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BRG1 promotes transcriptional patterns that are permissive to proliferation in cancer cells  1 
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 2 

ABSTRACT 27 

Background: BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin 28 

remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is 29 

observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the 30 

functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene 31 

expression programs and cancer cell behaviour.  32 

Results: Our investigation of SMARCA4 revealed that BRG1 is universally overexpressed in 486 33 

tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 34 

21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the 35 

molecular effects on global transcription programs. Unexpectedly, depleting BRG1 had no impact 36 

on alternative splicing and conferred only modest effect on global expression. However, of the 37 

transcriptional changes that occurred, most manifested as down-regulated expression. Deeper 38 

examination found the common thread linking down-regulated genes was involvement in 39 

proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and 40 

VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well 41 

as the oncogenic transcription factors, AR and FOXA1. We also noted that BRG1 depletion 42 

repressed genes involved in cell cycle progression and DNA replication but intriguingly, these 43 

pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, 44 

depleting BRG1 conferred G1 arrest. 45 

Conclusions: Our data have revealed that BRG1 has capacity to drive oncogenesis by coordinating 46 

oncogenic pathways dependent on BRG1 for proliferation, cell cycle progression and DNA 47 

replication. 48 

 49 

Keywords: BRG1, SMARCA4, chromatin remodelling, cancer, gene expression, cell cycle, 50 

transcription, DNA replication 51 
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BACKGROUND 53 

 54 

Nucleosomes serve as a physical backbone for chromatin organization on a global scale and at 55 

local gene regulatory elements. Nucleosomes therefore govern both genome-wide stability and 56 

local DNA accessibility (1). Nucleosome positioning by ATP-dependent chromatin remodellers 57 

plays a critical role in regulating DNA accessibility and allows genes to be expressed at the 58 

appropriate place and time (1). Genomic profiling has demonstrated that dynamic regulation of 59 

DNA accessibility occurs primarily at DNA regulatory elements, which are cell type specific, and 60 

that DNA accessibility changes reflect concomitant transcriptional patterns. (2, 3). It is essential 61 

for chromatin to be relaxed at active gene promoters to create an ordered nucleosome disassembly, 62 

which permits binding of RNA pol II and the general transcription machinery (4, 5). In agreement, 63 

ChIP-seq data show that transcription factors are concentrated on accessible DNA, with the highest 64 

levels of bound transcription factors correlating with the most accessible genomic regions (6). 65 

Conversely, chromatin condensation resulting in reduced DNA accessibility is necessary for 66 

transcriptional repression (7). Disruption to the DNA accessibility landscape is a feature of cancer 67 

(2, 8, 9). This was recently emphasized in genomic sequencing data from multiple cancers and 68 

cancer subtypes, which revealed associations between the accessible chromatin organization and 69 

mutation load (8). Moreover, studies of aged human and yeast cells demonstrated that nucleosome 70 

loss compromises genome stability, gene regulation and transcription (10, 11).  71 

 72 

Genes encoding ATP-dependent chromatin remodellers are themselves frequently mutated and 73 

often atypically expressed in cancer (5, 12-16). Notably, the SWI/SNF chromatin remodelling 74 

complex is mutated or transcriptionally deregulated in ~20% of cancers; a mutation frequency 75 

approaching that of TP53 (~26%) (12, 14, 17). The SWI/SNF complex is often described as a 76 

tumour suppressor because it is required by the Retinoblastoma protein (Rb) family for regulation 77 

of normal cell growth (18, 19). Disruptions of multiple SWI/SNF subunits are reported in human 78 
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tumours and cell lines (13-15, 20-37), often accompanied by a loss of heterozygosity consistent 79 

with the inactivation of a tumour suppressor (13, 34). The specific SWI/SNF mutations observed 80 

in tumours and the cancers associated with altered SWI/SNF function have been extensively 81 

reviewed (12-15, 26, 31, 34, 38). However, the mechanism and functional consequences of 82 

SWI/SNF dysregulation are still being defined. 83 

 84 

Brahma-related gene 1 (BRG1) is one of the two mutually exclusive ATPases within the SWI/SNF 85 

complex. Interestingly, SMARCA4, the gene encoding BRG1, has been observed in both down- 86 

and up- regulated states in cancer, indicative of the diverse and complex BRG1 functions. 87 

SMARCA4 mRNA was seen to be down regulated in bladder, colon, non-triple negative breast 88 

cancers, head and neck, oesophageal, melanoma, pancreatic, lung and ovarian cancers, and 89 

SMARCA4 mutation rates in these cancers have been reported between 4-13% (12-14, 22, 24, 30, 90 

39-41). In contrast, SMARCA4 has been reported as over expressed in cancers of the prostate, triple 91 

negative breast cancers and some leukaemias (12, 22, 24, 30, 42, 43). In SMARCA4 over 92 

expressing cancers, no significant recurrent mutations have been reported (42, 44-46). The 93 

importance of BRG1 in cancer is further evidenced through studies of synthetic lethality, where 94 

BRG1 was observed to have a synthetic lethal relationship with the alternative SWI/SNF ATPase 95 

Braham (BRM), and Aurora A kinase in lung cancer, and PTEN in prostate cancer (43, 47, 48). 96 

 97 

Examination of multiple prostate cancer cohorts has demonstrated elevated SMARCA4 expression 98 

or increased BRG1 protein levels. Clinical studies of primary prostate tumours reported an overall 99 

increase in BRG1 protein by immunohistochemistry (42, 44-46). Moreover, increased SMARCA4 100 

gene expression has been reported in tumours from The Cancer Genome Atlas (TCGA) prostate 101 

cancer cohort (49, 50). While it is established that BRG1 is commonly up regulated in prostate 102 

cancer, the full range of molecular pathways impacted by dysregulated BRG1 levels and the 103 

contribution of these molecular changes to the atypical phenotype of prostate cancer cells remains 104 
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unclear. 105 

