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Abstract 1 

Strictly controlled inducible gene expression is crucial when engineering biological systems 2 

where even tiny amounts of a protein have a large impact on function or host cell viability. In 3 

these cases, leaky protein production must be avoided at all costs, but ideally without affecting 4 

the achievable range of expression. Here, we demonstrate how the central dogma offers a 5 

simple way to effectively address this challenge. By simultaneously regulating both 6 

transcription and translation, we show how relative basal expression of an inducible system 7 

can be greatly reduced, with minimal impact on the maximum induced expression rate. Using 8 

this approach, we create several stringent expression systems displaying >1000-fold change 9 

in their output after induction in vivo and up to a 350-fold change when used in a cell-free 10 

expression system. Furthermore, we find that multi-level regulation is able to suppress 11 

transcriptional noise and creates a digital-like switch when transitioning between ‘on’ and ‘off’ 12 

states. This work provides foundational knowledge and a genetic toolkit of parts to create 13 

multi-level gene expression controllers for those working with toxic genes or requiring precise 14 

regulation and propagation of cellular signals. It also demonstrates the value of exploring more 15 

complex and diverse regulatory designs for synthetic biology.  16 
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Introduction 17 

Since the development of the first inducible systems in the early 1980s 1, the ability to 18 

dynamically control gene expression through the use of small molecules 2, light 3,4, and other 19 

signals 5 has revolutionized biotechnology. From controlling shifts between cell growth and 20 

protein production stages during large-scale fermentations 6, to the detailed characterization 21 

of genetic parts and circuitry 7, the control of gene expression underpins a huge variety of 22 

applications. However, while switching expression of a gene ‘on’ or ‘off’ is conceptually simple, 23 

it is rare for genes to have such discrete states or ever be completely silenced. Stochastic 24 

effects 8,9 and leaky expression are widespread and potentially important for adaptation in 25 

natural systems but can wreak havoc in engineered systems where genes are toxic to a host 26 

or responses are highly sensitive and easily triggered by unavoidable fluctuations 10,11. 27 

 Early systems for controlling gene expression relied on repurposing native regulatory 28 

components such as transcription factors. One of the most widely used is the Ptac system 1. 29 

This consists of a constitutively expressed LacI repressor that can form dimers and tetramers 30 

to strongly bind operator sites within a Ptac promoter sequence and sterically block initiation of 31 

RNA polymerase (RNAP). LacI is sensitive to Isopropyl β-d-1-thiogalactopyranoside (IPTG) 32 

and at high concentrations, the DNA binding activity of LacI is abolished. This lifts repression 33 

of Ptac and leads to strong transcription of genes regulated by this promoter. While in most 34 

cases such systems offer strong repression, because such regulatory systems focus on a 35 

single step during protein synthesis (i.e. transcription), they are vulnerable to fluctuations in 36 

regulator production and the stochastic nature of biochemical reactions during gene 37 

expression 9. 38 

 Over the past decade, synthetic biologists have developed more advanced methods 39 

to control gene expression. These include engineered regulators based on DNA binding 40 

proteins such as zinc fingers 12, TALENs 13 and CRISPRi 14, RNA-RNA interactions 15–17, post-41 

transcriptional/translational processes such as RNA and protein degradation 18, as well as 42 

using directed evolution to optimize existing inducible systems 19. This offers a wealth of 43 

options to more strictly regulate gene expression through the coupling of multiple forms of 44 

regulation (e.g. affecting both transcription and translation of a gene) to reduce unwanted 45 

expression and improve the robustness of a system to component failure. However, few 46 

examples of such multi-level regulation have been implemented to date 20,21. This has resulted 47 

in an unclear picture of how best stringent multi-level control can be achieved and the trade-48 

offs that exist between performance, regulatory complexity, and cellular burden when 49 

designing these systems. 50 

 Here, we address this problem by systematically studying the combined use of 51 

transcriptional and translational regulators to stringently control protein expression. Using a 52 
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combination of mathematical modelling and combinatorial genetic assembly, we are able to 53 

design, build and test a variety of synthetic multi-level controllers (MLCs) and elucidate the 54 

relative performance of each. These controllers all implement a coherent type 1 feed-forward 55 

loop (C1-FFL) regulatory motif (Figure 1A) that is commonly found in natural genetic systems 56 

and is known to enable more stringent control of an output but is rarely used when designing 57 

new expression systems 22. We show how MLCs offer advantages for many applications 58 

spanning the stringent control of protein expression to the accurate propagation of information 59 

in a cell 23,24 and demonstrate how applying modern synthetic biology tools to even simple 60 

regulatory systems can offer paths towards the precise and reliable control of biological 61 

systems. 62 

 63 

Results 64 

Stringent control of gene expression by harnessing the central dogma 65 

In most synthetic genetic circuits, control of gene expression is achieved through the use of a 66 

single type of regulation (Figure 1A), with control of transcription predominantly used. While 67 

this type of single-level controller (SLC; Figure 1B) is often sufficient for many applications, 68 

the central dogma naturally lends itself to more stringent multi-level regulation where both 69 

transcription and translation are controlled simultaneously (e.g. via transcription factors and 70 

RNA-based translational switches). Such multi-level controllers (MLCs; Figure 1C) can be 71 

generalised by a genetic design that consists of an L1 gene encoding a level 1 transcriptional 72 

regulator with cognate promoter PL1, and an L2 gene encoding a level 2 translational regulator. 73 

Both L2 and the gene of interest (GOI) are separately transcribed by PL1 promoters and the 74 

product of L2 activates translation of the GOI transcript. This MLC encapsulates a coherent 75 

type 1 feed forward loop (C1-FFL) in which both L1 and L2 are necessary for production of 76 

the GOI. 77 

 To explore the possible benefits of this regulatory motif, we developed mathematical 78 

models to capture how the rate of production of a GOI varied in response to differing 79 

concentrations of an input inducer for both the SLC and MLC designs (Supplementary Note 80 

1; Supplementary Data 1). We generated steady state response functions by simulating the 81 

models using biologically realistic parameters (Supplementary Table 1) over a range of 82 

different input IPTG concentrations. As expected, the output production rate displayed a 83 

sigmoidal shape with both controllers reaching near identical maximum rates at high input 84 

IPTG concentrations (Figure 1D). The main difference was that the MLC design displayed a 85 

50-fold lower output than the direct controller at low IPTG concentrations, leading to 86 

significantly reduced basal expression when no input was present (Figure 1D). This caused 87 
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the MLC design to have both an increased dynamic range and fold-change between ‘off’ and 88 

