about the virtual trichromes and rating fibrosis scores between real and virtual 

trichromes), and the limited number of pathologists with liver expertise available, we 

deemed these limitations acceptable. The results indicate that these potential biases 

may not have played a significant role, though we attempted to account for the 

aforementioned biases via our modeling approach regardless. 

 

There was a high degree of inter-rater and intra-rater variability amongst assigned 

fibrosis stages from pathologists, regardless of whether the slide was real or virtual, as 

assessed from calculations of inter-rater correlation and test-retest reliability for real 

staging. The nature of the variability in scores was not random, as the final concordance 

modeling approach demonstrated the predisposition of some pathologists to statistically 
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significantly assign a lower/higher virtual/real stage depending on their perception of the 

true stage of the patient. These behaviors may be related to the background of the 

clinician, such as age, time constraints, training, blinding, fatigue, personal preference, 

etc. That pathologists (and other visual experts) can render significantly different 

diagnoses for the same case (or even reviewing the same case at a later timepoint) has 

been well demonstrated in the literature 71,72 and represents a known limitation of 

qualitative diagnostics. For instance, the NASH CRN scale does not appear to be robust 

to changes in raters (which may be reflective of repeated assessments using a digital 

pathology medium over analog counterparts71,73,74; e.g. pathologists may have varying 

degrees of exposure with respect to this medium), which makes it a difficult to assess 

concordance to stages after use of a new staining technology, given the potential for 

high measurement error for the real stain stages.   

 

In addition to this inter and intra rater variability, oftentimes the pathologist posted a 

range of stages (e.g. F2-F3) that represented their uncertainty in staging, which in turn 

made it difficult to model staging as an ordinal variable. These interval reports are 

reflective of the pathologist’s attempt to summarize an underlying continuous 

distribution of fibrosis stage. Many prior studies employing the NASH CRN system do 

not report such measures, though such approximations may yield meaningful 

information that should be taken into account when assessing the viability of a scale for 

clinical decision making. While we have begun to assess for these points of bias and 

uncertainty in our modeling approaches in this study (through utilization of a hierarchical 

Bayesian ordinal regression approach) the fitting procedures of such assessment 
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models should likely be adapted to account for measurement uncertainty (i.e. 

considering an F2 and F3 at the same time rather than separately given an F2-3 report), 

though such procedures were beyond the study scope. Nonetheless, inclusion of 

hierarchical Bayesian modeling procedures are warranted to lend additional insight as 

to the assessment and validation of these technologies given the limitations of the 

evaluating scales and will be pursued in the future 75,76. Due to physician workload, we 

were only able to assess test-retest reliability, and concordance between the virtual 

stain stages and two successive sets of real stain stages; without a “ground-truth” to 

measure from and due to the risk of memorization of stage, we were thus unable to see 

whether their staging of real versus virtual tissue was within what was expected from 

intra-rater reliability. Prior studies have found merit in reporting a correlation based non-

inferiority test62, which we had employed in our study to demonstrate preliminary 

agreement, but a more rigorous clinical readiness test of these technologies may be 

necessary to demonstrate equivalence and immediate usage of this technology 77–80.  

 

Future Opportunities 

While these analyses were conducted on NASH cases, fibrosis can result from any 

chronic liver injury. Aside from NASH, chronic viral hepatitis, alcoholic steatohepatitis, 

autoimmune hepatitis, chronic biliary cirrhosis, primary sclerosing cholangitis and 

outflow obstruction are all relatively common causes of chronic liver injury. While 

fibrosis may be recognized equally well in these disease etiologies, the model needs 

additional testing on other manifestations of fibrosis unrelated to NASH which often 

have distinct scoring systems81. While virtual generation of a trichrome stain appears to 
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be a viable solution for our medical center, we acknowledge that not all histological 

stains are amenable to virtual generation from H&E (eg. Ziehl Neelsen for acid-fast 

bacilli, iron stains). Furthermore, selection of routinely performed stains for the reporting 

of liver biopsies will vary between institutional labs (eg. Masson trichrome, PAS, 

Reticulin stains); we did not validate image-to-image translation techniques for inferring 

these stains but this presents future opportunity for other researchers. 

 

While virtual staining may reduce labor costs and reagent usage, modern autostainers 

and laboratory automation efforts may also assist in this regard. Pathologists may be 

more likely to trust a real stain. However, the degree of laboratory automation, likewise 

computational workflow automation, remains variable between different institutions. 

 

Furthermore, there are opportunities to improve on the modeling approach through 

registration and a paired analysis (e.g. Pix2Pix). Even when tissue is sectioned and 

captured to a slide perfectly (e.g. 5 microns between H&E and trichrome stain) there are 

significant alterations to the microstructure of the tissue (e.g. nuclei, cells and other 

small objects are caught in a different sectioning plane or are completely absent). 

Achieving perfect registration of an H&E and a trichrome stain for subsequent sections 

is therefore very challenging and rarely possible. Even if the H&E slide were destained 

and restained with trichrome, the chemical processing and handling involved (especially 

repeated cover slipping) introduces significant tissue distortions. Ultimately, factors 

related to the serial sectioning of tissue present significant disadvantages for training a 

stain conversion model using paired image information. We were not surprised when a 
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preliminary evaluation of training a Pix2Pix model after registration of H&E and 

subsequent trichome sections demonstrated suboptimal results (principally significant 

structural laxity in the virtual images, so called ‘hallucination’) where the generated 

image was subjectively convincing but often bore no structural similarity to the source 

H&E. These difficulties may be alleviated through use of GAN techniques that allow 

imperfect registration, perhaps combining the best elements of the CycleGAN and 

Pix2Pix algorithms to build a more sophisticated model or incorporating new 

components into the loss term to enforce both structure preservation and capture 

overall similar tissue features.  

