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ABSTRACT

A fundamental component of molecular evolution
are the rules that govern when, and why, a given
change (allele) is deleterious or neutral. The abil-
ity to define such rules for epialleles – analogous to
the rules at the DNA sequence level – would thus
have profound implications for our understanding
of epigenetic variation and evolution. Here, we fo-
cus on promoter methylation in the male human
germline, which – apart from its role in gene regu-
lation – is also known to greatly increase the muta-
tion rate of CpG dinucleotides. We first develop a
simple but general approach for detecting selection
on epialleles, which does not require population-
scale data. We then show that germline promoter
methylation is deleterious at loss-of-function intol-
erant genes, but neutral at loss-of-function tolerant
ones. In concordance with this, a human-mouse
comparative analysis of sperm methylomes reveals
strong suppression of methylation acquisition at
loss-of-function intolerant promoters. We demon-
strate that this selection is neither a secondary con-
sequence of germline gene expression levels, nor
of promoter H3K4me3 levels. Rather, the deleteri-
ousness of promoter methylation is explained by
its mutagenic effect on the underlying CpGs. Our
results thus address a long-standing open question
in molecular evolution, providing the first demon-
stration of selection acting on an epigenetic muta-
tion rate modifier to locally dictate the mutation
rate in humans. They also suggest the existence
of a mechanism that preferentially protects loss-of-

function intolerant promoters from methylation in
the germline. Finally, they directly refute the pre-
vailing dogma that CpG islands are not under ac-
tive selection.

INTRODUCTION

At the DNA sequence level, there is a rich un-
derstanding of rules that describe which changes
are deleterious and which are neutral, especially
within coding sequences. However, there are sev-
eral ”non-nucleotide” features, such as epigenetic
marks (hereafter referred to as epialleles), whose
high conservation across species (Woo and Li, 2012;
Long, Sims, et al., 2013; Qu et al., 2018) suggests
they are largely genetically determined, but for
which deleteriousness and neutrality rules have not
been clearly delineated. This fundamentally limits
our understanding of their molecular evolution. It
also hinders our ability to interpret intra- and inter-
species variation.

An important class of epialleles in humans, and
vertebrates in general, are the DNA methylation
states of promoters in the germline. Apart from
their role in gene regulation, these methylation
states are intimately linked to the underlying pro-
moter CpG densities. The reason is that the muta-
tion rate of CpG dinucleotides is elevated by ∼15-
fold when they are methylated in the germline
(Coulondre et al., 1978; Wang et al., 1982; Cooper
and Youssoufian, 1988). This methylation-induced
hypermutability is believed to explain the relative
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paucity of CpGs in most of the genome. At many
promoters, in contrast, an unusually high density
of CpGs is encountered (Bird, 1987; Deaton and
Bird, 2011), and has been linked to transcriptional
activity (Thomson et al., 2010; White et al., 2013;
Clouaire et al., 2012; Wachter et al., 2014; Hartl et al.,
2019). However, it is currently believed that such
CpG islands are evolving neutrally (Cohen et al.,
2011). This view has been adopted by the genetics
community (Antequera and Bird, 2018), and has im-
portant ramifications; it implies that the biochem-
ical properties CpG-richness confers to promoters
have a negligible contribution to organismal fitness.

In Cohen et al. (2011), the approach to selection
inference on CpG islands is predicated on the un-
verified assumption that germline promoter methy-
lation is a neutral epiallele. But this need not be
the case. It has long been proposed that selection
can act on regional mutation rate modifiers, to re-
duce the mutation burden at locations where muta-
tions are deleterious (Sturtevant, 1937; Leigh, 1970;
Kimura, 1967; Kondrashov, 1995). Critically, a mod-
ifier acting on many such locations simultaneously
would be able to overcome stochastic genetic drift
(Lynch et al., 2016). This phenomenon has not been
demonstrated for any vertebrate species. However,
empirical evidence in support of it at coding se-
quences has recently surfaced in bacteria (Martin-
corena et al., 2012; Chen and J Zhang, 2013; Mart-
incorena and Luscombe, 2013), and plants (Monroe
et al., 2020), albeit without identification of the spe-
cific modifiers under selection.

RESULTS

An approach for inferring the deleteriousness of
an epiallele without population-scale data

To explore whether germline promoter methyla-
tion is under selection, we designed a versatile test
for detecting selection on any epiallele, provided
it can be linked to a gene. This problem can be
formulated as the inverse of that addressed by re-
cent large-scale analyses of exome sequences (Petro-
vski et al., 2013; Lek et al., 2016; Cassa et al., 2017;
Karczewski et al., 2020). These studies relied on
prior knowledge about which alleles are deleteri-
ous – by virtue of being loss-of-function (LoF) – and
which are neutral, to estimate the selective pressure
against coding LoF alleles at a given gene.

Inverting this approach, we here assume that the
heterozygous presence of an epiallele at a given
gene leads to a reduction in fitness equal to wshet,
where shet is the gene-level selection coefficient
against heterozygous coding LoF alleles, and w is
unknown (Methods). Critically, because the epial-
lele is the same across genes, we can assume that
w is gene-independent, ie. that the epiallele’s ef-
fect on fitness is a constant fraction of the effect of
a coding LoF allele.