‘on’ states when compared to the SLC design. 89 

 We also simulated the output protein production rate for both models when exposed 90 

to a range of dynamic inputs. These included delta functions, as well as pulse and step inputs 91 

(Figure 1E). Simulations showed that both types of controller displayed virtually identical 92 

output responses for both the pulse and step inputs, with only a small reduction in output 93 

expression rate for the MLC that matched its lower basal expression level. However, 94 

significant differences were observed in the responses to the delta function input. While the 95 

SLC led to moderate sized pulses in output, the MLC design fully suppressed all output activity 96 

with only tiny fluctuations in the output expression rate observed. The behaviour of the MLC 97 

arose from the need for both L1 and L2 to be expressed to sufficiently high levels for 98 

expression of the GOI to be triggered. The short pulses of expression caused by the delta 99 

function input were insufficient to cause this switch and allowed the MLC to effectively filter 100 

out these transient events in its input. 101 

 The ability to filter out rapid fluctuations is particularly important for stringent control in 102 

systems where input promoters exhibit high levels of intrinsic noise. In such scenarios, protein 103 

levels can vary significantly across a population of cells 8 due to the often bursty nature of 104 

gene transcription. This is commonly seen for weak promoters where intrinsic noise 105 

dominates. Rather than the activity of a weak promoter being uniformly low, it instead displays 106 

short bursts of strong activity separated by long periods of inactivity 8,25. Across a population 107 

this averages out to a low overall expression level, but large variability is present between 108 

cells. As seen for the delta function inputs, such input profiles driving the SLC will lead to large 109 

fluctuations in the output. However, because intrinsic promoter noise is specific to an individual 110 

promoter and uncorrelated between multiple identical versions of a promoter within a 111 

construct, the MLC design which contains two copies of the input promoter PL1 should find that 112 

a burst of expression from one PL1 promoter is highly unlikely to occur at the same time as a 113 

burst from the other. Therefore, the MLC will suppress noise in the output. 114 

 To test this hypothesis, we generated accurate time-series promoter activity profiles 115 

based on a two-state model 25 where the mean length of time a promoter was in an ‘on’ active 116 

and ‘off’ silent state (∆tON and ∆tOFF, respectively) were ⟨∆tON⟩ = 6 min and ⟨∆tOFF⟩ = 37 min. 117 

These values were taken from previous experimental measurements in E. coli 25. We also set 118 

the activity of the PL1 promoter when in an ‘on’ state to a biologically realistic 0.25 RNAP/min. 119 

Independent time-series were generated for each PL1 promoter in the MLC and only one of 120 

these was used for the SLC where only a single PL1 promoter is present. These profiles were 121 

then fed into our existing dynamic models and the responses of the systems simulated. We 122 

found that the output production rate for the SLC saw large increases, especially where the 123 

input consisted of longer bursts of activity or several bursts in short succession (Figure 1F). 124 
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In comparison, the MLC fully suppressed all output production making it an excellent filter of 125 

intrinsic promoter noise. 126 

 127 

A genetic template to explore multi-level gene regulation 128 

There are many ways that an MLC could be implemented biologically. Furthermore, when 129 

implementing such a controller it is often necessary to switch the input that is used and internal 130 

regulators such that multiple controllers can be used simultaneously within the same cell. To 131 

meet these requirements, we developed an 8-part genetic template and toolkit of parts to allow 132 

for the rapid combinatorial assembly of MLCs (Figure 2A). The design enables both single 133 

and multi-level regulation, has the option to introduce protein tags for further post-translational 134 

control of the GOI (e.g. through signalled degradation) and is structured to minimise the 135 

chance for transcriptional readthrough to cause unwanted expression of the component parts. 136 

The toolkit comprises 8 types of part plasmid (pA–pH) and a backbone plasmid (pMLC-BB1) 137 

in which the final MLC design is inserted (Supplementary Data 2). Assembly is performed 138 

using a standard one-pot Golden Gate reaction with individual blocks designed to use 4 bp 139 

overhangs with minimal cross reactivity to ensure the correct and efficient ligation of parts 26. 140 

Furthermore, rapid screening of successful inserts is enabled by the drop-out of an orange 141 

fluorescent protein (ofp) expression unit 27 (Supplementary Note 2). 142 

 Using this toolkit, we aimed to compare the in vivo behaviours of different SLC and 143 

MLC designs with a focus on the different mechanisms that could be used for L2 control and 144 

the affect these might have on overall performance. For the SLC design we chose the widely 145 

used Ptac system introduced earlier (Figure 2C). To simplify comparisons, we also used the 146 

Ptac system for L1 control in all the MLC designs and combined it with three different RNA-147 

based L2 regulators. These included a toehold switch (THS; Figure 2D) 17,28, a small 148 

transcription activating RNA (STAR; Figure 2E) 29, and a dual control system (DC; Figure 2F) 149 

21. 150 

 The THS regulator encodes a structural component followed by a ribosome binding 151 

site (RBS) that is used to drive translation of the GOI (Figure 2D). The structural region is 152 

designed to form a strong hairpin loop that when transcribed hinders the ability for ribosomes 153 

to bind the RBS, and thus inhibits translation. Translation is activated by expression of a 154 

complementary small RNA (sRNA) trigger that hybridizes to a short unstructured region of the 155 

THS which causes a breakdown in its secondary structure. This conformational change allows 156 

ribosomes to bind the RBS and translation of the GOI to proceed. THSs were selected 157 

because they offer strong repression of translation, can be designed computationally, and 158 

large libraries of designs exist with minimal crosstalk when used together 17,28. 159 

 Unlike the THS, the STAR regulator works at a transcriptional level. The STAR’s target 160 

is placed before an RBS in the 5’ untranslated region (UTR) of the GOI (Figure 2E). This 161 
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forms an intrinsic terminator when transcribed and inhibits GOI expression. Activation is 162 

achieved by expression of the STAR RNA, which interacts with the target, prevents terminator 163 

formation and thus allows for expression of the downstream GOI. Similar to THSs, STARs 164 

have been shown to offer strong repression and there exist large libraries of orthogonal 165 

variants 16,29.  166 

 Finally, the DC regulator combines both transcriptional and translational control by 167 

modifying the pT181 attenuator 21. The DC target is placed in the 5’ UTR of the GOI and 168 

encodes an intrinsic terminator that includes the RBS (Figure 2F). When transcribed, the 169 

intrinsic terminator not only halts transcription, but also represses translation by causing the 170 

RBS to form a strong RNA secondary structure making it inaccessible to the ribosome. 171 