 106 

BRG1 has known roles in regulating DNA for temporal gene expression at both promoters and 107 

enhancer gene regulatory elements (4, 51-56). Moreover, BRG1 maintains the epigenetic 108 

landscape of a cell at these gene regulatory elements. Specifically, BRG1 has been directly linked 109 

to transcriptional output through its recognition of H3K14ac (57-59). In the absence of H3K14ac, 110 

BRG1 is still present at promoters and histones are disassembled from the chromatin; however, 111 

transcription is reduced (60). At enhancers, BRG1 depletion greatly reduces H3K27ac and subtlety 112 

reduces H3K4me1, which is correlated with a decrease in chromatin accessibility (53). BRG1 is 113 

also known to mediate inter-chromosomal looping interactions between specific loci such as the 114 

MYC enhancer and promoter, the alpha-globulin genes, the IgH locus, and the class II major 115 

histocompatibility complex gene locus (24, 61-64). On a global scale, BRG1 binding has been 116 

found at DNA-loop anchors (56) and topological associated domain (TAD) boundaries where it 117 

increases their stability (65). Together, this demonstrates an important role for BRG1 in 118 

maintaining chromatin architecture at both local and global levels for transcription regulation. 119 

 120 

Here we dissected the molecular role of BRG1 on the transcriptome in prostate cancer. We 121 

confirmed that SMARCA4 is over-expressed in prostate cancer irrespective of severity or cancer 122 

subtype and identified SMARCA4 was also over expressed in a panel of prostate cancer cell lines. 123 

Depletion of BRG1 in LNCaP prostate cancer cells resulted in a modest effect on global gene 124 

transcription with most changes resulting in down-regulated gene expression. Within the cohort 125 

of down-regulated genes in BRG1 depleted cells we identified gene clusters defined by their co-126 

occupancy or independence from transcription factors AR and FOXA1, both of which are known 127 

BRG1 co-activators (66-68). Our data revealed that BRG1, AR and FOXA1 co-regulate known 128 

prostate cancer genes KLK2, PCAT1 and VAV3. Gene ontology analysis further revealed that genes 129 

regulated by BRG1 independent of AR and FOXA1 include factors regulating cell cycle and 130 
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proliferation processes including DNA replication. In agreement, depleting BRG1 promoted G1 131 

arrest resulting in reduced cell proliferation. Cumulatively the data indicate BRG1 promotes 132 

expression of cellular proliferation factors and cancer-associated genes in prostate cancer cells.  133 

 134 

RESULTS 135 

 136 

SMARCA4 is over expressed in prostate cancer irrespective of tumour grade or subtype 137 

We first examined the expression of SMARCA4 in the TCGA (50) prostate normal and cancer 138 

cohort. The 486 tumour samples were subset into the seven TCGA categorised molecular subtypes 139 

of prostate cancer (50). These included those with fusion genes involving ERG (46%), ETV1 (8%), 140 

ETV4 (4%) and FLI1 (1%), or those with mutations in SPOP (11%), FOXA1 (3%) or IDH1 (1%) 141 

(50). The remaining samples were grouped as ‘other’ (26%). Each subtype exhibited a statistically 142 

significant increase in SMARCA4 expression (p<0.05) with the exception of the ‘FLI1’ subtype 143 

(p=0.5899) and ‘other’ (p=0.1899), which both demonstrated a non-significant increase in 144 

SMARCA4 expression (Figure 1A). Previous work examining SMARCA4 expression in the TCGA 145 

prostate cancer cohort demonstrated that it is also up-regulated irrespective of Gleason score (49). 146 

Therefore, we conclude that at the mRNA level, SMARCA4 is universally over-expressed in 147 

prostate cancer, regardless of clinical grade or molecular subtype. 148 

 149 

SMARCA4 is over expressed in prostate cancer and transformed prostate cell lines 150 

We next examined both BRG1 protein and SMARCA4 gene expression levels in normal prostate 151 

epithelial cells (PrEC) and compared to LNCaP (lymph node metastasis), an androgen-dependent 152 

prostate cancer cell line, as well as PC3 (bone metastasis), an androgen-independent prostate 153 

cancer cell line. We found that SMARCA4 gene expression was increased ~9 fold in LNCaP cells 154 

and ~6 fold in PC3 compared to PrEC (p<0.001; Figure 1B). Further, the BRG1 protein level was 155 

increased ~20 and ~24 fold, respectively, in each of the prostate cancer cell lines compared to 156 
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PrEC (Figure 1C). We compared this to published RNA-seq data of several normal, cancer and 157 

transformed prostate cell lines (69). The mean expression of SMARCA4 was significantly 158 

increased in both the cancer cell lines and the transformed cell lines compared to the normal cells 159 

(p=0.0148 and p=0.0353 respectively; Figure 1D). The exception was DU145 cells that has a 160 

known frameshift mutation in SMARCA4, resulting in reduced expression (36). This data show 161 

that common prostate cancer cell lines reflect the same pattern of increased BRG1 protein that is 162 

observed in prostate tumours compared to normal prostate samples and therefore provides an 163 

appropriate model system to explore the functional consequences of BRG1 dysregulation on the 164 

transcriptome. 165 

 166 

BRG1 is required for the maintenance of active gene expression 167 

Our previous work has shown that BRG1 occupancy is enriched at active promoter and enhancer 168 

gene regulatory elements in LNCaP cells (56). We therefore hypothesised that BRG1 would play 169 

an important role in maintaining the transcriptional profile of these cells. To assess this, we 170 

depleted the level of BRG1 protein using two independent siRNAs targeting SMARCA4 (si-171 