Testing if the epiallele is deleterious thus reduces
to determining whether w = 0. An implication
of our model is that the fitness effect of the epial-
lele increases as shet (ie. genic LoF-intolerance) in-
creases. This implies a monotone relationship be-
tween the population frequency of the epiallele and
shet if w > 0, and no relationship if w = 0. Impor-
tantly, shet is now known for most human genes
(Cassa et al., 2017). We describe (Methods) that it is
feasible to test for w = 0 without population-scale
data, in two simple steps. First, we pool genes with
similar shet’s together. Then, we test if the epiallele
is significantly less likely to be encountered at genes
where shet is greater. Finally, other metrics reflective
of LoF-intolerance which are approximations of shet
can be used as well (Methods); here we use LOEUF
from gnomAD (Karczewski et al., 2020).

The absence of DNA methylation from promot-
ers of loss-of-function intolerant genes in the
male germline indicates its deleteriousness.

We applied our approach to promoter DNA
methylation in the male germline, where most
methylation-induced mutations have been shown
to arise (Reik et al., 2001; Gao et al., 2019). We inves-
tigated its distribution with respect to downstream
gene LoF-intolerance, and discovered a clear rela-
tionship: greater LoF-intolerance is associated with
a smaller probability of having a methylated pro-
moter (Figure 1a; p < 2.2 · 10−16). This increas-
ing trend is highly consistent with what our model
predicts if the presence of methylation were to be
deleterious. At the most LoF-intolerant promoters
(bottom 10% LOEUF), methylation is almost uni-
versally absent, with only 0.9% of promoters being
methylated.

We used LOEUF as the metric of LoF-intolerance,
as provided by gnomAD; smaller LOEUF values
indicate greater LoF-intolerance (Karczewski et al.,
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Figure 1. Testing for the deleteriousness of promoter DNA methylation in the male germline. (a)
The percentage of genes with methylated promoters (≥ 80% methylated CpGs in the 4kb region
centered around the transcriptional start site) across LOEUF deciles. (b) The percentage of genes
with methylated 3’ ends (≥ 80% methylated CpGs in the 4kb region centered around the
transcriptional stop site) across LOEUF deciles. In both (a) and (b), the shaded grey area
corresponds to the rejection region (two-sided, Bonferroni-adjusted for multiple testing) of the
permutation null distribution obtained by randomly resampling a gene set of size equal to a LOEUF
decile (10,000 times, Methods).

.

2020). We examined whether our result is sensi-
tive to the choice of metric, and found that the
same trend across gene deciles is observed when
genes are ranked using shet (Cassa et al., 2017) in-
stead of LOEUF (Supplementary Figure S1a; p <
2.2 · 10−16). Hereafter, we use LOEUF for our anal-
yses, but we note that the high rank correlation be-
tween the two metrics (Supplementary Figure S1b;
Spearman’s ρ = −0.85) ensures that the results are
robust to this choice.

As a negative control, we tested whether
germline methylation around the transcriptional
stop site of the same genes is deleterious. As ex-
pected, we did not find any evidence for selection in
that case (Figure 1b). The percentage of methylated
stop sites was essentially constant across LOEUF
deciles, consistent with our model, with minor fluc-
tuations that did not deviate from what would be
expected by random chance alone (p = 0.61).

To establish the above, we used a set of 7,460
human genes with reliable LOEUF and shet esti-
mates, and high-confidence promoter annotation
(Methods). Using whole-genome bisulfite sequenc-
ing data from human sperm (Molaro et al., 2011;
Qu et al., 2018), we grouped promoters in a binary
fashion into methylated (≥ 80% CpGs methylated),
and hypomethylated (≤ 40% CpGs methylated)
(Methods). This binary categorization was moti-

vated by the bimodal distribution of the percentage
of methylated CpGs across promoters (Supplemen-
tary Figure S2).

Human-mouse comparative analysis of male
germline methylomes reveals strong purifying
selection on promoter methylation at loss-of-
function intolerant genes.

An orthogonal test for the deleteriousness of
germline promoter methylation can be conducted
via a between-species comparison. A key as-
pect of our result is that promoter methylation is
only deleterious at genes with selective pressure
against LoF alleles. Therefore, hypomethylation-
to-methylation changes should be suppressed by
purifying selection at such LoF-intolerant genes. It
is possible to distinguish this suppression from the
neutral ”epimutation rate”, by comparing the rate
of hypomethylation-to-methylation changes at LoF-
intolerant genes to the same rate at LoF-tolerant
genes. This approach is analogous to the classi-
cal dN/dS test for selection in coding sequences
(Kimura, 1977; Kryazhimskiy and Plotkin, 2008).