Activation is achieved by expression of a STAR, which interacts with the target, both 172 

preventing terminator formation and causing a conformational change in the RNA structure 173 

that makes the RBS accessible for translation initiation. The DC regulator was chosen due to 174 

this combined regulatory action which has been shown to produce strong repression 21. 175 

However, to date, only a single of these regulators has been created, limiting future 176 

applications. 177 

 DNA encoding parts for each of these regulatory systems was synthesised and our 178 

toolkit used to assemble the SLC and three MLC designs. Superfolder green fluorescent 179 

protein (gfp) was chosen as the GOI to allow for the measurement of output expression in 180 

single cells using flow cytometry. 181 

 182 

Performance comparison of the controllers 183 

To characterise the performances of the controllers, we transformed Escherichia coli cells with 184 

each construct and measured GFP fluorescence using flow cytometry for ‘off’ and ‘on’ input 185 

states. As Ptac was used as an input for all the designs, this corresponded to growing the cells 186 

in either 0 or 1 mM IPTG, respectively (Methods). Data from these experiments was then 187 

used to calculate the dynamic range and fold change in output GFP fluorescence (Table 1; 188 

Supplementary Figure 1). 189 

 We found a clear separation between output states for all designs with little variation 190 

between biological replicates (Figures 3A). All MLCs (THS, STAR and DC) reached higher 191 

expression levels than the Ptac SLC, and the THS and DC designs achieved large >1000-fold 192 

changes between output states. Notably, while the STAR design reached a much higher ‘on’ 193 

state than the Ptac design, the STARs high levels of basal (leaky) expression when no input 194 

was present resulted in a 43% lower fold change (Table 1). 195 

 A challenge when calculating these measures (especially fold change) is the ability to 196 

accurately quantify very low level of output GFP fluorescence, which are near or identical to 197 

the autofluorescence of the cells. To better understand this aspect, we measured the GFP 198 
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autofluorescence of untransformed E. coli cells, performing 11 biological replicates to estimate 199 

a fluorescence distribution that could be used as an approximate detection limit. Overlaying 200 

the average and standard deviation of the cell autofluorescence onto our results (Figure 3A, 201 

dashed line and grey shaded region), we found that the ‘off’ states for the Ptac, THS and DC 202 

designs all fell within this region and very close to the average suggesting they have virtually 203 

no leaky expression at all. 204 

 Another difficulty when comparing the performance of the controllers is the need to 205 

consider the large differences in the maximum expression rates (e.g. >60-fold difference 206 

between the Ptac and THS designs for the ‘on’ state). It should be noted that the same Ptac 207 

promoter is used as input to all our designs and that it includes a 15 bp upstream spacer 208 

element to insulate its function from contextual effects arising from differing nearby sequences 209 

that are present in each design 24,30. It is therefore reasonable to expect the dynamic range of 210 

the input promoter’s transcriptional activity to be similar for each controller, with differences in 211 

output protein expression rate related directly to the different strength ribosome binding sites 212 

found in each L2 regulator or the SLC design. Given these differences and to allow for an 213 

unbiased comparison, we calculated the relative basal GFP expression level of each controller 214 

as a percentage of its maximum output (Table 1). This showed that the THS performed best, 215 

displaying a 25-fold decrease in relative basal expression compared to the Ptac SLC with 216 

0.02% relative basal expression compared to 0.5%, respectively. The DC design also 217 

performed well with 0.04% relative basal expression, while the STAR MLC saw the largest 218 

relative basal expression of 1.45%, nearly 3 times that of the Ptac SLC. 219 

 While comparisons of average expression levels between ‘on’ and ‘off’ states are 220 

useful, they are not able to capture the role of cell-to-cell variability inherent in all gene 221 

expression 9. Such variation is crucial when assessing the performance of stringent expression 222 

systems because even though average output states might be sufficiently separated to be 223 

distinguished, cell-to-cell variation across a population can lead to overlaps in the output 224 

distributions. Cells falling in this overlap are impossible to classify resulting in some cells with 225 

an undetermined state. Engineers have developed measures to help characterise the strength 226 

and quality of a signal (i.e. the ability to distinguish ‘on’ and ‘off’ output states) with the Signal 227 

to Noise Ratio (SNR) commonly used in other fields such as electronics. SNR has also 228 

recently been adapted for use when studying engineered genetic systems making it easier to 229 

understand how the quality of signals in a circuit are maintained or degraded as they pass 230 

through various genetic devices 23. 231 

 Using the flow cytometry distributions, we calculated the SNR for each controller in 232 

decibel (dB) units (Table 1; Methods). We found that the Ptac SLC performed worst with a low 233 

SNR of 0.2 dB, corresponding to a signal barely larger than the noise. This was evident for 234 

the flow cytometry distributions where a sizable overlap in the ‘on’ and ‘off’ states was seen 235 
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(Figure 3B). All MLCs performed better with the THS achieving an SNR >10 dB. This 236 

improved performance was also evident from the flow cytometry data with clear gaps of 237 

varying sizes between the ‘on’ and ‘off’ output distributions (Figure 3B). This clearer 238 

separation between cells in an ‘on’ and ‘off’ state would make these parts ideal for genetic 239 

logic circuits, ensuring signals are cleanly propagated. 240 

 241 

Burden of controllers on the host cell 242 

There is a growing awareness of the importance of considering the burden that engineered 243 

genetic parts and circuits place on their host cell 31. The introduction of a genetic construct 244 

that sequesters large quantities of shared cellular resources like ribosomes or heavily impacts 245 

core metabolic fluxes can lead to reduced growth rates and trigger stress responses  that 246 

impair the function of engineered genetic parts 32–37. When designing the MLCs, we 247 

purposefully selected RNA-based regulators as previous results suggest that they impose a 248 

small metabolic burden on the cell 38. However, to experimentally verify this in our cells, we 249 

generated growth curves for all SLC and MLC designs (Supplementary Figure 2). Because 250 

the metabolic demands of the controllers would vary based on the concentration of inducer 251 

present (due to the varying levels of sRNA or STAR produced), cells were exposed to 4 252 

different concentrations of IPTG (0, 0.1, 1, 10 mM) spanning the ‘off’ and ‘on’ states of the 253 

controllers. 254 

 From these growth curves, we estimated the doubling time during the exponential 255 

growth phase (Methods). We found that the SLC and all MLCs displayed similar doubling 256 

times of ~70 min (Figure 3C). Furthermore, we saw a slight decrease in the doubling times of 257 

all controllers as the IPTG concentration increased. This trend is counterintuitive given that an 258 

increasing IPTG concentrations will cause expression of the GOI and any L2 regulators, 259 

increasing the burden on the cell. However, it is known that IPTG can have unexpected effects 260 

on cell physiology 39 and cause changes in plasmid stability 40, which could lead to reduced 261 

overall burden due to fewer copies of the controller plasmid or more efficient utilisation of 262 

available nutrients by the cell. 263 

  We also measured the lag time after inoculation into fresh media before the cells 264 

entered exponential growth (Methods). We found differences between many of the controllers 265 

with a lag time of ~165 min for the Ptac and THS designs, a shorter lag time of 88 min for the 266 