SMARCA4-1 and si-SMARCA4-2) and performed RNA-seq at 72 and 144 hours post transfection 172 

(Figure 2A). Initial assessment of our RNA-seq data confirmed successful depletion of the 173 

SMARCA4 transcript (~80%) at both time points (Figure 2B). Additionally, we confirmed 174 

substantial depletion of BRG1 levels reduced to ~40% of the non-targeting control at 72 hours, 175 

and to ~20% of the non-targeting control at 144 hours post-transfection (Figure 2C). We note there 176 

were no significant changes detected in the gene expression of any other SWI/SNF subunit proteins 177 

(Supplementary Figure 1A). Further quality assessment of the RNA-seq data through a principal 178 

component analysis demonstrated that the samples separated by time-point on the first dimension, 179 

accounting for 43.39 % of the sample variance (Supplementary Figure 1B). We performed a 180 

differential gene expression analysis and identified 169 down-regulated genes and 24 up-regulated 181 

genes (logFC > 1.5, FDR < 0.05) at 72 hours post BRG1 depletion (Figure 2D). This increased to 182 
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800 down-regulated genes and 174 up-regulated genes by 144 hours post-transfection (Figure 2E). 183 

This suggests that the primary role of BRG1 in LNCaP cells is to maintain active gene expression 184 

of a subset of genes. 185 

 186 

BRG1 does not function in the regulation of alternative splicing 187 

The nucleosome barrier within genes is reported to contribute to alternative splicing, where there 188 

is a higher conservation of nucleosomes at the splice sites of constitutive exons compared to 189 

skipped exons (70-72). Since the contribution of BRG1 to alternative splicing regulation is 190 

unknown, we investigated if alterations in alternative splicing may explain down regulation of 191 

gene expression after BRG1 depletion in LNCaP cells. To do this we performed a multivariate 192 

analysis of transcript splicing (MATS; (73-75)) of our RNA-seq datasets. After 72 hours of BRG1 193 

depletion, MATS pairwise comparison detected a genome wide total of 13 and 11 skipped exons, 194 

and 14 and 9 retained introns with si-SMARCA4-1 and si-SMARCA4-2 respectively 195 

(Supplementary Figure 1C). At 144 hours post BRG1 knockdown this increased to 240 and 260 196 

skipped exons, and 27 and 26 retained introns with si-SMARCA4-1 and si-SMARCA4-2, 197 

respectively (Supplementary Figure 1D). Given the relatively large number of intron-exon 198 

junctions within the total LNCaP transcriptome, we conclude BRG1 does not extensively 199 

contribute to alternative splicing as the mechanism for predominant gene down-regulation. 200 

However, we do note that at 144 hours post-knockdown the MATS analysis identified retention 201 

of the first intron from the Kallikrein 3 gene, which encodes prostate specific antigen (PSA) 202 

(Supplementary Figure 1E). This splice variant has previously been reported in LNCaP cells and 203 

generates a unique protein from canonical PSA (76). While PSA has a well-known link to prostate 204 

cancer, the function of its alternative splice variant remains unknown. 205 

 206 

BRG1 binding is associated with expression of prostate cancer associated genes 207 

We further examined our RNA-seq datasets to determine which genes showed a significant change 208 
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in expression at 72 hours that was maintained at 144 hours. Of the genes that were down-regulated 209 

at the 72 hour time point, 126 genes (75 %) remained down-regulated at 144 hours. Similarly, of 210 

the up-regulated genes, 16 (67 %) remained up-regulated at the extended time point (Figure 3A). 211 

Within the down-regulated gene set we note a number of genes that have previously been 212 

associated with increased proliferation in prostate cancer; these include kallikrein 2 (KLK2), long 213 

non-coding RNA prostate cancer associated transcript 1 (PCAT1), Vav guanine nucleotide 214 

exchange factor 3 (VAV3)  (69, 77-84) (Figure 3B-D). We also examined the panel of prostate cell 215 

lines (69) and confirmed that, on average there is elevated expression of these genes in both 216 

prostate cancer cells and transformed prostate cell lines compared to normal prostate cells 217 

(Supplementary Figure 2A). This suggests a role for BRG1 in maintaining the expression of genes 218 

associated with prostate cancer proliferation. 219 

 220 

We next sought to further explore commonalities in the genes with a significant change in 221 

expression at both time points. We used ‘Enrichr’ (85, 86) to determine which existing ChIP-seq 222 

datasets of transcription factors had enriched binding at the promoters of these genes. We 223 

discovered that the most significantly enriched datasets were for the androgen receptor (AR) and 224 

Forkhead box A1 (FOXA1) (Figure 3E), both of which are important for prostate cancer growth 225 

(66, 67, 87-91). To investigate the potential coordinated function of these transcription factors with 226 

BRG1, we compare the ChIP-seq signal of BRG1 (91), AR (87) and FOXA1 (87) at BRG1 227 

genome-wide binding sites in LNCaP cells. We found the profiles separated into three clusters. 228 

Cluster 1 sites displayed strong AR and FOXA1 binding, cluster 2 had moderate AR and strong 229 

FOXA1, and cluster 3 had minimal to no signal for AR or FOXA1 (Figure 3F). We next examined 230 

the key BRG1 regulated genes KLK2, PCAT1 and VAV3, and found coordinated binding of all 231 

three factors at the promoters of KLK2 and PCAT1, and binding of BRG1 and FOXA1 upstream 232 

of the internal 3-prime promoter of VAV3 (Figure 3G). Furthermore, we showed that the expression 233 

of AR or FOXA1 themselves was not regulated by BRG1 (Supplementary Figure 2B-C), 234 
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suggesting that the loss of BRG1 is enough to disrupt expression and regulation of KLK2, PCAT1 235 

and VAV3. 236 

 237 

BRG1 binding is associated with the expression of DNA replication genes 238 

As the majority of significant gene changes occurred at 144 hours post-knockdown, we next 239 

investigated potential gene regulatory networks. Gene ontology analysis with Enrichr (85, 86) 240 

identified several significant (FDR < 0.05) GO terms pertaining to biological processes, cellular 241 

component and molecular function that were all broadly related to the cell cycle (Figure 4A). As 242 