We performed a human-mouse comparative anal-
ysis, using whole-genome bisulfite sequencing
from mouse sperm (Hammoud et al., 2014; Qu et al.,
2018). While 93.9% of promoters shared the same

Boukas et al. | 2020 | bioRχiv | Page 3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.04.187880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187880


bottom LOEUF threshold

-4
0

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

(a)

P
er

ce
nt

 p
ro

m
ot

er
s 

th
at

ga
in

ed
 m

et
hy

la
tio

n 
in

 h
um

an
0

35
70

bottom 25%
LOEUF

top 25%
LOEUF

(b)

P
er

ce
nt

 m
et

hy
la

tio
n 

ga
in

0
15

30

(c)

bottom LOEUF threshold

lo
g 2(r

at
e 

ra
tio

)
(b

ot
to

m
 v

s 
to

p 
LO

E
U

F)
0

2

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

(d)

0
35

70

(e)

P
er

ce
nt

 m
et

hy
la

tio
n 

lo
ss

0
50

10
0(f)

lo
g 2(r

at
e 

ra
tio

)
(b

ot
to

m
 v

s 
to

p 
LO

E
U

F)

bottom 25%
LOEUF

top 25%
LOEUF

bottom 25%
LOEUF

top 25%
LOEUF

bottom 25%
LOEUF

top 25%
LOEUF

P
er

ce
nt

 p
ro

m
ot

er
s 

th
at

lo
st

 m
et

hy
la

tio
n 

in
 h

um
an

methylated in mouse completely methylated in mouse

hypomethylated in mouse completely hypomethylated in mouse

Figure 2. Testing for purifying and positive selection on promoter DNA methylation in the male
germline. (a) The ratio of the rate at which promoters of loss-of-function intolerant gene promoters
that are hypomethylated in the mouse germline (≤ 40% methylated CpGs) have acquired the
methylated state in humans, versus the corresponding rate for loss-of-function tolerant promoters,
at different LOEUF thresholds for loss-of-function intolerance; loss-of-function tolerance was fixed
at LOEUF ≥ 1 (b) The percentage of completely hypomethylated (0% methylated CpGs) promoters
in mouse, for which at least one CpG is methylated in humans. (c) The distribution of the
percentage of methylated CpGs in the human germline, for promoters that are completely
hypomethylated in mouse and have at least one methylated CpG in human. In (b) and (c),
promoters are stratified according to downstream gene loss-of-function intolerance in human. (d)
Like (a) but for promoters methylated in the mouse germline (≥ 80% methylated CpGs) that have
acquired the hypomethylated state in human. (e,f) Like (b,c) but considering loss of methylation in
human for promoters completely methylated (100% methylated CpGs) in mouse.
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promoter methylation state in the two species, we
identified 80 promoters methylated in mouse but
hypomethylated in human, and 65 with the reverse
pattern (Methods; Supplemental Figure S3).

We then focused on promoters hypomethylated
in mouse (≤ 40% CpGs methylated). We discov-
ered that hypomethylation-to-methylation changes
have been suppressed ∼ 20-fold at highly LoF-
intolerant promoters (LOEUF ≤ 0.35, correspond-
ing to bottom 25%) compared to LoF-tolerant ones
(LOEUF ≥ 1, corresponding to top 25%; Figure 2a;
rate ratio = 0.04, p = 0 after 10,000 permuta-
tions; Methods). To assess the robustness of this
result, we repeatedly estimated the rate ratio after
progressively relaxing the LOEUF cutoff for LoF-
intolerance. As expected, the rate ratio increases as
the LOEUF cutoff becomes more lenient (Figure 2a).

We next asked if this selection is operating not
only at the whole-promoter level, but at the single
CpG level as well. We focused on promoters com-
pletely hypomethylated in mouse (1,781 promoters
with 0% CpGs methylated). At 962 of these (54%),
at least one CpG has gained methylation in human.
However, we found that such gains have occurred
much less frequently at LoF-intolerant promoters
compared to LoF-tolerant ones (Figure 2b; proba-
bility of gain = 39.8% vs 74%, p = 0 after 10,000
permutations). When methylation gain did occur
at LoF-intolerant promoters, it was for a lower num-
ber of CpGs (Figure 2c; median = 2.45 vs 5.16,
p = 3.25 · 10−12).

Finally, we turned to promoters methylated in
mouse (≥ 80% CpGs methylated). We discov-
ered that methylation-to-hypomethylation changes
are encountered at a higher rate at highly LoF-
intolerant promoters compared to LoF-tolerant
ones (Figure 2d; rate ratio = 2.82, p = 0.0021 after
10,000 permutations). The rate ratio progressively
decreases as the LOEUF cutoff for LoF-intolerance
becomes less stringent (Figure 2d). This is con-
sistent with positive selection favoring the loss of
the methylated state at these promoters. We note,
however, that this positive selection appears sub-
stantially weaker than the purifying selection we
describe above, as is also reflected in the rate of
methylation loss of single CpGs Figure 2e, f). This
may indicate that it is only happening at a subset
of methylated promoters.

The absence of methylation from loss-of-
function intolerant gene promoters is not
explained by germline expression levels or
promoter H3K4me3 levels.

Our results so far establish that germline methyla-
tion at LoF-intolerant promoters is under purifying
selection. But they do not establish that the rea-
son for its deleteriousness is its mutagenic effect on
CpGs. To test if this is indeed the underlying cause,
we first considered two alternative possibilities: a)
that the relationship between genic LoF-intolerance
and promoter germline methylation merely reflects
the higher expression of LoF-intolerant genes in the
germline, and b) that it is a secondary consequence
of the high H3K4me3 levels at LoF-intolerant pro-
moters in the germline, as promoter H3K4me3 has
been shown to locally repel the DNA methylation
machinery (Ooi et al., 2007; Vavouri and Lehner,
2011; Lesch and Page, 2014).