DC design, and a significantly longer lag time of 373 min for the STAR design (Figure 3D). 267 

Closer inspection of the growth curves showed that the DC design had a consistently higher 268 

initial cell density (optical density at 600 nm of 0.07 compared to 0.04 for the THS design), 269 

which could account for the shorter lag phase (Supplementary Figure 2). For the STAR 270 

design the elongated lag phase coincided with a consistently longer additional time of ~100 271 

min to reach saturation of the culture. 272 
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 To better understand if the extended lag phase of the STAR-based MLC was a general 273 

feature to be expected when using this type of regulator, we rebuilt this construct using a 274 

different STAR (STAR2) that had an identical initial 72 bp sequence, but unique 10 bp 275 

sequence at its 3’-end (Supplementary Table 2). As we would expect for such a similar 276 

design, testing of the STAR2 construct showed similar performance to the initial STAR design 277 

with a good dynamic range and similar leaky expression in its output (Table 1; 278 

Supplementary Figure 3; Methods). However, unlike the original, the STAR2 design 279 

displayed a lag phase (161 min) and doubling time (72 min) that closely matched the other 280 

MLCs. This suggests that long lag times observed for the original STAR design were likely 281 

due to some highly specific and uncharacterised off-target interactions with endogenous 282 

cellular processes and not due to a general feature of the STAR’s regulatory mechanism. 283 

 284 

Digital-like transitions and suppression of weak input signals 285 

Our previous modelling of the MLCs showed that in addition to improved performance in ‘on’ 286 

and ‘off’ states, the addition of the L2 regulator also altered the response function, causing a 287 

sharper transition from an ‘off’ to ‘on’ state due to the lower basal expression, and an ability to 288 

suppress low level noise in the input (Figure 1D, E). 289 

 To assess if these features were present, we generated response functions of the 290 

controllers by growing the cells in varying concentrations of input inducer and measuring 291 

steady state output GFP fluorescence. The sharpness of the transition is captured by the 292 

cooperativity of Hill function fits to this data. We found that in comparison to the Ptac SLC, both 293 

the THS and STAR MLCs saw more than a doubling in this value from 3.4 to more than 7, 294 

while the DC design maintained an identical value (Table 1). High cooperativities correspond 295 

to a very sharp step-like transition between ‘on’ and ‘off’ states that is clearly evident from the 296 

response function curves (Figure 4A). The high non-linearity in the response functions of the 297 

THS and STAR MLCs is potentially useful for information processing tasks. In particular, 298 

implementing digital logic within cells requires clear ‘on’ and ‘off’ states and limited chance for 299 

signals to reside at intermediate states. Sharp transitions in the response function ensure that 300 

there is less room for an input to fall at an intermediate point during the transition, ensuring an 301 

‘on’ or ‘off’ state is always given. Furthermore, a high non-linearity can also be exploited to 302 

generate bimodality. For example, if a noisy input is positioned to span the transition point in 303 

the response function, a population of cells will have large groups of cells in ‘on’ and ‘off’ 304 

states, with much fewer in intermediate states because of the sharp transition and small 305 

probability of falling in this small region. 306 

 To quantify the ability of each MLC to suppress low level input noise, we further 307 

analysed the response functions. As mentioned earlier, the large differences in dynamic range 308 

make comparisons between designs difficult. Given that the promoter driving transcription for 309 
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each MLC is identical (Ptac), the discrepancies arise from differing gfp translation rates 310 

controlled by the associated ribosome binding sites. These do differ in sequence and strength 311 

for each design and in some cases are specific and integral to the RNA regulator’s function. 312 

Therefore, to allow for comparisons, we normalised the output of each MLC to its maximum 313 

output and used data from the Ptac SLC to estimate the input activity of the Ptac promoter used 314 

in each controller. If no secondary regulation was present (as in the SLC), then we would 315 

expect the normalised input and output to follow a straight line where one equals the other 316 

(see Ptac design in Figure 4B). However, if the secondary regulation suppresses the input Ptac 317 

activity then a lower normalised output to input will be seen, and conversely, an amplification 318 

of the input will lead to a higher normalised output to input. 319 

 Using this approach, we assessed the responses of each MLC and found that all 320 

caused a suppression of low levels of input promoter activity and an amplification of higher 321 

input activities. This effect was most prominent for the THS and STAR designs, with both able 322 

to ensure controller output is maintained below 1% even when the input promoter reaches 323 

3.5% activity (Figure 4B, insert). These results confirm the findings of our modelling and 324 

demonstrate the potential for using MLCs to filter out unwanted input activity in noisy 325 

environments. 326 

 327 

Controller performance in a cell-free expression system 328 

There has been growing interest in the use of cell-free protein synthesis (CFPS) systems 41 329 

as a means to prototype synthetic genetic circuits 42, enable the rapid characterisation of 330 

genetic parts and metabolic pathways 43, and more recently as a novel bioproduction 331 

platform44. While great progress has been made in expanding the applications of CFPS 332 

systems 45–48, strategies to stringently control protein expression have yet to be developed. 333 

To assess the performance of our controllers in a cell-free context, we used a CFPS 334 

system created from crude E. coli cell lysate and performed simple batch reactions (Methods) 335 

that we continuously monitored so that output expression rate could be inferred from changes 336 

in GFP fluorescence over time. These experiments showed that all controllers were also 337 

functional in the CFPS system and behaved qualitatively similar to the in vivo situation (Figure 338 

5A; Supplementary Table 3). Overall, MLC designs performed better than the SLC design, 339 

by showing a lower percentage of basal expression, a larger dynamic range and fold changes 340 

between ‘off’ and ‘on’ states with sharper, more digital-like, transitions (i.e. higher co-341 

operativity in Hill function fits).  342 

However, compared to the in vivo situation, we observed distinct differences in 343 

performance. The largest drop in performance was observed for the Ptac SLC design, for which 344 

basal expression reached 10% of the maximal output and only a 10-fold dynamic range (i.e. 345 

between ‘off’ and ‘on’ output states). Performance losses were also observed for the other 346 
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MLC designs; however, the THS design displayed <1% basal expression and a ~350-fold 347 

change between ‘off’ and ‘on’ output states. These performance losses were likely caused by 348 

the relatively low effective concentrations of regulators that can be achieved in a CFPS system 349 

compared to the highly crowded cytoplasm of a living cell 49. Especially low concentrations of 350 

the LacI repressor will likely limit the maximal repression that can be achieved in the CFPS 351 

system, accounting for the higher basal expression observed in performance observed. 352 