BRG1 has previously been shown to interact with cell cycle master regulators, such as Rb and p53 243 

(19, 92-94), we explored the relationship between the cell cycle and BRG1 further in our datasets. 244 

We compiled a list of 250 genes related to cell cycle processes, curated from the cell cycle GO 245 

terms, and of these examined the top 40 most significantly down-regulated genes in our dataset. 246 

Of note among the list were several key genes involved in DNA replication initiation such as 247 

CDC6, CDT1 and CDC45, as well as the Minichromosome Maintenance (MCM) replicative 248 

helicase components MCM2 and MCM5 (Figure 4B). To investigate if the effect on replication 249 

initiation gene expression was more widespread, we reviewed the gene expression of the other 250 

components in the MCM2-7 replicative helicase and the Origin Recognition Complex (ORC) and 251 

found that several of these genes were also down-regulated (Figure 4C-D). We confirmed the 252 

down regulation of MCM5, CDC6 and ORC6 via Western blot, along with cell cycle regulator 253 

CHK1, which revealed almost undetectable expression by 144 hours post BRG1 knockdown 254 

(Figure 4E-F). 255 

 256 

We investigated whether AR and FOXA1 were also colocalised with BRG1 at DNA replication 257 

genes. We examined the ChIP-seq binding profiles of AR, FOXA1 and BRG1 at the promoters of 258 

91 DNA replication genes (determined from the DNA replication GO terms) that were expressed 259 

in LNCaP cells. We found at promoters of these genes containing the active histone marks 260 
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H3K4me3 and H3K27ac, also displayed a weak BRG1 ChIP-seq signal, but were completely 261 

absent of AR and FOXA1 ChIP-seq peaks (Supplementary Figure 3A), for example at the 262 

promoters of CDC45, ORC6 (Supplementary Figure 3B). Additionally, we also note this pattern 263 

at a putative enhancer region within the MCM2 gene (Supplementary Figure 3B). Our data 264 

suggests that BRG1 binding is associated with the expression of DNA replication genes in prostate 265 

cancer cells that is independent of AR and FOXA1. 266 

 267 

BRG1 depletion arrests cells in G1 268 

Given BRG1 regulates several genes involved in proliferation and replication, we next asked if 269 

BRG1 depletion would alter cell cycle progression in LNCaP cells. We investigated this utilising 270 

the same siRNA-mediated approach to target BRG1 by depleting SMARCA4 and conducted flow 271 

cytometry cell cycle analysis at 72 and 144 hours post knockdown. We detected an increase of 272 

cells in G1 at 72 hours, which was enhanced by 144 hours. Specifically, at 144 hours post BRG1 273 

depletion there was ~20% increase of cells in G1 and equivalent loss of cells in S phase (Figure 274 

4G-H). These data suggest that a loss of BRG1 reduces proliferation through mediating a G1 arrest. 275 

 276 

DISCUSSION 277 

 278 

Here we examined the involvement of the SWI/SNF chromatin remodeller BRG1 and its 279 

associated encoding gene SMARCA4 in prostate cancer transcriptional deregulation. We found that 280 

over expression of SMARCA4 commonly occurs in both the TCGA prostate cancer cohort, 281 

irrespective of tumour subtype, and in a panel of prostate cancer cell lines. We also found that 282 

knockdown of the SMARCA4 gene, and consequently the BRG1 protein, results in down-283 

regulation of pro-proliferative transcriptional pathways. These included genes already known to 284 

promote prostate cancer proliferation, as well as cell cycle and DNA replication genes. Reduction 285 

of gene expression in these pathways was concomitant with G1 arrest. Taken together, our results 286 
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provide new insights into BRG1’s contribution to transcriptional patterns relating to proliferation 287 

in prostate cancer. 288 

 289 

We have demonstrated that SMARCA4 mRNA over expression is a universal feature of prostate 290 

cancer. Clinical datasets have shown BRG1 protein levels are over-expressed in prostate cancer, 291 

in the absence of consistent significant deleterious genetic mutations evident in SMARCA4 (42, 292 

44-46). Using the large prostate cancer cohort from TCGA (50) we found that SMARCA4 was 293 

significantly over-expressed. Consistent with this, SMARCA4 expression was increased in a panel 294 

of both prostate cancer and transformed cell lines. These data emphasise that the overall increased 295 

expression of SMARCA4 is a characteristic of prostate cancer, irrespective of subtype. 296 

 297 

BRG1 depletion followed by RNA-seq revealed multiple transcriptomic alterations that were 298 

regulated by BRG1 and related to proliferation. BRG1 depletion primarily resulted in the down-299 

regulation of BRG1’s target genes, indicating the main role of BRG1 is to promote active gene 300 

expression. Within the down-regulated genes were genes associated with increased proliferation 301 

in prostate cancer including KLK2, PCAT-1 and VAV3. KLK2 is a known activator of PSA, which 302 

is an important biomarker of prostate cancer, and associated with decreased apoptosis (77, 84). 303 

PCAT-1 promotes proliferation through the oncoprotein Myc (69, 81), while VAV3 regulates AR 304 

activity to stimulate growth in prostate cancer (78-80, 82). Both PCAT-1 and VAV3 are correlated 305 

with disease progression. Through an analysis of gene ontologies, we also found several cell cycle 306 

gene pathways were downregulated with BRG1 depletion. This included numerous genes involved 307 

in DNA replication, which were among the most significantly down regulated genes following 308 