If either of these two expalanations is true, the
association between LOEUF and promoter methy-
lation should no longer be present when compar-
ing genes matched with respect to their expression
level, or with respect to the presence of H3K4me3
at their promoter. In contrast, we saw that the rela-
tionship persists in both cases (Figure 3a). This was
true with RNA-seq measurements from both sperm
and testis (p = 1.7 · 10−8, 1.5 · 10−5, for genes not
expressed and p = 3.3 · 10−16, 2 · 10−8, for genes
highly expressed; Methods), and when quantify-
ing the presence of H3K4me3 in two different ways
using ChIP-seq in sperm (Supplemental Figure S4;
p < 2.2 · 10−16 for promoters without H3K4me3
and p < 2.2 · 10−16, 1.7 · 10−11 for promoters with
H3K4me3; Methods).

The deleteriousness of germline promoter methy-
lation is explained by its mutagenic effect on
CpGs.

We subsequently noticed that methylation leaves
48% of the genome-wide variation in promoter
CpG density unexplained (Supplemental Fig-
ure S5). This suggests that additional forces acting
on CpGs have generated the remaining variation,
as previously suggested (Panchin et al., 2016; Gold-
mann et al., 2018). We thus hypothesized that, if se-
lection is acting on methylation to indirectly main-
tain CpG density, then these other forces should
also be selective in nature (either direct selection
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Figure 3. Evaluating whether the increased CpG mutation rate mediates the deleteriousness of
promoter methylation in the male germline. (a) The LOEUF distributions of genes grouped
according to promoter methylation state, and conditional on either expression level or the presence
of promoter H3K4me3 in the male germline (testis and sperm; see Methods). (b) The per promoter
average across-vertebrate conservation (PhastCons score) of hypomethylated CpG sites, stratified
according to loss-of-function intolerance of the downstream gene, compared to the conservation of
non-CpG sites in the same promoters. (c) The distribution of per-promoter differences in the
average conservation of CpG sites versus that of non-CpG sites, stratified according to
loss-of-function intolerance of the downstream gene. (d) The nucleotide diversity of promoter CpG
sites in TOPMed (62,854 individuals), stratified according the their methylation status and the
loss-of-function intolerance of the downstream gene.

on CpGs, or selection on other mutation rate modi-
fiers). Importantly, they should be acting with less
intensity at LoF-intolerant promoters.

To assess this, we partitioned individual CpGs ac-
cording to their germline methylation state, and fo-
cused only on the 1,810,550 hypomethylated CpGs.
Using the PhastCons score across 100 vertebrates
(Methods), we found that the per promoter average
CpG conservation increases as downstream gene
LoF-intolerance increases (Figure 3b; p < ·10−16).
This increase does not merely reflect generic selec-
tion on promoter sequence, because it is accompa-
nied by a progressively larger difference between
the average per promoter conservation of CpG sites
versus that of non-CpG sites (Figure 3b, c; p <
·10−16). For LoF-tolerant genes (top 25% LOEUF),

there is essentially no difference between CpGs and
non-CpGs (median = 0.01). These results are consis-
tent with selection operating specifically on CpGs
via pathways other than methylation.

Finally, we sought to obtain a sense of how
strong these other selective forces are relative to
methylation. We leveraged a compendium of
single-nucleotide variants from 62,874 individuals
in TOPMed ((Taliun et al., 2019); Methods), and
compared the intra-human genetic variability of
hypomethylated versus methylated promoter CpG
sites, stratified by downstream gene LOEUF. Un-
surprisingly, we observe that methylated CpGs
show much higher variation compared to hy-
pomethylated ones (Figure S6d). In addition, the in-
fluence of methylation clearly dominates over LoF-
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Figure 4. A model for the molecular evolution of promoter methylation in the male germline.
Two scenarios are depicted. In the first (left), the promoter of a loss-of-function intolerant gene
acquires the methylated state. Over time, the methylated state becomes deleterious, because it leads
to loss of promoter CpGs, and is thus eliminated from the population by negative selection. In the
second scenario (right), the methylated state is acquired by a previously hypomethylated promoter
of a loss-of-function tolerant gene. Loss of CpGs again ensues, but this time it is neutral. Therefore,
the spread of the methylated state in the population is determined by stochastic drift, which can
lead either to elimination, or (rarely) to fixation. CpGs are here depicted as lollipops, with the
filled-in circle indicating methylation.

intolerance (Figure S6d). This emphasizes that, as
expected, the dominant factor determining the fate
of CpGs is methylation, and without its exclusion
a high CpG density is unlikely to be efficiently pre-
served.

DISCUSSION

We propose that the molecular evolution of
germline DNA methylation at human promoters
is governed primarily by the following principles
(Figure 4). First, its effect on fitness is exerted
through the elevation of CpG mutation rate and
the ensuing gradual reduction in CpG density.
We note that this does not preclude other conse-
quences of methylation, for example on germline
gene expression, but it means that such other con-
sequences have no appreciable impact on fitness.
Second, low promoter CpG density, and therefore
the presence of germline methylation, are delete-

rious at LoF-intolerant promoters. It follows that
hypomethylation-to-methylation changes are dele-
terious at such promoters, whereas methylation-to-
hypomethylation changes are advantageous. At
LoF-tolerant promoters, both of these changes are
neutral. Finally, other factors, which have yet to
be clearly identified, have a relatively small (com-
pared to DNA methylation) but detectable contribu-
tion to the preferential maintenance of CpG density
at LoF-intolerant promoters.