Notably, the STAR MLC showed a similar performance in respect to percentage of 353 

basal expression, fold-change and cooperativity compared to the in vivo setting (Table 1 and 354 

Supplementary Table S3). This robustness may stem from the fact that the STAR design 355 

exploits secondary control at a transcriptional level, specifically, through premature 356 

termination of transcription in the 5’ UTR of the output gene, and therefore regulation limits 357 

the potentially active transcripts that are present within the reaction (Figure 2E). In contrast, 358 

the THS design produces full length transcripts and relies on continuous suppression of 359 

translation initiation by RNA secondary structures (Figure 2D). Our data suggests that the 360 

STAR regulator is less affected by the differing environment of the CFPS system than the 361 

THS, enabling the STAR design to maintain virtually identical performance across these 362 

contexts. 363 

 Time course measurements from these experiments also allowed us to quantify the 364 

output GFP production rate as the reaction proceeded. This data revealed a key difference 365 

between the in vivo and CFPS system that was observed for all controller designs. For the 366 

first 2 hours the expression rate for ‘off’ and ‘on’ states for each design were virtually identical, 367 

with regulation only being observed after this point and strongly affecting output GFP 368 

production rate after 4 hours (Figure 5B). The initial constant output GFP production rates in 369 

the CFPS system matched the order of different RBS strengths measured in vivo. The more 370 

rapid decrease in expression observed for the MLC designs versus the SLC for the regulated 371 

‘off’ state is expected because of the additional regulatory layer (L2 regulator) of these 372 

designs. The observed ‘lag’ phase of the regulation reflects very likely the time required for 373 

each controller to express sufficient LacI to interact with the Ptac promoters that act as the input 374 

in all our designs. In contrast to the CFPS system, in the in vivo experiments the cells had 375 

reached exponential growth and the systems were at steady state equal with LacI degradation 376 

and dilution rates equalling production rate to keep repressor concentration constant. 377 

Therefore, while multi-level regulation offers greatly improved control over gene expression in 378 

CFPS systems, for batch reactions, it is crucial that necessary regulatory components (e.g. 379 

repressor proteins) are present at sufficient concentrations from the start of an experiment to 380 

enable stringent regulation. This could be achieved by generating the CFPS system from cells 381 

that already express the regulators at high concentrations, by separately adding these 382 

components into the reaction mix before an experiment starts, or by making use of 383 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2020.07.04.187500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187500
http://creativecommons.org/licenses/by/4.0/


 
13 

microreactors to enable the CFPS system to maintain steady state concentrations of 384 

regulators through continual dilution of the reaction products 50. 385 

 386 

Discussion 387 

In this work we have shown how multi-level control of gene expression offers a means to more 388 

stringently regulate gene expression both in vivo and in vitro. By harnessing the multi-step 389 

process of transcription and translation that underpins the central dogma of biology and 390 

simultaneously regulating both processes in response to an input signal, we demonstrate 391 

through modelling (Figure 1) and experiments (Figures 3–5) how inducible expression 392 

systems can be created with greatly reduced leaky expression when in an ‘off’ state, while 393 

also maintaining high expression rates once induced. Furthermore, we have shown that multi-394 

level regulation creates a more digital-like switch when transitioning between ‘off’ and ‘on’ 395 

states and suppresses low-level transcriptional noise (Figure 4), both of which are valuable 396 

properties when developing genetic systems for information processing or when highly toxic 397 

products or excitable systems act as downstream products. 398 

 Our top MLC design, which makes use of a THS for L2 regulation, achieved >2000-399 

fold change in output upon induction in vivo and displayed a 10 dB SNR (Table 1) making it 400 

one of the most tightly controlled and high-performance induction systems built to date. 401 

Furthermore, the flexibility of our modular genetic toolkit for assembling new multi-level 402 

controllers (Figure 2), and the availability of many other THSs, makes it easy to develop 403 

additional orthogonal MLCs that could be used in parallel within the same cell. It is worth noting 404 

that the underlying Ptac promoter that the THS MLC uses, achieved only a 93-fold change and 405 

0.2 dB SNR when used alone as an SLC. Therefore, employing the multi-level regulatory 406 

approach outlined in this work could offer a means to greatly improve the performance of many 407 

existing low-performance transcriptional sensors, without any need to modify the transcription 408 

factors or promoter sequences making up these devices. 409 

 With the improvements we see when employing multi-level regulation, it is likely no 410 

coincidence that small interfering RNAs (siRNAs) are also widely used by bacteria to refine 411 

the regulation of many endogenous processes 51–53. RNAs are perfectly tailored for this task, 412 

imposing a small metabolic burden and offering a fast response. In this work, we selected 413 

synthetic RNA-based regulators that function through RNA-RNA hybridisation alone. While 414 

this reduces our dependencies on other cellular machinery and makes them easier to transfer 415 

between strains/organisms, it is known that many endogenous siRNA regulators employ 416 

protein chaperones such as Hfq to increase their binding affinity to targets and strengthen 417 

their regulatory effect 54. It would be interesting to explore the use of synthetic regulators that 418 
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make use of these chaperones 38 or exploit recent advances in the RNA part design 16 to see 419 

whether further improvements in performance are possible. 420 

 The stringent regulation of our controllers is achieved by incorporating a C1-FFL 421 

regulatory motif that is known to be evolutionarily selected in many natural and engineered 422 

systems 55 and can be used to implement many useful functionalities 22. More recent work has 423 

also demonstrated the importance of interconnections and clustering of many motifs in 424 

coordinating more complex behaviours 56,57. While this work focused on demonstrating that 425 

transcriptional and translational regulation can fit neatly into a C1-FFL structure, an intriguing 426 

future direction would be to explore how these higher-level structures (e.g. motif clusters or 427 

higher-level network structures) might be implemented using the approaches outlined in this 428 

work to aid the coordination of multiple interrelated processes in parallel.  429 

 This study started with the goal of more stringently controlling gene expression. 430 