BRG1 depletion. BRG1 is known to have a role in driving self-renewal and malignancy in B-cell 309 

acute lymphoblastic and acute myeloid leukaemias, cancers which also have over expressed BRG1 310 

(22, 24). Specifically, these leukaemias require high levels of BRG1 for de-condensation of the 311 

cell specific MYC enhancer.  In these cancers, a loss of BRG1 causes a reduction of enhancer-312 
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promoter interactions, reduced transcription factor occupancy and DNA looping which in turn 313 

reduces MYC expression (24). This implies that the overexpression of BRG1 contributes to driving 314 

oncogenic transcriptional programs which influence the proliferation capacity of cancer cells. 315 

 316 

Our data revealed that BRG1 co-occupied the promotors of proliferation associated genes (KLK2, 317 

PCAT-1 and VAV3) along with AR and FOXA1, and that these genes were down-regulated across 318 

our experimental time course. Co-regulation of transcription by AR and FOXA1 in prostate cancer 319 

is associated with reprogrammed binding of AR and oncogenic patterns of gene expression that 320 

are essential for AR-driven proliferation (95, 96). Additionally, there is a high overlap of these 321 

reprogrammed AR binding sites between LNCaP cells and primary prostate tumour tissue (96). 322 

Here we have shown BRG1 gene regulation overlaps with these transcription factors at gene 323 

promoters, which is concomitant with expression of prostate cancer associated genes. However, it 324 

is noteworthy that BRG1 depletion also altered the expression of DNA replication genes through 325 

a mechanism that appears independent of AR and FOXA1. This data suggests that BRG1 has 326 

additional roles in other gene regulatory networks, which may indirectly influence cell 327 

proliferation. As BRG1 is known to interact with cell cycle regulators in other cancers, it is 328 

possible that genes co-regulated by BRG1, AR and FOXA1 are important in a prostate cancer 329 

context, while regulation of cell cycle and DNA replication genes may be a general feature of 330 

BRG1 over expression in cancer. 331 

 332 

CONCLUSIONS 333 

 334 

In summary, our data identifies fundamental role for BRG1 in maintaining active transcription for 335 

proliferation of prostate cancer cells. We find that BRG1 promotes gene expression in prostate 336 

cancer models with varying degrees of dependence on AR and FOXA1. BRG1 is required to drive 337 

the expression of numerous prostate cancer specific genes in an AR/FOXA1 dependant manner, 338 
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but also works independently to drive the expression of pro-proliferative and DNA replication 339 

genes. These results provide important functional information regarding the role of BRG1 340 

controlling proliferation in prostate cancer cells. 341 

 342 

METHODS 343 

 344 

Cell Culture and siRNA Transfection 345 

Normal Prostate Epithelial Cells (PrEC) cells (Cambrex Bio Science, #CC-2555) were cultured in 346 

PrEBM (Clonetics, #CC-3165) according to the manufacturer’s protocol. Briefly, PrEC cells were 347 

seeded at 2,500 cells per cm2 and medium was replaced every two days. Cells were passaged at 348 

approximately 80 % confluence. To passage a T75 flask, PrEC cells were rinsed in 6 mls Hanks 349 

Balanced Salt Solution (Thermo Fisher Scientific, #14025076) then detached with 2 ml pre-350 

warmed 0.025 % Trypsin-EDTA and incubated at room temperature for 5 minutes. Trypsin was 351 

inactivated with 12 mls of Trypsin-Neutralizing Solution (Clonetics, #CC-5002) and cells were 352 

centrifuged at 300 x g for 5 minutes. The supernatant was aspirated, and the cell pellet was re-353 

suspended in PrEBM. The number of cells was determined on the Countess automated counter 354 

and were re-seeded at the appropriate density based on experimental needs. Cells were discarded 355 

after ~16 population doublings. 356 

 357 

PC3 cells (ATCC, #CRL-1435) were maintained in RPMI medium (Gibco, #11875-093) with 10 358 

% FBS, 11 mls of 1 M HEPES (Gibco, #15630080) and Pen/Strep. LNCaP cells (ATCC, #CRL-359 

1740) were cultured using custom T-Medium from Gibco (DMEM low glucose (GIBCO cat# 360 

31600-034), Kaighn’s modified F-12 medium (F-12K; cat# 211227-014), insulin 500x bovine 361 

pancreas (Sigma cat# I1882.10MG), T3 6.825 ng/ml Tri-iodothyronine (Sigma cat# T5516), 362 

Transferrin 500x (Sigma cat# T5391), Biotin 500x (Sigma cat# B4639), Adenine 500x (Sigma 363 

cat# A3259)). Both prostate cell lines were cultured under recommend conditions; 37oC with 5 % 364 
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CO2. When the cells reached ~80 % confluence they were passaged or seeded as per experimental 365 

requirements. For siRNA transfection LNCaP cells were seeded into 6-well plates at a density of 366 

2.5 x 105 cells per well or 10cm dishes at 1.5 x 106 cells per dish. The cells were transfected with 367 

either on target SMARCA4 siRNA (Horizon, #J-010431-06-0005 or #J-010431-07-0005) or the 368 

non-targeting control siRNA pool (Horizon, #D-001810-10-05) 24 hours after seeding the cells 369 

using DharmaFECT 2 (Thermo Scientific, #T-2002-03) as per the manufacturer’s instructions. To 370 

maintain the knockdown over a 6-day period, at 72 hours post transfection the cells were harvested, 371 

split at a ratio of 1:2 into two new wells, and reverse-transfected with siRNA. The cells were then 372 

incubated for a further 72 hours before collection. 373 

 374 

Quantitative Real-Time PCR (qRT-PCR) 375 

RNA was extracted with TRIzol reagent (Thermo Scientific, #15596026), according to the 376 

manufacturer’s protocol. Extracted RNA was re-suspended in 30 ul of nuclease-free water and 377 

quantified on the NanoDrop spectrophotometer (Thermo Scientific). cDNA synthesis was carried 378 

out with 500 ng of RNA using the SensiFAST cDNA Synthesis Kit (Bioline, #BIO-65054) 379 

according to the manufacturer’s instructions. 380 

 381 

qRT-PCR was carried out on the CFX384 Touch Real-Time PCR Detection System (Bio-Rad). A 382 

master mix was made for each qRT-PCR target containing 5 ul of KAPA Universal SYBR Fast 383 