This model can explain two recent pieces of ge-
netic evidence that were hard to reconcile with
the notion that CpG islands are not subject to
selection. First, that genes encoding for CxxC-
domain-containing proteins, which bind unmethy-
lated CpGs (Lee et al., 2001; Long, Blackledge, et
al., 2013), are highly intolerant to LoF variation
(Boukas et al., 2019). Second, that a high promoter
CpG density is predictive of downstream gene LoF-
intolerance, even more so than exonic or promoter
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across-species conservation (Boukas et al., 2020).
The above description highlights two differ-

ences between the molecular evolution of germline
methylation and that of the DNA sequence. The
first is that a deleterious nucleotide variant occur-
ring in the germline (e.g. in the coding or reg-
ulatory sequence of a gene) typically has effects
in the next generation, and immediately becomes
subject to selection. In contrast, the effects of pro-
moter methylation on fitness likely only become
non-trivial when the CpG density drops below a
certain threshold. Thus, selection begins to operate
on promoter methylation after a large number of
generations; until then, its spread in the population
is determined by stochastic drift alone. The second
difference is that the promoter methylation ”epimu-
tation rate”, which is equal to the rate at which the
methylation state changes at LoF-tolerant promot-
ers, appears much lower than the mutation rate at
DNA sequences. This is evidenced by the fact that
only ∼ 20% of LoF-tolerant promoters are methy-
lated, and echoes what was recently seen in a dis-
tant unicellular species (Catania et al., 2020).

Out model raises two main questions. First, what
is the biological mechanism that renders high CpG
density advantageous at LoF-intolerant promoters?
While it is well-described that many genes with
high-CpG-density promoters show a housekeeping,
or developmentally regulated, expression pattern
(Saxonov et al., 2006; Lenhard et al., 2012), our pre-
vious work suggests this is unlikely to be the an-
swer (Boukas et al., 2020). A growing body of evi-
dence indicates the mechanism does, however, re-
late to the effects of CpG density on transcription
(Thomson et al., 2010; White et al., 2013; Wachter
et al., 2014; Morgan and Marioni, 2018; Hartl et
al., 2019). Going forward, it will be necessary to
more precisely characterize these effects, ultimately
in vivo. Second, how is methylation targeted away
from LoF-intolerant promoters in the germline? A
number of intriguing possibilities exist, implicating
transcription factor binding (Krebs et al., 2014), and
a GC-rich base composition (Wachter et al., 2014).
We note that the phenomenon here is analogous,
albeit much more widespread in the genome, to im-
printing. Recent clues into the establishment of im-
printing control regions may therefore also provide
useful insights (Takahashi et al., 2019).

Finally, the framework we employed to infer the
deleteriousness of methylation at LoF-intolerant

gene promoters is both simple and general. We
thus anticipate its application to yield insights into
the action of natural selection on other important
epialleles and ”non-nucleotide” features, including
mutation rate modifiers such as replication timing.

METHODS

A simple and general framework for inferring
selection on epialleles without population-scale
data.

Consider a single gene with a biallelic locus with al-
leles A and D in the population. Let D correspond
to a loss-of-function state, with the selection coeffi-
cient against heterozygotes equal to shet. The fitness
f is then given by

f (AA) = 1
f (AD) = 1− shet

with 0 ≤ shet ≤ 1. We ignore the DD genotype,
since selection happens predominantly through het-
erozygotes (Falconer and Mackay, 1996; Fuller et al.,
2019).

We extend this model with an additional biallelic
locus in the same gene, with states U and M. Now,
U and M are epialleles. Since D is a loss-of-function
allele, we will assume that the fitness effect of the
D, U and D, M combinations is the same when they
reside on the same chromosome, and just use D to
designate them. We assume that the fitness f is
now:

f (AU, AU) = 1
f (AU, AM) = 1− wshet

f (AM, AM) = max(0, 1− kwshet) (Eq. 1)
f (AU, D) = 1− shet

f (AM, D) = max(0, 1− shet − wshet)

with 0 ≤ w ≤ 1, and k ≥ 1. In other words, U
has no fitness effect, and the fitness effect of M is
a fraction of the effect of D. We note that we here
present the framework in its general form. Our spe-
cific application on germline promoter methylation
imposes some special features due to differences
between the male and female germlines, which we
discuss below (see section ”Special features of the
above framework in the case of germline promoter
methylation”).
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We now consider this model across the genome,
ie. across G genes indexed by g = 1, . . . , G. Each
gene will have its own heterozygous selection coef-
ficient shet,g. The critical aspect is that the epialleles
M or U are the same across all genes. We can thus
assume that the fitness effect of M is always the
same fraction of shet,g; in other words, w is shared
amongst genes. We note that since the fitness effect
of M ultimately depends on shet,g through the prod-
uct wshet,g, the M allele has no effect on fitness for
genes with shet,g = 0.