However, through the design of our MLCs it became evident that the more intricate regulatory 431 

designs we built had many other benefits. Synthetic biology to date has often focused on 432 

simplifying complexity and reducing systems to their minimal parts. Our findings indicate that 433 

complementary studies exploring the complexification of synthetic regulatory systems might 434 

also reap rewards allowing us to more efficiently exploit the capabilities of biology by 435 

combining many diverse processes and parts in unison. The genetic toolkit presented here 436 

offers a starting point for such studies focused on the fundamental processes of transcription 437 

and translation. 438 

 439 

Methods 440 

Strains, media and chemicals 441 

All cloning and characterization of genetic constructs was performed using Escherichia coli 442 

strain DH10-β (Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 galE15 e14- ϕ80dlacZΔM15 443 

recA1 relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC) (New England 444 

Biolabs, C3019I). Cells were grown in DH10-β outgrowth medium (New England Biolabs, 445 

B9035S) for transformation, LB broth (Sigma-Aldrich, L3522) for general propagation, and M9 446 

minimal media supplemented with glucose (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 447 

0.5 g/L NaCl (Sigma-Aldrich, M6030), 0.34 g/L thiamine hydrochloride (Sigma T4625), 0.4% 448 

D-glucose (Sigma-Aldrich, G7528), 0.2% casamino acids (Acros, AC61204-5000), 2 mM 449 

MgSO4 (Acros, 213115000), and 0.1 mM CaCl2 (Sigma-Aldrich, C8106)) for characterization 450 

experiments. Antibiotic selection was performed using 100 μg/mL ampicillin (Sigma-Aldrich, 451 

A9518) and 50 μg/mL kanamycin (Sigma-Aldrich, K1637). Induction of the expression systems 452 

was performed using varying concentrations of isopropyl β-D-1-thiogalactopyranoside (IPTG) 453 

(Sigma-Aldrich, I6758). 454 
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 455 

Assembly of controllers 456 

All part plasmids were either directly synthesised (GeneArt, Thermo Fisher Scientific) or 457 

assembled as complementary single-stranded DNA oligos annealed together. Controllers 458 

consisting of 8-parts (pA–pH) plus a backbone (pMLC-BB1) were assembled using a standard 459 

Golden Gate cloning method (Figure 2B) 27. Briefly, for each assembly, we started from the 460 

18.5 ng of required part plasmids (pA–pH) and 18.5 ng of the backbone (pMLC-BB1) to be 461 

added to a 5 μL Golden Gate reaction. The standard manufacturer’s reaction conditions were 462 

used, but at a quarter of their normal volume (New England Biolabs, E1601). 2 μL of this 463 

reaction mix was then used to transform 12.5 μL of chemically competent DH10-β cells (New 464 

England Biolabs, C3019) for further experiments. All assembled constructs were sequence 465 

verified by Sanger sequencing (Eurofins Genomics). Annotated sequences of all part and 466 

backbone plasmids and assembled controllers are provided in GenBank format in 467 

Supplementary Data 2. Plasmid maps are shown in Supplementary Figures 4 and 5.  468 

 469 

Characterisation experiments 470 

Single colonies of cells transformed with an appropriate genetic construct were inoculated in 471 

200 μL M9 media supplemented with glucose and kanamycin for selection in a 96-well 472 

microtiter plate (Thermo Fisher Scientific, 249952). Cultures were grown for 14 hours in a 473 

shaking incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, the cultures were 474 

diluted 3:40 (15 μL in 185 μL) in M9 media supplemented with glucose, kanamycin for 475 

selection and IPTG for induction in a new 96-well microtiter plate and grown for a further 4 476 

hours under the same conditions. Finally, the cultures were further diluted 1:10 (10 μL into 90 477 

μL) in phosphate-buffered saline (PBS) (Gibco,18912-014) containing 2 mg/mL kanamycin to 478 

halt protein translation. These samples were incubated at room temperature for 1 hour to allow 479 

for full maturation of GFP before flow cytometry was performed. 480 

 481 

Flow cytometry 482 

Measurements of GFP fluorescence in single cells was performed using an Acea Biosciences 483 

NovoCyte 3000 flow cytometer equipped with a NovoSampler to allow for automated collection 484 

of samples from a 96-well microtiter plate. Data collection was performed using the 485 

NovoExpress software. Cells were excited using a 488 nm laser and GFP fluorescence 486 

measurements taken using a 530 nm detector. At least 106 events were captured per sample. 487 

In addition, to enable conversion of GFP fluorescence into calibrated MEFL units 58 a single 488 

well per plate contained 15 μL of 8-peak Rainbow Calibration Particles (Spherotech, RCP-30-489 

5A) diluted into 200 μL PBS. Automated gating of events and conversion of GFP fluorescence 490 

into MEFL units was performed using the forward (FSC) and side scatter (SSC) channels and 491 
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the FlowCal Python package version 1.2.2 with default parameters 58. To correct for the GFP 492 

autofluorescence of cells, E. coli DH10-β cells containing no genetic construct were grown in 493 

identical conditions. An average measurement of GFP fluorescence in MEFL units from three 494 

biological replicates of these cells was then subtracted from fluorescence measurements of 495 

cells containing our genetic constructs to correct for cell autofluorescence. 496 

 497 

Plate reader measurements of construct performance in vivo 498 

Single colonies of cells transformed with an appropriate genetic construct were inoculated in 499 

200 μL M9 media supplemented with glucose and kanamycin for selection in a 96-well 500 

microtiter plate (Thermo Fisher Scientific, 249952). Cultures were grown for 4 hours in a 501 

shaking incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, the cultures were 502 

diluted 3:40 (15 μL in 185 μL) in M9 media supplemented with glucose, kanamycin for 503 

selection and IPTG for induction in a 96-well 190 µm clear base imaging microplate (4titude, 504 

Vision PlateTM, 4ti-0223). This spectrophotometric assay was performed using a BioTek 505 

Synergy Neo2 plate reader at 37°C. Optical density at 600 nm (OD600) was measured every 506 

10 min over a 16-hour period. OD600 measurements were also taken from samples of M9 507 

medium supplemented with glucose containing no cells to allow for quantification of media 508 

autofluorescence. Shaking was automated for the all the length of the experiment. Data 509 

collection was performed using the Gen5 version 3.04 software. For each time point, media 510 

autofluorescence was subtracted from the sample measurement. 511 

 512 

Cell-free expression 513 

The E. coli cell lysate for CFPS was prepared using an autolysis protocol 59. In this protocol, 514 