PCR mix (KAPA Biosystems, #KK4602), 0.6ul of 5 uM forward primer, 0.6 ul of 5 uM reverse 384 

primer and 1.8 ul of nuclease free water per reaction. Reactions conditions were 95oC for 3 385 

minutes, followed by 45x cycles of 95 oC for 3 seconds and 60 oC for 30 seconds, then a melt 386 

curve analysis (65 oC to 95 oC, increasing at a rate of 0.5 oC every 5secs). Primers to detect 387 

SMARCA4 were CAGAACGCACAGACCTTCAA (forward) and 388 

TCACTCTCCTCGCCTTCACT (reverse) and for detection of 18S 389 

GGGACTTAATCAACGCAAGC (forward) and GCAATTATTCCCCATGAACG (reverse). 390 
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Relative gene expression was calculated using ddCt and normalised to 18S. A significant change 391 

in gene expression of SMARCA4 between PrEC, LNCaP and PC3 cells was determined by one-392 

way ANOVA and corrected with Tukey’s test for multiple comparisons. 393 

 394 

Western Blot 395 

Whole cell lysates were collected with lysis buffer (50 mM HEPES, 150 mM NaCl, 10% Glycerol, 396 

1 % Triton-X-100, 1.5 mM MgCl2, 1 mM EGTA, 10 mM Pyrophosphate, 100 mM NaF, Roche 397 

protease inhibitor cocktail 1x), and protein level quantified using the Pierce BCA Assay Kit 398 

(Thermo Scientific, #23227) according to the manufacturer’s instructions. Sample reducing agent 399 

(Thermo Scientific, NP0004), loading buffer (Thermo Scientific, NP0007) and 10 ug protein were 400 

combined with water to a final volume of 25 ul. Protein samples were heated at 90 oC for 5 minutes 401 

then allowed to cool to room temperature. Protein samples were loaded on a NuPage Novex Bis-402 

Tris 4-12 % gel (Thermo Scientific, NP0321BOX) and electrophoresed at 100V for 1.5 hours in a 403 

1x MOPS buffer (50 mM MOPS (Biochemicals Astral Scientific, #BIOMB03600, 50 mM 404 

Tris base, 0.1% SDS, 1 mM EDTA [pH 7.7]). Proteins were transferred to a polyvinylidene 405 

fluoride membrane (Bio-Rad, #1620177) at 30 volts for 1 hour using 1x transfer buffer (25 mM 406 

Tris base, 192 mM Glycine [pH 8.3]) with 10 % methanol (Sigma-Aldrich, #322415). Membranes 407 

were blocked for 1 hour with 5 % skim milk in TBS-T (20 mM Tris, 150 mM NaCl, 0.1% Tween 408 

20 [pH 7.6]) at 4oC. Primary antibodies used were BRG1 (Santa Cruz, sc-10768X), GAPDH 409 

(Ambion, AM4300), CHK1 (CST, 2360S), ORC6 (CST, 4737S), CDC6 (CST, 3387S) and MCM5 410 

(abcam, ab17967). Primary antibodies were incubated on samples overnight at 4 oC with rotation. 411 

The membrane was then washed three times for 10mins each in TBS-T with rotation. Secondary 412 

antibodies goat anti-mouse (Santa Cruz, sc-2005) and goat anti-rabbit (Santa Cruz, sc-2004) were 413 

diluted in TBS-T containing 5 % skim milk and incubated at 4 oC with rotation for 1 hour. The 414 

membrane was washed three times for 10 minutes in TBS-T. The membrane was then covered 415 

with ECL solution (Perkin Elmer, #NEL104001EA), incubated for 1min at room temperature, and 416 
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visualized by X-ray film. Adjusted relative density calculations were processed through ImageJ 417 

(97, 98). 418 

 419 

Flow cytometric cell cycle analysis 420 

LNCaP cells were seeded at 1.5 x 106 cells per 10 cm dish and transfected with siRNA as 421 

described. At 72 and 144 hours post transfection the cells were treated with 10 uM EdU for 30 422 

minutes. Remaining EdU was washed off the cells with PBS before harvesting cells, then 1 x 106 423 

cells were fixed in 70 % ethanol and frozen at -20 oC. Cells were then diluted 1 in 4 with PBS then 424 

pelleted and re-suspended in 1 ml of PBS containing 1 % BSA (Sigma-Aldrich, #A2058). Cells 425 

were again pelleted, re-suspended in 500 ul of click reaction mix (10uM carbocyfluorescine TEG-426 

azide, 10 mM Sodium L-ascorbate, and 2 mM Copper-II-sulphate diluted in PBS), and incubated 427 

in the dark at room temperature for 30 minutes. Samples were then diluted with 5 mls of PBS 428 

containing 1 % BSA and 0.1 % Tween-20. Cells were again pelleted, washed with PBS and then 429 

resuspended in 500 ul of PBS containing 1% BSA, 0.1 mg/ml of RNase and 1 ug/ml of DAPI. 430 

Samples were analyised on the Canto II (BD Biosciences). Forward and side scatter were used to 431 

select a population of cells free of cell debris and doublets. Cells were analysed using B450 (FTIC 432 