Thus, under the above model, testing whether
the epiallele is deleterious is equivalent to testing
whether w = 0.

Without loss of generality, we can assume that
genes are ranked according to their selection co-
efficient, ie. shet,1 ≤ . . . ≤ shet,G and therefore
wshet,1 ≥ . . . ≥ wshet,G. Each inequality is only an
equality if w = 0 or if shet,i = shet,i+1. Given that
(epi)alleles with greater effects on fitness will have
lower frequencies in the population, this implies
that π1 ≤ . . . ≤ πG, where πg is the frequency of
the M epiallele at gene g. Thus, we can in princi-
ple test whether w = 0 by assessing whether these
population frequencies are equal or not.

However, because the M epiallele is the same
amongst genes, it is in fact possible to test this hy-
pothesis without population-scale data on πg. To
do so, we group the genes into K groups (Bk, k =
1, . . . , K), according to these selection coefficients
(here we use deciles). Within each group, genes
have similar selection coefficients (ie. for g, g′ ∈
Bk : shet,g ≈ shet,g′). Hence, the population fre-
quencies of their M epiallele will also be similar,
which we term πBk . The hypothesis w = 0 thus
becomes equivalent to πB1 = . . . = πBK , and the
alternative hypothesis is πB1 ≤ . . . ≤ πBK with at
least 1 strict inequality. Therefore, in the absence
of population-level data on the frequencies of the
M epiallele, we can estimate π̂Bk , the proportion
of genes with the M epiallele in Bk. We then test
the null hypothesis of no trend across the groups
using the Cochran-Armitage test (Cochran, 1954;
Armitage, 1955), with other choices possible.

In addition, to aid in the visual interpretation of
the results, we obtain a null region as follows (Fig-
ure 1 and Supplemental Figure S1a, shaded grey
area). We permute genes and then split them into
K groups of equal size as the groups we had before.
We then compute estimates π

perm
B1

, . . . , π
perm
BK

of the

proportion of genes with the M epiallele in each
permuted group. This is the same as essentially us-
ing the marginal (across all genes) distribution of
the M epiallele, accounting for the group split. We
then use this permutation distribution to define the
rejection region. Because we have K groups, we use
a Bonferroni adjustment to set the α level.

Note: it is not necessary to know the exact val-
ues of shet for our approach to be valid; it suffices to
know the rank ordering of genes. As a result, any
metric serving as an approximation of shet that pre-
serves gene ranking can be used. Finally, to avoid
circularity, it is essential that these metrics have
been estimated without any information about the
presence of the epiallele.

Special features in the case of germline promoter
methylation

In the case of germline promoter methylation, it is
important to clarify that M and U (in Eq. 1) corre-
spond to the presence or absence, respectively, of
DNA methylation at the promoter of the gene in
the germlines of the parents. That is, we view the
individual as containing an extra ”cell type” serv-
ing as precursor to the zygote, which consists of the
two parental germlines.

Our results show that the deleteriousness of pro-
moter methylation is due to its mutagenic effect on
CpGs. This implies when the M epiallele is present
only in the female germline, then it is likely that
w ≈ 0, and when it is present in both germlines
then k ≈ 1. This is because the female germline
becomes methylated just shortly before ovulation.
Thus, methylation-induced mutations only have a
short time window in which they can occur, in con-
trast to the male germline where methylation is
present from sex determination during the embry-
onic development of the parent, until the concep-
tion of the offspring (Reik et al., 2001; Kobayashi
et al., 2013). This is confirmed by patterns of
CpG>TpG de novo mutation transmission in hu-
mans (Gao et al., 2019). Notwithstanding these con-
siderations, the parameter of interest determining
the presence of selection on the M epialle is still w,
and inference on whether w = 0 can proceed as
described in the above section.
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Promoter coordinates

We defined promoters as 4kb regions centered
around the transcriptional start site (TSS). While
we recognize that there is not a universally agreed
upon definition of a promoter, our previous work
suggests that this is a suitable interval (Boukas et
al., 2020). Importantly, even though this definition
leads to the inclusion of a few exonic CpGs in some
cases, we have shown that the ability of this 4kb-
interval CpG density to predict downstream gene
loss-of-function intolerance is driven by the CpGs
in proximity to the TSS, and not by the exonic ones
(Boukas et al., 2020). We obtained a set of 11,059
promoters with high-confidence GENCODE TSS
annotation provided in Boukas et al. (2020). As de-
scribed therein, this set does not contain subtelom-
eric promoters (within 2 Mb of chromosome ends),
as the CpG islands of such promoters have distinct
characteristics (they are organized in clusters, and
are thought to be maintained principally by GC-
biased gene conversion (Cohen et al., 2011)). Also
excluded are promoters of genes on the sex chromo-
somes, for which loss-of-function intolerance esti-
mates have a different interpretation than for auto-
somal genes, because of hemizygosity in males and
X inactivation in females.