E. coli BL21-Gold (DE3) cells harboring a pAS-LyseR plasmid give a high-quality cell lysate 515 

by freeze-thawing. Specifically, these cells were grown overnight at 37 °C in LB broth 516 

supplemented with ampicillin. On the following day, cells were sub-cultured in 2 L of 2X YTPG 517 

medium supplemented with ampicillin and grown at 37 °C to an OD600 of 1.5. Cells were then 518 

harvested at 2000g for 15 min at room temperature in four centrifuge bottles and 45 mL of 519 

cold S30A buffer (50 mM Tris-HCl at pH 7.7, 60 mM potassium glutamate, 14 mM magnesium 520 

glutamate, final pH 7.7) was added to each. Cells were then resuspended by vigorous vortex 521 

mixing and poured into a pre-weighted 50 mL falcon tube and centrifuged as in the previous 522 

step. The supernatants were completely removed, and the falcon tubes weighted again. The 523 

net weight of each pellet was calculated and relative to its weight two volumes of cold S30A 524 

supplied with 2 mM DTT was added (3 mL for 1.5 g of pellet). After vigorous vortex mixing, 525 

the samples were stored at –80 °C. The next day, frozen cells were placed in a room 526 

temperature water bath to thaw, vigorously vortexed, incubated at 37 °C on a shaker for 45 527 

min, vortex mixed again, and then incubated at 37 °C for 45 min. The samples were then 528 
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centrifuged at 30000g for 60 min at 4 °C. The supernatants were carefully pipetted out and 529 

aliquoted in 1.5 µL tubes, and then finally centrifuged at 20000g using a tabletop centrifuge 530 

for 5 min to remove residual cell debris. Aliquots of the lysate were stored at –80 after flash-531 

freezing in liquid nitrogen.  532 

For the prepared lysate, Mg-glutamate and K-glutamate were titrated in with all 533 

components of the cell-free reaction based on the protocol of Sun et al. 60 resulting in 534 

concentrations of 10 nM and 60 mM, respectively, for optimal GFP production. Each reaction 535 

was prepared at a final volume of 10.5 µL containing 33% lysate, Mg-glutamate and K-536 

glutamate as titrated, and amino acids mix, energy mix, and PEG 8000. For cell-free 537 

experiments of the SLC and MLC constructs, maxi-prepped plasmids (using Machery-Nagel 538 

NucleoBond Xtra Maxi kit) were added at a final concentration of 10 nM along with varying 539 

concentrations of IPTG (0, 0.002, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10 mM). While gently 540 

mixing by pipette, 10 µL of reactions were transferred to a 384-well plate (Greiner Bio-One, 541 

784076) and GFP fluorescence was monitored (excitation/emission wavelengths of 485/528 542 

nM and gain = 100) every 10 min in a plate reader (Tecan Infinite 200 PRO). 543 

 544 

Signal to noise ratio 545 

The signal to noise ratio (SNR) in decibel (dB) units was calculated from the flow cytometry 546 

GFP fluorescence distributions using the equation 23 547 

SNR!" = 20 ∙ log#$
|&'(!"(*#$ *#%%⁄ )|

-∙&'(!"(/)
.        (1) 548 

Here, μON and μOFF are the geometric means of distributions for the ‘on’ and ‘off’ states, 549 

respectively, and σ is the geometric standard deviation of the distribution for the ‘off’ state. ‘off’ 550 

and ‘on’ states correspond to cells grown in 0 and 1 mM IPTG, respectively. 551 

 552 

Data analysis and numerical simulation 553 

Data analysis was performed using Python version 3.7.4 and the NumPy version 1.17.4, SciPy 554 

version 1.3.1, Pandas version 1.0.3, FlowCal version 1.2.2, and Matplotlib version 3.1.1 555 

libraries. ODE models were simulated using the odeint function of the SciPy.integrate Python 556 

package version 1.1 with default parameters. Steady-state response functions of the 557 

controllers were calculated by fitting median GFP fluorescence values from the flow cytometry 558 

distributions for a range of input IPTG concentrations to the following Hill function 559 

𝑦 = 𝑦012 + (𝑦034 − 𝑦012)
5&

6&75&
.          (2) 560 

Here, y is the output GFP fluorescence in MEFL units, ymin and ymax are the minimum and 561 

maximum output GFP fluorescence in MEFL units, respectively, K is the input IPTG 562 

concentration at which the output is half-maximal, n is the Hill coefficient, and x is the input 563 

IPTG concentration. Fitting of the experimental data was performed using non-linear least 564 
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squares and the curve_fit function from the SciPy.integrate package version 1.1. Genetic 565 

diagrams were generated using DNAplotlib version 1.0 61,62 and figures were composed using 566 

Omnigraffle version 7.15 and Affinity Designer version 1.8.3. 567 

 568 

Data availability 569 

Python scripts simulating the ODE models of the direct and multi-level controllers be found in 570 

Supplementary Data 1. Annotated sequences for all plasmids in GenBank format are 571 

available in Supplementary Data 2. All plasmids used in this study are available from 572 

Addgene. 573 
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Tables 730 

Table 1: Performance summary of the single- and multi-level controllers in vivoa 731 

Controller Typeb Basalc 
(%) 

Dynamic ranged 
(103 MEFL) 

Fold 
changed 

Cooperativitye, 
n 

SNRf 
(dB) 

Ptac SLC 0.5 0.9 93 3.4 0.2 
THS MLC 0.02 65.5 2166 7.3 10.1 
STAR MLC 1.45 4.6 53 9.3 4.7 
STAR2 MLC 2.0 3.4 37 7.7 4.5 
DC MLC 0.04 10.4 1030 3.4 7.1 

a. All values are averages calculated from three biological replicates. Key performance features of 732 
the controllers are visually shown in Supplementary Figure 1.  733 

b. SLC refers to ‘single-level controller’ and MLC refers to ‘multi-level controller’. 734 
c. Relative basal expression calculated when no IPTG is present and as a percentage of the 735 

expression level for the ‘on’ state (1 mM IPTG). 736 
d. Calculated between ‘on’ and ‘off’ states for cells grown in 0 and 1 mM IPTG, respectively, and 737 

given in calibrated molecules of equivalent fluorescein (MEFL) units. 738 
e. From the Hill function fitting of the steady state response functions (Figure 4A). 739 
f. SNR refers to ‘Signal to Noise Ratio’.  740 
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Figures and captions 741 

 742 

Figure 1: Stringent control of protein expression through multi-level gene regulation. 743 

(A) Two possible regulatory schemes to control the expression of a gene of interest (GOI): 1. 744 

control using a single regulator (L1), and 2. multi-level control using two separate regulators 745 

(L1 and L2) connected in the form of a coherent type 1 feed-forward loop (C1-FFL). (B) 746 