 

There are obvious avenues to improving our current CycleGAN modeling approach 

including conducting a paired translation analysis, augmenting the number of capsule 

containing and capsule devoid training images (to address the edge staining artifact), 

and more examples capturing the center of large fibrotic nodules and portal areas (to 

address understaining seen in some large structures). In addition, the GAN generator 

was subjectively assessed (by comparing generated trichromes to their real 

counterpart) only every 5000 training iterations and there were often large differences 

between different training iterations. Saving more frequently and analyzing additional 

virtual WSI may therefore allow us to select an even better model for clinical use.  

 

We have containerized our model and pre-processing pipeline into an opensource, 

deployable software package. These software elements can be readily incorporated into 

automated clinical workflows through the use of pipelining software such as Docker and 
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Common Workflow Language (CWL) 82,83, and can be scaled to meet any clinical load 

with no additional coding (given the appropriate high-performance computing (HPC) 

resources). With additional fine-tuning the model presented herein could be readily 

deployed as a diagnostic aid. Pathologists could use this tool to flip rapidly between or 

compare images of H&E and trichrome slides (and other staining modalities), and if they 

are not satisfied with the staining quality of the virtual slide or find the interpretation 

ambiguous, can order a chemical stain. These steps can facilitate faster clinical decision 

making with less resources (both departmental and tissue). Future analyses may 

explore the prediction of fibrosis stage from an H&E, obviating the need for clinical 

inspection of a virtual stain 84. However, virtual staining is a technology that clinicians 

may trust more than a computer-generated risk score and therefore presents a viable 

decision aid technology. 

 

Conclusion 

Our CycleGAN-based H&E to trichrome conversion model is interpretable and accurate 

and with appropriate validation could be incorporated into the clinical workflow as a 

diagnostic aid. The application of these techniques has the potential to save money, 

save time and improve patient outcomes by allowing for faster and more efficient 

fibrosis staging. In addition, methods like virtual trichrome staining offer a strong 

financial incentive for the adoption of digital pathology. We will investigate techniques to 

further refine this process while seeking implementation in the clinical workflow and 

prospective validation at DHMC.  
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ANN – Artificial Neural Network 
ANOVA – One-Way Analysis of Variance 
AUROC – Area Under the Receiver Operating Curve 
CNN – Convolutional Neural Network 
CoxPH – Cox Proportional Hazards 
CWL – Common Workflow Language 
DHMC – Dartmouth Hitchcock Medical Center 
ESLD – End Stage Liver Disease 
GAN – Generative Adversarial Network 
H&E - Hematoxylin and Eosin 
HE – Hazard Ratio 
HPC – High Performance Computing 
HR – Hazards Ratio 
IQR – Interquartile Range 
KM – Kaplan Meier  
LMM – Linear Mixed Effects Model 
NAFLD - Non-Alcoholic Fatty Liver Disease 
NASH – Non-alcoholic Steatohepatitis 
ROC – Receiver Operating Curve 
UNOS – United Network Organ Sharing 
WSI – Whole Slide Images 
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Figures 
 

 
Figure 1: Overview of Workflow: a) Original H&E and trichrome stained slides; b) H&E 
patches are converted into trichrome patches using CycleGAN; c) Entire trichrome WSI 
are generated at various training iterations; ideal model is selected; d) Final model is 
deployed and real time generated/virtual WSI (right) are presented next to original WSI 
(left) in OpenSeaDragon-based image server for pathologist review 54 
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Figure 2: Select Regions of WSI across different accepted Fibrosis stages by: a) Real 
trichrome, b) Virtual trichrome stains; Entire WSI (including H&E stain) are found in 
Supplementary Figures 1-5 
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Figure 3: Examples of Virtual Staining Artifacts: a) Overstaining; b) Understaining  
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Figure 4: Concordance Plots Comparing Staging of Real to Virtual Stains; a) Heatmap 
of raw scores assigned by pathologists for real (blue column color for test one; green for 
test two) and virtual (red column color); each row represents a slide, each column 
represents a pathologist and whether they were staging real/virtual slide; set of each 
pathologist assessments (real one, real two, virtual) separated by column breaks; b) 
Similar heatmap (assessment of virtual stains) of agreement between pathologists but 
for slides deemed to have real advanced stage fibrosis (median real stage �  4.0; 
complete agreement in staging); c-d) 2-D Density plot of all stages (upper bound; F2-F3 
to F3) assigned between real and virtual stains for the same slide ; darker areas 
indicate higher concentration of stage combinations between real and virtual; off-
diagonal elements have different staging between real and virtual images; c) virtual 
versus first assessment of real stains; d) virtual versus second assessment of real 
stains 
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Figure 5: Kaplan-Meier Plots for the following conditions: (a,c) real stain staging; (b,d) 
virtual stain staging; (a,b) utilizing the median stage assigned by pathologists for that 
slide rounded to nearest integer; (c,d) dichotomizing staging by advanced fibrosis 
(� � 3.5) 
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