We here further restricted to promoters where the
downstream transcript had ≥ 10 expected loss-of-
function variants, in order to ensure that our rank
ordering of genes according to the selective pres-
sure against loss-of-function heterozygotes is not
severely corrupted by genes not adequately pow-
ered for LOEUF, or shet, estimation. Subsequently,
bidirectional promoters were handled exactly as de-
scribed in Boukas et al. (2020), yielding a set of
7,518 promoters that we used for our analyses.

Whole-genome bisulfite sequencing data from
human and mouse sperm

We used processed whole-genome bisulfite se-
quencing data from human and mouse sperm (Qu
et al., 2018). These data were accessed though the
DNA methylation trackhub at the UCSC genome
browser (Song et al., 2013), and consisted of methy-
lation level (defined as the proportion of reads sup-
porting the methylated state) and coverage. The
raw experimental data consisted of two biologi-
cal replicates from human (Molaro et al., 2011),
and four biological replicates from mouse (Ham-

moud et al., 2014). For human, sequencing reads
were mapped to hg19. For mouse, reads were
first mapped to mm10 to generate methylation and
coverage level, and the mouse CpG were subse-
quently aligned to their homologous position in
hg19 (which need not be a CpG; see Qu et al. (2018)
for details).

We only considered CpGs with at least 10x cov-
erage. We labeled a given CpG as methylated if its
methylation level was≥ 80%, and hypomethylated
if its methylation level was≤ 20% (we note that this
is a different threshold from the one used to clas-
sify a promoter as methylated). As orthogonal sup-
port for the methylation state of the human CpG
sites, we examined their nucleotide diversity and
minor allele frequency spectrum in TOPMed; reas-
suringly, methylated CpGs are substantially more
variable than hypomethylated ones (Supplemental
Figure S6a, b). Finally, we discarded CpGs with in-
termediate methylation level (that is, between 20%
and 80%), and restricted to promoters with ≥ 10
CpGs (Supplemental Figures S2b, S3b show the
distribution of the total number of CpGs – either
methylated or hypomethylated - for all promoters
in human and mouse). In total, this yielded 7,460
promoters with ≥ 10 CpGs in human, and 7,085
promoters with ≥ 10 CpGs in both human and
mouse.

Genetic variation data from TOPMed

We downloaded a VCF file containing human varia-
tion data from dbSNP (version 151, hg19 assembly).
We then used bedtools (Quinlan and Hall, 2010) to
restrict to variants within our set of 7,518 promoter
regions. We used the allele frequencies of these
variants in TOPMed (freeze 5; 62,874 individuals),
and only considered biallelic sites with single nu-
cleotide variants (that is, we excluded multiallelic
sites and sites with indels). We further restricted to
sites where the reference allele was the major allele
(allele frequency ≥ 0.5). These filters resulted in a
total of 4,568,818 sites, of which 707,637 were CpGs.
Following Asthana et al. (2007), the nucleotide di-
versity (π) for a given set of sites was estimated as

∑
i

mafi(1−mafi)N/(N − 1)
L

where L is the total number of sites, mafi is the mi-
nor allele frequency in site i, and N is the total num-
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ber of individuals (which in our case is equal to
62, 874). For sites with no variant allele, the minor
allele frequency was taken to be 0.

Between species nucleotide conservation

We quantified nucleotide conservation across 100
vertebrates species with the PhastCons score (Sie-
pel et al., 2005). We obtained these scores for nu-
cleotides in promoters with the
phastCons100way.UCSC.hg19 R package. For Fig-
ures 3b, c, we only considered promoters with≥ 30
CpGs.

RNA-seq expression data

For expression in testis, we downloaded the gene-
level TPM expression values from the GTEx v7
release (GTEx Consortium, 2017), from the GTEx
portal. We restricted to the genes downstream
of our 7,518 promoters. Subsequently, for each
gene we computed the median (across individu-
als) expression in testis (in log2(TPM + 1) scale).
We then labeled genes with median expression ≤
0.26 (2.5th percentile, 80 and 98 genes with methy-
lated and hypomethylated promoter, respectively)
as not expressed, and genes with median expres-
sion >= 5.33 (75th percentile, 51 and 1,809 genes
with methylated and hypomethylated promoter, re-
spectively) as highly expressed.

For expression in sperm, we downloaded the
raw sequencing reads from 8 healthy individuals
(Swanson et al., 2020). We pseudoaligned these
reads to a fasta file containing all human cDNA
sequences (Homo sapiens.GRCh37.75.cdna.all.fa;
downloaded from ENSEMBL), and subsequently
quantified transcript abundances with Salmon (ver-
sion 0.10.0) (Patro et al., 2017). We then obtained
normalized gene-level counts from the transcript
abundances using the tximport R package (Sone-
son et al., 2015), with the “countsFromAbundance”
parameter equal to “lengthScaledTPM”.

We then labeled genes with median (across in-
dividuals) expression equal to 0, and maximum
expression ≤ 0.25 as not expressed (43 and 61
genes with methylated and hypomethylated pro-
moter, respectively), and genes with median ex-
pression ≥ 7.5 and minimum expression ≥ 5 as
highly expressed (25 and 791 genes with methy-
lated and hypomethylated promoter, respectively).

We observed concordance between the genes la-
beled as not expressed or highly expressed in testis,
and their counterparts in sperm (Supplemental Fig-
ure S7), despite the low mapping rate of sperm
reads (median = 25%).