– EdU positive) and B510 (DAPI) lasers. 50,000 single cell events were recorded for each ample. 433 

FlowJo software v10.5, was used to analyse the data. Data was collected in biological duplicate. 434 

 435 

RNA-seq Experiments 436 

Total RNA was extracted with TRIzol reagent, quantified on the Qubit and quality assessed with 437 

the Bioanalyzer. An aliquot of 500 ng of total RNA was spiked with external controls ERCC RNA 438 

spike-in Mix (Thermo Scientific, 4456740) and libraries constructed with the TruSeq Stranded 439 

mRNA sample preparation kit (Illumina, 20020594) according to the manufacturer’s protocol. 440 

mRNA Libraries were quantified on Qubit and then stored at -20 oC. Library quality and fragment 441 

size of RNA-seq libraries was assessed on the Bioanalyzer, then KAPA Library Quantification 442 
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(KAPA Biosystems, #KK4824) was performed according to the manufacturer’s protocol. The 443 

KAPA quantification results were used to dilute the libraries to 2 nM for sequencing. RNA-seq 444 

samples were sequenced for 100 cycles of paired-end reads on the Illumina HiSeq 2500 platform, 445 

with four samples multiplexed per lane of the high output run. 446 

 447 

RNA-seq Data Analysis 448 

RNA-seq data was processed as described in Taberlay & Achinger-Kawecka et al. (9). Briefly, 449 

read counts were normalized with ERCC spike in controls, mapped to hg19/GRCh37 using STAR 450 

and counted into genes using the featureCounts (99) program. GENCODE v19 was used as a 451 

reference transcriptome to determine the transcript per million read (TPM) value. Fold change was 452 

calculated within each time point as the log2 ratio of normalized reads per gene using the edgeR 453 

package in R. Genes with a fold change of ± 1.5 and FDR < 0.01 were considered significantly 454 

different. Volcano plots of differential expression were created in R with ggplots2 and heatmaps 455 

with the heatmap2 package with normalised row Z-score. PCA was performed in R using the 456 

edgeR package with log counts per million (logCPMS) over GENCODE v19 annotated gene 457 

coordinates and normalizing the read counts to library size. RNA-seq multivariate analysis of 458 

transcript splicing (MATS) to calculate exon skipping and intron retention was performed with the 459 

MATS python package v4.0.2 (73-75). Transcription factor and GO term enrichment was obtained 460 

from Enrichr (http://amp.pharm.mssm.edu/Enrichr/) online gene list analysis tool (85, 86). 461 

 462 

TCGA and prostate cell line expression analysis 463 

Pre-processed RNA-seq data from the TCGA prostate adenocarcinoma cohort was downloaded 464 

(cancergenome.nih.gov) for both normal and tumour samples. The average of tumour (n = 486) 465 

and normal (n = 52) samples was calculated to determine mean expression. Separation of tumours 466 

by Gleason score and molecular subtype was performed in R using the associated clinical data to 467 

subset the appropriate groups. Significance was calculated for tumour versus normal using an 468 
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unpaired T-test. For comparison between Gleason score or molecular subtype, significance was 469 

calculated using one-way ANOVA with Dunnett’s multiple comparison correction. 470 

 471 

Expression data for prostate cell lines from Presner et al. (69) was downloaded from 472 

http://www.betastasis.com/prostate_cancer/. Significance between normal, cancer and 473 

transformed cell lines was calculated using one-way ANOVA with Dunnett’s multiple comparison 474 

correction. 475 

 476 

ChIP-seq data 477 

The following LNCaP ChIP-seq data was obtained from GEO (ncbi.nlm.nih.gov/geo/); BRG1 478 

accession GSE72690 (91), H3K4me3 and H3K27me3 accession GSE38685 (100), H3K27ac and 479 

H3K4me1 accession GSE73785 (9). These data were processed through NGSane pipeline as 480 

previously described (9, 100). Pre-processed bigwig files for FOXA1 and AR were obtained from 481 

GEO accession GSE114274 (87). Genome browser images of ChIP-seq data were taken from IGV. 482 

Heatmaps of ChIP-seq signal were created with deeptools (101). 483 
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 800 

FIGURE LEGENDS 801 

 802 

Figure 1. SMARCA4 (BRG1) is over expressed in prostate cancer. A) SMARCA4 gene 803 

expression (logPRKM) in TCGA data (tumours n= 486, normal = 52) with tumour samples 804 

separated by molecular subtype defined by the TCGA. SMARCA4 expression is increased across 805 

all groups, with subtypes ERG, ETV1, ETV4, IDH1, SPOP, and FOXA1 all significantly up 806 

regulated, one-way ANOVA Dunnett’s multiple comparison correction **p<0.05. B) SMARCA4 807 

gene expression in prostate cell lines normalised to 18S and relative to PrEC (n = 2). Significance 808 

determined by one-way ANOVA with Tukey’s multiple comparison correction ***p<0.001. Bars 809 

denote mean, and error bars are SD. C) Representative Western blot of BRG1 protein level in 810 

prostate cell lines. Quantification above Western Blot by adjusted relative density normalized to 811 

GAPDH and relative to PrEC. D) Expression of SMARCA4 from RNA-seq in prostate cell lines 812 

grouped as normal, cancer or transformed. The mean of each group was calculated, and a 813 

significance was tested by one-way ANOVA Dunnett’s multiple comparison correction, 814 

**p<0.05. 815 

 816 

Figure 2. Loss of BRG1 results in a down regulation of gene expression. A) Schematic of 817 

temporal BRG1 knockdown model used for RNA-seq. Samples were collected at 72hrs (si-NT 818 

control, si-SMARCA4-1 and si-SMARCA4-2) and 144hrs (si-NT, si-SMARCA4-1 and si-819 