Schematic of a genetic implementation of a single-level controller (SLC) that uses only 747 

transcriptional (red lines) regulation. An input (e.g. small molecule) modulates activity of the 748 

PL1 promoter and production of the GOI. (C) Schematic of a genetic implementation of a multi-749 

level controller (MLC) that uses both transcriptional (red lines) and translational (blue line) 750 

regulation. An input (e.g. small molecule) modulates activity of the two PL1 promoters and an 751 

internal L2 regulator activates the translation of GOI transcripts to finally produce the output 752 

protein. (D) Steady state response functions from mathematical models of the SLC and MLC. 753 

(E) Dynamic model simulations of the SLC and MLC and their response to different forms of 754 

temporal input (left to right): delta functions (PL1 activity = 2 RNAP/min for 1 min at 100 min 755 

and 150 min), a pulse (PL1 activity = 5 RNAP/min from 100–130 min), and a step function (PL1 756 

activity = 5 RNAP/min from 100 min onwards). The activity of both PL1 promoters in the MLC 757 

is considered identical. (F) Dynamic model simulations of the SLC and MLC showing 758 

suppression of intrinsic promoter noise by the MLC. The two identical PL1 promoters for the 759 

L2 regulator and GOI are separately driven by independent and biologically realistic bursty 760 

transcriptional activity profiles (Methods).  761 
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 762 

Figure 2: Combinatorial assembly of gene expression controllers. (A) Summary of the 8-763 

part genetic template used to allow for systematic exploration of direct and multi-level gene 764 

regulation. The 4 bp overhangs used for Golden Gate assembly are shown in grey at their 765 

respective junctions. Available genetic elements are listed below each corresponding part type 766 

(A–H). (B) The MLC toolkit contains a set of plasmids that can be combined using Golden 767 

Gate assembly to create a variety of direct and multi-level controllers (Supplementary Figure 768 

3). (C) The lacI transcription factor responsive to IPTG used for level 1 (L1) transcriptional 769 

regulatory control. (D) Toehold switch (THS) translational regulator used for level 2 (L2) 770 

control. (E) Small transcription activating RNA (STAR) transcriptional regulator used for L2 771 

control. (F) Dual control (DC) transcriptional and translational regulator used for L2 control.  772 

DC

A B C D E F G H

A

TGCCTACTCATCCCGCGCTTAGGTGGAGGTGA CGCT

L1 PL1

L1
Regulator

L1 Input
Promoter

L2
Regulator

GOI
3’-tag

Bidirectional
Terminator

GOI
CDS

L2
Control

L1 Input
Promoter

L2
PL1GOITag

1. Ptac
2. Spacer

1. Ptac1. sRNATHS
2. sRNASTAR
3. sRNADC
4. Spacer

1. THS
2. STAR
3. DC
4. RBS

1. gfp1. Spacer
2. SsrA tag

1. TrrnB-
L3S2P21

C

THS

lacI Ptac

IPTG

GOIsRNA

D

Target GOISTAR

E F

B

pBR322

ofp

kanR

pMLC-BB1

pA-XX

pB-XX
pC-XX
pD-XX

pE-XX

pF-XX
pG-XX
pH-XX

MLC Toolkit

One-pot Golden Gate assembly

Multi-level controller

1. lacI-TU

GOISTAR

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2020.07.04.187500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187500
http://creativecommons.org/licenses/by/4.0/


 
26 

 773 

Figure 3: Performance comparison of single- and multi-level controllers in vivo. (A) 774 

Total GFP fluorescence for ‘off’ and ‘on’ input states (0 and 1 mM IPTG, respectively). Points 775 

show the three biological replicates for each controller and condition (black circles, Ptac; blue 776 

squares, THS; red diamonds, STAR; orange crosses, DC). Black dashed line denotes the 777 

mean fluorescence of cell autofluorescence (a.f.) controls containing no plasmid with grey 778 

shaded region showing ± 1 standard deviation of 11 biological replicates. Fluorescence given 779 

in calibrated molecules of equivalent fluorescein (MEFL) units. (B) Flow cytometry 780 

distributions of total GFP fluorescence for ‘off’ (line) and ‘on’ (shaded) input states. Cell 781 

autofluorescence (a.f.) controls containing no controller are shown by black dashed line and 782 

light grey filled distributions. (C) Doubling time of cells harbouring direct and multi-level 783 

controllers for varying concentrations of IPTG (bars left to right for each design: 0, 0.1, 1, 10 784 

mM IPTG). (D) Lag time calculated as the time to reach an OD600 = 0.15 after inoculation of 785 

cells harbouring controllers for varying concentrations of IPTG (bars left to right for each 786 

design: 0, 0.1, 1, 10 mM IPTG).  787 
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 788 

Figure 4: Response functions of single- and multi-level controllers in vivo. (A) Steady 789 

state response functions of the controllers showing output GFP fluorescence (corrected for 790 

cell autofluorescence) for varying input IPTG concentrations (0, 0.002, 0.01, 0.05, 0.1, 0.25, 791 

0.5, 1, 2, 5, 10 mM). Points show the three biological replicates for each controller and 792 

condition (black circles, Ptac; blue squares, THS; red diamonds, STAR; orange crosses, DC). 793 

Grey shaded region shows the standard deviation of cellular GFP autofluorescence from 11 794 

biological replicates. (B) Comparison of how normalised GFP output (as a fraction of the 795 

maximum GFP fluorescence) varies in response to changes in the normalised transcriptional 796 

activity of Ptac (as a fraction of its maximum activity). Multi-level regulation can lead to the 797 

suppression or amplification of the output GFP production rate compared to direct 798 

transcriptional regulation (i.e. a specific multi-level controller’s line falls below or above the 799 

diagonal, respectively). Insert shows zoomed area and grey shaded region denotes a GFP 800 

output level of 1% for the controller.  801 
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 802 

Figure 5: Performance of single- and multi-level controllers in a cell-free expression 803 

system. (A) Response functions of the controllers showing output GFP production rates in 804 

arbitrary fluorescence units per hour (au/hr) at 4 hours after the start of the cell-free reaction 805 

for varying input IPTG concentrations (0, 0.002, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10 mM). 806 

Points show the three biological replicates for each controller and condition (black circles, Ptac; 807 

blue squares, THS; red diamonds, STAR; orange crosses, DC) (B) Output GFP production 808 

rate of the controllers over time since the start of the reaction. Time courses shown for 809 

controllers in an ‘off’ (0 mM IPTG; left) and ‘on’ (10 mM IPTG; right) state. GFP production 810 

rates at each time point calculated as an average GFP production rate over the previous 1.5 811 

hours (Methods). 812 
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