H3K4me3 ChIP-seq data

We downloaded the raw ChIP-seq reads (both
from the sample treated with the H3K4me3 an-
tibody and the input control sample) from Ham-
moud et al. (2009). Reads were mapped to
hg19 using Bowtie2 (Langmead and Salzberg,
2012). Subsequently, we used Picard (http://
broadinstitute.github.io/picard/) to re-
move duplicate reads, with the function MarkDu-
plicates. We then called peaks using MACS2 (Y
Zhang et al., 2008), with the “keep-dup” parame-
ter equal to “all”.

For Figure 3a, the presence of H3K4me3 is quan-
tified by the presence of at least one peak whose co-
ordinates overlap the promoter coordinates. Out of
the promoters with peaks, 103 were methylated and
5981 were hypomethylated. Out of the promoters
without a peak, 525 were methylated and 772 were
hypomethylated. We verified that the persistence of
the relationship between germline promoter methy-
lation and LoF-intolerance when conditioning on
the presence or absence of promoter H3K4me3 is
not an artifact of the specific parameters used for
peak calling. Specifically, we used Rsubread (Liao
et al., 2019) to map the reads from the antibody-
treated and input control samples into our pro-
moter regions (excluding chimeric fragments and
multimapping reads), and obtained the same result
using the ratio of antibody-to-control reads (Sup-
plemental Figure S4).

Code availability

The code used for the analyses and figures is avail-
able at https://github.com/hansenlab/
cpg_selection_methylation_paper_
repro.
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dinucleotides enhance promoter activity independent
of DNA methylation. Genome Research 29, 554–563.
D O I: 10.1101/gr.241653.118.

Karczewski, KJ, Francioli, LC, Tiao, G, Cummings, BB,
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Supplementary Figure S1. Testing for the deleteriousness of promoter DNA methylation in the male
germline using shet estimates. (a) Like Figure 1a, but with shet instead of LOEUF. (b) Scatterplot of
LOEUF against shet. Each point corresponds to a gene.
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Supplementary Figure S2. The methylation state of CpGs at human promoters in the male germline.
(a) The distribution of the percentage of CpGs that are methylated (≥ 80% of bisulfite sequencing reads
supporting the methylated state) across human promoters. The vertical lines correspond to the cutoffs
used to group human promoters as hypomethylated or methylated (≤ 40% and ≥ 80% CpGs
methylated, respectively). (b) The distribution of the number of CpGs that were either methylated or
hypomethylated (≥ 80% and ≤ 20% of bisulfite sequencing reads supporting the methylated state,
respectively), and had more than 10x coverage, across human promoters.
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Supplementary Figure S3. The methylation state of mouse CpGs that align to human promoters in
the male germline. (a) The distribution of the percentage of mouse CpGs that are methylated (≥ 80% of
bisulfite sequencing reads supporting the methylated state) across human promoters. For each CpG, the
methylation status was quantified in mouse, and these CpGs were subsequently aligned to the human
genome. The vertical lines correspond to the cutoffs used to group human promoters as
hypomethylated or methylated in mouse (≤ 40% and ≥ 80% CpGs methylated, respectively). (b) The
distribution of the number of mouse CpGs that were either methylated or hypomethylated (≥ 80% and
≤ 40% of bisulfite sequencing reads supporting the methylated state, respectively), and had more than
10x coverage, across human promoters.
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Supplementary Figure S4. The relationship between genic loss-of-function intolerance and
promoter methylation in the male germline conditional on the presence of H3K4me3. Low
H3K4me3/input ratio corresponds to values ≤ 0.45 (10th percentile), while high H3K4me3/input ratio
corresponds to values ≥ 6.57 (90th percentile). See Methods for details on the calculation of the ratio.
This figure complements Figure 1c, where the presence of H3K4me3 was determined using peak calling
(Methods).
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Supplementary Figure S5. The relationship between human promoter CpG density (o/e CpG ratio)
and methylation in the male germline. Each point corresponds to a promoter. A given CpG was
classified as methylated if ≥ 80% of bisulfite sequencing reads supported the methylated state. Only
CpGs with ≥ 10x coverage and methylation level ≥ 80% or ≤ 20% were considered. The CpG density
of a given promoter was computed as described in Boukas et al. (2020).
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Supplementary Figure S6. Genetic diversity of promoter CpG sites in TOPMed. (a) The nucleotide
diversity of all promoter CpG sites, stratified according to whether they are methylated or
hypomethylated in the male germline (≥ 80% and ≤ 20% of bisulfite sequencing reads supporting the
methylated state, respectively). Nucleotide diversity was estimated as described in methods. Only CpGs
with ≥ 10x coverage are considered. (b) The minor allele frequency spectrum of the CpGs used in (a).
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Supplementary Figure S7. Assessing the concordance between gene expression in testis and sperm.
(a) The distribution of gene expression (median across individuals in log2(TPM + 1) scale) in testis, for
genes either not expressed, or highly expressed, in sperm. (b) Scatterplot of expression in testis against
expression in sperm. Each point corresponds to a gene. Testis expression data were obtained from the
GTEx consortium, and sperm expression data (raw RNA-seq reads) were obtained from Swanson et al.
(2020) (Methods).
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