SMARCA4-2) post siRNA transfection in duplicate for each condition at each time point (n=2). 820 

Cells were transfected with either control siRNA (si-NT) or SMARCA4 siRNA. B) SMARCA4 821 

gene expression in control and post BRG1 depletion in the RNA-seq data, shown as transcripts 822 
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per million reads (TPM). Control siRNA for 72 and 144 hours are shown collectively as si-NT. 823 

SMARCA4 expression is significantly down regulated at both time points, ***p<0.0001. Bars 824 

denote mean, and error bars are SD. C) Representative Western blots of BRG1 and GAPDH 825 

protein levels at 72 and 144 hours post transfection. Adjusted relative density for BRG1 is 826 

calculated relative to GAPDH and normalized to the non-targeting control. Bars denote mean, and 827 

error bars are SD. D-E) Volcano plots of differentially expressed genes at 72 hours and 144 hours 828 

post knockdown. Significantly down regulated genes are blue and significantly up regulated genes 829 

for 72 and 144 hours post knockdown are shown in orange and red respectively. SMARCA4 830 

differential expression is highlighted in purple. Expression is shown as normalised log2 counts per 831 

million reads. 832 

 833 

Figure 3. BRG1 regulates genes associated with prostate cancer. A) Heatmap illustrating 834 

RNA-seq differential gene expression data for up (n = 16) and down (n = 126) regulated genes 835 

common to both time points after BRG1 depletion. Expression is represented as the normalised 836 

row Z-score of TPM. B-D) KLK2, VAV3 and PCAT-1 gene expression from the RNA-seq datasets 837 

shown as TPM. Bars denote mean, and error bars are SD. E) Gene set enrichment analysis using 838 

‘Enrichr’ of differentially expressed genes that are common to both time points, showing the 839 

adjusted p-value (log 10, reversed x-axis) of significantly enriched transcription factor ChIP-seq 840 

from ChEA curated data (p<0.05). F) Heatmap of BRG1, AR and FOXA1 ChIP-seq signal at 841 

BRG1 binding sites in LNCaP cells, +/- 2.5 kb from the centre of the binding site. Data is clustered 842 

into three groups by k-means. G) IGV images of the genes KLK2, PCAT-1 and VAV3. Grey shaded 843 

regions contain ChIP-seq signal peaks for BRG1, AR and FOXA1. 844 

 845 

Figure 4. BRG1 regulates genes involved the cell cycle. A) Gene set enrichment analysis using 846 

‘Enrichr’ of down regulated genes at 144 hours post BRG1 knockdown. Enriched GO terms are 847 

classified as biological processes, cellular component or molecular function. Adjusted p-value (log 848 
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10, reversed x-axis) of the 10 most significant GO terms are shown. B) Heatmap of gene 849 

expression profiles from the top 40 differential cell cycle genes after BRG1 depletion. Expression 850 

is shown as the normalised row Z-score of transcripts per million reads (TPM), with blue indicating 851 

higher expression and red indicating lower expression. Genes involved in DNA replication 852 

initiation are indicated in blue. C-D) Gene expression from RNA-seq (TPM), of the MCM2-7 853 

helicase components (top) and the Origin of Replication complex (ORC) subunits (bottom). Error 854 

bars denote mean and standard deviation. Bars denote mean, and error bars are SD. E) 855 

Representative Western blot showing protein levels of replication initiation genes MCM5, CDC6 856 

and ORC6, along with CHK1, after 72 and 144 hours post BRG1 depletion. Error bars demonstrate 857 

SD. F) Quantification of Western blots demonstrating adjusted relative density to GAPDH (n = 858 

2). G) Representative flow cytometry scatter of DAPI (x-axis) and EdU (y-axis) fluorescence 859 

intensity at 72 and 144 hours post BRG1 knockdown. G1 cells are shown by boxed gate. H) 860 

Percentage of cells in each phase of the cell cycle from flow cytometry data, error bars show 861 

standard deviation (n = 2). Error bars show SD. 862 

 863 

Supplementary Figure 1. A) SWI/SNF subunit gene expression (TPM) from RNA-seq data. All 864 

subunits, except SMARCA4 (shown in Figure 2A), are not significantly altered. Bars denote mean, 865 

and error bars are SD. B) PCA plot characterising the trend in expression profiles between the 866 

non-targeting control and after BRG1 knockdown. Each point on the plot represents an RNA-seq 867 

sample. Samples are separated by principal components 1 and 2, which together explain 58.37 % 868 

of the variance between the samples. C) Number of skipped exons at 72 hours and 144 hours after 869 

BRG1 knockdown with si-SMARCA4-1 (black) and si-SMARCA4-2 (grey). D) Number of retained 870 

introns at 72 hours and 144 hours post BRG1 depletion with si-SMARCA4-1 (black) and si-871 

SMARCA4-2 (grey). E) Sashimi plot of exons one and two of the KLK3 gene in the non-targeting 872 

and 144 hour knockdown RNA-seq data. Arcs represent the number of split reads across the exons. 873 

Lower numbers represent increased retention of the first intron after BRG1 knockdown. 874 
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 875 

Supplementary Figure 2. A) Expression of KLK2, PCAT-1 and VAV3 in prostate cell lines 876 

grouped as normal, cancer or transformed. B) AR and FOXA1 gene expression from the RNA-seq 877 

datasets shown as TPM. Bars denote mean, and error bars are SD. 878 

 879 

Supplementary Figure 3. A) Heatmap of replication gene promoters, +/- 5kb from the 880 

transcription start site. B) IGV images of the genes CDC45, ORC6 and MCM2. Grey shaded 881 

regions contain ChIP-seq signal peaks for BRG1 and active histone modifications. 882 
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